An AMBA-ARM?7T Formal Verification Platform

Kong Woei Susanto! and Tom Melham?

! Department of Computing Science, University of Glasgow
Glasgow, G12 8QQ, UK
susanto@dcs.gla.ac.uk

2 Computing Laboratory , Oxford University
Oxford, OX1 3QD, UK
Tom.Melham@comlab.ox.ac.uk

Abstract. The pressure to create a working System on Chip design as
early as possible leads designers to consider using a platform based de-
sign method. In this approach, designing an application is a matter of
selecting from a set of standard components with compatible specifica-
tions. Subsequently, a formal verification platform can be constructed.
The formal verification platform provides an environment to analysed the
combined properties of the design. In this paper, we present a methodol-
ogy to do formal System on Chip analysis by developing generic formal
components that can be integrated in a formal verification platform.
First, we develop reusable formal properties of standard components.
Second, we define a generic formal platform in which components of
System on Chip design can be integrated. The platform contains basic
components such as a standard bus protocol and a processor. Third, we
combine the properties of standard components and obtain a set of re-
fined properties of the system. We use these properties to develop the
required specifications of the remaining components.

1 Introduction

The effort to implement a single chip system from scratch is enormous and only
a few companies have the needed competency in all design areas. In most cases,
designers will have to use Intellectual Property (IP) blocks or Virtual Components
(VCs). IP blocks are predefined, large grained logic blocks, (such as processors,
memories, and peripherals) whose function has been precisely specified. They
can be developed in—house or originate from external vendors. When IP blocks
become widely available, the design focus will shift to reuse. Chip design is
becoming much more a matter of design composition than of design creation.

These compositional or reuse based design methodologies will be the issue
addressed by System on Chip (SoC) designers. A standard platform and applica-
tion specific architectural context will play a major role in achieving a plug and
play environment using reusable components. Such an integration environment
will typically be a design platform for a specific application domain. The IP
blocks will be the standard building blocks that can be easily integrated within
the application domain [6I16].

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 48-[67 2003.
© Springer-Verlag Berlin Heidelberg 2003

An AMBA-ARMT Formal Verification Platform 49

The verification of SoC design is arguably the biggest challenge for designers.
Complexity has made design validation the bottleneck in the completion of a de-
sign project. A new design and validation methodology is needed to address this
problem [4]. This must be capable of reducing the amount of analysis and de-
bugging that takes place in the early development stages. The new validation
methodology should emphasise reusing existing validation code. This reduces
the time needed in recreating the validation code. The use of an abstract repre-
sentation of IP models could help to speed up the validation process.

The limits of traditional validation methods have prompted the industrial
community to consider formal verification methodologies for verifying hardware
system specifications and models [19]. The inclusion of formal verification will
remove uncertainty, increasing confidence in the design, and reduce verification
time. Advances in design and validation methodologies for system level verifica-
tion will make changes to the current formal verification approach necessary.

In this paper, we present one methodology to do formal SoC verification. The
core of this methodology is in the development of reusable formal properties or
proofs that can be used in the development of an SoC design. The properties
contain the operational conditions for the system and specify its input/output
relations. These properties are used as the behavioural representations of the
components. We use these properties to define the requirements for each com-
ponents used in the design of an application. The methodology is based on
the combination of semiformal [T] and hybrid systems [5]. Tool support for the
methodology is constructed from a selection of formal tools.

The contents of the paper are as follows: In Section 2 we briefly describe
the integration platform approach for system on chip technology. In Section 3
we explain our idea of a verification platform, followed by a brief description of
the formal tools environment. The AMBA and ARM platform is described in
Section 4. In Section 5, we describe the specification development for an Ethernet
Switch system built on this platform. A summary and discussion of future work
is presented in Section 6.

2 Typical SoC Architecture

Cadence, Synopsys, and Mentor Graphics, three major providers of Electronics
Design Automation (EDA) tools, have proposed similar systems that support or
are based on the integration platform concept. A typical integration platform
[21]) is presented in Figure[ll A simple general-purpose processor core is the basic
component. The platform is customisable with a collection of IP blocks which
can be either user-defined logic blocks or third party IP blocks. All the IP blocks
communicate through busses that also communicate with the processor.
Within this environment, two kinds of busses are introduced: the processor
local bus (PLB) and the on-chip peripheral bus (OPB). There will be only one
PLB but there may be more than one OPB. The OPB is connected to the PLB
through a module interface called the OPB bridge. The PLB arbiter controls

50 Kong Woei Susanto and Tom Melham

PLB OPB
Arbiter Arbiter

I OPB I
Processor Local Bus (PLB) Bridge <—>| On-Chip Peripheral Bus (OPB)
A A A

v A A 4
Processor RAM User Defined 3rd Party
Core ROM Logic IP

Fig.1. A Typical Integration Platform.

the PLB communications among the processor, memory and OPB bridge. The
OPB arbiter controls the OPB communications among the IP blocks.

Typically, an integration platform will come as a platform for a specific
application domain. The platform will consists of components such as a target
hardware and software architecture, a portfolio of VCs, and a design valida-
tion methodology. Its IP blocks are standard building blocks that can be easily
integrated together into a system in the platform.

The design validation methodology determines the kinds of test-benches
required for system level verification. These test-benches must be started early
in the design process to avoid the possibility having a working chip but a
failed system. The methodology determines which verification tools (event-driven
simulation, cycle-based simulation, emulation) can be used. This information is
very useful as each selected tool may have specific coding style requirements. Fi-
nally, the methodology defines a way to validate the system with an application
running on it.

3 A Verification Platform Approach to SoC

In parallel with the system integration platform described above, we suggest
that a formal verification platform is constructed. A formal verification platform
is a standardised platform where a verification engineer can easily integrate
various formal models in a single environment and perform formal validation of
the system [26]. In this, each of the building blocks is represented as a formal
specification model. There is a model for the processor core, for the bus and its
protocol, and for all IP blocks available. Then the different models are integrated
as a single system description in the verification platform.

Similar to validation, which commonly uses simulation, the formal verifica-
tion platform may apply a variety of verification techniques. For example, a
processor core formal model can be verified by symbolic simulation or by formal
proof [10]. A bus protocol formal model is normally verified using a property
checker [23]. The verification platform needs to accommodate all these various
verification techniques.

An AMBA-ARMT Formal Verification Platform 51

There are two approaches to defining the formal models for these verifica-
tion methods. The first is to define them all in a single specification language
that has a complete set of verification techniques. HOL [89], PVS [24], ACL2
[T4I15], and Forte [I2] are the examples of this kind of verification environment.
Another approach is to use a mixture of available tools, PROSPER [7] being one
notable example of an environment designed for this. This approach enables the
verification platform to use the most appropriate tools without compromising
performance. But it has the drawback that a system might be formally modelled
in more than one specification language. It also raises the issue of integrating the
different tools used so that they can communicate. A logical connection among
the tools is required in which the formal models can be integrated as a single
system, using a kind of glue logic to connect them.

Our work uses the second approach, a mixed tools environment. We con-
struct a verification environment which has the capabilities of various formal
verification technologies, such as a theorem prover, a symbolic simulator, and
a model checker. The verification environment combines the HOL98 theorem
prover, the ACL2 theorem prover and the SMV model checker [17]. HOL9S is
the centre of the tools environment. ACL2 and SMV are connected to HOL98
through a layer of interfaces. Through these interfaces, users can send commands
from HOL9S to instruct ACL2 and SMV to perform formal proof. HOL98 also
accepts proved theorems and properties from ACL2 and SMV as theorems in its
own logic. Detailed descriptions of the system are given in the reminder of this
section.

3.1 Theorem Prover

The theorem prover is the central tool to perform an integrated system level
verification. Its command language is treated as the implementation language for
interfacing various formal tools in the platform. It also provides the environment
for orchestrating the proofs.

The theorem prover includes an integration interface that provides the com-
munication protocol for the verification tools. It consists of several parts: a
datatype for all logical and control data transferred between tools, a datatype
for the results of remote calls and support for installing and calling procedures,
and a low-level communication manager.

The verification environment uses HOL98, a modern descendent of HOL, as
the theorem prover component. HOL9S8 is a higher order logic theorem prover.
Its logic is built on the predicate calculus of ML style typed system. Higher
order logic is used as the glue logic to connect and integrate formal components.
HOL’s command language, ML, allows a developer to have a full programming
language available in which to develop custom verification procedures. The tools
integration interface library in HOL is provided by PROSPER.

3.2 Symbolic Simulator

The common design practice of validation by simulation has encouraged us to
choose the ACL2 theorem prover as a component for the verification environ-

52 Kong Woei Susanto and Tom Melham

ment. ACL2 offers the capability of simulating test vectors and performing sym-
bolic simulation. An interface (ACL2PII [25]) for PROSPER has been developed
to allow results from ACL2 to be interpreted in HOL. ACL2PII is a dynamic
link for translating theorems between two live sessions of HOL and ACL2, with
communications going in both directions. The interface also allows a user to run
ACL2 from within HOL.

The ACL2 and HOL theorem provers use different languages and different
logics. ACL2 uses untyped s-expressions [27] to represent first order logics,
whereas the HOL system uses typed terms for higher order logic. The interface
implements a scheme for translating ACL2 s-expressions into HOL terms. A set
of basic translation has been implemented so that the appropriate s-expressions
can be automatically translated into booleans, natural numbers, integers, sim-
ple arithmetic expressions, characters, strings, lists and tuples. The interface
also provides an environment to extend and add new translation clauses for new
ACL2 theories.

Logically, ACL2 is being used as an aziom-server for facts about constants
that are uninterpreted in HOL but have definitions in ACL2. The consistency
of the axioms are assured by proofs being conducted in ACL2. This way of
connecting ACL2 and HOL is pragmatic, but sound for the purposes of our ap-
plication. The automatic transformation reduces the possibility of inconsistency
when importing definitions and theorems from ACL2 into HOL.

3.3 Model Checker

The HOL98 distribution includes an early version of McMillan’s SMV symbolic
model checker as part of the temporal logic library. The model checker is embed-
ded in HOL as one of the decision procedures for HOL’s tactic language. Using
this library, temporal properties specified in LTL notations can be validated in
two ways, either by proving the properties using HOL tactics or by using the
external model checker. When the model checker is used and the formula can be
verified then the result from the model checker is represented as a HOL theorem
using HOL’s oracle mechanism. If the model checker reports an error, then a
counterexample is provided. A detailed description of the embedding of LTL in
HOL is presented in [22]

We replace the SMV model checker with the latest version from Cadence.
This re-implementation of SMV uses LTL instead of CTL. Although for back-
ward compatibility it supports CTL, the developers suggest to use LTL to achieve
maximum performance. We extended the temporal library so that it is possible
to use the Cadence SMV model checker with LTL notations. We embed a subset
of SMVL in HOL using the deep embedding technique. In a deep embedding, the
semantics of the language is constructed and an interpretation of the language
is provided. This makes the system more modular. Previously, when we used
model checker we had to specify formal models and properties which are to be
verified in HOL. Now, we can define and verify the SMV model on its own and
then automatically import the proved properties as HOL theorems.

An AMBA-ARMT Formal Verification Platform 53

4 Case Study: AMBA Bus Protocol
and ARMYTY Processor Based Verification Platform

We use RAPIER to describe our experience in the development of a reusable
SoC verification platform. RAPIER is an integration platform architecture de-
veloped by the Institute for System Level Integration (ISLI) in Scotland [20]. It is
based on the ARM Advanced Microcontroller Bus Architecture (AMBA) [3]. The
platform contains an Advanced High—Performance Bus (AHB) and an Advanced
Peripheral Bus (APB), an external memory controller, two timers, a UART, an
Interrupt Controller, a System Controller, a system watchdog, a general purpose
I/0 block, five AHB masters, four AHB slaves, and four APB slaves. The AHB
bus is the processor local bus (PLB) and the APB is the on—chip peripheral bus
(APB). The architectural block diagram of the RAPIER platform is shown in

Fig. 2

[Master Ports H-H—» [] ~—+ Expansion Ports uﬂ
\ Arbiter s - - «—= System Watchdog |
\ Decoder - - T g & [~ System Controller |
\ SRAM el 03 W - Timers \

c

| SlavePorts |« Z 7 e UART \
External Memory] GPIO \
Controller o | |=—Interrupt Controller |

Fig. 2. Block diagram of RAPIER Platform.

4.1 AMBA Bus Protocol

AMBA is an on—chip bus specification that defines interconnection, communi-
cation, and management of functional blocks for SoC design. It is a technology
independent specification. This ensures that the modules are reusable across di-
verse IC processes and technologies. It encourages standardise modular system
design using a common bus protocol. This enhances the reuse design methodol-
ogy for the modules.

Typically, AMBA based SoC design contains a high performance bus system
such as the AHB. The bus is capable of handling high—bandwidth communication
with the external memory interface, processor, on—chip memory, Direct Memory
Access (DMA) module, and a bridge to the lower speed bus APB, where most
peripherals in the system are located. An SoC system can have one or more
masters. A typical system contains at least one processor. A DMA controller
or a Digital Signal Processor (DSP) are also standard bus master devices. The
external memory interfaces, on—chip memory, and APB bridge are typical AHB
slaves. Most of the peripherals can be part of the system as AHB slaves, but
more likely they are part of the AMBA APB.

54 Kong Woei Susanto and Tom Melham

4.2 The Protocol

In this case study, we partition the RAPIER platform and use only the AHB
module. RAPIER’s AHB contains an arbiter with five master ports and one
slave port. We develop reusable properties for this module. The properties give
the operational conditions for the system and the input/output behavioural re-
lations.

The AMBA AHB process starts when a master asserts a bus request sig-
nal (reg-m;) to AHB arbiter. Then the AHB arbiter performs the arbitration
process to determine which master is granted (grant-m;) the access to the bus.
The granted master starts the data transfer process by sending control signals
and an address. Control signals provide information about the transfer. One of
these control signals is the type of transfer (HTRANS). There are four types
of transfer: IDLE (mst;_idle), BUSY (mst;_busy), NONSEQ (mst;_nonseq), and
SEQ (mst;-seq). In an IDLE transfer, the active master does not perform any
data transfer. BUSY transfer is similar to IDLE, but it also indicates that the
active master is inserting an IDLE cycle in the middle of a BURST operation.
NONSEQ and SEQ signals indicate the control signal and address relation be-
tween current transfer and the previous one.

When the active master has started the transfer, the selected slave will
respond with information on the transfer using HREADY and HRESP signals.
Whenever slaves need to assert one or more wait states, the HREADY (slv_ready)
signal is set to LOW. The HRESP signal is used to determine the status of
transfer. There are four possible HRESP responses: OKAY (slv_ok), ERROR
(slv_error), RETRY (slv_retry), and SPLIT (slv_split). The OKAY response in-
dicates the slave’s transfer is progressing without any problem. The ERROR
response indicates that an error has occurred during the transfer. The RETRY
response indicates that the transfer is not finished yet and the bus master has to
retry the transfer until it is completed. The SPLIT response indicates that the
transfer is not completed successfully; the bus master must retry the transfer
when it is next granted access to the bus. In a SPLIT condition, the slave takes
the responsibility to initiate a request to access the bus when the transfer can
be completed.

The arbiter manages the arbitration processes. It monitors requests to access
the bus from masters and to complete the split transfer from slaves. Then it
decides which master has the highest priority to be granted the access. The
arbiter is also responsible for ensuring that at any time there is only one master
is granted access to the bus.

SMYV is used to verify the implementation of AHB bus protocol. SMV uses
the SMV Language (SMVL) and Verilog as its modelling languages. When the
source is in Verilog, it needs to be translated into SMVL before it is model
checked. The translation from Verilog to SMVL is done by using the translation
tool vl2smv. The tool comes as part of the Cadence SMV distribution.

RAPIER AHB is implemented in Verilog. We needed to slightly modify the
code to satisfy our system level verification methodology, which considers all
components are black box components. The black box approach does not al-

An AMBA-ARMT Formal Verification Platform 55

low the use of any internal nodes or signals. One approach to overcoming this
requirement is by bringing all internal nodes needed in the verification to the
output interfaces. We also need to do abstractions to the data—bus and address—
bus of the bus protocol to eliminate one source of explosion in BDD sizes during
formal verification. The n-bit bus is replaced with a special scalar—set datatype
called num [I1].

4.3 ARMYT Processor

ARMY is a 32-bit microprocessor from Advanced RISC Machines (ARM) [2].
It is based on the Reduced Instruction Set Computer (RISC) architecture. The
processor features a three—stages pipeline architecture. Typically, in one cycle
one instruction is being executed while the next one is being decoded, and the
one after that is being fetched.

In our platform the formal model of the ARM7 processor is specified in LISP,
the programming language of ACL2. Implementing the processor in LISP enables
the model to be used in classical simulation test by executing the functional
model with input test vectors. In the ACL2 environment, the LISP model is
used as a formal model which enables user to perform symbolic simulation.

ARMT is modelled as a finite state machine at the Micro—Architectural (MA)
level. The model is a clock—cycle accurate model of the pipeline machine im-
plementation. Every internal state transition corresponds to a hardware clock
cycle. The MA is modelled using a state function, which is a mapping of (f:
inputs — state — state) [18]. The inputs argument are the input interfaces of
the processor. The state defines the internal state of the processor at a given
time. It contains a list of all state-holding components of the processor, such
as the registers, and flags. Our processor model does not feature Thumb and
co—processor instructions.

The bus protocol and the processor are the core components of the verifica-
tion platform. The platform is used in the development of an application, the
Ethernet Switch. The system uses only two master modules.

5 Formal Properties

In this section, we explain the development of a verification platform for the sys-
tem just described. The platform is based on specifications for the AMBA AHB
bus protocol and the ARMT7 processor. We then use these to develop platform
specifications for two AHB masters. We require that the resulting system should
have certain liveness properties.

The development stages are as follows: first, we establish generic properties
of the platform which are based only on RAPIER’s AMBA protocol proper-
ties. Second, we develop properties of the processor. Third, we integrate the bus
arbiter and the processor by combining their properties. The result of this com-
bination is used to define specifications for the remaining components. In effect,
these specifications are the test—benches to define components’ compatibilities
with the system.

56 Kong Woei Susanto and Tom Melham

5.1 AMBA AHB Properties

Our verification platform is built around the AMBA bus protocol. In this first
stage mentioned above, we define the environmental constraints for the pro-
tocol. These constraints provide operational conditions whereby the expected
behaviours of the protocol are reached or proven correct. Conditions are proved
using the SMV model checker; then they are imported into HOL98 as theorems
(axioms).

All verification has been performed using a Linux machine with an Intel
Xeon 2.4GHz processor with 3G RAM. The time used to import theorems from
SMYV into HOL is negligible compared to the time used to model check. Model
checking of Theorems 1, 2, and 3 took approximately 25 seconds, 25 seconds,
and 59 minutes of CPU time respectively.

From the documentation [13], we learn that the request from all masters
connected to the AMBA AHB can be activated or de—activated by setting the
clock blocking signals (clocken_m;). When a master is de-activated, the clock
signal is blocked for that master. Consequently, its requests to access the bus
will be ignored and no grant signal can be assigned to it. To achieve maximum
coverage of all masters’ activities, all masters need to be activated. This is done
by setting off the blocking control for the input clock of each module (clocken_m;)
with a HIGH signal.

One way to assure behavioural consistency of the system is by applying an
initialisation sequence. This is achieved by triggering the reset signal. The envi-
ronmental constraint express this by saying that the reset signal is active for at
least one cycle and no reset is applied afterwards. We only analyse the behaviour
of the model after the system is reset and all masters are active. This constraint
is defined in Assumption 1.

Assumption 1.
Reset A XG —Reset A\ G(/\ clocken_m;)
1<i<5

In SMV, Assumption 1 is declared as a fairness condition for the system. The
SMYV code for this fairness condition is SMV_Assumptionl. The fairness proper-
ties are enforced by assuming them to be true, using the SMV assume construct.

SMV _Assumptionl:
assert (Reset & XG ~Reset & G(clocken.m; &
clocken_my & clocken_ms & clocken_my));
assume SMV _Assumptionl;

The AHB arbiter receives requests from up to five AHB masters. It then uses
a fixed priority rule to determine which master should be granted bus ownership.
Master my is assigned the highest priority and master mg the lowest priority. If
no master is requesting the bus, then unless m; is in the split mode [3], bus
ownership is granted to my. If default master (m;) is in split mode, the bus
is granted to dummy master (mg). The AHB arbiter has the responsibility to
ensure that at any time only one master is being granted bus ownership. The

An AMBA-ARMT Formal Verification Platform 57

arbiter also guarantees that at any time there is one master which is granted
the bus. This is shown in SMV_Theorem1. The mutual exclusion properties are
described in SMV_Theorem?2.

SMV _Theorem1:
assert G(grant_mo | grant_m; | grant_mso |
grant_mgs | grant_my | grant_ms);
using SMV _Assumptionl prove SMV _Theoreml;

SMYV _Theorem?2:
assert G(~(grant.mo & grant_-m;) &
~(grant_mo & grant_ms) &
~(grant_my & grant_ms));
using SMV _Assumptionl prove SMV_Theorem?2;

SMV_Theorem1 and SMV_Theorem2 are proved using the fairness condition
SMV_Assumptionl. We instruct SMV to use the constraints by a using as-
sumptions prove theorems statement.

The interface between SMV and HOL enables users to automatically import
properties proved in SMV into HOL. The interface analyses the SMV code to
find relevant information about the properties being verified. It also gathers
which components or modules and assumptions are used in the verification.
The modules and assumptions become the antecedents and the properties being
proved as the conclusions of implications in HOL. For example, SMV _Theorem1
is imported into the HOL environment by using the command get_smuv_theorem.
The HOL theorem is:

HOL_Theoreml:
(AHB A Reset A XG —Reset A
G(clocken_m; A clocken_ms A clocken_ms A clocken_my))
N
(G(grant-mp V grant-m; V grant_ms V
grant_ms V grant_my4 V grant_ms) A
G(—(grant_mo A grant_m;)A
—(grant-mo A grant_msg)A

—(grant_my A grant_ms))

Another style of HOL_Theorem1 is presented in Theorem 1. The theorem says
that when AHB is initialised with conditions described in Assumption 1, there
will be exactly one master being granted bus ownership.

Theorem 1.
(AHB A Assumption(1)) — (G(ng<5 grant_m;) A

G(
For the reminder of Section [5.1] we use the notations employed in Assumption

1 to describe the SMV fairness constraints and Theorem 1 to describe SMV
theorems when they are imported into HOL.

- (grant-m; A grant-m;)))

0<i,j<5,i#j

58 Kong Woei Susanto and Tom Melham

After defining the initialisation process, we need to learn about the specific
behaviour of the system. The resources we have for this are the documentation
and the circuit itself. In most cases, however, the existing documentation is not
detailed enough to provide the specific information needed. Furthermore, the
system may come as a black box system where minimum information of the
circuitry are available. One approach that can be taken is by performing experi-
mental verifications using the documented specifications as the guidelines. In our
case, we use SMV to learn about our AHB system. When incorrect constraints
are used in the verification, SMV generates a counter example. We use the doc-
umentation and feedback from SMV to determine the operational conditions of
the system that can lead to the expected behaviours.

One of master’s behaviours is that it can request the arbiter to perform a
burst process or a lock process. When the arbiter allows the master to perform
those processes, the arbiter state machine goes into either burst mode or lock
mode state. In these states, the system goes into an internal loop and continues to
grant the bus to the active master until the process is finished. The only exception
is when the arbiter goes into a lock—split state, which forces the arbitration to
grant the bus to the dummy master until the split process is completed. Lock—
split state is a condition when the arbiter is serving active master lock request,
slave responds with a split signal. The arbiter starts a new arbitration when the
process in burst mode or lock mode is completed.

At this stage, we need to find the general conditions that ensure that all pro-
cess modes can be completed. When a master is granted the bus, the completion
of the process depends on the response from the slave. The slave informs the
arbiter and the master that the data is ready by emitting a slv_ready signal. We
assume slaves have the fairness property of eventually responding to any request.
At the same time, the master must be able to acknowledge the slave response.
This requires a condition where if master m; is granted the bus then eventually
the active master is not in a busy mode and slave issues a ready signal. This
fairness constraint is described in Assumption 2.

Assumption 2.
GF slv_ready N G(1</\<5grant,mi — XF(—=mst;_busy A slv_ready))

The transition of the arbiter’s state machine into lock mode can be observed
from the response on grant and lock signals of each masters. When an active
master is sending a lock signal, then the arbiter will go to lock mode. We define
this condition as (1<\/<5 (grant_m; A lock-m;)) and abbreviate it as the lock_req
signal. When lock_req goes HIGH then the arbiter will be in the lock mode.
Whenever the system enters a lock mode, there is a possibility that the system
is trapped and has reached a deadlock condition. We prevent this condition by
stating that every master which asserts a lock signal will eventually de-assert it.

There is also a possibility that the lock mode operation goes into an alter-
nating sequence in which the master sends the lock/unlock signal and the slave
sends the split/retry-ok/error signal. For examples, everytime active master de—

An AMBA-ARMT Formal Verification Platform 59

assert lock signal, slave responds with split/retry signal. This condition forces
arbiter to go back into lock or lock—split mode state. If this condition always
occurs, the system will be trapped in the lock mode. We choose to allow this
condition to happen and examine the possible sequences needed to break this
loop—trap. The requirement to exit from the loop—trap is described in Assump-
tion 3.

Assumption 3.

G (lock-req — F —lock-req) N

GF (lock-mode — (—grant-mg A slv_ok/slv_error A —lock_req N
X(slv_ready N slv_ok/slv_error A —lock_req)))

The description of the above assumption is as follows: first, when the active
master asserts a lock signal, it will eventually de—assert it. Second, lock mode will
always be terminated after two cycles. In the first of these cycles, it is required
that the bus is not granted to mg. In the second cycle, the slave module has to
acknowledge that it is ready to complete the transfer. In both cycles, the master
has to be able to retract the lock signal (unlock), and the slave must not issue
a split or retry response.

A new arbitration is achieved when the system is in burst mode or able to exit
from the lock—trap while in lock mode. This condition is indicated by new_cycle
signal. When HIGH output on this signal indicates that the arbiter is performing
a new arbiration process. The exit requirements are defined in Assumption 1,2,
and 8. Assuming the exit requirements are fair, we prove that the arbiter will
always eventually perform a new arbitration. The theorem is described below:

Theorem 2.
(AHB A Assumption(1,2,3)) — GF new_cycle

There is a possibility that a granted master is forced by a slave into split
mode. When this condition occurs, the arbiter memorises which master has
been split using the split_m; signal. In this case, arbiter will ignore all incoming
requests from master m; until it receives un—split signal from the slave. The un—
split signal indicates that the data for the master is ready for transfer. To avoid
the scenario that a master remains in split mode indefinitely, we define a new
fairness condition described in Assumption 4.

Assumption 4.
15/1:\9 (split-m; — F un-split_m;)

Every clock cycle, the arbiter evaluates the latest input signals and de-
cides what action it will take. When a request send by a master module is
not granted, the module needs to keep requesting. This is because the arbiter
does not memorise any incoming signals. If the master retracts its request signal,
the arbiter will assume the corresponding master has cancelled its request.

60 Kong Woei Susanto and Tom Melham

The arbiter uses a fixed priority scheme to decide which master is granted
access to the bus. The fixed priority scheme will always prevent any lower pri-
ority master being granted bus ownership. We need to create a situation where
the possibility of granting control to this master exists. A request from m; can
only be granted whenever no higher priority master is sending a request signal
or when the higher priority master is in split mode. The request constraints are
described in Assumption 5.

Assumption 5.
A ((reg-m; N X —grant_m;) — X req-m;) A

1<i<5

(reg-m; — F (i<{\§5 (—reg-m; V split-mj) N X new_cycle))

1<i<4

After we successfully create the general scenario for a new arbitration, we can
use it to obtain the requirements for the arbiter to grant every incoming master
request. The additional rules are described in Assumption 4 and 5. The general
request-grant theorem is described in Theorem 8. The theorem says that every
master request will eventually be granted, provided all requirements defined in
Assumption 1 through Assumption 5 are satisfied:

Theorem 3. A
(AHB A Assumption(1,2,3,4,5)) = G (_

N regomi — F grant-m;)

Theorem 8 defines only the liveness condition of every master’s request. In
order to guarantee liveness of the system, all constraints must be satisfied. This
means that all masters have to operate fairly so that every master has the chance
to access the bus. In Section [5.3], we describe how we refine Theorem 3 to con-
struct an application specific verification platform.

5.2 ARMT Properties

ARMT processor is the second core component of the verification platform. In
AMBA AHB, processor is defined as the default master and connected to the
ports of m;. The processor is modelled in ACL2 using functional modelling style.
In this style, the output signals of a component are given as a function of the
input signals.

ARM7ezecute is a single—step execution function for the ARMT7 processor.
The function takes five arguments. The first is the input signal for reset. The
second is the signal from the arbiter to grant the access to the bus. The third
argument is the interrupt input signal. The fourth is the data—in from the AHB
bus. The last argument is the internal state function of the processor. Evaluating
ARM7execute will compute the updated initial internal state and return this
updated state.

Similar to the bus protocol, we also need to obtain properties of the pro-
cessor. They are obtained by proving facts using the ACL2 theorem prover. In
this paper, we describe three features of the processor that have been verified.

An AMBA-ARMT Formal Verification Platform 61

All analysis was performed under the condition that no reset is applied to the
processor. The processor’s properties are as follows:

— A busy signal is emitted only when the processor is executing co—processor
instructions. Since our processor model does not implement co—processor in-
structions, it will never send a busy signal.

—reset — (- Pbusy (ARM7execute 0 grant interrupts data Pstate))

— The processor will continue its evaluation only when it recieves a grant sig-
nal. If it does not, then it goes to an idle state and maintains its internal
state. This means that the processor holds its request signal whenever it is
not granted.

(—reset A —grant) — (ARM7execute 0 0 interrupts data Pstate) = Pstate.

— The ARMY processor is capable of performing a lock sequence. We prove
that after at most three execution cycles, the processor will release the bus.
(P1 = (ARM7execute reset0 grant0 interrupts0 data0 P0O) A
P2 = (ARM7execute resetl grantl interruptsl datal P1) N\
P3 = (ARM7execute reset2 grant2 interrupts2 data2 P2)) —
((—reset0 A grant0) —
(—Plock(P1) v ((—resetl A grantl) —
(—Plock(P2) v ((—reset2 A grant2) — —Plock(P3))))))

In our methodology, all components are combined and integrated in HOL.
They are specified as relational models in higher order logic by defining predi-
cates that state which combinations of values can appear on their external ports.
When a component is defined as a functional model, as is the case with our ACL2
model of ARM7, it needs to be transformed into a relational one. A wrapper is
created to bridge the functional model and the relational model.

The ACL2 processor function ARM7execute is transformed in HOL into the
relational model called ARM?7. The relational model of the processor is defined
as follows:

ARMT %/ (Psty = Pg) A
(Pst(;+1) = ARMT7execute reset grant interrupts data Pst;)

Pst is a function from time to the processor’s state. The index subscript to
Pst indicates the relative time at which the state occurs. Pstq is the state of
the processor at time 0 and Py is the initial state of the processor. As discussed
above, ACL2 theorems for the processor are automatically imported into HOL
as trusted axioms. A small amount of very simple theorem proving is needed
to simplify the HOL properties obtained from ACL2 theorems. The final HOL
theorem is as follows:

62 Kong Woei Susanto and Tom Melham

Theorem 4.

(ARMT A (G —reset)) —
((G (—msty _busy) A
G (—grant-my — (Pst1) = Psty)) A
G (grant_my) — (= Plock(Pst11y) V (grant-my g1y —
(= Plock(Pstsy2y) V (grant-my 2y — —Plock(Pst13)))))))

5.3 Application Specific Platform

RAPIER is an environment used in teaching at the ISLI. One application case
study was to build an Ethernet Switch using the platform. The Ethernet Switch
system uses two AHB masters: the ARM7 processor and a memory controller.
In this platform, all slaves are required to give an immediate response for any
master’s request. The slaves are not allowed to respond with a split or retry
signal. Our goal is to find the specifications or requirements for the memory
controller and the slaves so that all desired properties are satisfied.

Interconnection of the components in the verification platform is a straight-
forward step. The formal models are connected and integrated with logical con-
junction in higher order logic. The integration of the AHB bus protocol and the
ARMT processor are just defined as (AHB A ARMY).

We set our goal to have a system which has liveness properties. In this con-
dition, all requests are always granted. Theorem 3 shows the general rules or
constraints for granting master’s requests. We use these constraints to define the
specifications of a system which has the desired liveness properties.

The Ethernet Switch system uses only two masters. The other masters are
left inactive. This fact is the new constraint for the AHB bus. We use this
constraint to refine existing AHB properties. The refinement is performed either
using the model checker (SMV) or the theorem prover (HOL). In either case,
we use existing properties and simplify the constraints of the AHB bus protocol.
We do not need to re-model check the bus protocol from scratch for the system
with two masters. We choose to import all proofs about AHB into HOL where
we perform system level integration and verification.

The non—existence of mz to ms means that there is no request from any of
these modules. One of the implications of this is that no grant signals are ever
sent for these masters. The slave requirement of not allowing split or retry means
a slave can only respond with ok or error. Because a slave is never emitting a split
signal, no split condition will ever occur. In SMV we prove the system has these
properties. The properties are used as the refinement constraints to simplify the
generic properties of AMBA AHB. These constraints are defined as follows:
34\55 (G—req-m; — G—grant-m;) A

(G slv_split/slv_retry) — G(lg/i\SS —split-m; A —grant-mg A slv_ok/slv_error)

The constraints eliminate the need for Assumption 4. They also simplify Assump-
tion 1,8,5 with Assumption 6,7,8 respectively. The new assumptions eliminate
all properties related to mg, ms, my, ms, and slave split/retry response.

An AMBA-ARMT Formal Verification Platform 63

The clock enable signals in Assumption 1 are only needed when they are
used. If there is no master connected to the corresponding port, the condition
of these signals can be ignored or turned off. The new assumption is shown below:

Assumption 6.
Reset AN XG —Reset N G(/\ clocken_m;)
1<i<2

The restriction on slave modules not allowing them to send split or retry
signals reduces Assumption 8 dramatically. It eliminates the need to include a
dummy master module. Furthermore, the exit constraints when the arbiter is
in lock mode depend only on the slave’s ready signal and master’s lock request
signal. The reduced fairness constraints are as follows:

Assumption 7.
G (lock-req — F —lock_req) N
GF (lock-mode — (—lock_req N X(slv_ready N —lock_req)))

The properties of Assumption 5 are reduced to m; and my. In the specialized
platform, the system’s liveness constraints only depend on the fairness condition
of mo not infinitely requesting the bus. Because m; is the default master, when
mo does not request the bus, arbiter will always grant the bus to the default
master. The simplified assumption is described in Assumption 8.

Assumption 8.
N ((reg-m; N X —grant_m;) — X req-m;) A

1<i<2
G (reg-my — F(=reg-mgy A X new_cycle))

The behaviour of the ARMT7 processor is given by Theorem 4. One of the
properties is that the processor never sends a busy signal. This fact eliminates
the dependency of Assumption 2 on the processor’s behaviour. The new con-
straints are given in Assumption 9.

Assumption 9.
GF slv_ready N G(grant_mg — XF(—msty_busy A slv_ready))

When the processor is in a wait state, it maintains all of its properties. This
means when the processor sends a request signal and the arbiter tells the pro-
cessor to wait, the processor will keep sending the request signal. This property
refines Assumption 8 into Assumption 10.

Assumption 10.
G ((reg-mo N X —grant-ms) — X req-ms) A
G (req-my — F(—reg-mg N X new_cycle))

Theorem 4 also shows that when the processor is locking the bus, it will
eventually unlock it in at most three execution cycles. The arbiter also guarantees

64 Kong Woei Susanto and Tom Melham

that in lock mode the active master always keeps the bus. These conditions refine
Assumption 7 to Assumption 11.

Assumption 11.
G((grant_mg A lock-my) — F(grant-mg A —lock-mg)) A
GF (lock-mode — (=lock_req N X(slv_ready N —lock_req)))

Finally, the Ethernet Switch platform is defined in Theorem 5. It says the
platform has two masters. It is constructed from the AHB bus protocol and the
ARMYT processor. When the system is initialised with the sequence described in
Assumption 6 and the constraints described in Assumption 9,10,11 are satisfied,
the system will always provide fair services for its two masters. Light weight
theorem proving is needed to prove Theorem 5.

Theorem 5.

(AHB A ARMT7 A Assumption(6,9,10,11)) —
G (req-my — F grant_mqy N\ req_mg — F grant_my)

Based on Theorem 5, we can analyse the requirements and define the specifica-
tions for each module. The second master (memory controller) has to satisfy the
following specifications:

— The module has to be capable in maintaining its request signal until it is
granted.

— The module has to be able to accept a response from a slave by not always
engaging in a busy mode.

— If the module is capable asserting a lock signal, it has to be able to de-assert
it until a new arbitration cycle is reached.

— In order to let a lower priority master access the bus, the module should
not infinitely request the bus. One way to achieve this is by introducing
one additional rule: every completed request sequence must be followed by
a sequence of idle states. In this way, the system can guarantee that all
requests can be served.

The slaves in this platform have to satisfy specifications as follows:

— By definition, all slaves are not allowed to send a retry or split signal.

— They have to be able to respond to all requests.

— To prevent any erratic behaviours of the slave, we define one additional rule
which controls the behaviour of the slave: when all input are stable, the
output of the slaves will eventually become stable. This means that when a
slave is ready to respond to a master’s request, afterwards the slave’s output
remains stable as long as the input does not change.

In this methodology, we obtain specialised specifications for both master and
slave modules. This specifications feature tighter requirements in comparison to
the standard ones. The specifications are geared to satisfy the application specific
requirements. Designing the modules under these specifications guarantee the
system to fulfil the application’s specific requirements.

An AMBA-ARMT Formal Verification Platform 65

6 Conclusions and Future Work

We have presented a tool architecture and methodology to perform formal verifi-
cation for system on chip designs. The verification environment combines various
formal tools which enable verification engineers to perform symbolic simulation,
model checking, and theorem proving. The mechanism for sharing information
reduces the possibility of errors being made during the translation of theorems
from one formal tool to the other. It also allows each component to be modelled
in the most suitable formalism.

The methodology is based on the development of a generic formal verifi-
cation platform in which applications can be developed. The generic platform
behaviours are described as a set of formal properties. The generality of the prop-
erties make them reusable in the development of platform specific applications.
The properties can be used to develop the specifications of the components of
the platform. They can also be used to analyse the behaviour of the platform
with a set of components.

We have developed a standard integration platform containing the AMBA-
AHB bus protocol and a ARMT7 processor. We described the development of
reusable formal properties for this platform. The properties define the generic
behaviour of the system. We used this platform to build an application. By
evaluating the platform’s properties with the application requirements, we obtain
the specification for the remaining components.

Our future research will build a more comprehensive verification platform on
top of our proof environment. The platform will be based on the full specification
of the AMBA bus protocol and the ARM7 processor. We are aiming for a ‘plug
and play’ verification environment, involving a collection of reusable proofs. The
verification platform will enable the possibility to be used as a workbench to
develop detailed specifications.

Acknowledgements

The authors thank the Institute for System Level Integration for providing the
RAPIER platform for this work, the Veriscope research group for the use of their
machine, Michael Dales for helpful comments on a draft of this paper, and the
reviewers for their feedback.

This work has been supported in part by SHEFC RDG grant 85, Design
Cluster for System Level Integration, and the ESPRIT PROSPER project LTR
26241.

References

1. Mark D. Aagaard, Robert B. Jones, and Carl-John H. Seger. Combining Theo-
rem Proving and Trajectory Evaluation in an Industrial Environment, in the 35th

Design Automation Conference, San Francisco, California, June 1998, pp. 538-541.
2. ARM, ARM-7 Datasheet, DDI 0020C, December 1994.

66

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Kong Woei Susanto and Tom Melham

ARM, AMBA specification ver 2.0, IHI-0011A, May 1999.

Mark Birnbaum and Howard Sachs, How VSIA Answers the SOC Dilemma, IEEE
Computer magazine, June 1999, pp. 42-50.

A.J. Camilleri, A Hybrid Approach to Verifying Liveness in a Symmetric Multi-
Processor, Eds Elsa L. Gunter and Amy Felty in Theorem Proving in Higher Order
Logic, Murray Hill, New Jersey, August 1997, Springer-Verlag LNCS 1275, pp. 49—
67.

Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, and Lee
Todd. Surviving the SOC Revolution. A Guide to Platform-Based Design, Kluwer,
1999.

Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad
Slind, Graham Robinson, Mike Gordon, and Tom Melham. The PROSPER Toolkit,
Eds S. Graf and M. Schwartzbach in Tools and Algorithms for the Construc-
tion and Analysis of Systems: 6th International Conference, TACAS 2000, Berlin,
March/April 2000, Springer-Verlag LNCS 1785, pp. 78-92.

M.J.C. Gordon and T.F.Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic, Cambridge University Press, 1993.

The HOL System Description, HOL98 Taupo—6, University of Cambridge, Febru-
ary 2000.

W.A. Hunt. FM8501: A Verified Microprocessor, 1994, Springer-Verlag LNCS 795.
C.N.Ip and D.L.Dill. Better Verification Through Symmetry, Eds D. Agnew, L.
Claesen, and R. Compasano, Computer Hardware Description Languages and their
Applications, Elsevier Science Publishers B.V., Amsterdam, Netherland, pp. 87—
100.

R.B. Jones, J.W. O’Leary, C.-J.H. Seger, M.D. Aagaard, and T.F. Melham. Prac-
tical Formal Verification in Microprocessor Design, IEEE Design € Test of Com-
puters magazine, July/August 2001, pp. 16-25.

Mark Litterick, ARM Integration Platform Power Management, The Institute of
System Level Integration, Scotland, November 2001.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning, An Approach, Kluwer, 2000.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning, ACL2 Case Studies, Kluwer, 2000.

Michael Keating and Pierre Bricaud, Reuse Methodology Manual For System—On—
a—Chip Designs, Kluwer Academic Publisher, Norwell Massachussetts, 1999.
Kenneth L. McMillan, Symbolic Model Checking, Kluwer Academic Publisher, Nor-
well Massachussetts, 1993.

J Strother Moore, Symbolic Simulation: An ACL2 Approach. Eds Ganesh
Gopalakrishnan and Phillip Windley in Formal Methods in Computer-Aided De-
sign, PaloAlto, California, November 1998, Springer—Verlag LNCS 1522, pp.334—
350.

Carl Pixley, Formal Verification of Commercial Integrated Circuits, IEEE Design
& Test of Computers magazine, July/August 2001, pp.4-5.

RAPIER, The Institute of System Level Integration, Scotland, 2001.

Ann Marie Rincon, Cory Cherichetti, James A. Monzel, David R. Stauffer, and
Michael T. Trick. Core Design and System-on-a-Chip Integration, IEEE Design &
Test of Computers magazine, October—December 1997, pp. 26-35.

K. Schneider. Yet another look at LTL model checking. Eds Laurence Pierre, and
Thomas Kropf, in IFIP WG10.5 Advanced Research Working Conference on Cor-
rect Hardware Design and verification Methods, Bad Herrenalb, Germany, Septem-
ber 1999, Springer—Verlag LNCS 1703, pp.321-325.

23.

24.

25.

26.

27.

An AMBA-ARMT Formal Verification Platform 67

Kanna Shimizu, David L. Dill, and Ching-Tsun Chou. A Specification Methodol-
ogy by a Collection of Compact Properties as Applied to the Intel Itanium Proces-
sor Bus Protocol. Eds Tiziana Margaria, and Tom Melham, In Correct Hardware
Design and verification Methods, September 1999, Springer—Verlag LNCS 2144,
pp.340-354.

Madayam Srivas, Harald Ruef, and David Cyrluk. Hardware Verification using
PVS in Formal Hardware Verification Methods and Systems in Comparison, edited
by Thomas Kropf , July 1997, Springer Verlag LNCS 1287, pp: 156—205.

Mark Staples, Linking ACL2 and Hol, Computer Laboratory, University of Cam-
bridge, Technical Report No. 476, November 1999.

Kong Woei Susanto, An integrated Formal Approach for System on Chip, In IP
based Design, Grenoble, France, October 2002, pp: 119-123.

Patrick Henry Winston and Berthold Klaus Paul Horn, LISP, Addison—-Wesley
Pub.Co., 1989.

	1 Introduction
	2 Typical SoC Architecture
	3 A Verification Platform Approach to SoC
	3.1 Theorem Prover
	3.2 Symbolic Simulator
	3.3 Model Checker

	4 Case Study: AMBA Bus Protocol and ARM7 Processor Based Verification Platform
	4.1 AMBA Bus Protocol
	4.2 The Protocol
	4.3 ARM7 Processor

	5 Formal Properties
	5.1 AMBA AHB Properties
	5.2 ARM7 Properties
	5.3 Application Specific Platform

	6 Conclusions and Future Work
	References

