Unordered Tuples in Quantum Computation

Robert Furber rfurber@cs.ru.nl

Bas Westerbaan bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 15, 2015

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles)

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.

What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)

The heavy lifting

The heavy lifting

Schur

Weyl

type algebra

type	algebra
qubit	

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	$M_2\otimes M_2\cong B(\mathbb{C}^4)$

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	$M_2\otimes M_2\cong B(\mathbb{C}^4)$
unordered pair of bits	

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	$M_2\otimes M_2\cong B(\mathbb{C}^4)$
unordered pair of bits	\mathbb{C}^3

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	$M_2\otimes M_2\cong B(\mathbb{C}^4)$
unordered pair of bits	\mathbb{C}^3 {00, 01 = 10, 11}

type	algebra
qubit	$M_2\cong B(\mathbb{C}^2)$
bit	\mathbb{C}^2
(ordered) pair of bits	$\mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4$
(ordered) pair of qubits	$M_2\otimes M_2\cong B(\mathbb{C}^4)$
unordered pair of bits	\mathbb{C}^3 {00, 01 = 10, 11}
unordered pair of qubits	?

I asked a physicist.

He replied:

I asked a physicist.

I asked a physicist.

He replied: "Fermions or Bosons?"

1. Bosons: M_3

I asked a physicist.

He replied: "Fermions or Bosons?"

1. Bosons: M_3 $|00\rangle$, $|11\rangle$, $|01\rangle + |10\rangle$

I asked a physicist.

- 1. Bosons: M_3 $|00\rangle$, $|11\rangle$, $|01\rangle + |10\rangle$
- 2. Fermions: \mathbb{C}

I asked a physicist.

- 1. Bosons: M_3 $|00\rangle$, $|11\rangle$, $|01\rangle + |10\rangle$
- 2. Fermions: \mathbb{C} $|01\rangle |10\rangle$

I asked a physicist.

- 1. Bosons: M_3 $|00\rangle$, $|11\rangle$, $|01\rangle + |10\rangle$
- 2. Fermions: \mathbb{C} $|01\rangle |10\rangle$ (Pauli exclusion principle)

1. Type should not depend on implementation

- 1. Type should not depend on implementation
- 2. Type should come with a rule

- 1. Type should not depend on implementation
- 2. Type should come with a rule

So what about CoEq(id, swap)?

- 1. Type should not depend on implementation
- 2. Type should come with a rule

So what about CoEq(id, swap)?

$$\frac{t \otimes t \xrightarrow{f} s \qquad (f \circ \mathsf{swap} = f)}{\mathsf{CoEq}(\mathsf{id}, \mathsf{swap}) \xrightarrow{f'} s}$$

CoEq(id, swap)

CoEq(id, swap)

 $M_3\oplus \mathbb{C}$

CoEq(id, swap)

 $M_3 \oplus \mathbb{C}$

(In fd-CStar_{cPsU})

 $M_3 \oplus \mathbb{C}$

(In Selinger's Q)

 $M_3 \oplus \mathbb{C}$ (In CPM_s)

$$M_3 \oplus \mathbb{C}$$
(In fd-CStar $^{\mathrm{op}}_{\mathrm{cPsII}}$)

 M_3 comes from $|00\rangle$, $|11\rangle$ and $|10\rangle + |01\rangle$.

$$M_3 \oplus \mathbb{C}$$
 (In fd-CStar $^{ ext{op}}_{ ext{cPsU}}$)

 M_3 comes from $|00\rangle$, $|11\rangle$ and $|10\rangle + |01\rangle$. $\mathbb C$ corresponds to $|01\rangle - |10\rangle$, which is symmetric up to global phase.

The coequalizer is easy to describe:

$$E = \{a; a \in M_2 \otimes M_2; \operatorname{swap}(a) = a\}$$

The coequalizer is easy to describe:

$$E = \{a; a \in M_2 \otimes M_2; \operatorname{swap}(a) = a\}$$

Crux: $E \cong M_3 \oplus \mathbb{C}$.

The coequalizer is easy to describe:

$$E = \{a; a \in M_2 \otimes M_2; \operatorname{swap}(a) = a\}$$

Crux: $E \cong M_3 \oplus \mathbb{C}$.

Has simple 1/2-page proof, which led to . . .

Remainder of this talk

- 1. Unordered tuples
 - Sketch of proof
- 2. Cycles
- 3. Unordered words

Remainder of this talk

- 1. Unordered tuples
 - Sketch of proof
- 2. Cycles
- 3. Unordered words

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the *n*-block Young diagrams

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the *n*-block Young diagrams of height at most d

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda\in Y_{n,d}}M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the *n*-block Young diagrams of height at most d and m_{λ} the dimension

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the *n*-block Young diagrams of height at most d and m_{λ} the dimension of the corresponding representation of GL(d).

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension of the corresponding representation of GL(d). Or explicitly: $Y_{n,d} = \left\{\lambda; \ \lambda \in \mathbb{N}^d; \ \left[\begin{array}{c} \lambda_1 \geq \ldots \geq \lambda_d \geq 0 \\ \lambda_1 + \ldots + \lambda_d = n \end{array} \right. \right\}$

Unordered *n*-tuples of *d*-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension of the corresponding representation of GL(d). Or explicitly: $Y_{n,d} = \left\{\lambda; \ \lambda \in \mathbb{N}^d; \ \left[\begin{array}{c} \lambda_1 \geq \ldots \geq \lambda_d \geq 0 \\ \lambda_1 + \ldots + \lambda_d = n \end{array} \right. \right\}$ and $m_{\lambda} = \prod_{1 \leq i < j \leq d} \frac{\lambda_i - \lambda_j + j - i}{j - i}$.

Unordered triple of qutrits

Unordered triple of qutrits $M_{10} \oplus M_8 \oplus \mathbb{C}$

Unordered triple of qutrits $M_{10}\oplus M_{8}\oplus \mathbb{C}$ Unordered pair of ququads

Unordered triple of qutrits $M_{10} \oplus M_8 \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_6$

Unordered triple of qutrits $M_{10} \oplus M_8 \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_6$ Unordered quad of qubits

Unordered triple of qutrits $M_{10} \oplus M_8 \oplus \mathbb{C}$ Unordered pair of ququads $M_{10} \oplus M_6$ Unordered quad of qubits $M_5 \oplus M_3 \oplus \mathbb{C}$

Unordered triple of qutrits $M_{10} \oplus M_8 \oplus \mathbb{C}$ Unordered pair of guquads $M_{10} \oplus M_6$ Unordered quad of qubits $M_5 \oplus M_3 \oplus \mathbb{C}$

 S_n acts on $\mathsf{H} = (\mathbb{C}^d)^{\otimes n}$ in the obvious way.

 S_n acts on $H=(\mathbb{C}^d)^{\otimes n}$ in the obvious way. Also on B(H) by $\overline{\pi}(a)=\pi^{-1}a\pi$.

 S_n acts on $\mathsf{H} = (\mathbb{C}^d)^{\otimes n}$ in the obvious way. Also on B(H) by $\overline{\pi}(a) = \pi^{-1}a\pi$. We wish to compute their equalizer

 S_n acts on $\mathsf{H} = (\mathbb{C}^d)^{\otimes n}$ in the obvious way. Also on B(H) by $\overline{\pi}(a) = \pi^{-1}a\pi$. We wish to compute their equalizer

$$E = \{a; a \in B(H); \ \pi^{-1}a\pi = a \ \forall \pi \in S_n\}$$

Proof, crucial observation

Proof, crucial observation

$$E = \{a; a \in B(H); \ \pi^{-1}a\pi = a \ \forall \pi \in S_n\}$$

= $\operatorname{Rep}_{S_n}(H, H)$

Proof, crucial observation

$$E = \{a; a \in B(H); \ \pi^{-1}a\pi = a \ \forall \pi \in S_n\}$$

= $\operatorname{Rep}_{S_n}(H, H)$

The equalizer coincides with the representation endomorphisms of *H*!

Proof, basic representation theory

Proof, basic representation theory

$$H=(\mathbb{C}^d)^{\otimes n}\cong \bigoplus_{\lambda}U_{\lambda}^{m_{\lambda}}$$

where U_{λ} distinct irreducible representations.

Proof, basic representation theory

$$H=(\mathbb{C}^d)^{\otimes n}\cong \bigoplus_{\lambda}U_{\lambda}^{m_{\lambda}}$$

where U_{λ} distinct irreducible representations. Schur's lemma:

$$\mathsf{Rep}(\mathit{U}_{\lambda},\mathit{U}_{\mu}) = egin{cases} \mathbb{C} & \mu = \lambda \ 0 & \mu
eq \lambda \end{cases}$$

$$E = \operatorname{\mathsf{Rep}}_{S_n}(H, H)$$

$$egin{aligned} E &= \mathsf{Rep}_{\mathcal{S}_n}(H,H) \ &\cong igoplus_{\lambda,\mu} \mathsf{Rep}_{\mathcal{S}_n}(U_\lambda^{m_\lambda},U_\mu^{m_\mu}) \end{aligned}$$

$$egin{aligned} E &= \mathsf{Rep}_{\mathcal{S}_n}(H,H) \ &\cong igoplus_{\lambda,\mu} \mathsf{Rep}_{\mathcal{S}_n}(U_\lambda^{m_\lambda},U_\mu^{m_\mu}) \ &\cong igoplus_{\lambda} M_{m_\lambda} \end{aligned}$$

$$egin{aligned} E &= \mathsf{Rep}_{\mathcal{S}_n}(H,H) \ &\cong igoplus_{\lambda,\mu} \mathsf{Rep}_{\mathcal{S}_n}(U_\lambda^{m_\lambda},U_\mu^{m_\mu}) \ &\cong igoplus_{\lambda} M_{m_\lambda} \end{aligned}$$

What are the irreducible representations U_{λ} and their multiplicities m_{λ} ?

$$egin{aligned} E &= \mathsf{Rep}_{\mathcal{S}_n}(H,H) \ &\cong igoplus_{\lambda,\mu} \mathsf{Rep}_{\mathcal{S}_n}(U_\lambda^{m_\lambda},U_\mu^{m_\mu}) \ &\cong igoplus_{\lambda} M_{m_\lambda} \end{aligned}$$

What are the irreducible representations U_{λ} and their multiplicities m_{λ} ? Answer is given by Schur-Weyl duality.

- 1. Unordered tuples
 - ► Sketch of proof
- 2. Cycles
- 3. Unordered words

```
\{000,001=010=100,
```

```
\{000,001=010=100,011=101=110,
```

```
\{000,001=010=100,011=101=110,111\}
```

```
A 3-cycle of bits is a 4dit:
```

```
\{000,001=010=100,011=101=110,111\}
```

What about a 3-cycle of qubits?

A 3-cycle of bits is a 4dit:

```
\{000,001 = 010 = 100,011 = 101 = 110,111\}
```

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C_3 on $B(\mathbb{C}^2 \oplus \mathbb{C}^2 \oplus \mathbb{C}^2)$.)

 $M_4 \oplus M_2 \oplus M_2$

$$M_4 \oplus M_2 \oplus M_2$$

 $\blacktriangleright \ |001\rangle + |010\rangle + |100\rangle$

$$M_4 \oplus M_2 \oplus M_2$$

- $\blacktriangleright |001\rangle + |010\rangle + |100\rangle$
- $|001\rangle + e^{\frac{2\pi i}{3}} + |010\rangle e^{\frac{4\pi i}{3}} |100\rangle$

$$M_4 \oplus M_2 \oplus M_2$$

- $|001\rangle + |010\rangle + |100\rangle$
- $|001\rangle + e^{\frac{2\pi i}{3}} + |010\rangle e^{\frac{4\pi i}{3}} |100\rangle$
- $|001\rangle + e^{\frac{4\pi i}{3}} + |010\rangle e^{\frac{2\pi i}{3}} |100\rangle$

Schur-Weyl does not apply.

Schur-Weyl does not apply. How to compute multiplicities?

Schur-Weyl does not apply.

How to compute multiplicities?

By computing the character table.

$$m_k = \sum_{0 \le i < n} e^{\frac{2\pi i j k}{n}} d^{\gcd(j,n)}$$

$$m_k = \sum_{0 \le j < n} e^{\frac{2\pi i j k}{n}} d^{\gcd(j,n)}$$

With some number theory:

$$m_k = \sum_{0 \le i < n} e^{\frac{2\pi i j k}{n}} d^{\gcd(j,n)}$$

With some number theory:

$$m_k = rac{1}{n} \sum_{\ell \mid n} d^{rac{n}{\ell}} \mu \Big(rac{\ell}{\gcd(\ell,k)} \Big) rac{\phi(\ell)}{\phi \Big(rac{\ell}{\gcd(\ell,k)} \Big)}.$$

- 1. Unordered tuples
 - ► Sketch of proof
- 2. Cycles
- 3. Unordered words

Result 3: quantum unordered words

 $\prod_n S_n$ acts on $B(\bigoplus_n (\mathbb{C}^d)^{\otimes n})$.

Result 3: quantum unordered words

 $\prod_n S_n$ acts on $B(\bigoplus_n (\mathbb{C}^d)^{\otimes n})$. With care we can compute the coequalizer:

Result 3: quantum unordered words

 $\prod_n S_n$ acts on $B(\bigoplus_n (\mathbb{C}^d)^{\otimes n})$. With care we can compute the coequalizer:

$$B(\ell^2) \oplus \prod_{\lambda \in Y^*} M_{m_{\lambda}}.$$

 Y^* : Young diagrams of height at least 2.

Recap

1. Algebras for unordered types are given by coequalizers.

Recap

- 1. Algebras for unordered types are given by coequalizers.
- 2. They are more interesting than expected.

Recap

- 1. Algebras for unordered types are given by coequalizers.
- 2. They are more interesting than expected.
- 3. Representation theory of finite groups is a perfect fit to study them.

Thanks!

Thanks!

Questions?