Quantum Measurement Uncertainty

Reading Heisenberg's mind or invoking his spirit?
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two varieties of quantum uncertainty

Introduction
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Heisenberg 1927

Essence of the quantum mechanical world view:

quantum uncertainty & Heisenberg effect J
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Heisenberg 1927

quantum uncertainty: limitations to what can be known about the
physical world

Preparation Uncertainty Relation: PUR
For any wave function :

(WIDTH OF @ DISTRIBUTION) - (WIDTH OF P DISTRIBUTION) ~ h

(Heisenberg just discusses a Gaussian wave packet.)

Later generalisation:

DADLB > F[([A B])|

(Heisenberg didn't state this...)

Paul Busch (York) Quantum Measurement Uncertainty 6/ 40



Heisenberg 1927

Heisenberg effect — reason for quantum uncertainty?

@ any measurement disturbs the object: uncontrollable state change

@ measurements disturb each other: quantum incompatibility

Measurement Uncertainty Relation: MUR

(ERROR OF @ MEASUREMENT) - (ERROR OF P) ~ h

(ERROR OF @ MEASUREMENT) - (DISTURBANCE OF P) ~ h
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Reading Heisenberg's thoughts?

Heisenberg allegedly claimed (and proved):

e(A,p)e(B.p) = (A B]),| (777)
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MUR made precise?

Heisenberg's thoughts — or Heisenberg's spirit?

...or: what measurement limitations are there according to quantum
mechanics?

(combined joint measurement errors for A, B) > (incompatibility of A, B)

True of false? Needed:

@ precise notions of approximate measurement
@ measure of approximation error

@ measure of disturbance
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Introductio

two varieties of quantum uncertainty

Quantum uncertainty challenged

PRL 109, 100404 (2012) PHYSICAL REVIEW LETTERS 7 SEPTEMBER 2012
Violation of Heisenberg’s M t-Disturbance Relationship by Weak Measurements

Lee A. Rozema, Ardavan Darabi, Dylan H. Mahler, Alex Hayat, Yasaman Soudagar, and Aephraim M. Steinberg
Centre for Quantum Information & Quantum Control and Institute for Optical Sciences, Department of Physics, 60 St. George Street,
University of Toronto, Toronto, Ontario, Canada M5S 1A7
(Received 4 July 2012; published 6 September 2012; publisher error corrected 23 October 2012)

While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system,

often referred to as “F ’s inty principle,” Hei originally formulated his ideas in
terms of a relationship between the precision of a measurement and the disturbance it must create.
Although this latter i ip is not rij proven, it is ly believed (and taught) as an
aspect of the broader Imcertamty prmclple Here, we experimentally observe a violation of Heisenberg’s

, using weak to characterize a quantum system
before and after it interacts with a measurement apparatus Our experiment implements a 2010 proposal of
Lund and Wiseman to confirm a revised lationship derived by Ozawa in 2003.
Its results have broad implications for the ions of quantum ics and for practical issues in

quantum measurement.
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged

SCIENTIFIC
REPLIRTS W, {9

Experimental violation and reformulation
. ’ .
s, OF the Heisenberg's error-disturbance
swmaonsyncertainty relation

QUANTUM METROLOGY

QUANTUM INFORMATION So-Young Baek'*, Fumihiro Kaneda', Masanao Ozawa? & Keiichi Edamatsu’
GUANTUM OPTICS

"Research Insfitute of Elecirical Communication, Tohoku Universily, Sendai 980-8577, Japan, *Graduate School of Information

Received Science, Nagoya University, Nagoya 464-8601, Japan.
7 August 2012
Accepted The inty principle by Hei in 1927 describes a trade-off between the error of a
2July 2013 measurement of one observable and the dnsturbanoecausudon another complementary observable such that

) their product should be no less than the limit set by Planck’s constant. However, Ozawa in 1988 showed a
Published  model of position measurement that breaks Helsenberg’s relation and in 2003 revealed an alternative
17July2013  relation for error and disturbance to be proven universally valid. Here, we report an experimental test of

Ozawa's relation for  single-photon polarization qubit, exploiting a more general class of quantum
measurements than the class of projective measurements. The test is carried out by linear optical devices and
realizes an indirect measurement model that breaks Heisenberg’s relation throughout the range of our

Ce = d
orresponcence o experimental parameter and yet validates Ozawa’s relation.

requests for materials

Paul Busch (York) Quantum Measurement Uncertainty 11 / 40



(Approximate) Joint
Measurements

Paul Busch (York) Quantum Measurement Uncerta inty 12 / 40



(Approximate) Joint Measurements

Quantum Measurement Statistics — Observables as POVMs

o N:
w || o | —7 Pilw)=

preparation measurement registration  statistics

[r] ~p, [o] ~E={w;j— E}: pg (wi) = tr[pEi] = py (wi)
POVM: E={F,E, - ,E}, 0<O<E<I, Y E=I

state changes: instrument wj, p — Zi(p)
measurement processes: measurement scheme M = (H,, ¢, U, Z,)
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(Approximate) Joint Measurements

Signature of an observable: its statistics

ppczppA forallp <<= C=A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pg ~ p[’? for all p

Unbiased approximation — absence of systematic error:

CH =) gG=All]=) aA=A

. often taken as sole criterion for a good measurement
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Joint Measurability/ Compatibility

Definition: joint measurability (compatibility)

Observables C = {Cy,C_}, D ={D;,D_} are jointly measurable
if they are margins of an observable G = {G,4,Gy_,G_, G__}:

Ck =Gy + Gr—y, Dp=Grp+ Gy

Joint measurability in general

Pairs of unsharp observables may be jointly measurable
— even when they do not commute!
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(Approximate) Joint Measurements

Approximate joint measurement: concept

G joint observable

approximator observables
(compatible)

>0
W ¢~~~ 0O

target observable

Task: find suitable measures of approximation errors

Measure of disturbance: instance of joint measurement approximation error
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Quantifying measurement error and disturbance

Quantifying Measurement Error
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Quantifying measurement error and disturbance

Approximation error

(vc) value comparison
(e.g. rms) deviation of outcomes of a joint measurement:
accurate reference measurement together with measurement to be
calibrated, on same system

(dc) distribution comparison
(e.g. rms) deviation between distributions of separate measurements:
accurate reference measurement and measurement to be calibrated,
applied to separate but identically prepared ensembles

alternative measures of deviation: error bar width; relative entropy; etc.

Crucial:
Value comparison is of limited applicability in quantum mechanics! J
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Quantifying measurement error and disturbance

Approximation error — Take 1: value comparison

Measurements/observables to be compared:
A={A1,A,....,An}, C={G,0,...,C}

where A is a sharp (target) observable

and C an (approximator) observable representing an approximate
measurement of A

Protocol: measure both A and C jointly on each system of an ensemble of
identically prepared systems

Proviso: This requires A and C to be compatible, hence commuting.

8ve(C A p)? = > (ai — ¢)? tr[pAi )]

i

(Ozawa 1991)
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Quantifying measurement error and disturbance

Issue: 6. is of limited use!
Attempted generalisation: measurement noise (Ozawa 2003)

5uc(C. A 2 = (C[2) — C), + ((C11] ~ A)?), = emn(C.A; p)?

where C[k] =3, cjij, A = A[1] are the k' moment operators...
...then give up assumption of commutativity of A, C

Critique (BLW 2013, 2014)
If A, C do not commute, then:
@ 0y.(C, A; p) loses its meaning as rms value deviation

@ and becomes unreliable as error indicator
- e.g., it is possible to have £,,,(C, A; p) = 0 where A, C may not
even have the same value sets.
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Quantifying measurement error and disturbance

Measurement noise as approximation error?

1/2
PR

= [(c1 - ey, + ((chil - AP, |

e(C,Ap) = ((Z = A?)
1/2

adopted from noise concept of quantum optical theory of linear
amplifiers

@ first term describes intrinsic noise of POVM C, that is, its deviation
from being sharp, projection valued

second term intended to capture deviation between target observable
A and approximator observable C

State dependence — a virtue? Then incoherent to offer three-state
method.

e C[1], A ma not commute: C[1] — A incompatible with C[1], A.
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Quantifying measurement error and disturbance

Ozawa and Branciard inequalities

(A, p)e(B,p) + (A p)D,B ,+D,A(B, p) = 3|{[AB]),

e(A)*(D,B)* +e(B)*(A,A)°
+21/(8,A)2(8,B)2 — 3([A, B]), P =(A)=(B) > H[([A, B),

@ Does allow for e(A; p)e(B;p) < 1[([A, B]),|.
@ Branciard’s inequality is known to be tight for pure states.

@ Not purely error tradeoff relations! (BLW 2014)
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Quantifying measurement error and disturbance

Measurement Noise — some oddities

Take two identical systems, probe in state o,

measurement coupling U = SWAP, pointer Z = A.
Then C=A and D =B, /.

2
(D, B; p)* = (8,B)* + (A, B)* + ((B), — (B)o)
e 7(D, B; p)? contains a contribution from preparation uncertainty — not

solely a measure of disturbance.

e For p=0: n(D,B;0) =+v2A(B,); ie., distorted observable D is
statistically independent of B.

e Note n(D, B; o) # 0, despite the fact that the state has not changed
(no disturbance).
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Quantifying measurement error and disturbance

Approximation error — Take 2: distribution comparison

Protocol: compare distributions of A and C as they are obtained in
separate runs of measurements on two ensembles of systems in state p

5y (pg,pp)" = Lylai — )™y(if) (1< a <o)

where v is any joint distribution of the values of A and C with marginal
distributions ppA, pg

Cc A : Cc A
Balpy:pp) = infdy(pg,py)
Wasserstein-a distance — scales with distances between points.

AL(C,A) = sup Aa(pS, pD)

quantum rms error: o = 2
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Uncertainty Relations for Qubits

Qubit Uncertainty
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Uncertainty Relations for Qubits
Qubits

o = (01,02,03) (Pauli matrices acting on C?)
o States: p=3(l+r-o), |r|<1
o Effects: A= %(agl+a-0)€[0,1], 0<i(ap+tlal)<1
e observables: (2 = {+1,—1})

c 1l Ar=1(Ita- o) |aj=1
c 2l By =3(/+b-o) |b|=1
Dl Ce=3(1x9)/tic-o |y +]c<1
: 21 Dy =3(1£6)/+3d-o |5 +]d| <1

O n ™ >

symmetric: v =0
sharp: v =0, |¢c| =1; — unsharpness: U(C)? =1 — |c|?
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Joint measurability of C,D

Symmetric case (sufficient for optimal compatible approximations):

Proposition

C={C.=3(l£c-0)},D={Dsy=1(I+d- o)} are compatible if and
only if

lc+d|+|c—d| <2

Interpretation: unsharpness U(C)? =1 — |c|?; |e x d| = 2||[C4, D4]||

c+d+le—d <2 & (1-|cP)(L-|d]) > |exdf

C,D compatible < U(C)? x U(D)? >4H[C+,D+]H J

Unsharpness Relation
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Uncertainty Relations for Qubits

Approximation error

Recall: Observable C is a good approximation to A if pg ~ pﬁ

Take here: probabilistic distance
dy(C,A) = sm;p s;p|tr[pC(X)] — tr[pA(X)]|

= S;PHPE —ppll, = sup|[C(X) — AX)|

Qubit case: C; = 3(cpl+c-0), AL = 3(aol+a-0)

dp(C,A) = ||Cy — Ay|| = 3|co — a0| + 3|c —a] = d, € [0,1].
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Uncertainty Relations for Qubits

Comparison 1: Wasserstein 2-distance (quantum rms error)

As (P§7Pp> '”fz (i, J)

where v runs through all joint distributions with margins pg, pﬁ‘.
2
Do(C, A2 =supds (pS.p))" = A2
P
Qubit case:

A2 = Ay(C,A)? = 2|y — ao| +2|c — a|
= 4d,(C,A) = 4d,.
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Uncertainty Relations for Qubits

Comparison 2: Measurement noise (Ozawa et al)

e(CA Q)P =(p®¢|(Z — A’p®9)
= (Cl2 - C1P’), + ((Cl1] - A)%), = &

Qubit observables, symmetric case:

e2=1—|c|?+|a—c|?> = U(C)* + 4d?

@ =(A; p) double counts contribution from unsharpness.
@ Virtue of state-dependence all but gone ...

@ for more general approximators C, €, may be zero although C is quite
different from A

@ Branciard notices this and considers it an artefact of the definition of £, —
you might rather consider it a fatal flaw if the aim is to identify optimal
compatible approximations of incompatible observables...
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Uncertainty Relations for Qubits

Optimising approximate joint measurements

Ge
> >k
Ce D,
dp(C,A)é édp(D,B)
A B,

Goal

To make errors da = dp(C, A), dg = d,(D, B) simultaneously as small as
possible, subject to the constraint that C,D are compatible.
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Uncertainty Relations for Qubits

Admissible error region

sinf = |a x b|
(da,dg) = (dp(C,A),dn(D,B)) € [0,3] x [0,3] with C,D compatible
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty Relation

sin = |a x b

.
L
0

2

PB, T Heinosaari (2008), arXiv:0706.1415

lc+d|+|c—d] < 2
U(C)? x U(D)* > 4|[Cs, Dy]|?
do(C,A) +dp(D,B) > 55 [la+bl+|a—b| 2]

|a+ b| +|a— b| = 2\/1+ |a x b| = 2¢/1+ 2||[A1, B,]]|
Quantum Measurement Uncertainty
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty

PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a L b:

c=|cla, d=]|d|b,
2d,=]la—c|=1—|c|,
2dy=|b—d|=1-|d|,

Compatibility constraint:

lc?+|d> =1, ie, UC)*+ U(D)?=1
(1-2d.)2+ (1 —2dp)? = ||+ |d* =1

02F

2d,

a-b=0

(2d,- 1)% (2dy- 1)2 =1

2d,
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Uncertainty Relations for Qubits

Ozawa—Branciard (C Branciard 2013, M Ringbauer et a/ 2014)

a 1 b, symmetric approximators C, D:

2 2

£ €
s§<14"’> + s%,( f) > 1
2\ ? 2
5 £
122 1— b

Optimiser: ¢ = |c|la, d = |d|b,

Compatibility constraint: |c|? + |d|?> = 1, i.e., U(C)? + U(D)? = 1
4dl=¢2 = 1—|cP+]a—c®> = 2la—c| = 4d,, 4d,=¢2 = 4dp
(2d, — 1)+ (2dp — 1)? = [c|?+|d]* = 1

Experimentally confirmed!

N
N———
N
IA
—

Neo,
S 7

1.5 2.0
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Uncertainty Relations for Qubits

A twist: Ozawa's error
Branciard's inequality has additional optimisers:
2 2
2(1-5) + 3 (1-%F) = 1-lePr1-ldP+laxcP+bxdP| > 1

l\/l:{I\/’_i_,,\/l_}:(:/:D/,/\/Ij::%(/j:rn.o-)7 ‘m|:1

Then:
1—-|mP+1—|mP+jlaxmP+|bxm)P? =1

m “between” a, b

e(M,A) = £(M, B)

but
2dp(C,A) =2dp(D,B) =|a—c| < |a—m|=2d,(M,A) =2d,(M,B)
In fact, any unit vector m will do!

Paul Busch (York) Quantum Measurement Uncertainty 36 / 40



Uncertainty Relations for Qubits

Ozawa's error

Moreover, ¢ = —|c|a, d = —|d|b with |c|?> + |d|> = 1 is another
optimiser!

Things get worse when a / b (T Bullock, PB 2015)

= &(C,A) is unreliable as a guide in finding optimal joint
approximations.

But still ... a lucky coincidence that the optimisers “overlap” enough so
that the experiments also confirm MUR for probabilistic errors.
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Conclusion

Conclusion
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Conclusion

Conclusion

(1) Heisenberg's spirit materialised

(joint measurement errors for A,B) > (incompatibility of A, B)
(unsharpness of compatible C,D) > (noncommutativity of C,D)

Shown for qubits; also for position and momentum (BLW 2013):

h
A2(C, Q) AQ(Dv 'D) > E
Generic results: finite dimensional Hilbert spaces, arbitrary discrete,

finite-outcome observables (Miyadera 2011)

(2) Importance of judicious choice of error measure

@ valid MURs obtained for Wasserstein-2 distance, error bar widths, ...

@ measurement noise / value comparison — not suited for universal MURs

v
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Conclusion
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