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Abstract. Prosper is a recently-completed ESPRIT Framework IV
research project that investigated software architectures for component-
based, embedded formal verification tools. The aim of the project was to
make mechanized formal analysis more accessible in practice by providing
a framework for integrating formal proof tools inside other software ap-
plications. This paper is an extended abstract of an invited presentation
on Prosper given at FroCoS 2002. It describes the vision of the Pros-
per project and provides a summary of the technical approach taken
and some of the lessons learned.

Prosper [46] is a 24 person-year LTR project supported under the ESPRIT
Framework IV programme and formally completed in May 2001. The project ran
for three years and conducted a relatively large-scale research investigation into
new software architectures for component-based, embedded formal verification
tools.

The project was a collaboration between the Universities of Glasgow, Cam-
bridge, Edinburgh, Tübingen and Karlsruhe, and the industrial partners IFAD
and Prover Technology. Glasgow was the project Coordinator, as well as the
main development site for the core Prosper software infrastructure.

1 Embedded, Component-Based Verification

The starting point for Prosper was the proposition that mechanized formal
verification might be made more accessible to non-expert users by embedding
it, indeed hiding it, as a component inside the software applications they use.
Ideally, reasoning and proof support would be made available to the end-user by
encapsulating it within the interaction model and interfaces they already know,
rather than making them wrestle directly with theorem provers, model checkers,
or other arcane software.

By contrast, the practical results of much current formal reasoning research
are typically embodied in stand-alone tools that can be operated only by experts
who have deep knowledge of the tool and its logical basis. Verification tools are
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therefore often not well integrated into established design flows—e.g. into the
CAD or CASE tool environments currently used for hardware design or software
development.

Good evidence that this imposes serious barriers to adoption of formal reason-
ing by industry can be found in the arena of formal verification for hardware de-
sign. By far the most successful method is formal equivalence checking (e.g. with
BDDs), where the technology is relatively push-button and well integrated by
electronics design tool vendors into their normal CAD tool flows [10]. On the
other hand, only very few, well-resourced, early adopters have been making ef-
fective use of model checkers or theorem provers [19,43] and wider deployment
of these in future is by no means certain.

But a developer who does wish to incorporate verification inside another ap-
plication, for example a CAD or CASE tool, faces a difficult choice between
creating a verification engine from scratch and adapting existing tools. De-
veloping a new verification engine is time-consuming and means expensive re-
implementation. But existing tools are rarely suitable as components that can
be customized for a specific verification role and patched into other programs.

In summary, at the time the Prosper research programme was being de-
vised (circa 1996) many promising formal reasoning tools existed, but these were
typically

– not integrated into other applications,
– internally monolithic,
– driven through user-orientated interfaces, and
– operable only by expert users.

Prosper’s idea was to experiment with a framework in which formal verification
tools might instead be

– integrated as embedded ‘proof engines’ inside other applications,
– built from components,
– driven by other software through an API, and
– operable by ordinary application-domain users, by giving user-oriented guid-
ance.

The Prosper project investigated this proposal by researching and developing
a software Toolkit [21], centred around an open proof tool architecture, that
allows an expert to easily and flexibly assemble customized software components
to provide embedded formal reasoning support inside applications. The project
originally had mainly CAD or CASE applications in mind, but its results were
not really specialized to these. Indeed, one early experiment was to embed proof
support within Microsoft Excel.

The primary concern of the project was not the logical aspects of integration
or combining systems, and the Prosper Toolkit has no special mechanisms
for ensuring the soundness of translations between the logical data of different
tools. Of course this is important, but it was not emphasized in the project
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because other work, such as the OMRS project [29], was developing systematic
frameworks for treating soundness.

The remainder of this abstract gives a sketch of the technical approach taken
in Prosper and a brief account of some of the general lessons learned. Of course,
other researchers have had similar ideas. There is a growing research literature on
combinations of proof tools, tool integration architectures, and design tools with
embedded verification—not least in the proceedings of the FroCoS workshop
series [9,28,36]. A brief list of some related work is given in section 5

2 Technical Approach

Central to Prosper’s vision is the idea of a proof engine, a custom-built verifi-
cation software component which can be operated by another program through
an Application Programming Interface (API). This allows the embedded formal
reasoning capability to be operated in a machine-oriented rather than human-
oriented fashion.

A proof engine is expected to be specially tuned to the verification needs of
the application it supports. Application requirements in general are, of course,
unpredictable and in any case will vary widely. Prosper therefore does not
supply just one ‘general-purpose’ proof engine. Instead, the project has developed
a collection of software libraries, called the Prosper Toolkit, that enables a
system developer to build custom proof engines as required.

Every Prosper proof engine is constructed from a (possibly quite minimal)
deductive theorem prover, with additional capabilities provided by ‘plugins’ cre-
ated from existing, off-the-shelf, tools such as model checkers or SAT solvers.
The theorem prover’s command language is regarded as a kind of scripting
language for managing the plugin components and orchestrating proofs. The
Toolkit includes libraries, currently supporting the C, ML and Java program-
ming languages, for implementing data and control communications between
the components of a final system. A standard for this is also documented in
a language-independent specification, called the Prosper Integration Interface
(PII), which could be implemented in other languages.

A theorem prover is placed at the centre of the architecture because this
comes with ready-made concepts of logical term, theorem, and goal—essentially
all the formal language infrastructure needed for managing verifications. A side
benefit is that all the functionality in the theorem prover (libraries of procedures,
tactics, logical theories, and so on) becomes available to a developer for inclusion
in their custom proof engine. But this does not prevent the theorem proving part
of a Prosper proof engine being very lightweight, if desired.

The Prosper Toolkit has been implemented around HOL98, a modern de-
scendant of the HOL theorem prover [31]. HOL98 is highly modular, which
suits the Prosper approach of building up a proof engine from components (be
they HOL libraries or external plugins). It also contains numerous sophisticated
automatic proof procedures. HOL’s command language is the functional pro-
gramming language ML [42], extended with datatypes for the abstract syntax of
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Fig. 1. A system built with the Prosper Toolkit.

logical data and functions to support proof construction. This gives a developer
a full programming language in which to create bespoke verification procedures.
Proof procedures programmed in the proof engine are offered to client applica-
tions in an API.

The native formal logic of HOL is classical higher-order logic [15]. This is also
supported by the PII communications infrastructure, so any formula expressible
in higher-order logic can be passed between components. Many applications
and plugins operate with logical data that is either already a subset of higher-
order logic (e.g. first-order or propositional logic) or embeddable in it (e.g. CTL
or other temporal logics [4,38]), so communication with these tools is directly
supported.

The Toolkit provides code to construct several plugins based on particular
external tools. These include a version of the SMVmodel checker [38], a version of
the Prover Plug-In SAT solver of Prover Technology [50], and the circuit analysis
tool AC/3 [33]. To complement these plugins, the Prosper project provided a
more tightly integrated BDD package in the implementation of ML used for proof
engines [30]. Third party plugins have also been developed from ACL2 [35,51],
Gandalf [34], and SVC [53]. Finally, the Toolkit includes a separate database
component that duplicates the internal logical state of the theorem prover, so
that plugins and applications can access theory-related data while the proof
engine is busy.

The application, proof engine, database, and plugins are components inte-
grated to produce the final system. A typical example is shown in Figure 1. In the
current prototype, all these components are also separate processes that commu-
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nicate in the uniform manner specified by the PII. The Prosper architecture
also includes a separate monitor process not shown in the diagram. This allows
components to interrupt each other and the output of servers to be redirected
to be handled by clients. It also includes a name server facility whereby compo-
nents may be requested by name instead of location. This is achieved by means
of a configuration file that contains component names together with information
about their initialization scripts and configurations.

For a fuller account of the technical approach taken in the Prosper Toolkit,
including several illustrative examples, see [21]. Much more technical detail can
also be found in the user guide [22].

3 Case Studies

Prosper researchers undertook three main case studies to demonstrate the con-
cept of embedded proof engines and test the Toolkit. The first was an early exper-
iment in integrating a function that used formal proof into Microsoft Excel [41].
The second was a much larger development to add verification capabilities to
the VDM-SL Toolbox [24], a CASE tool for VDM specifications marketed by
project partner IFAD. The third was a hardware verification tool, driven by a
novel natural language and graphical interface, that allows specifications to be
checked by a proof engine that incorporates a model checker.

Excel Example. Excel is a spreadsheet package marketed by Microsoft [41]. Or-
dinary users are unlikely to be directly interested in mathematical proof, but
they do want to check they have entered their spreadsheet formulas correctly.
As a simple case study, the Prosper Toolkit developers undertook to incorpo-
rate a ‘sanity checking’ function into Excel that users could employ to reassure
themselves of correctness [18].

The function supplied tests the equality of the contents of two spreadsheet
cells, not by comparing their current values, but by trying to verify that the two
formulas underlying these cells are equal for all possible values of the input cells
occurring in them. The idea is to provide ordinary users with a way of checking
for errors in their spreadsheets, in cases where two cells calculated in different
ways are expected always to produce the same value—for example, in financial
bookkeeping applications.

When this operation is included in a spreadsheet formula, it invokes a simple
proof engine to compute its result. The proof engine uses term-rewriting and a
linear arithmetic decision procedure in HOL, as well as an external SAT solver
to try to verify equivalence.

The prototype handled only very simple formulas, in which a small subset of
the (natural number or Boolean) functions available in Excel could appear. But
given this simplification, fewer than 150 lines of code and only a few days work
were needed to produce a prototype, demonstrating that the basic functionality
was achievable very easily using the Prosper Toolkit.
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CASE Tool Application. The IFAD VDM-SL Toolbox [24] is a software design
tool that supports the specification language VDM-SL. Its capabilities include
syntax checking and type checking of specifications and code generation in C++
and Java. As a major case study within Prosper, IFAD researchers worked
together with other project partners to develop and integrate a proof engine for
the VDM-SL Toolbox for discharging proof obligations generated by VDM-SL
type invariants.

Type invariants are undecidable in general, but in practice many of them can
be dismissed by simplification and term-rewriting in combination with bounded
first-order logic decision procedures. A Prosper proof engine that supplied this
reasoning capability was developed by integrating theorem proving in HOL with
BDDs and the Prover Plug-In SAT solver. The resulting heuristic was found by
IFAD to perform well on realistic industrial test cases.

An additional requirement was if an automatic proof attempt fails, a user
must be able to intervene and guide a proof by hand. The VDM-SL Toolbox
application therefore also involved a fairly large-scale development to steer the
proof engine through an interactive proof management interface in the VDM-SL
Toolbox.

Hardware Verification Workbench Application. The second major Prosper case
study was a Hardware Verification Workbench that served as a research platform
for developing and evaluating new methods in formal hardware verification. It
was designed to use external verification back-ends, rather than implement all
its own proof procedures. Communication between the Hardware Verification
Workbench and the proof back-ends was achieved via the Prosper Integration
Interface (PII).

One experiment done with this platform was the development of a natural
language interface [32] to the Hardware Verification Workbench. This translates
statements about circuits, in the normal technical language of engineers, into
temporal logic formulas that a model checking plugin can verify. Of course, natu-
ral language specifications may be ambiguous. To disambiguate, timing diagrams
(waveforms) are generated from output of the model checker and presented back
to the engineer. In keeping with the Prosper aim of ‘hiding’ the proof tool,
users never have to run the model checker directly, or even see temporal logic
formulas—they work only with already familiar things, namely natural language
and timing diagrams.

4 Some Conclusions from Prosper

The premise of the Prosper project was that mechanized formal analysis could
be made more accessible to users by integrating it into applications. Moreover,
embedded formal proof will gain widespread use, or at least be widely experi-
mented with, only if verification tools can be easily customized, combined, and
integrated.

The research results obtained support these propositions. An effective infras-
tructure for building and integrating embedded, component-based proof engines



An Investigation into Software Architecture for Embedded Proof Engines 199

was found to be technically feasible; the Prosper Toolkit represents one pos-
sible prototype. And the general idea of embedded custom reasoning engines,
giving ordinary users the power of proof, is promising enough to merit much
more investigation on applications.

The experiment with Excel was very encouraging. It showed that infrastruc-
ture of the kind proposed can indeed make it easy to embed formal verification
tools into other applications. The VDM-SL CASE tool example was also en-
couraging. The Prosper Toolkit gave a much more controllable and effective
integration of verification into IFAD’s existing CASE tool product than was
found in the broadly negative experience of previous, ad-hoc experiments [3].
The Hardware Verification Workbench case study also provided an intriguing
and novel example, showing that formal notations could be completely hidden
behind a user-oriented interface.

Prosper aimed from the start for a single infrastructure covering both hard-
ware and software design tool applications. In the end, the Toolkit is perhaps
better suited to software design tools (CASE tools) and interactive general ap-
plications (like Excel) than the current generation of CAD tools. CAD tool flows
are typically compilation or batch processing oriented, with large amounts of de-
sign data passing between tools through disk files in numerous different formats.
The kind of fine-grained communications and interaction supported by the PII
is less relevant here.

The Prosper architecture places a theorem prover, implemented in ML, at
the centre of every proof engine. The reasons given for this in Section 2 are
sound, but the architecture is in some respects also quite awkward. ML has all
the usual advantages of a functional programming language—conciseness, strong
typing, and so on—and this does make it well suited as a scripting language for
orchestrating verification strategies. But the single-threaded nature of ML1 is
something of a disadvantage in a scripting language for coordinating the invo-
cation of plugins and communications between them. For example, because ML
(and hence HOL) is single-threaded, the architecture needed a separate database
process to allow asynchronous access by plugins to logical data.

The separate ‘monitor’ process mentioned in section 2 is also related to this.
Extra processes were added to the architecture mainly to support two seemingly
elementary capabilities—namely, the ability to interrupt a proof engine and its
plugins while they are working, and the ability to divert the output streams
from plugins for handling by other processes. Providing these features, expressly
requested by the VDM-SL application developers at IFAD, required a surprising
amount of quite tricky distributed-systems programming.

A major outcome of the project is the language-independent specification
of the Prosper Integration Interface and the implementations for ML, C, and
Java. Alternative transport mechanisms were considered for logical data, such
as the Extensible Markup Language (XML). Standard component architectures,
such as CORBA [44], were also considered for low-level communications. Both
were rejected early on in the project in favour of a custom solution, which was

1 Or at least the ML underlying HOL98, namely Moscow ML.
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felt in advance to be the more ‘lightweight’ approach. In retrospect, it may have
been better to pursue standard solutions. On the other hand, it is by no means
certain that much of the eventual Toolkit infrastructure would not have to have
been built anyway.

Our experience with plugins was that many existing tools have command-line
or user interfaces that are very difficult to separate from the underlying proof
capabilities. This makes them hard to wrap up as Prosper plugin components.
It helps enormously if a tool already has a distinct and identifiable API—that is
if its reasoning functionality is available through a well-documented and coherent
set of entry points into the code. Good examples of such tools include the Prover
Plug-In [50] and NuSMV [16].

On the logical side, the simply-typed higher-order logic implemented in HOL
and supported by the PII was found to be adequate for the examples considered.
This is not really a surprise—it has long been known how to embed a large range
of other formalisms in this logic. Of course, Prosper looked at only a limited
range of plugins and applications; there are doubtless many other settings in
which a more expressive type system (e.g. predicate subtypes as in PVS) would
be strictly necessary.2 But we would expect the infrastructure to extend quite
naturally to this.

An important issue that was not investigated in depth was how to provide
support for producing and presenting counter-examples in case of failed proof
attempts. Prosper focused on applications where automatic proof is possible,
but this is rather idealistic. In many applications, failure of proof is likely to
be frequent—not least while debugging specifications. The user then needs good
feedback on why the proof attempt failed, in a form with which the user is
familiar. A systematic treatment of this process and some general infrastructure
support would be very valuable.

5 Related Work

Research related to Prosper includes work on combining proof tools, tool inte-
gration architectures, and design tools with embedded verification. Only a brief
list of pointers to some of the most relevant work is given here. An analysis of
the relation of this research to Prosper’s approach and results can be found in
an extended version of [21], to appear in the International Journal on Software
Tools for Technology Transfer.

Combining Proof Tools. There is now a fairly large literature on combining
decision procedures, and in particular model checkers, with theorem proving. The
aim of this research is typically to increase the level of automation of theorem
provers or extend the reach of model checkers in the face of fundamental capacity
limits (or both). Early experiments include links to model-checking based on
2 Partial functions in VDM seem a case in point. But these were avoided by doing
some logical pre-processing within the CASE tool client itself—so HOL’s logic of
total functions was adequate for this example.
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embeddings of the modal mu-calculus in the logics of the HOL and PVS theorem
provers [4,47].

A notable example of current work is Intel’s Forte system [1,2], which inti-
mately combines Symbolic Trajectory Evaluation model checking [49] and the-
orem proving in a single framework. This has been used very effectively for
industrial-scale formal hardware verification [45]. Another approach being inves-
tigated by Ken McMillan at Cadence Berkeley Labs is to extend the top-level
of a model-checker with proof rules for abstraction and problem decomposi-
tion [39,40].

A useful summary of other recent work on combining model checking with
theorem proving is given in Tomás Uribe’s invited talk at FroCoS 2000 [54].

Integration Architectures. Prosper focused more on infrastructure for tool in-
tegration in general than on developing particular tool combinations. (An excep-
tion is the work on linking BDDs into HOL98 [30].) Some other projects which
also provide a generic framework for the integration of tools are listed below.

MathWeb is a framework for distributed mathematical services provided by
reasoning systems such as resolution theorem provers and computer algebra
systems [25]. A special service for storing knowledge, MBase [26], allows
theory information to be shared between other services.

Ω-Ants combines interactive and automated theorem provers using an agent-
based approach [13]. Its blackboard architecture and other agent-oriented
features provide flexible interaction between components.

ILF is a framework for integrating interactive and automated provers that
places special emphasis on a good user interface for the automated provers
[20]. The provers can be distributed and Prolog is used as a scripting lan-
guage, much as ML is used in Prosper.

Techs is another framework which enables automated provers for first-order
logic to cooperate by exchanging logical information [27].

ETI, the Electronic Tool Integration platform [52], aims to support easy and
rapid comparison of tools that do similar jobs as well as rapid prototyping
of combinations of tools. ETI has its own scripting and communication lan-
guage, HLL, which acts much like Prosper’s combination of ML and the
PII.

OMRS aims to develop an open architecture for integration of reasoning sys-
tems. The architecture covers three aspects: logic [29], control strategies [17],
and interaction mechanisms [6].

LBA, the Logic Broker Architecture [7,8], is a CORBA-based infrastructure
for the integration of reasoning systems. It provides location transparency,
fowarding of requests to reasoning components via a registration/subscription
mechanism, and provable soundness guarantees. The LBA was initially de-
signed to be OMRS-based but has evolved into an independent entity.

SAL (Symbolic Analysis Laboratory) is a new collaborative effort that provides
a framework for combining different tools to calculate properties of concur-
rent systems. One instance includes the PVS theorem prover as a major
component [11].
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Design Tools with Embedded Verification. Braun et al. argue that for formal
techniques to be useful they must be integrated into the design process [14]. A
primary aim of Prosper was to support this by making it easier to link veri-
fication tools into the CASE and CAD tool environments for current software
and hardware development processes. The two major Prosper case studies de-
scribed in section 3 looked at target applications of both kinds, embedding proof
engines into both a commercial CASE tool and a formal hardware verification
platform.

Some other projects also looking at linking formal techniques into design
tools and the design process are listed below.

UniForM is a project that aims to encourage the development of reliable in-
dustrial software by enabling suitable tool-supported combinations of formal
methods. The UniForM Workbench [37] is a generic framework that can be
instantiated with specific tools. The project has produced a workbench for
software design that gives access to the Isabelle theorem prover plus other
verification tools through their command lines.

Extended Static Checking (ESC) is a software development tool using embed-
ded verification developed at the Compaq Systems Research Center [23].
ESC uses cooperating decision procedure technology first developed in the
early 1980s to analyse Java programs for static errors.

KeY is a relatively substantial research effort that aims to bridge the gap be-
tween object-oriented software engineering methods and deductive verifica-
tion. The KeY system integrates a commercial CASE tool with an interactive
verification system and automated deduction [5]. It aims to provide an in-
dustrial verification tool that benefits even software engineers who have little
experience of formal methods.

InVeSt integrates the PVS theorem prover with the SMV model checker [12].
The combination is used as a ‘proof engine’, in the sense that it discharges
verification conditions generated by another program external to the theorem
prover.

As far as I am aware, no project other than Prosper aims specifically to provide
a general framework to support the integration of existing components with the
view to producing an embeddable, customised proof engine. The closest in scope
and aims is the Logic Broker Architecture.
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L. Théry, Lecture Notes in Computer Science, vol. 1690 (Springer-Verlag, 1999),
pp. 23–340.

3. S. Agerholm, ‘Translating Specifications in VDM-SL to PVS’, in Theorem Proving
in Higher Order Logics: 9th International Conference, TPHOLs’96: Turku, August
1996: Proceedings, edited by J. von Wright, J. Grundy, and J. Harrison Lecture
Notes in Computer Science, vol. 1690 (Springer-Verlag, 1999), pp. 1–16.

4. S. Agerholm and H. Skjødt, Automating a model checker for recursive modal as-
sertions in HOL. Technical Report DAIMI IR-92, Computer Science Department
(Aarhus University, 1990).

5. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Men-
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