
Unordered Tuples
in Quantum Computation

Robert Furber

rfurber@cs.ru.nl

Bas Westerbaan

bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 15, 2015



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



What we did

Computed algebras for several unordered

quantum types. (eg. unordered pair, cycles)

using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)



The heavy lifting

Schur Weyl



The heavy lifting

Schur Weyl



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit

M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit

C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits

C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits

M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits

C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3

{00, 01 = 10, 11}
unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}

unordered pair of qubits ?



Quantum types as algebras

type algebra

qubit M2
∼= B(C2)

bit C2

(ordered) pair of bits C2 ⊗ C2 ∼= C4

(ordered) pair of qubits M2 ⊗M2
∼= B(C4)

unordered pair of bits C3 {00, 01 = 10, 11}
unordered pair of qubits ?



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied:

“Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C

|01〉 − |10〉
(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉

(Pauli exclusion principle)



Unordered pair of qubits

I asked a physicist.

He replied: “Fermions or Bosons?”

1. Bosons: M3

|00〉, |11〉, |01〉+ |10〉

2. Fermions: C
|01〉 − |10〉
(Pauli exclusion principle)



CS Reflex

1. Type should not depend on

implementation

2. Type should come with a rule

So what about CoEq(id, swap)?

t ⊗ t
f−→ s (f ◦ swap = f )

CoEq(id, swap) −→
f ′

s



CS Reflex

1. Type should not depend on

implementation

2. Type should come with a rule

So what about CoEq(id, swap)?

t ⊗ t
f−→ s (f ◦ swap = f )

CoEq(id, swap) −→
f ′

s



CS Reflex

1. Type should not depend on

implementation

2. Type should come with a rule

So what about CoEq(id, swap)?

t ⊗ t
f−→ s (f ◦ swap = f )

CoEq(id, swap) −→
f ′

s



CS Reflex

1. Type should not depend on

implementation

2. Type should come with a rule

So what about CoEq(id, swap)?

t ⊗ t
f−→ s (f ◦ swap = f )

CoEq(id, swap) −→
f ′

s



CS Reflex

1. Type should not depend on

implementation

2. Type should come with a rule

So what about CoEq(id, swap)?

t ⊗ t
f−→ s (f ◦ swap = f )

CoEq(id, swap) −→
f ′

s



CoEq(id, swap)

M3 ⊕ C

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C
(In fd-CStaropcPsU)

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C
(In Selinger’s Q)

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C
(In CPMs)

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C
(In fd-CStaropcPsU)

M3 comes from |00〉, |11〉 and |10〉 + |01〉.

C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



CoEq(id, swap)

M3 ⊕ C
(In fd-CStaropcPsU)

M3 comes from |00〉, |11〉 and |10〉 + |01〉.
C corresponds to |01〉 − |10〉, which is

symmetric up to global phase.



The coequalizer is easy to describe:

E = {a; a ∈ M2 ⊗M2; swap(a) = a}

Crux: E ∼= M3 ⊕ C.

Has simple 1/2-page proof, which led to . . .



The coequalizer is easy to describe:

E = {a; a ∈ M2 ⊗M2; swap(a) = a}

Crux: E ∼= M3 ⊕ C.

Has simple 1/2-page proof, which led to . . .



The coequalizer is easy to describe:

E = {a; a ∈ M2 ⊗M2; swap(a) = a}

Crux: E ∼= M3 ⊕ C.

Has simple 1/2-page proof, which led to . . .



Remainder of this talk

1. Unordered tuples
I Sketch of proof

2. Cycles

3. Unordered words



Remainder of this talk

1. Unordered tuples
I Sketch of proof

2. Cycles

3. Unordered words



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams

of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d

and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension

of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d).

Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}

and mλ =
∏

1≤i<j≤d
λi−λj+j−i

j−i
.



Result 1: unordered tuples

Unordered n-tuples of d -level systems⊕
λ∈Yn,d

Mmλ

where Yn,d denotes the n-block Young diagrams
of height at most d and mλ the dimension of the corresponding

representation of GL(d). Or explicitly: Yn,d =
{
λ; λ ∈ Nd ;

[
λ1 ≥ . . . ≥ λd ≥ 0

λ1 + . . .+ λd = n

}
and mλ =

∏
1≤i<j≤d

λi−λj+j−i

j−i
.



Examples

Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits

M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C

Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads

M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits

M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Examples
Unordered triple of qutrits M10 ⊕M8 ⊕ C
Unordered pair of ququads M10 ⊕M6

Unordered quad of qubits M5 ⊕M3 ⊕ C

d
2 M5 M3 C
3 M15 M15 M6 M3

4 M35 M45 M20 M15 C
5 M70 M105 M50 M45 M5

6 M126 M210 M105 M105 M15

7 M210 M378 M196 M210 M35

8 M330 M630 M336 M378 M70



Proof, setting up

Sn acts on H = (Cd)⊗n in the obvious way.

Also on B(H) by π(a) = π−1aπ.

We wish to compute their equalizer

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}



Proof, setting up

Sn acts on H = (Cd)⊗n in the obvious way.

Also on B(H) by π(a) = π−1aπ.

We wish to compute their equalizer

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}



Proof, setting up

Sn acts on H = (Cd)⊗n in the obvious way.

Also on B(H) by π(a) = π−1aπ.

We wish to compute their equalizer

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}



Proof, setting up

Sn acts on H = (Cd)⊗n in the obvious way.

Also on B(H) by π(a) = π−1aπ.

We wish to compute their equalizer

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}



Proof, setting up

Sn acts on H = (Cd)⊗n in the obvious way.

Also on B(H) by π(a) = π−1aπ.

We wish to compute their equalizer

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}



Proof, crucial observation

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}
= RepSn(H ,H)

The equalizer coincides with the

representation endomorphisms of H!



Proof, crucial observation

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}
= RepSn(H ,H)

The equalizer coincides with the

representation endomorphisms of H!



Proof, crucial observation

E = {a; a ∈ B(H); π−1aπ = a ∀π ∈ Sn}
= RepSn(H ,H)

The equalizer coincides with the

representation endomorphisms of H!



Proof, basic representation theory

H = (Cd)⊗n ∼=
⊕
λ

U
mλ
λ

where Uλ distinct irreducible representations.

Schur’s lemma:

Rep(Uλ,Uµ) =

{
C µ = λ

0 µ 6= λ



Proof, basic representation theory

H = (Cd)⊗n ∼=
⊕
λ

U
mλ
λ

where Uλ distinct irreducible representations.

Schur’s lemma:

Rep(Uλ,Uµ) =

{
C µ = λ

0 µ 6= λ



Proof, basic representation theory

H = (Cd)⊗n ∼=
⊕
λ

U
mλ
λ

where Uλ distinct irreducible representations.

Schur’s lemma:

Rep(Uλ,Uµ) =

{
C µ = λ

0 µ 6= λ



Proof, putting it together

E = RepSn(H ,H)

∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



Proof, putting it together

E = RepSn(H ,H)

∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



Proof, putting it together

E = RepSn(H ,H)
∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



Proof, putting it together

E = RepSn(H ,H)
∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



Proof, putting it together

E = RepSn(H ,H)
∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



Proof, putting it together

E = RepSn(H ,H)
∼=
⊕

λ,µ RepSn(U
mλ
λ ,U

mµ
µ )

∼=
⊕

λMmλ

What are the irreducible representations Uλ
and their multiplicities mλ?

Answer is given by Schur-Weyl duality.



1. Unordered tuples
I Sketch of proof

2. Cycles

3. Unordered words



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000,

001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100,

011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110,

111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



3-cycle

A 3-cycle of bits is a 4dit:

{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C3 on B(C2 ⊕ C2 ⊕ C2).)



Quantum 3-cycle

M4 ⊕M2 ⊕M2

I |001〉+ |010〉+ |100〉

I |001〉+ e
2πi
3 + |010〉 e 4πi

3 |100〉

I |001〉+ e
4πi
3 + |010〉 e 2πi

3 |100〉



Quantum 3-cycle

M4 ⊕M2 ⊕M2

I |001〉+ |010〉+ |100〉

I |001〉+ e
2πi
3 + |010〉 e 4πi

3 |100〉

I |001〉+ e
4πi
3 + |010〉 e 2πi

3 |100〉



Quantum 3-cycle

M4 ⊕M2 ⊕M2

I |001〉+ |010〉+ |100〉

I |001〉+ e
2πi
3 + |010〉 e 4πi

3 |100〉

I |001〉+ e
4πi
3 + |010〉 e 2πi

3 |100〉



Quantum 3-cycle

M4 ⊕M2 ⊕M2

I |001〉+ |010〉+ |100〉

I |001〉+ e
2πi
3 + |010〉 e 4πi

3 |100〉

I |001〉+ e
4πi
3 + |010〉 e 2πi

3 |100〉



Quantum 3-cycle

M4 ⊕M2 ⊕M2

I |001〉+ |010〉+ |100〉

I |001〉+ e
2πi
3 + |010〉 e 4πi

3 |100〉

I |001〉+ e
4πi
3 + |010〉 e 2πi

3 |100〉



Arbitrary cycles

Schur-Weyl does not apply.

How to compute multiplicities?

By computing the character table.



Arbitrary cycles

Schur-Weyl does not apply.

How to compute multiplicities?

By computing the character table.



Arbitrary cycles

Schur-Weyl does not apply.

How to compute multiplicities?

By computing the character table.



Arbitrary cycles

Schur-Weyl does not apply.

How to compute multiplicities?

By computing the character table.



Result 2: arbitrary cycles

mk =
∑
0≤j<n

e
2πijk
n dgcd(j ,n)

With some number theory:

mk =
1

n

∑
`|n

d
n
`µ
( `

gcd(`, k)

) φ(`)

φ
(

`
gcd(`,k)

).



Result 2: arbitrary cycles

mk =
∑
0≤j<n

e
2πijk
n dgcd(j ,n)

With some number theory:

mk =
1

n

∑
`|n

d
n
`µ
( `

gcd(`, k)

) φ(`)

φ
(

`
gcd(`,k)

).



Result 2: arbitrary cycles

mk =
∑
0≤j<n

e
2πijk
n dgcd(j ,n)

With some number theory:

mk =
1

n

∑
`|n

d
n
`µ
( `

gcd(`, k)

) φ(`)

φ
(

`
gcd(`,k)

).



Result 2: arbitrary cycles

mk =
∑
0≤j<n

e
2πijk
n dgcd(j ,n)

With some number theory:

mk =
1

n

∑
`|n

d
n
`µ
( `

gcd(`, k)

) φ(`)

φ
(

`
gcd(`,k)

).



1. Unordered tuples
I Sketch of proof

2. Cycles

3. Unordered words



Result 3: quantum unordered words

∏
n Sn acts on B(

⊕
n(Cd)⊗n).

With care we can compute the coequalizer:

B(`2)⊕
∏
λ∈Y ∗

Mmλ.

Y ∗: Young diagrams of height at least 2.



Result 3: quantum unordered words

∏
n Sn acts on B(

⊕
n(Cd)⊗n).

With care we can compute the coequalizer:

B(`2)⊕
∏
λ∈Y ∗

Mmλ.

Y ∗: Young diagrams of height at least 2.



Result 3: quantum unordered words

∏
n Sn acts on B(

⊕
n(Cd)⊗n).

With care we can compute the coequalizer:

B(`2)⊕
∏
λ∈Y ∗

Mmλ.

Y ∗: Young diagrams of height at least 2.



Result 3: quantum unordered words

∏
n Sn acts on B(

⊕
n(Cd)⊗n).

With care we can compute the coequalizer:

B(`2)⊕
∏
λ∈Y ∗

Mmλ.

Y ∗: Young diagrams of height at least 2.



Recap

1. Algebras for unordered types are given

by coequalizers.

2. They are more interesting than

expected.

3. Representation theory of finite groups is

a perfect fit to study them.



Recap

1. Algebras for unordered types are given

by coequalizers.

2. They are more interesting than

expected.

3. Representation theory of finite groups is

a perfect fit to study them.



Recap

1. Algebras for unordered types are given

by coequalizers.

2. They are more interesting than

expected.

3. Representation theory of finite groups is

a perfect fit to study them.



Thanks!

Questions?



Thanks!

Questions?


