
Lifting CDCL to Template-based Abstract

Domains for Program Verification⋆

Rajdeep Mukherjee1, Peter Schrammel2, Leopold Haller3,
Daniel Kroening1, and Tom Melham1

1 University of Oxford, UK
2 University of Sussex, UK

3 Google Inc., USA

R. Mukherjee, P. Schrammel, L. Haller, D. Kroening, and T. Melham, ‘Lifting CDCL to Template-
Based Abstract Domains for Program Verification’, in Automated Technology for Verification
and Analysis: 15th International Symposium, ATVA 2017, Pune, India, October 36, 2017, Pro-
ceedings, edited by D. D’Souza and K. N. Kumar, Lecture Notes in Computer Science, vol. 10482
(Springer, Cham, 2017), pp. 307–326. The final publication is available at link.springer.com via
http://dx.doi.org/10.1007/978-3-319-68167-2_21

Abstract. The success of Conflict Driven Clause Learning (CDCL) for
Boolean satisfiability has inspired adoption in other domains. We present
a novel lifting of CDCL to program analysis called Abstract Conflict

Driven Learning for Programs (ACDLP). ACDLP alternates between
model search, which performs over-approximate deduction with constraint
propagation, and conflict analysis, which performs under-approximate
abduction with heuristic choice. We instantiate the model search and
conflict analysis algorithms with an abstract domain of template poly-

hedra, strictly generalizing CDCL from the Boolean lattice to a richer
lattice structure. Our template polyhedra can express intervals, octagons
and restricted polyhedral constraints over program variables. We have
implemented ACDLP for automatic bounded safety verification of C pro-
grams. We evaluate the performance of our analyser by comparing with
CBMC, which uses Boolean CDCL, and Astrée, a commercial abstract
interpretation tool. We observe two orders of magnitude reduction in
the number of decisions, propagations, and conflicts as well as a 1.5x
speedup in runtime compared to CBMC. Compared to Astrée, ACDLP
solves twice as many benchmarks and has much higher precision. This
is the first instantiation of CDCL with a template polyhedra abstract
domain.

1 Introduction

Static program analysis with abstract interpretation [10] is widely used to verify
properties of safety-critical systems. Static analyses commonly aim to compute
program invariants as fixed-points of abstract transformers. Abstract states are
chosen from a lattice that has meet (⊓) and join (⊔) operations; the meet pre-
cisely models set intersection (or conjunction, taking a logical view), and the join
over-approximates set union (or disjunction). Over-approximation in the join op-
eration is one of the sources of precision loss, which can cause false alarms. Typ-
ical abstract domains are non-distributive; suppose a and b together represent
the abstract semantics of a program and c represents a set of abstract behaviours
that violate the specification. In a non-distributive domain, (a ⊔ b) ⊓ c can be
strictly less precise than (a ⊓ c) ⊔ (b ⊓ c). This means that in typical abstract

⋆ Supported by ERC project 280053 (CPROVER), the H2020 FET OPEN 712689
SC2 and SRC contracts no. 2012-TJ-2269 and 2016-CT-2707.

http://link.springer.com
http://dx.doi.org/10.1007/978-3-319-68167-2_21


2 Mukherjee, Schrammel, Haller, Kroening, Melham

domains, analysing program behaviours separately can improve the precision
of the analysis. Usual means to address false alarms therefore include not only
the use of richer abstract domains, but also of refinements that delay joins or
perform some form of case-splitting. Such techniques trade off higher precision
against lower efficiency and may be susceptible to case enumeration behaviour.

By contrast, Model Checking (MC) [2] can be seen to operate on distributive
lattice structures that represent disjunction without loss of precision. Classical
MC directly operates on distributive representations, such as BDDs, while more
recent implementations use SAT solvers. SAT solvers themselves operate on par-
tial assignments, which are non-distributive structures. To handle disjunction,
case-splitting is performed [15]. Propositional SAT solvers solve large formulae,
and are often able to avoid enumerating cases. The impressive performance of
modern solvers is credited to well-tuned decision heuristics and sophisticated
clause learning algorithms. Collectively, these algorithms are referred to as Con-
flict Driven Clause Learning (CDCL) [3]. An appealing idea is to lift CDCL
from the domain of partial assignments to other non-distributive domains.

Abstract Conflict Driven Clause Learning (ACDCL) [13] is one such lattice-
based generalization of CDCL. ACDCL is a general algorithmic framework, pa-
rameterized by a concrete domain C and an abstract domain A. Classical CDCL
can be viewed as an instance of ACDCL in which C is the set of propositional
truth assignments and A the domain of propositional partial assignments [17].
Since the concrete domain is a parameter to the framework, ACDCL can in prin-
ciple be used to build both logical decision procedures [5] and program analyzers.
In the former case, the concrete domain is the set of candidate models for the
formula; in the latter case, it is the set of program traces that may lead to an
error. Haller et al. [5] pursue the first idea by presenting a floating-point decision
procedure that uses interval constraint propagation.

In this paper, we explore the second idea by presenting an extension of
ACDCL to program analysis. We call our framework Abstract Conflict Driven
Learning for Programs (ACDLP). The key insight of ACDLP is to use decisions
and learning to reason precisely about disjunctions in non-distributive domains,
thereby automatically refining the precision of analysis for safety checking of C
programs. We introduce two central components of our framework: an abstract
model search algorithm that uses decisions and propagations to search for coun-
terexample trace and an abstract conflict analysis procedure that approximates
a set of unsafe traces through transformer learning. We illustrate the applica-
tion of our framework to program analysis using a template polyhedra abstract
domain [26], which includes most of the commonly used abstract domains, such
as boxes, octagons, zones and TCMs.

We give an experimental evaluation of our analyser compared to CBMC [8],
which uses propositional solvers, and to Astrée [4], a commercial abstract inter-
pretation tool. In this paper, we make the following contributions.

1. A novel program analysis framework that lifts model search and conflict
analysis procedures of CDCL algorithm over a template polyhedra abstract
domain. These techniques are embodied in our tool, ACDLP, for automatic
bounded safety verification of C programs.

2. A parameterized abstract transformer that guides the model search in for-
ward, backward and multi-way direction for counterexample detection.
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Fig. 1. CFG and corresponding Abstract Conflict Graphs for intervals and octagons

3. A conflict analysis procedure that performs UIP-based transformer learning
over template polyhedra abstract domain through abductive reasoning.

2 Motivating Examples

We present two simple examples to demonstrate the essence of ACDLP for
bounded verification. For each one, we apply three analysis techniques: abstract
interpretation (AI), SAT-based bounded model checking (BMC) and ACDLP.

First Example. The simple Control-Flow Graph (CFG) in Fig. 1 squares a
machine integer and checks whether the result is positive. To avoid overflow, we
assume the input v has an upper bound N. This example shows that a) interval
analysis in ACDLP is more precise than a forward AI in the interval domain,
and b) ACDLP with intervals can achieve a precision similar to that of AI
with octagons without employing more sophisticated mechanisms such as trace
partitioning [25].

AI versus ACDLP. Conventional forward interval AI is too imprecise to verify
safety of this program owing to the control-flow join at node n4. For example,
the state-of-the-art AI tool Astrée requires external hints, provided by manually
annotating the code with partition directives at n1. This tells Astrée to analyse
the program paths separately.

ACDLP can be understood as an algorithm to infer such partitions auto-
matically. For the example in Fig. 1, interval analysis with ACDLP is sufficient
to prove safety. The analysis records the decisions and deductions in a trail
data-structure. The trail can be seen to represent a graph structure called the
Abstract Conflict Graph (ACG) that stores dependencies between decisions and
deductions, similar to the way an Implication Graph [3] works in a SAT solver.
Nodes of the ACG in the second column of Fig. 1 are labelled with the CFG
location and the corresponding abstract value. Beginning with the assumption
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Fig. 2. CFG and corresponding Abstract Conflict Graphs for octagon analysis

that v = [0, 5] at node n1, the intervals generated by forward analysis in the ini-
tial deduction phase at decision level 0 (DL0) are x = [−5, 5] and z = [−25, 25].
These do not prove safety, as shown in ACG1. So ACDLP makes a heuristic deci-
sion, at DL1, to refine the analysis. With the decision c = [1, 1], interval analysis
then concludes x = [0, 5] at node n4, which leads to (Error: ⊥) in ACG2, indi-
cating that the error location is unreachable and that the program is safe when
c = [1, 1].

Reaching (Error: ⊥) is analogous to reaching a conflict in a propositional SAT
solver. At this point, a clause-learning SAT solver learns a reason for the conflict
and backtracks to a level such that the learnt clause is unit. By a similar process,
ACDLP learns that c = [0, 0]. That is, all error traces must satisfy c 6= 1. The
analysis discards all interval constraints that lead to the conflict and backtracks
to DL0. ACDLP then performs interval analysis with the learnt clause c 6= 1. This
also leads to a conflict, as shown in ACG3. The analysis cannot backtrack further
and so terminates, proving the program safe. Thus, decision and clause learning
are used to infer the partitions necessary for a precise analysis. Alternatively,
the octagon analysis in ACDLP—illustrated in the third column of Fig. 1—can
prove safety with propagations only. No decisions are required. Forward AI with
octagons in Astrée is also able to prove safety.

Solver Domain decisions propagations conflicts conflict literals restarts
Solver statistics for Fig. 1 (For N = 46000)

MiniSAT BVars → {t, f, ?} 233 36436 162 2604 2
ACDLP Itvs[NVars] 1 17 1 1 0
ACDLP Octs[NVars] 0 7 0 0 0

Solver statistics for Fig. 2
MiniSAT BVars → {t, f, ?} 4844 32414 570 4750 5
ACDLP Octs[NVars] 4 412 2 2 0

Table 1. SAT-based BMC versus ACDLP for verification of programs in Figs. 1 and 2
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Second Example. Fig. 2 shows that octagon analysis in ACDLP is more precise
than forward AI in the octagon domain. The CFG in Fig. 2 computes the abso-
lute values of two variables, x and y, under the assumption (x = y) ∨ (x = −y).

AI versus ACDLP. Forward AI in the octagon domain infers the octagonal
constraint Error: p ≥ 0 ∧ p+ q ≥ 0 ∧ q ≥ 0 ∧ p+ x ≥ 0 ∧ p− x ≥ 0 ∧ q + y ≥ 0 ∧
q − y ≥ 0. Clearly this is too imprecise to prove safety. The octagonal analysis
in ACDLP is illustrated by the ACGs in Fig. 2. (Due to space limitations, we
elide intermediate deductions.) The decision x = y at DL1 is not sufficient to
prove safety, as shown in ACG1. So a new decision x < 0 is made at DL2,
followed by forward propagation that infers y < 0 at node n5. This subsequently
leads to safety (Error: ⊥), as shown in ACG2. The analysis learns the reason for
the conflict, discards all deductions in ACG2 and backtracks to DL1. Octagon
analysis is run with the learnt constraint x ≥ 0 and this infers y ≥ 0 at node n5,
as shown in ACG3. This also leads to safety (Error: ⊥). The analysis now makes
a new decision x = −y at DL1. The procedure is repeated leading to results
shown in ACG4, ACG5, and ACG6. Clearly, the decisions x = −y and x < 0
also lead to safety. The analysis backtracks to DL0 and returns safe. Note that
the specific decision heuristic we use in this case exploits the control structure
of the program to infer partitions that are sufficient to prove safety.

ACDLP versus BMC. ACDLP can require many fewer iterations than SAT-
based BMC due to its ability to reason over much richer lattice structures. A SAT-
based BMC converts the program into a bit-vector formula and passes it to
a CDCL-based SAT solver for proving safety. Table 1 compares the statistics
for BMC with MiniSAT [21] solver to those for interval and octagon analysis
in ACDLP. In the column labelled Domains, BVars is the set of propositional
variables; each of these is mapped to true (t), false (f) or unknown (?). NVars is
the set of numerical variables; Itvs[NVars] and Octs[NVars] are the Interval and
Octagon domains over NVars. As can be seen, ACDLP outperforms BMC in
the total number of decisions, propagations, learnt clauses and restarts for both
example programs.

3 Program Model and Abstract Domain

3.1 Program Representation

We consider bounded programs with safety properties given as a set of assertions,
Assn, in the program. A bounded program is obtained by a transformation that
unfolds loops and recursions a finite number of times. The result is represented
by a set Σ = Prog∪{¬

∧

a∈Assn a}, where Prog contains an encoding of the state-
ments in the program as constraints, obtained after translating the program into
single static assignment (SSA) form via a data flow analysis. The representation
Σ for the program in Fig. 1 is

{g0 = (0 ≤ v ≤ N), g1 = (g0 ∧ c), x0 = v, x1 = −v,
x2 = g1?x0 : x1, g2 = (g1 ∨ g0 ∧ ¬c), z = x2·x2, g2 ∧ z<0}

(1)

Assignments such as x:=v become equalities x1 = v, where the left-hand side
variable gets a subscripted fresh name. Control flow is encoded using guard
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Interval Octagons Zones Equality Fixed-coef. Polyhedra
a ≤ xi ≤ b ±xi ± xj ≤ d xi − xj ≤ d xi = xj a1x1 + . . .+ anxn ≤ d

Table 2. Template instances in the template polyhedra domain

variables, e.g. g1 = g0 ∧ c. Data flow joins become conditional expressions,
e.g. x3 = g1?x1 : x2. The assertions in Assn are constraints such as g2 ⇒ z ≥ 0,
meaning that if g2 holds (i.e., the assertion is reachable), then z ≥ 0 must hold.
We write Vars for the set of variables occurring in Σ. Based on this representa-
tion, we define a safety formula (ϕ) as the conjunction of everything in Σ, i.e.
ϕ :=

∧

σ∈Σ σ. The formula ϕ is unsatisfiable if and only if the program is safe.

3.2 Abstract Domain

In this paper, we instantiate ACDLP over a reduced product domain [11]D [Vars] =
B|BVars| × TP[NVars ] where B is the Boolean domain that permits abstract val-
ues {true, false,⊥,⊤} over boolean variables BVars in the program, and TP is a
template polyhedra [26] domain over the numerical (bit-vector) variables NVars.
Our template polyhedra domain can express various relational and non-relational
templates over NVars, as given in Table 2.

Template Polyhedra Abstract Domain. An abstract value of the template
polyhedra domain [26] represents a set X of values of the vector x of numerical
(bit-vector) variables NVars of their respective data types. (Currently, signed and
unsigned integers are supported.) For example, in the program given by Eq. (1),
we have four numerical variables, written as the vector x = (x0, x1, x2, z). An ab-
stract value is a constant vector d that represents sets of values for x for which
Cx ≤ d, for a fixed coefficient matrix C. The domain containing d is augmented
by a special element ⊥ to denote the minimal element of the lattice. There are
several optimisation techniques [26] for computing the domain operations, such
as meet (⊓) and join (⊔), in the template polyhedra domain. In our implemen-
tation, we use the strategy iteration approach of [6]. The abstraction function
is α(X ) = min{d | Cx ≤ d,x ∈ X }, where min is applied component-wise.
The concretisation γ(d) is the set {x | Cx ≤ d} and γ(⊥) = ∅, i.e., the empty
polyhedron.

For notational convenience we will use conjunctions of linear inequalities, for

example x1 ≥ 0 ∧ x1 − z ≤ 30, to write the abstract domain value d =

(

0
30

)

,

with C =

(

−1 0
1 −1

)

and x =

(

x1

z

)

; true corresponds to abstract value ⊤

and false to abstract value ⊥. For a program with N = |NVars | variables, the
template matrix C for the interval domain Itvs [NVars], has 2N rows. Hence,
it generates at most 2N inequalities, one for the upper and lower bounds of
each variable. For octagons Octs[NVars], we have at most 2N2 inequalities, one
for the upper and lower bounds of each variable and sums and differences for
each pair of variables. Unlike a non-relational domain, a relational domain such
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as octagons requires the computation of a closure to obtain a normal form,
necessary for precise domain operation. The closure computes all implied domain
constraints. An example of a closure computation for octagonal inequalities is
closure((x − y ≤ 4) ∧ (y − z ≤ 5)) = ((x − y ≤ 4) ∧ (y − z ≤ 5) ∧ (x − z ≤ 9)).
For octagons, closure is the most critical and expensive operator; it has cubic
complexity in the number of program variables. We therefore compute closure
lazily in template polyhedra domain in our abstract model search procedure,
which is described in Section 5.3.

Abstract Transformers. An abstract transformer JσKD transforms an abstract
value a through a constraint σ; it deduces information from a and σ. The best
transformer is

JσKD(a) = a ⊓ α({u | u ∈ γ(a), u |= σ}) (2)

where we write u |= σ if the concrete value u satisfies the constraint σ. Any
abstract transformer that over-approximates the best abstract transformer is a
sound transformer and can be used in our algorithm. For example, we can deduce
Jx = 2(y + z)KD(a) = (0 ≤ y ≤ 2∧ 1 ≤ y − z ≤ 1∧−2 ≤ x ≤ 6) for the abstract
value a = (0 ≤ y ≤ 2∧1 ≤ y−z ≤ 1). We denote the set of abstract transformers
for a safety formula ϕ using the abstract domain D by A = {JσKD | σ ∈ Σ}.

3.3 Precise Complementation in Abstract Domains

An important property of a clause-learning SAT solver is that each non-singleton
element of the partial assignment domain can be decomposed into a set of pre-
cisely complementable singleton elements [13]. This property is necessary to learn
elements that guide the model search away from the conflicting region of the
search space. Most numerical abstract domains, such as intervals and octagons,
lack complements in general: not every domain element has a precise complement.
But these domain elements can be represented as intersections of half-spaces,
each of which admits a precise complement. We formalise this in the sequel.

Definition 1. A meet irreducible m in a complete lattice structure A is an
element with the following property.

∀m1,m2 ∈ A : m1 ⊓m2 = m =⇒ (m = m1 ∨m = m2),m 6= ⊤ (3)

The meet irreducibles in the Boolean domain B for a variable x are x and ¬x.
The meet irreducibles in the template polyhedra domain are all elements that
concretise to half-spaces; i.e., they can be represented by a single inequality. For
the interval domain, these are x ≤ d or x ≥ d for constants d.

Definition 2. A meet decomposition decomp(a) of an abstract element a ∈ D
is a set of meet irreducibles M ⊆ D such that a =

d
m∈M m.

For polyhedra this means that each polyhedron can be written as an intersec-
tion of half-spaces. For example, the meet decomposition of the interval domain
element decomp(2 ≤ x ≤ 4 ∧ 3 ≤ y ≤ 5) is the set {x ≥ 2, x ≤ 4, y ≥ 3, y ≤ 5}.

Definition 3. An element a ∈ D is called precisely complementable iff there
exists ā ∈ D such that ¬γ(ā) = γ(a). That is, there is an element whose com-
plemented concretisation equals the concretisation of a.
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The precise complementation property of a partial assignment lattice can be
generalised to other lattice structures. For example, the precise complement of
a meet irreducible (x ≤ 2) in the interval domain over integers is (x ≥ 3), or the
precise complement of the meet irreducible (x + y ≤ 1) in the octagon domain
over integers is (x + y ≥ 2). Our domain implementation supports a precise
complementation operation. Standard abstract interpretation does not require a
complementation operator, so abstract domain libraries, such as APRON [19], do
not provide it. But it can be implemented with the help of a meet decomposition
as explained above.

4 Abstract Conflict Driven Learning for Programs
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Fig. 3. Architectural view of ACDLP

Figure 3 presents our framework called Abstract Conflict Driven Learning for
Programs that uses abstract model search and abstract conflict analysis proce-
dures for safety verification of C programs. The model search procedure operates
on an over-approximate domain of program traces through repeated application
of abstract deduction transformer, ded , and decisions in order to search for a
counterexample trace. If the model search finds a satisfying assignment (corre-
sponding deduction transformer is γ-complete), then ACDLP terminates with a
counterexample trace, and the program is unsafe. Else, if a conflict is encoun-
tered, then it implies that the corresponding program trace is either not valid or
safe. ACDLP then moves to the conflict analysis phase where it learns the reason
for the conflict from partial safety proof using an abstract abductive transformer,
abd , followed by a heuristic choice of conflict reason. Similar to a SAT solver,
ACDLP picks one conflict reason from multiple incomparable reasons for conflict
for efficiency reasons. Hence, it operates over an under-approximate domain of
conflict reasons. A conflict reason under-approximates a set of invalid or safe
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Algorithm 1: Abstract Conflict Driven Learning ACDLPHP ,HD ,HC
(A)

input :A program in the form of a set of abstract transformers A.
output :The status safe or unsafe.

1 T ← 〈〉, R← []
2 result ← deduceHP

(A,T,R)
3 if result = conflict then return safe

4 while true do

5 if result = sat then return unsafe

6 q ← decideHD
(abs(T))

7 T ← T · q
8 R[|T|]← ⊤
9 result ← deduceHP

(A,T,R)
10 do

11 if ¬analyzeConflictHC
(A,T,R) then return safe

12 result ← deduceHP
(A,T,R)

13 while result = conflict

14 end

traces. The conflict analysis returns a learnt transformer (negation of conflict
reason) that over-approximates a set of valid and unsafe traces. Model search is
repeated with this new transformer. Else, if no further backtracking is possible,
then ACDLP terminates and returns safe. We present the ACDLP algorithm in
the subsequent section.

The input to ACDLP (Algorithm 1) is a program in the form of a set of
abstract transformers A = {JσKD |σ ∈ Σ} w.r.t. an abstract domain D . Recall
that the safety formula

∧

σ∈Σ σ is unsatisfiable if and only if the program is
safe. The algorithm is parametrised by heuristics for propagation (HP ), decisions
(HD), and conflict analysis (HC ). The algorithm maintains a propagation trail T
and a reason trail R. The propagation trail stores all meet irreducibles inferred
by the abstract model search phase (deductions and decisions). The reason trail
maps the elements of the propagation trail to the transformers ded ∈ A that
were used to derive them.

Definition 4. The abstract value abs(T) corresponding to the propagation trail
T is the conjunction of the meet irreducibles on the trail: abs(T) =

d
m∈T

m with
abs(T) = ⊤ if T is the empty sequence.

The algorithm begins with an empty T, an empty R, and the abstract value
⊤. The procedure deduce (details in Section 5) computes a greatest fixed-point
over the transformers in A that refines the abstract value, similar to the Boolean
Constraint Propagation step in SAT solvers. If the result of deduce is conflict (⊥),
the algorithm terminates with safe. Otherwise, the analysis enters into the while
loop at line 4 and makes a new decision by a call to decide (see Section 5.4), which
returns a new meet irreducible q . We append q to the trail T. The decision q
refines the current abstract value abs(T) represented by the trail, i.e., abs(T ·q) ⊑
abs(T). For example, a decision in the interval domain restricts the range of
intervals for variables. We set the corresponding entry in the reason trail R to
⊤ to mark it as a decision. Here, the index of R is the size of trail T, denoted
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Algorithm 2: Abstract Model Search deduceHP
(A,T,R)

input :A program in the form of a set of abstract transformers A, a
propagation trail T, and a reason trail R.

output : sat or conflict or unknown
1 worklist ← initWorklistHP

(A)
2 while !worklist .empty() do
3 dedL ← worklist .pop()

4 a ← dedL(abs(T))
5 if a = ⊥ then

6 R[⊥]← dedL

7 worklist .clear()
8 return conflict

9 else

10 v = onlyNew(a)
11 T ← T · decomp(v)

12 R[|T|]← dedL

13 updateWorklistHP
(worklist , v , dedL,A)

14 end

15 if A is γ-complete at abs(T) then return sat

16 return unknown

by |T|. The procedure deduce is called next to infer new meet irreducibles based
on the current decision. The model search phase alternates between the decision
and deduction until deduce returns either sat or conflict.

If deduce returns sat, then we have found an abstract value that represents
models of the safety formula, which are counterexamples to the required safety
property, and so ACDLP returns unsafe. If deduce returns conflict, the algo-
rithm enters in the analyzeConflict phase (see Section 6) to learn the reason for
the conflict. There can be multiple incomparable reasons for conflict. ACDLP
heuristically chooses one reason C and learns it by adding it as an abstract trans-
former to A. The analysis backtracks by removing the content of T up to a point
where it does not conflict with C . ACDLP then performs deductions with the
learnt transformer. If analyzeConflict returns false, then no further backtracking
is possible. Thus, the safety formula is unsatisfiable and ACDLP returns safe.
An example demonstrating step-by-step execution of the ACDLP algorithm is
available at [23].

5 Abstract Model Search for Template Polyhedra

Model search in a SAT solver has two steps: deductions, which are repeated appli-
cation of the unit rule (also called Boolean Constraint Propagation, or BCP), to
refine current partial assignments, and decisions to heuristically guess a value for
an unassigned literal. BCP can be seen to compute the greatest fixed point over
the partial assignment domain [13]. Below, we present an abstract model search
procedure that computes a greatest fixed point over abstract transformers JσKD .
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5.1 Parametrised Abstract Transformers

The key considerations for an abstract transformer are precision and efficiency.
A precise transformer is usually less efficient than a more imprecise one. In this
paper, we present a specialised variant of the abstract transformer to compute
deductions called Abstract Deduction Transformer (ADT), which is parametrised
by a given subdomain L ⊆ D . A subdomain contains a chosen subset of the
elements in D including ⊥ and ⊤ that forms a lattice. The use of a subdomain
serves two purposes: a) It allows us elegantly and flexibly to guide the deductions
in forward, backward or multi-way direction, which in turn affects the analysis
precision, and b) it makes deductions more efficient, for example by performing
lazy closure in template polyhedra domain.

An ADT is defined formally as follows.

JσKLD(a) = a ⊓D αL({u | u ∈ γD(a), u |= σ}) (4)

For L = D , the ADT is identical to the abstract transformer defined in Eq. (2) in
Section 3. Note that a restricted subdomain makes a transformer less precise but
more efficient. Conversely, an unrestricted subdomain make a transformer more
precise, but less efficient. Therefore, we have the property JσKDD(a) ⊑ JσKLD(a).
To illustrate point (1), we give examples that demonstrate how the choice of
subdomain influences the propagation direction:

Forward Transformer. For an abstract value a = (0 ≤ y ≤ 1 ∧ 5 ≤ z), σ =

(x = y + z), and L = Itvs [{x}], we have Jx = y + zKItvs[{x}]
Itvs[{x,y,z}](a) = a ⊓ (x ≥ 6).

Assuming that the equality x = y + z originated from an assignment to x, this
performs a right-hand side (rhs) to left-hand side (lhs) propagation and hence
emulates a forward analysis.

Backward Transformer. For an abstract value a = (0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 1 ∧

5 ≤ z), σ = (x = y + z), and L = Itvs[{y, z}], we have Jx = y + zKItvs[{y,z}]
Itvs[{x,y,z}] =

a ⊓ (z ≤ 10). This performs an lhs-to-rhs propagation and hence emulates a
backward analysis.

Multi-way Transformer. For an abstract value a = (c ≤ 1∧c ≥ 1∧x ≤ 5∧x ≥ 5),

σ = ((c = (x = y))∧ y = y+ 1) and L = Itvs[{c, x, y}], we have JσKItvs[{c,x,y}]
Itvs[{c,x,y}] =

a ⊓ (y ≤ 6∧ y ≥ 6). This performs an lhs-to-rhs propagation for c = (x = y) and
rhs to lhs propagation for y = y + 1 and hence emulates a multi-way analysis.

5.2 Algorithm for the Deduction Phase

Algorithm 2 presents the deduction phase deduce in our abstract model search
procedure. The input to deduce is the set of abstract transformers, a prop-
agation trail (T) and a reason trail (R). Additionally, the procedure deduce
is parametrised by a propagation heuristic (HP ). We write the ADT JσKLD as

dedL in Algorithm 2. The algorithm maintains a worklist, which is a queue that
contains ADTs. The propagation heuristics provides two functions initWorklist
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and updateWorklist . The order of the elements in the worklist and the sub-
domain L associated with each ADT (dedL) determine the propagation strat-
egy (forward, backward, multi-way). These two functions construct a subdo-

main (L) for dedL by calling the function MakeL such that L = MakeLD(V ),

where V are the variables that appear in dedL. The abstract value a is up-
dated upon the application of dedL in line 4 in Algorithm 2. The function
onlyNew(a) =

d
(decomp(a) \ decomp(abs(T))) is used to filter out all meet

irreducibles that are already on the trail in order to obtain only new deductions
(v) when applying the ADT (shown in line 10). Depending on the propagation

heuristics, updateWorklist adds ADTs dedL to the worklist that contain vari-
ables that appear in v , and updates the subdomains of the ADTs in the worklist
to include the variables in v (shown in line 13).

If dedL deduces ⊥, then the procedure deduce returns conflict (shown in
line 8). Otherwise, when a fixed-point is reached, i.e., the worklist is empty, we
check whether the abstract transformers A are γ-complete [13] for the current
abstract value abs(T) (shown in line 15). Intuitively, this checks whether all
concrete values in γ(abs(T)) satisfy the safety formula ϕ, where ϕ :=

∧

σ∈Σ σ
is obtained from the program transformation (as defined in Section 3.1). If it
is indeed γ-complete, then deduce returns sat. Otherwise, the algorithm returns
unknown and ACDLP makes a new decision.

5.3 Computing Lazy Closure for Template Polyhedra

An advantage of our formalism in Eq. (4) is that the closure operation for
relational domains can be computed in a lazy manner through the construc-
tion of a subdomain, L. The construction of L allows us to perform one step
of the closure operation when dedL is applied. For example, let us consider
D = Octs[{x, y, z}] and V = {y}. An octagonal inequality relates at most
two variables. Thus it is sufficient to consider the subdomain MakeLD({y}) =
Octs[{y}]∪Octs [{x, y}]∪Octs [{y, z}], which will compute the one-step transitive
relations of y with each of the other variables. Only if any subsequent abstract
deduction transformer makes new deductions on x or z, then the next step of
the closure will be computed through the subdomain Octs[{x, z}]. Hence, an
application of each abstract deduction transformer does not compute the full
closure in the full domain, but compute only a single step of the closure in a
subdomain. This makes each deduction step more efficient but may require more
steps to reach the fixed point.

5.4 Decisions

A decision q is a meet irreducible that refines the current abstract value abs(T),
when the result of the fixed-point computation through deduction is neither a
conflict nor a satisfiable model of ϕ. A decision must always be consistent with
respect to the trail T, i.e., abs(T · q) 6= ⊥. A new decision increases the decision
level by one. Given the current abstract value abs(T), the procedure decide in
Algorithm 1 heuristically returns a meet irreducible.

For example, a decision in the interval domain can be of the form xRd where
R ∈ {≤,≥}, and d is the bound. A decision in the octagon domain can specify
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relations between variables, and can be of the form ax− by ≤ d, where x and y
are variables, a, b ∈ {−1, 0, 1} are coefficients, and d is a constant. The detailed
description of the different decision heuristics in ACDLP is available at [23].

6 Abstract Conflict Analysis for Template Polyhedra

Propositional conflict analysis with FIRST-UIP [3] can be seen as abductive
reasoning that under-approximates a set of models that do not satisfy a for-
mula [13, 15]. Thus, we view abduction as De Morgan dual of deduction whose
result does not need to be consistent with respect to a background theory. Be-
low, we present an abstract conflict analysis procedure, analyzeConflict of Algo-
rithm 1, that uses a domain-specific abductive transformer for effective learning.
A conflict analysis procedure involves two steps: abduction and heuristic choice
for generalisation. Abduction infers possible generalised reasons for a conflict,
which is followed by heuristically selecting a generalisation. Below, we define
a global conflict transformer that gives a set of models that do not satisfy a
formula.

Definition 5. Given a formula ϕ, a downwards closed set of abstract elements
Q, and domain D, conf Dϕ (Q) = {u ∈ D | u ∈ Q ∨ u 6|= ϕ}, that is, it returns the
set of abstract models that do not satisfy ϕ or are approximated by Q. An abstract
abductive transformer, abdD

ϕ (Q), corresponds to the under-approximation of the

global conflict transformer, conf Dϕ (Q).

For example, given a formula ϕ = (x = y + 1 ∧ x ≥ 0) and an interval

abstract element Q = (y ≤ −5 ∧ x ≤ −4), conf Itvsϕ (Q) = {(y ≤ −5 ∧ x ≤ −4),
(y ≤ −2 ∧ x < 0), . . . , (y ≤ 2 ∧ x ≤ 10), . . .}. Now, an abstract abductive

transformer for ϕ is given by abd Itvs
ϕ (Q) = (y ≤ −2 ∧ x < 0), which clearly

underapproximates conf Itvsϕ as well as strictly generalizes the reason for Q.
The main idea of abductive reasoning is to iteratively replace an abstract

element s in the conflict reason by a partial assignment that is sufficient to
infer s. Conflict abduction is performed by obtaining cuts through markings in
the trail T using an abstract Unique Implication Point (UIP) search algorithm [3].
Every cut is a reason for a conflict. The UIP search can be understood as graph
cutting in an Abstract Conflict Graph, which is defined next.

Definition 6. An Abstract Conflict Graph (ACG) is a directed acyclic graph in
which the vertices are defined by deduced elements (including a special conflict
node (⊥)) or a decision node in the trail T. The edges in ACG are obtained from
the reason trail R that maps pairs of elements in T to the abstract transformers
that are used to derive the deduced elements.

Abstract UIP Search An abstract UIP is a node in the ACG that must
be traversed on every path between a decision node and the conflict. An ab-
stract UIP cut is necessary to ensure that the learnt clauses are asserting af-
ter backtracking and prevent cyclic algorithm behavior. An abstract UIP algo-
rithm [5] traverses the trail T starting from the conflict node and computes a
cut that suffices to produce a conflict. For example, consider a formula ϕ :=
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x+ y ≤ 2

y = (x+ z)/2y = (x+ z)/2

cut 0 (first UIP) ⊥

y + z ≤ 6y ≤ 2x+ y ≤ 2

z ≤ 4

reason trail

cut 1 (last UIP)

x+ z ≤ 4

⊤ z = x+ 4

x ≤ 0

z = x+ 4

First UIP

propagation trail

Last UIP

z ≤ 4 y + z ≤ 6y ≤ 2x+ z ≤ 4x ≤ 0

y = (x+ z)/2

Fig. 4. Finding the Abstract UIP in the octagon domain

(x+4=z∧x+z=2y∧z+y>10). As before, the trail can be viewed to represent an
ACG, given in Fig. 4, that records the sequence of deductions in the octagon do-
main that are inferred from a decision x≤0 for the formula ϕ. The arrows (in red)
indicate the relationship between the reason trail and propagation trail at the
bottom of Fig. 4. For the partial abstract value, a = (x ≤ 0∧x+ z ≤ 4∧ z ≤ 4),
obtained from the trail, the result of the abstract deduction transformer is
Jy = (x + z)/2KOcts(a) = (x + y ≤ 2 ∧ y ≤ 2 ∧ y + z ≤ 6). A conflict (⊥)
is reached for the decision x≤0. Note that there exist multiple incomparable
reasons for the conflict, marked as cut 0 and cut 1 in Fig. 4. Here, cut 0 is the
first UIP (node closest to conflict node). Choosing cut 0 yields a learnt clause
y+z > 6, which is obtained by negating the reason for the conflict. The abstract
UIP algorithm returns a learnt transformer AUnit , which is described next.

Learning in Template Polyhedra Domain Learning in a propositional solvers
yields an asserting clause [3] that expresses the negation of the conflict reasons.
We present a lattice-theoretic generalisation of the unit rule for template-based
abstract domains that learns a new transformer called abstract unit transformer
(AUnit). We add AUnit to the set of abstract transformers A. AUnit is a gen-
eralisation of the propositional unit rule to numerical domains. For an abstract
lattice D with complementable meet irreducibles and a set of meet irreducibles
C ⊆ D such that

d
C does not satisfy ϕ, AUnitC : D → D is formally defined

as follows.

AUnitC (a) =







⊥ if a ⊑
d
C (1)

t̄ if t ∈ C and ∀t′ ∈ C \ {t}.a ⊑ t′ (2)
⊤ otherwise (3)

Rule (1) shows AUnit returns ⊥ when a ⊑
d
C is conflicting. Rule (2) of AUnit

infers a valid meet irreducible, which implies that C is unit. Rule (3) of AUnit
returns ⊤ which implies that the learnt clause is not asserting after backtracking.
This would prevent any new deductions from the learnt clause. Progress is then
made by decisions. An example of AUnit for C = {x ≥ 2, x ≤ 5, y ≤ 7} is below.
Rule 1: For a = (x ≥ 3∧x ≤ 4∧y ≥ 5∧y ≤ 6), AUnitC (a) = ⊥, since a ⊑

d
C .

Rule 2: For a = (x ≥ 3 ∧ x ≤ 4), AUnitC (a) = (y ≥ 8), since a ⊑ (2 ≤ x ≤ 5).
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Rule 3: For a = (x ≥ 1 ∧ y ≤ 10), AUnitC (a) = ⊤.

Backjumping A backjumping procedure removes all the meet irreducibles from
the trail up to a decision level that restores the analysis to a non-conflicting state.
The backjumping level is defined by the meet irreducibles of the conflict clause
that is closest to the root (decision level 0) where the conflict clause is still unit.
If a conflict clause is globally unit, then the backjumping level is the root of the
search tree and analyzeConflict returns false, otherwise it returns true.

7 Experimental Results

We have implemented ACDLP for bounded safety verification of C programs.
ACDLP is implemented in C++ on top of the CPROVER [12] framework as
an extension of 2LS [27] and consists of around 9 KLOC. The template polyhe-
dra domain is implemented in C++ in 10 KLOC. Templates can be intervals,
octagons, zones, equalities, or restricted polyhedra. Our domain handles all C op-
erators, including bit-wise ones, and supports precise complementation of meet
irreducibles, which is necessary for conflict-driven learning. Our tool and bench-
marks are available at http://www.cprover.org/acdcl/.

We verified a total of 85 ANSI-C benchmarks. These are derived from: (1) the
bit-vector regression category in SV-COMP’16; (2) ANSI-C models of hardware
circuits auto-generated by v2c [24] from VIS Verilog models and opencores.org;
(3) controller code with varying loop bounds auto-generated from Simulink model
and control intensive programs with nested loops containing relational properties.
All the programs with bounded loops are completely unrolled before analysis.

We compare ACDLP with the state-of-the-art SAT-based bounded model
checker CBMC ([7], version 5.5) and a commercial static analysis tool, Astrée ([1],
version 14.10). CBMC uses MiniSAT 2.2.1 in the backend. Astrée uses a range
of abstract domains, which includes interval, bit-field, congruence, trace parti-
tioning, and relational domains (octagons, polyhedra, zones, equalities, filter).
To enable fair comparison using Astrée, all bounded loops in the program are
completely unwound up to a given bound before passing to Astrée. This prevents
Astrée from widening loops. ACDLP is instantiated to a product of the Booleans
and the Interval or Octagon domain. ACDLP is also configured with a decision
heuristic (ordered, random, activity-based), propagation (forward, backward and
multi-way), and conflict-analysis (learning UIP, DPLL-style). The timeout for
our experiments is set to 200 seconds.

ACDLP versus CBMC Fig. 5 presents a comparison between CBMC and
ACDLP. Fig. 5(a) clearly shows that the SAT-based analysis makes significantly
more decisions than ACDLP for all the benchmarks. The points on the extreme
right below the diagonal in Fig. 5(b) show that the number of propagations
in the SAT-based analysis is maximal for benchmarks that exhibit relational
behaviour. These benchmarks are solved by the octagon domain in ACDLP.
We see a reduction of at least two orders of magnitude in the total number of
decisions, propagations and conflicts compared to analysis using CBMC.

Out of 85 benchmarks, SAT-based analysis could prove only 26 benchmarks
without any restarts. The solver was restarted in the other 59 cases to avoid

http://www.cprover.org/acdcl/
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Fig. 5. Comparing SAT-based BMC and ACDLP: number of decisions and propaga-
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Fig. 6. Runtime comparison between CBMC, Astrée and ACDLP

spending too much time in “hopeless” branches. By contrast, ACDLP solved all
85 benchmarks without restarts. The runtime comparison between ACDLP and
CBMC is shown in Figure 6. ACDLP is 1.5X faster than CBMC. The superior
performance of ACDLP is attributed to the decision heuristics, which exploit
the high-level structure of the program, combined with the precise deduction by
multi-way transformer and stronger learnt clauses aided by the abstract domains.

ACDLP versus Astrée To enable precise analysis with Astrée, we manually in-
strument the benchmarks with partition directives ASTREE partition control
at various control-flow joins. These directives provide external hints to Astrée to
guide its internal trace partitioning domain. Figure 6 demonstrates that Astrée
is 2X faster than ACDLP for 37% cases (32 out of 85); but the analysis us-
ing Astrée shows a high degree of imprecision (marked as timeout in Figure 6).
Astrée reported 53 false alarms among 85 benchmarks. By contrast, the analysis
using ACDLP produces correct results for 81 benchmarks. ACDLP times out
for 4 benchmarks. Clearly, ACDLP has higher precision than Astrée. A detailed
comparison between ACDLP, CBMC and Astrée is available at [23].

Our experimental evaluation suggests that ACDLP can be seen as a tech-
nique to improve the efficiency of SAT-based BMC. Additionally, ACDLP can
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also be perceived as an automatic way to improve the precision of conventional
abstract interpretation over non-distributive lattices through automatic parti-
tioning techniques such as decisions and transformer learning.

8 Related Work

Fränzle et al. [16] present a tight integration of SAT solving with interval-based
constraint solving to handle large constraint systems. Silva et al. [15] present an
abstract interpretation account of satisfiability algorithms derived from DPLL
procedures. The work of [14] is a very early instantiation of abstract CDCL [15]
as an interval-based decision procedure for programs, but in a purely logical
setting. A similar technique that lifts DPLL(T) to programs is Satisfiability
Modulo Path Programs (SMPP) [18]. SMPP enumerates program paths using a
SAT formula, which are then verified using abstract interpretation.

The lifting of CDCL to first-order theories is proposed in [9, 20, 22]. Unlike
previous work that operates on a fixed first-order lattice, ACDLP can be instan-
tiated with different abstract domains as well as product domains. This involves
model search and learning in abstract lattices. A similar technique that lifts
decisions, propagations and learning to theory variables is Model-Constructing
Satisfiability Calculus (mcSAT) [22].

ACDLP is not, however, similar to abstraction refinement. ACDLP works on
a fixed abstraction. Also, transformer learning in ACDLP does not soundly over-
approximate the existing program transformers. Hence, transformer learning in
ACDLP is distinct from transformer refinement in classical CEGAR.

9 Conclusions

We present a general algorithmic framework for lifting the model search and con-
flict analysis procedures in DPLL-style satisfiability solvers to program analysis.
We embody these techniques in a tool, ACDLP, for automatic bounded safety
verification of C programs over a template polyhedra abstract domain.

We present an abstract model search procedure that uses a parameterised
abstract transformer to flexibly control the precision and efficiency of the deduc-
tions in the template polyhedra abstract domain. The underlying expressivity of
the abstract domain helps our decision heuristics to exploit the high-level struc-
ture of the program for making effective decisions. Our abstract conflict analysis
learns abstract transformers over a given template following a UIP computation.
Experimental evaluation over a range of benchmarks shows a 20x reduction in
the total number of decisions, propagations, conflicts and backtracking iterations
compared to CBMC. Moreover, ACDLP is 1.5x faster than CBMC. Compared
to Astrée, ACDLP solves twice as many benchmarks and has much higher preci-
sion. In the future, we plan to extend our framework to unbounded verification
through invariant generation.
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19. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: CAV. pp. 661–667. LNCS, Springer (2009)
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