
Unordered Tuples
in Quantum Computation

Robert Furber

rfurber@cs.ru.nl

Bas Westerbaan

bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 15, 2015



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



The heavy lifting

Schur Weyl



The heavy lifting

Schur Weyl



Quantum types as algebras

type algebra
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unordered pair of bits C3 {00, 01 = 10, 11}
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Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)
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Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
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