A Symbolic Execution Framework for
Algorithm-Level Modelling

Ziyad Hanna and Tom Melham
Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford, OX1 3QD, England
{zhanna,melhaf@comlab.ox.ac.uk

Abstract—This work aims to address the well-known and acute efforts represented by SystemC and similar approaches. We
ch'allengelof functhnaI. valldatlon for complex, contemporary wish to experiment with a more disruptive language and
microarchitectural circuit designs. We provide a new formal reasoning framework, and to assess how the particular ideas

framework for algorithm level modelling—design modelling at ted i t iaht ke it ier t |
a high abstraction level, focused exclusively on function and represenied In our sysiém might make It easier 1o explore

algorithms. The semantics of our models is based on Abstract microarChiteCtU@ a|90rit_hm$ and validate them usingatyic
State Machines with synchronous parallel execution, sequential or formal techniques—yielding more productive convergence
execution, and nondeterminism. To express models we propose anig high quality implementations.

executable, object-orientedArchitecture Specification Language In the sections that follow. we describe oArchitecture

with rich data types and a well-defined formal semantics, based e -
initially on Microsofts AsmL. We describe an experimental SPeCification Languagéhrough a case study, the modelling

framework for direct symbolic executionof models in this Of a simple pop scheduler and its refinement towards a
language, intended as a basis for both property and refinement design model for circuit implementation. Our languagel] sti
verification, as well as design exploration. in the early stages of development, is based on Microsoft’s
We explain and illustrate our approach through a case study, open source AsmL [8], [9] extended with some hardware-
the modelling a simpleuop scheduler and its refinement towards -] T .) .
a design model for circuit implementation. We aim to show the prlented datatypes; we briefly sketch its S_emantlc fOUF’dat'
ut|||ty of our |anguage and Symbo“c execution framework for n AbStraCt State MaCh|neS. We aISO deSC”be an eXpel’Imenta
exploring microarchitectural algorithm and to validate designs interpreter that supportsymbolic executiomf models in this
using dynamic or formal techniques, yielding more productive |anguage, intended for design exploration, property cimegk
convergence to high quality implementations. and refinement verification. We conclude by discussingeelat
| INTRODUCTION work, and outlining future research challenges and prdspec

Functional validation has become an acute and expensive [I. ALGORITHM LEVEL MODELLING

challenge for engineers designing high performance micro-we use the termalgorithm level mode(ALM) to mean a
electronic systems, espemally n _qwckly evolving maskeyrecise description of the functional and algorithmic hétiar
or where there are demanding time to market goals [l§f computer systems, framed in terms of abstract data types

Most design activity, at least for complex microarchiteéetu and granularities of time not necessarily tied to clock egcl
is still centred around low-level design models, encumthere\n ALM has the following main characteristics:

with implementation detail. Numerous proposals have been

made, in our view rightly, to make design exploration an@bstract yet sufficiently complete. All and only the algorith-
analysis more tractable by raising the level abstractiomach ~Mically relevant features of the system should be represent
designs are described—so called ‘high-level’ or ‘transacti |t need not be cycle-accurate or expressed at the bit level.

level’ modelling [2], [3], [4], [S]. The case is made forc#fu gimple and concisewritten in a language with meaning

and exceptionally clearly by Vardi in [6]. transparent to both system architects and designers.
Our contribution in this paper is to propose a new frame-

work for modelling and validation, focusing exclusively orPrecise with a comprehensive and tractable formal semantics.
functionandalgorithms based around a language with a cleahhis should be suitable to support a range of different férma
and obviousformal semanticsand providingnative symbolic Verification technologies.
executionas its fundamental formal analysis tool. Our syste
integrates formal verification and dynamic validation irgo
common modelling and analysis framework, and leverag
emerging technologies for reasoning above the bit level [
to enable a genuinely ‘high-level’ approach.

The aim of this long-term research is to take an eXexecutable The model can be run when encapsulated within
perimental step away from the more incremental, industrial suitable test-bench and run-time environment.

"Nardware-oriented The model should provide a semantics
suitable for theabstractcharacteristics of hardware—correctly
odelling concurrency, synchronisation, clocking, hiehg,
d modular composition.

wiite € wrback should set the linavailableto high when it contains a waiting
i " ready pop. When it sees this signal, the execution unit can
ready __7 3| Scheduler je——read request auop on thedout lines by settingread to high. In
full —~4—> dout the event that there is more than one readyp, the scheduler
————> available provides the readyiop which entered it first.
The wrback line from the execution unit is used to signal
Fig. 1. Scheduler Top Level Interface when the execution of an instruction has resulted in thengrit

of data to a register. The index of this register is suppliad o
the reg lines. This allows the scheduler to select aqmyps it
There have, of course, been many attempts to devise higields which might have been waiting for this write to happen.
level models (HLMs) that share some of these desirabighen a write-back takes place, any waiting instructions whos
goals. Often, however, an HLM is expected to serve assaurce which matcheg is tagged as ready for execution.
golden reference for downstream design stegswell as
for validation. It has therefore tended to compromise \alid
tion needs by including information driven by circuit desig B- ASL Examples from the Scheduler Model

ncerns. Implementation ils—such wer, timing an . .
concems plementation details—such as power, t ga dIn ASL, we model the scheduler as a class with data fields

placement—inevitably become tangled up with the model. Tl?e L . .

, . . for its internal state. This comprises the queueuops, each
model’s abstraction level is dragged down to serve moregde5|a companied by a status flag. the data outout register. and a
purposes, until at some point it is no longer has the merits ar P y A b g !

the clean models envisaged above. running index for the time ofiop entry. Instructions and status

We therefore speak of ‘algorithm-level models’ to emph.’;{f’1gs are represented the using of the basic types

sise that they are intended to model only data structures anglass uop_BASE{
algorithms, and to be used only for the purpose of algorithm opCode as Integer
exploration and validation. They are kept strictly separat SRed as Integer

. : dReg as Integer
from the RTL design model, and so can remain a statlg

algorithmic description and functional specification,efref | cl ass UOP extends UOP_BASE {

implementation detail status as Integer // idle, wait, rdy, exec
' }

IIl. ALGORITHM SPECIFICATION LANGUAGE

Starting with an enlargment of the AsmL subset define"?y1d the scheduler's intemal state is represented by

in [10], and adding some hardware-oriented data types dn@pQueue as Map of Integer to UOP
operations, we have devised an experimental language [fgput as UOP_BASE

algorithm level modelling and verification called thechitec- | U0PTag_as Integer

ture Specification Languag@SL). In this section, we provide

ketch of ASL th h les d ; q At this level of abstraction, we represent the state of the
a sketch o through examples drawn from a case stu é{ueue by a map (in the natural mathematical sense) from

A. Scheduler Case Study arrival time to thepop and its status bit. The map is initially

A micro-operation f(top) scheduler is a microprocessoFmpty{ and 'S populated during execution. The running time
index is held inuopTag .

component that we have used to drive ASL development in this) o
research. It implements functionality that is typical oéinds At €ach step of execution,sthedule method is invoked

of microarchitectural algorithms we wish to validate thgpu With the scheduler's inputs as arguments. This executes a
ALMs, and to refine down to implementable designs. group of parallel update statements to compute a modificatio

The scheduler, shown in figure 1, receives a streamagf of the scheduler’s state. For example, whaiite is enabled
instructions to be executed and is responsible for defigeri@"d the queue is not full, the updates are as follows:
each of these to an execution unit at thg appropriatg time.' Tt wite _and not meistull) then (
scheduler must hold back som@ps until the execution unit| ne.uopQueue {me.uopTag } := din;
signals that their operands are available. When multijgps fTE-UOPQl{Efue {deB-UOFJ;ag }astatuf =
are ready, the scheduler uses a FIFO policy for selection. Fo m_uopTa'g Lea é’E_Jop?ggrf S5 se
this study, a simple version of the scheduler is consideres,
verification of a real RTLuop scheduler is described in [11]. _ B - o o

Eachpuop has an opcode, a source register, and a destinatidie identifierne is similar to ‘this’ in C++. Used within a
register. Eachuop comes to the scheduler on tiin line method of an object, it makes run-time reference to the objec
accompanied by aeady bit, which is high exactly when all itself. _The updates are sch.eduled in sequence here, but they
the instructions it must wait for have already been execute@Puld just as well be done in parallel.

In order to enqueue gop into the scheduler (provided tifgll During a read, the scheduler looks for the earliest reaoly
line is not high), thewrite line must be high. The schedulerin the map. In ASL, we express the updates as follows:

if read and meisReady() then The clasounter has a single state variablegunt , and a
let tag = the w | w in keys neuopQueue where . L . .
me.uopQueue {w}.status == rdy and run method that updates it by parallel, conditional invocagion
not (exists v in keys meuopQueue where of the other two method#c anddec. In the main program,
v<w and me.uopQueue {v}.status == rdy) we create an object of classcounter and initialize the state
do ne.uopQueue {tag }.status := exec; . . .
me.dout := me.uopQueue {tag } to an arbitrary integer, represented by the typed metabbi
X. Therun method is called with two Boolean meta-variables
The exi sts and t he constructs are part of a family of as parameters. When this program is executed, it computes the
executable comprehension and quantification construets thollowing expression as the next-state valuecofint :

ASL (following AsmL) provides for compact specification.

They specify values abstractly, instead of by explicit skar u = (d = error “inconsistent update’| x+1)
On an execution unit write-back, the scheduler sets each | (d=x1 |x)
Hop status to ready if its source register has been written 9o notation P = A | B’ denotes a conditional choice of value:
i f wrBack then if P thenA elseB. The result encodes four possible values of
f|0fe;’i' Lo;agz g uﬁ%ésueﬁzu{(;ggu}etéeo count in the next state, according to the valueswfand
if uop.sReg = reg and uop.status = wait t hen d. Note that when botlu andd are true, the outcome is an
uop.status := rdy inconsistant state. With expressions such as these, uaers c

debug and avoid such inconsistent updates. ASL provides an
Yssume construct to impose state constraints that restrict the
computation to legal paths. State predicates can be checked

IV. SYMBOLIC EXECUTION usingassert.

A distinguishing feature of our language framework is an This example is simple stra|ght-_l|ne code, but N _real ASL
implementation of directsymbolic executior{12] of ASL programs there are loops and possibly rather sophisticated

programs. Inspired by the success of symbolic simulaticEH)I ﬂ.O.W' Symbolic ex.ecution of qups requires a terminatio
in, for example, Intel's Forte system [13], we provide thi ondition to be established, otherwise the program nevés.ha

capability as a fundamental mechanism upon which we expéﬂ example is given below:
a range of formal verification methods to be built. class A {a as Bit[3] _

Ordinary execution of an ASL program computes an.accu'— et(f;th r;e\(/)\i.aA 5”3?:)811')(aZOB”[?’]) do (
mulated update to the initial program state—a collection of xa = xa + 3'b001)
concrete values that all the state elements take on in thee nex ; / sequential composition
state of the system. With our symbolic execution mechanism, *2
we injectmeta-variablesnto the computation to stand for the
values of selected state elements. That is, instead of métkén The state in this example is a bitvector of width 3, interpdet
initial value of a field a concrete value, such@srtrue , we as a 2's complement integer. It is initialized to an arbitrar
make the initial value of the field wariable Execution then Symbolic value using the meta-variatke Each time through
producesexpressionghat give the final state of the systenthe loop, x.a is incremented by 1 until it becomes 3. In
as a function of the variables that occur in the initial stat@ur implementation, the symbolic execution engine chebks t
A key feature of our approach is that concrete and symboligop condition at every step to decide whether to terminate o
execution can be mixed, in almost arbitrarily flexible ways;ontinue. Eventually, the condition is proven to be falsgj a
under user control. You can writareét a "x" as type’ the program terminates with an update value of 3xXar .
anywhere a literal value can be written, and this will inject ASL supports set and list comprehensions, as well as

Updates to the aluop status bits in the queue are done i
parallel, using & or al | statement.

the meta-variablex at that point of the computation. nondeterministic choice. We illustrate the symbolic ex&cu
We illustrate the idea with the example below: of these with the following example:
cl ass counter { class A {a as Integer }
count as Integer, // state let x = new A (0) do
inc () as Void (me.count := nme.count + 1), let n = neta'n" as Integer do
dec () as Void (me.count := me.count - 1), let ¢ = meta "c" as Bool do
run (up as Bool, dn as Bool) as Integer (assune n==2 do (
(if up then ne.inc() if c then (o _
|| // parallel composition let res = any i |i in {1,234 } where i<=n do
if dn then ne.dec() X.a = res
; Il sequential composition)
me.count))
}/ main program appears below The ASLany construct (following AsmL) makes a nondeter-
let ¢ = new counter(meta "x" as Integer) do (ministic choice of value drawn from a given set and which
let u = meta ' as Bool do satisfies a stated condition. The integes will be a value
let d = neta "d" as Bool do L .
c.run(u,d) between 1 and 4 that does not exceedvhich itself is known
) to be 2. In other wordsies will be 1 or 2.

ready ——— TR
din

When we run this program, our system will compute the

following symbolic update fox.a : write§—¢ l l
(€ An=2)=(ip=1]2)|0 A Rt LN |l PR Ep
In normal execution, a random choice between 1 and 2 would ' :
be made for the next value ofa . In symbolic execution,
we index all possible outcomes by generating index varggble 1 e g ;
in this caseig, and constructing a decision tree to encode the < P rend
outcome. It is, of course, enough to hajleg, k| Boolean ull —t Control Logic /ot
variables fork possible choices. ; {3 available
ScoreBoard :
V. REFINEMENT OF THESCHEDULER
Establishing and maintaining a formal link between an ALM b
specification in ASL and an RTL design model is central Fig. 2. Refined Scheduler

to realising the long-term value of algorithm level models.
The size of the abstraction gap is a significant challenge,

which we propose should be bridged through a series of ALM
refinements. Ultimately, these should be semi-automateat, o
least machine assisted—tackling the other main concerneof
cost of maintaining an ALM—but this is future work. Martin

if read and isReady() then

let slot = the s | s in keys valid where
th valid {s} and uopQueue {s}.status ready and
not (existst in keys valid wheret <> s and

: scoreBoard {t*gsize+s } and valid {t})

Nyo (valid {slot } := false;

forall v in keys valid where v<>slot

do (if scoreBoard {slot *qsize+v } then

scoreBoard {slot *gsizetv } := fal se;

scoreBoard {vxgsize+slot } = true);

uopQueue {slot }.status := exec;

dout uopQueue {slot })

explores similar ideas in System-ML [14], as does Seger
IDV [15].

Our initial focus is ondata refinement,algorithm refine-
ment, andhybrid refinement that combines both. In dats
refinement, the state representation is replaced in theeckfir
model with a more implementation-oriented and efficient,on
but the computation method is the sarAigorithmrefinement,
on the other hand, replaces the algorithm by another, m
efficient, algorithm, but retains the data representatilon.
hybrid refinement, the most common form, both data an
algorithm refinements are involved.

A
N
e

In the refined read operation, the earliest reaayp is found
cHging the one-dimensionatoreBoard as a priority matrix.
fter reading, the corresponding slot in thalid array is
eared and the relation iscoreBoard updated.

. B. Validation of the Refinement
A. Refined Scheduler ALM

.) . . Validating ASL refinements can be done initially using
In this section, we sketch a hybrid refinement of thgyiengjve simulation. The two models are exercised by a test
scheduler. In our initial ALM, we used an infinite queue tQenqp aiso written in ASL, that runs them on the same inputs.
store incominguops according to arrival time, maintained byrpe resyits are compared at the end of each computation step.
an integer index. This is an abstract model, but not Clogg, yhe scheduler case study, we did random simulation.

.to'th?rdwgrcla |mplemen:ﬁt|on.t.Th”e main .problerg Its that the Test data can be a mixture of concrete and symbolic values.
initial model uses a mathematically perspicuous but EXBENs, , 4, q following testbench, which runs only one cycle of each

o_peraﬂon to find th_e e_a_rhest read;op. To move closer to model, theuop is symbolic and the control inputs are concrete:
high-performance circuit implementation, we add a scoagtho

that indicates ifuop is earlier thanuop; across a certain range| | et din = new UOP(idI? 0 -

. . . . met a "opc0" as Integer,
of i andJ..Eachuop is compared to gll thg others in paraIIeI.. meta "src0” as Integer.

The refined scheduler is shown in Figure 2. Its state |is met a "des0" as Integer) do
modelled in ASL by let inp =

new INTERFACE(true,false,false,din,0,true) do

uopQueue as Map of Integer to UOP, queue.schedule (inp); /I abstract scheduler
valid as Map of Integer to Bool, scoreBoard.schedule (inp); // refined scheduler
scoreBoard as Map of Integer to Bool I'et resl = queue.read_dout() do
| et res2 = scoreBoard.read_dout() do
The arrayvalid is used to indicate the occupied slots in'f resl == res2 then writeln "passed
. . . . el se writel n "failed
the pop queue. The scoreboard is a one-dimensional array-of

Booleans, but will be used as a two-dimensional matrix. ~An INTERFACEIs just a record packaging up the inputs.
This refinement also replaces the algorithms for reading andVerification of the refinement can also be done completely
writing. We show the read code below: symbolically. We execute the two models with the same

. . lettype classid = CLASSID string;
symbolic inputs and compare the expressions generated f@kype objectid = OBIECTID string;

dout . The symbolic input generator shown below: lettype fieldid = FIELDID string;

cl ass SYMBOLIC { // build symbolic transaction Identifiers are just tagged strings

inp (i as Integer as INTERFACE . .) . . .
p|ét write = gmlta "wr(i nt ZS“(i) as Bool do Boolean and integer literals are inherited from built-in
let read = meta "rd”(int2str i) as Bool do reFIECt types. The literalVOID stands for the element of a
let wb =meta "wb™(int2str i) as Bool do certain singleton type used for expressions that do notmetu
let ready = neta "rdy"(int2str i) as Bool do h | Val ither Ii | bi ifl .
let din = new UOP(idle some other value. Values are either literals or object iflerd:

meta "opc”(int2str i) as Integer, lettype lit = VOID | BOOL bool | INT int;

nmeta "src"(int2str i) as Integer,
met a "des"(int2str i) as Integer) do

let reg = nmeta "reg”(int2str i) as Integer do .
new INTERFACE (write, read, wb, din, reg, ready) The state of an ASL program, calledstore , is repre-

) sented by a content mapnfap) from value-holdingocations
} (loc) to values, together with an update setsé¢t). A

The methodinp takes a cycle number and generates metication is uniquely identified by an object identifier paire
variables to represent the inputs values at the schedukesr inwith a field identifier. An update is just a location pairedtwit
face. The result is a high-level ‘symbolic transaction’ defi 2 value:

over the abstract data types of ASL. For our case study, wgpe loc = objectid xfieldid;

were able to execute both ASL models in this completelfPe SMaP = loc ~ — value;

! Xype update = loc x value;
symbolic manner and prove that the outputs agree. type store = cmap ~ x update set;

lettype value = OBJ objectid | LIT lit;

C. Semantics of ASL We can now represent ASL expressionge®eCtfunctions
The state of an ASL program is encapsulated within class#isat map a declaration context, represented by tipe , and
Evaluating new c(e) allocates a new object of clags, a current store to a new store together with the resultingezal
initializing its state to the value of. The result is a unique

. . - . type exp = dcxt — store — (store alue);
object identifierfor the object created. For example, ype exp X sor (s x value)

The declaration context, details of which are unimportareh

— — is just a static table of class information.
evaluates to 7, the initial value stored in fi¢laf the allocated \ve can now express the semanticsnefv as follows:

object of classA. ot -classid . de-dext at _
ASL is in essence a language for describing synchronoug n‘fg 0{:"frgssﬁi'd c i% {ezexp } {dudext } {s:store } =

parallel updates to state. The fundamental way to generate val (cmus)v) = e d s in

updates is with an update expressieh.f := e2 , where val f = 'Oé’ktup dfC in 0B o)

el evaluates to an object identifier are®2 to a value of ((update (0.)) v cm).us),)

the correct type for fieldf of this object. Evaluating the The functionnew takes a class identifier and an expression
update expression itself does not immediately change tBend returns a function from the declaration context ancestor
state, but simply generates a record of the update for latgra new store and a value. The functiveshid allocates a
application to the state. Evaluating update expressions fgw object identifieo. The expressioe is then evaluated to
parallel produces the union of the updates they generatea F¢roduce a new store, and the single field identifier for ctass
sequential compositiorl;e2 , the updates generated By s obtained from the declaration context. (Our system ir fac
are temporarily applied to the state when generating updatgpports multiple fields.) Finally, the function returns ewn
from e2—i.e. sequential execution does ‘update compositiorstate consisting of the updated content map and the unctiange

Our interpreter is essentially an operational semantics @hdate set, together with the allocated object identifieas
ASL programmed in Intel'seFIECt[16] functional language. the resulting value.

For example, the ASL expression above translates into therhe definition of the semantics of updates is equally

class A {f as Integer } new A(7).f

r?Ft@ACtCOc?_eAsbs?g)W,; straightforward. An updateel.f := e2 has semantics
e = " "; .
let x = FIELDID "X" assign el f e2 , where
asl [class A x] (dot (new A(lit 7)) x); let assign {el:iexp } {ffieldid 1 {e2:exp }
. . {didext } {sustore } =
Each of the functionsasl , class , dot , new and lit val ((cm1,us1),(OBJ 0)) = el d s in

corresponds to one of the syntactic categories of ASL ab- val (cm2,us2),v) = e2 d s in
stract syntax, and computes the changes to state and updates ((\C,'gllD)_U cm2, {(fv } U (sl U us2),
expected by the operational semantics [10]. '

To give a flavour of the technical details of our semantic3he resulting content map is just the union of content maps
we sketch the definitions of object allocation and field uparising from evaluation o1 ande2, which may of course
date. We first introduce theeFIECt data types that representhave allocated objects. The resulting update map contas t
identifiers: new update. The return value is jugOID.

VI. RELATED WORK design models written in SystemVerilog or SystemC, prawidi

Research addressing the challenges of functional vadidati® path to downstream RTL design and validation flows.

using high level models has been active for decades, in both ACKNOWLEDGMENTS

academia and industry. SystemC [2], designed for high level\ye are grateful to the Microsoft Research team, including
modelling of systems, extends C/C++ standards with featurg, i Gurevich and Wolfram Schulte, for their initial suppor
needed for hardware design and verification. The semantics;9 AsmL and Spec Explorer.

SystemC are, however, not suitable for formal analysis,[17]

because its design was not driven by semantic clarity, and REFERENCES

it has evolved from other languages that either were noy full[1] B. Bentley, “validating a modern microprocessor,” @omputer Aided
semantically defined or not well suited to hardware modgllin Verification: 17th International Conference: Proceedinger. LNCS,

. . . vol. 3576. Springer-Verlag, 2005.
TLA [5]' the Temporal Logic of Actions by Leslie Lamport, 2] OSCI, “IEEE - the open systemc initiative,” 2008. [Onllnévailable:

does have a precise semantics suitable for formal verificati http://www.systemc.org/downloads/Irm
of small to medium size problems. Models in TLA are(3] G. Berry, P. Couronn, and G. Gonhier, “Synchronous peagming of

- - - - - reactive systems: an introduction to ESTERBINRIA report 647 (987)
not aimed for dynamic simulation or creation of test bencm] J. C. Hoe and Arvind, “Synthesis of operation-centricdveare descrip-

environment, limiting TLA to formal verification only. Forah tions.” in ICCAD, 2000, pp. 511-518.
analysis in TLA is based on explicit model checking, which off5] L. Lamport, Specifying Systems: The TLA+ Language and Tools for

- Hardware and Software EngineersAddison-Wesley, 2002.
course suffers the state eXp|OSIOn prOblem' In Murphy [ﬂ]ﬁ] t [6] M. Y. Vardi, “Formal techniques for SystemC verificationiii Design

basic concepts are similar to ASL, but its semantics does not Automation Conference ACM, 2007, pp. 188-192.
allow native sequential composition of rules, which we view{?] D. Kroening and O. StrichmarDecision Procedures: An Algorithmic

- . . - Point of View Springer-Verlag, 2008.
as helpful for modelling hardware. Like TLA, it has an exfilic 8] “AsmL: The abstract state machine language,” 2006.

state model checker for formal analysis only. Esterel [3ns [9] AsmL. [Online]. Available: http://www.codeplex.com/As/
evolving language and system used mostly to model contr&l0] Y. Gurevich, B. Rossman, and W. Schulte, “Semantic essehésmL.”

- : . - Theoretical Computer Scienceol. 343, no. 3, pp. 370-412, 2005.
oriented reactive systems, and so it less suitable for ALM. [11] J. Yang and C.-J. H. Seger, “Compositional specificasiod verification

Bluespec [4] is a language with a term rewriting semantics = in GSTE,” in 16th International Conference on Computer Aided Veri-
aimed at capturing model behaviour and synthesizing it to fication (CAV) ser. LNCS, R. Alur and D. A. Peled, Eds., vol. 3114.

. . L . Springer-Verlag, 2004, pp. 216-228.
hardware design. Bluespec is similar in many ways to ASI[_IZ] J. C. King, “Symbolic execution and program testinggmmun. ACM

But the focus in Bluespec has very much been automatic vol. 19, no. 7, pp. 385-394, 1976.
scheduling and high level synthesis to RTL, while we ar@3] C.-J. H. Seger, R. B. Jones, J. W. O'Leary, T. Melham, MA&gaard,

. . . . C. Barrett, and D. Syme, “An industrially effective environmiefor
interested in modelling and verification methods. Bluespec formal hardware verification,IEEE Transactions on Computer-Aided

took recently a new direction into the RTL domain by aiming Design of Integrated Circuits and Systerwsl. 24, no. 9, pp. 1381
to be interoperable with SystemVerilog [19]. 1405, September 2005.

, . o . [14] A. K. Martin, “Bridging the gap between abstract RTL abi-level
Intel's Forte [13] Isa powerful symbollc simulation system designs,” in Seventh International Workshop on Designing Correct

but is targeted at gate level designs. Theorem provers (e.g. Circuits: Participants’ ProceedingsG. J. Pace and S. Singh, Eds.

HOL [20]) are dedicated to interactive proof developmerd an___ ETAPS 2008, March 2008, p. 72. _ .
ith effort) scalable. but the models in such svsteras 6{(%5] C. Seger, “The design of a floating point unit using theegnated design
are (W| efro) ’ Yy and verification (IDV) system,” irDCC’06: Participants’ Proceedings

not executable. Symbolic execution with term rewriting isam M. Sheeran and T. Melham, Eds., March 2006.

to what we propose for ASL was shown to be an effectia6l J. Grundy, T. Melhgm, and J. O’Leary, “A r_eﬂective furartal Iang_uage
binati f ifvi tial in C. ASL for hardware design and theorem provinglburnal of Functional

combination Tor veritying Sequen 1a pmgram§ in C. ’ Programming vol. 16, no. 2, pp. 157-196, March 2006.

by contrast, supports the interleaved sequential and Iphraj17] Y. Mahajan, C. Chan, A. Bayazit, S. Malik, and W. Qin, fifeation

execution we believe is essential for hardware modelling. driven formal a(chitecture and microarchitecture modelirig,MEM-
OCODE’07, April 2007.

[18] C. W. Murphy, “An overview of the murphy model Australian
VII. PROSPECTS Economic Papetsvol. 27, no. 0, pp. 175-99, Supplemen 1988. [Online].
L Available: http://ideas.repec.org/a/bla/ausecp/v®BgI0p175-99.html
The ASL work presented here represents some significafd] s. p. Stuart Sutherland and P. FlaBystemVerilog for Design: A Guide

first steps in a long-term research on algorithm level mod- to Udsing Systslm;]/erilog for Hardware Design and Modelinglluwer
i ; : f : Academic Publishers.

e"'”g' USIhg AsmL as a starting pomt, we have deSIgn 90 M. J. C. Gordon and T. F. Melham, Edmtroduction to HOL: A theorem
and implemented a protoype ASL environment that SUpports” proving environment for higher order logic Cambridge University
native symbolic execution and a rich collection of language Press, 1993. _ _ 3
constructs. We have exercised our system, and driven%ﬁé] P. Bohm and T.‘ Melham, A rgflnement approach to design and verifi-

) ’ . : ! . cation of on-chip communication protocols,” 2008 Formal Methods
design through a series of case studies, including (tbp in Computer Aided DesignA. Cimatti and R. B. Jones, Eds. |EEE,
scheduler, a model of the AMBA protocol [21], and Lamport’'s 2008, pp. 136-143.
bakery mutex protocol. We are planning to scale up our
case studies and focus our efforts on methodology for ALM
refinement down to design models. Tuning the performance
and enhancing the capacity of our system is work in progress.

We also intend to connect ALM models specified in ASL to

