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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

Essence of the quantum mechanical world view:

quantum uncertainty & Heisenberg effect
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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

quantum uncertainty: limitations to what can be known about the
physical world

Preparation Uncertainty Relation: PUR
For any wave function ψ:

(Width of Q distribution) · (Width of P distribution) ∼ ~

(Heisenberg just discusses a Gaussian wave packet.)

Later generalisation:

∆ρA ∆ρB ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣
(Heisenberg didn’t state this...)
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Introduction: two varieties of quantum uncertainty

Heisenberg 1927

Heisenberg effect – reason for quantum uncertainty?

any measurement disturbs the object: uncontrollable state change
measurements disturb each other: quantum incompatibility

Measurement Uncertainty Relation: MUR

(Error of Q measurement) · (Error of P) ∼ ~
(Error of Q measurement) · (Disturbance of P) ∼ ~
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Introduction: two varieties of quantum uncertainty

Reading Heisenberg’s thoughts?

Heisenberg allegedly claimed (and proved):

ε(A, ρ) ε(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣ (
???
)
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Introduction: two varieties of quantum uncertainty

MUR made precise?

Heisenberg’s thoughts – or Heisenberg’s spirit?
...or: what measurement limitations are there according to quantum
mechanics?(

combined joint measurement errors for A,B
)
≥
(
incompatibility of A,B

)

True of false? Needed:
precise notions of approximate measurement
measure of approximation error
measure of disturbance
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged
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Introduction: two varieties of quantum uncertainty

Quantum uncertainty challenged
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(Approximate) Joint Measurements

(Approximate) Joint
Measurements
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(Approximate) Joint Measurements

Quantum Measurement Statistics – Observables as POVMs

[π] ∼ ρ, [σ] ∼ E = {ωi 7→ Ei} : pσπ(ωi ) = tr[ρEi ] = pE
ρ (ωi )

POVM : E = {E1,E2, · · · ,En}, 0 ≤ O ≤ Ei ≤ I ,
∑

Ei = I

state changes: instrument ωi , ρ→ Ii (ρ)
measurement processes: measurement scheme M = 〈Ha, φ,U,Za〉
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(Approximate) Joint Measurements

Signature of an observable: its statistics

pC
ρ = pA

ρ for all ρ ⇐⇒ C = A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pC
ρ ' pA

ρ for all ρ

Unbiased approximation – absence of systematic error:

C[1] =
∑

j
cjCj = A[1] =

∑
i

ai Ai = A

... often taken as sole criterion for a good measurement
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(Approximate) Joint Measurements

Joint Measurability/Compatibility

Definition: joint measurability (compatibility)
Observables C = {C+,C−}, D = {D+,D−} are jointly measurable
if they are margins of an observable G = {G++,G+−,G−+,G−−}:

Ck = Gk+ + Gk−, D` = G+` + G−`

Joint measurability in general
Pairs of unsharp observables may be jointly measurable

– even when they do not commute!
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(Approximate) Joint Measurements

Approximate joint measurement: concept

G

�� ��

C

��

D

��

A B

joint observable

approximator observables
(compatible)

target observable

Task: find suitable measures of approximation errors

Measure of disturbance: instance of joint measurement approximation error
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Quantifying measurement error and disturbance

Quantifying Measurement Error
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Quantifying measurement error and disturbance

Approximation error

(vc) value comparison
(e.g. rms) deviation of outcomes of a joint measurement:
accurate reference measurement together with measurement to be
calibrated, on same system

(dc) distribution comparison
(e.g. rms) deviation between distributions of separate measurements:
accurate reference measurement and measurement to be calibrated,
applied to separate but identically prepared ensembles

alternative measures of deviation: error bar width; relative entropy; etc. ...

Crucial:
Value comparison is of limited applicability in quantum mechanics!
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Quantifying measurement error and disturbance

Approximation error – Take 1: value comparison
Measurements/observables to be compared:

A = {A1,A2, . . . ,Am}, C = {C1,C2, . . . ,Cn}

where A is a sharp (target) observable
and C an (approximator) observable representing an approximate
measurement of A
Protocol: measure both A and C jointly on each system of an ensemble of
identically prepared systems
Proviso: This requires A and C to be compatible, hence commuting.

δvc(C,A; ρ)2 =
∑

i
(ai − cj)2 tr[ρAi Cj ]

(Ozawa 1991)

Paul Busch (York) Quantum Measurement Uncertainty 19 / 40



Quantifying measurement error and disturbance

Issue: δvc is of limited use!
Attempted generalisation: measurement noise (Ozawa 2003)

δvc(C,A; ρ)2 =
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ
= εmn(C,A; ρ)2

where C[k] =
∑

j ck
j Cj , A = A[1] are the kth moment operators...

...then give up assumption of commutativity of A, C

Critique (BLW 2013, 2014)
If A, C do not commute, then:

δvc(C,A; ρ) loses its meaning as rms value deviation
and becomes unreliable as error indicator
– e.g., it is possible to have εmn(C,A; ρ) = 0 where A, C may not
even have the same value sets.
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Quantifying measurement error and disturbance

Measurement noise as approximation error?

ε(C ,A; ρ) =
〈

(Zτ − A)2〉1/2
ρ⊗σ

=
[ 〈

C[2]− C[1]2
〉
ρ

+
〈
(C[1]− A)2〉

ρ

]1/2

adopted from noise concept of quantum optical theory of linear
amplifiers
first term describes intrinsic noise of POVM C, that is, its deviation
from being sharp, projection valued
second term intended to capture deviation between target observable
A and approximator observable C
State dependence – a virtue? Then incoherent to offer three-state
method.
C[1],A ma not commute: C[1]− A incompatible with C[1], A.
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Quantifying measurement error and disturbance

Ozawa and Branciard inequalities

ε(A, ρ) ε(B, ρ) + ε(A, ρ)∆ρB ,+ ∆ρAε(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ
,

ε(A)2(∆ρB)2 + ε(B)2(∆ρA)2

+ 2
√

(∆ρA)2(∆ρB)2 − 1
4 |〈[A,B]〉ρ|2 ε(A)ε(B) ≥ 1

4 |〈[A,B]〉ρ|2.

Does allow for ε(A; ρ) ε(B; ρ) < 1
2 |〈[A,B]〉ρ|.

Branciard’s inequality is known to be tight for pure states.

Not purely error tradeoff relations! (BLW 2014)
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Quantifying measurement error and disturbance

Measurement Noise – some oddities

Take two identical systems, probe in state σ,
measurement coupling U = SWAP, pointer Z = A.
Then C = A and D = Bσ I.

η(D,B; ρ)2 = (∆ρB)2 + (∆σB)2 +
(
〈B〉ρ − 〈B〉σ

)2
η(D,B; ρ)2 contains a contribution from preparation uncertainty – not
solely a measure of disturbance.
For ρ = σ: η(D,B;σ) =

√
2∆(Bσ); i.e., distorted observable D is

statistically independent of B.
Note η(D,B;σ) 6= 0, despite the fact that the state has not changed
(no disturbance).
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Quantifying measurement error and disturbance

Approximation error – Take 2: distribution comparison
Protocol: compare distributions of A and C as they are obtained in
separate runs of measurements on two ensembles of systems in state ρ

δγ(pC
ρ , pA

ρ )α =
∑

ij(ai − cj)αγ(i , j) (1 ≤ α <∞)

where γ is any joint distribution of the values of A and C with marginal
distributions pA

ρ , pC
ρ

∆α(pC
ρ , pA

ρ ) = inf
γ
δγ(pC

ρ , pA
ρ )

Wasserstein-α distance – scales with distances between points.

∆α(C,A) = sup
ρ

∆α(pC
ρ , pA

ρ )

quantum rms error: α = 2
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Uncertainty Relations for Qubits

Qubit Uncertainty
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Uncertainty Relations for Qubits

Qubits

σ = (σ1, σ2, σ3) (Pauli matrices acting on C2)
States: ρ = 1

2
(
I + r · σ

)
, |r | ≤ 1

Effects: A = 1
2(a0I + a · σ) ∈ [O, I], 0 ≤ 1

2
(
a0 ± |a|

)
≤ 1

observables: (Ω = {+1,−1})

A : ±1 7→ A± = 1
2(I ± a · σ) |a| = 1

B : ±1 7→ B± = 1
2(I ± b · σ) |b| = 1

C : ±1 7→ C± = 1
2(1± γ) I ± 1

2c · σ |γ|+ |c| ≤ 1
D : ±1 7→ D± = 1

2(1± δ) I ± 1
2d · σ |δ|+ |d | ≤ 1

symmetric: γ = 0
sharp: γ = 0, |c| = 1; → unsharpness: U(C)2 = 1− |c|2
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Uncertainty Relations for Qubits

Joint measurability of C, D

Symmetric case (sufficient for optimal compatible approximations):

Proposition
C = {C± = 1

2(I ± c · σ)}, D = {D± = 1
2(I ± d · σ)} are compatible if and

only if
|c + d |+ |c − d | ≤ 2.

Interpretation: unsharpness U(C)2 = 1− |c|2; |c × d | = 2
∥∥[C+,D+]

∥∥
|c + d |+ |c − d | ≤ 2 ⇔

(
1− |c|2

)(
1− |d |2

)
≥ |c × d |2

C,D compatible ⇔ U(C)2 × U(D)2 ≥ 4
∥∥[C+,D+]

∥∥2

Unsharpness Relation
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Uncertainty Relations for Qubits

Approximation error

Recall: Observable C is a good approximation to A if pC
ρ ' pA

ρ

Take here: probabilistic distance

dp(C,A) = sup
ρ

sup
X

∣∣tr[ρC(X )]− tr[ρA(X )]
∣∣

= sup
ρ

∥∥pC
ρ − pA

ρ

∥∥
1 = sup

X

∥∥C(X )− A(X )
∥∥

Qubit case: C+ = 1
2
(
c0I + c · σ

)
, A+ = 1

2
(
a0I + a · σ

)
dp(C,A) =

∥∥C+ − A+
∥∥ = 1

2 |c0 − a0|+ 1
2 |c − a| ≡ da ∈ [0, 1].
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Uncertainty Relations for Qubits

Comparison 1: Wasserstein 2-distance (quantum rms error)

∆2
(

pC
ρ , pA

ρ

)2
= inf

γ

∑
ij

(ai − cj)2γ(i , j)

where γ runs through all joint distributions with margins pC
ρ , pA

ρ .

∆2(C,A)2 = sup
ρ

d2
(

pC
ρ , pA

ρ

)2
≡ ∆2

a

Qubit case:

∆2
a = ∆2(C,A)2 = 2|c0 − a0|+ 2|c − a|

= 4dp(C,A) = 4da.
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Uncertainty Relations for Qubits

Comparison 2: Measurement noise (Ozawa et al)

ε(C,A;ϕ)2 =
〈
ϕ⊗ φ

∣∣ (Zτ − A)2ϕ⊗ φ
〉

=
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ
≡ ε2

a

Qubit observables, symmetric case:

ε2
a = 1− |c|2 + |a − c|2 = U(C)2 + 4d2

a

ε(A; ρ) double counts contribution from unsharpness.
Virtue of state-dependence all but gone ...
for more general approximators C, εa may be zero although C is quite
different from A
Branciard notices this and considers it an artefact of the definition of εa –
you might rather consider it a fatal flaw if the aim is to identify optimal
compatible approximations of incompatible observables...
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Uncertainty Relations for Qubits

Optimising approximate joint measurements

Gk`

∑
`

��

∑
k

��

Ck

dp(C,A)
��

D`

dp(D,B)
��

Ak B`

Goal
To make errors dA = dp(C,A), dB = dp(D,B) simultaneously as small as
possible, subject to the constraint that C,D are compatible.
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Uncertainty Relations for Qubits

Admissible error region

sin θ = |a × b|
(dA, dB) =

(
dp(C,A), dp(D,B)

)
∈ [0, 1

2 ]× [0, 1
2 ] with C,D compatible
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty Relation

sin θ = |a × b|

PB, T Heinosaari (2008), arXiv:0706.1415

|c + d |+ |c − d | ≤ 2
U(C)2 × U(D)2 ≥ 4‖[C+,D+]‖2

dp(C,A) + dp(D,B) ≥ 1
2
√

2 [ |a + b|+ |a − b| − 2 ]

|a + b|+ |a − b| = 2
√

1 + |a × b| = 2
√

1 + 2
∥∥[A+,B+]

∥∥
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Uncertainty Relations for Qubits

Qubit Measurement Uncertainty
PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a ⊥ b:

c = |c|a, d = |d |b,
2da = |a − c| = 1− |c|,
2db = |b − d | = 1− |d |,
Compatibility constraint:
|c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
(1− 2da)2 + (1− 2db)2 = |c|2 + |d |2 = 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a⋅b = 0

da

db

(d  - 1)   + (d  - 1)   = 1 2 2
a b

2

2

+ (2(2
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Uncertainty Relations for Qubits

Ozawa–Branciard (C Branciard 2013, M Ringbauer et al 2014)

a ⊥ b, symmetric approximators C,D:

ε2
a

(
1− ε2

a
4

)
+ ε2

b

(
1− ε2

b
4

)
≥ 1

(
1− ε2

a
2

)2

+
(

1− ε2
b

2

)2

≤ 1

ε2
a ≡ 4d ′a, ε2

b ≡ 4d ′b
(2d ′a − 1)2 + (2d ′b − 1)2 ≤ 1

Optimiser: c = |c|a, d = |d |b,
Compatibility constraint: |c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
4d ′a = ε2

a = 1− |c|2 + |a − c|2 = 2|a − c| = 4da, 4d ′b = ε2
b = 4db

(2da − 1)2 + (2db − 1)2 = |c|2 + |d |2 = 1
Experimentally confirmed!
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Uncertainty Relations for Qubits

A twist: Ozawa’s error
Branciard’s inequality has additional optimisers:

ε2
a

(
1− ε2

a
4

)
+ ε2

b

(
1− ε2

b
4

)
= 1−|c|2 +1−|d |2 + |a×c|2 + |b×d |2| ≥ 1

M = {M+,M−} = C′ = D′, M± = 1
2(I ±m · σ), |m| = 1 :

Then:
1− |m|2 + 1− |m|2 + |a ×m|2 + |b ×m|2 = 1

m “between” a,b

ε(M,A) = ε(M,B)
= ε(A,C) = ε(B,D)

but
2dp(C,A) = 2dp(D,B) = |a − c| < |a −m| = 2dp(M,A) = 2dp(M,B)
In fact, any unit vector m will do!
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Uncertainty Relations for Qubits

Ozawa’s error

Moreover, c = −|c|a, d = −|d |b with |c|2 + |d |2 = 1 is another
optimiser!

Things get worse when a 6⊥ b (T Bullock, PB 2015)

⇒ ε(C,A) is unreliable as a guide in finding optimal joint
approximations.

But still . . . a lucky coincidence that the optimisers “overlap” enough so
that the experiments also confirm MUR for probabilistic errors.
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Conclusion

Conclusion
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Conclusion

Conclusion

(1) Heisenberg’s spirit materialised

(
joint measurement errors for A,B

)
≥
(
incompatibility of A,B

)(
unsharpness of compatible C,D

)
≥
(
noncommutativity of C,D

)
Shown for qubits; also for position and momentum (BLW 2013):

∆2(C,Q) ∆2(D,P) ≥ ~
2

Generic results: finite dimensional Hilbert spaces, arbitrary discrete,
finite-outcome observables (Miyadera 2011)

(2) Importance of judicious choice of error measure

valid MURs obtained for Wasserstein-2 distance, error bar widths, . . .

measurement noise / value comparison – not suited for universal MURs
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Conclusion
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