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Abstract

We introduce a new embarrassingly paral-
lel parameter learning algorithm for Markov
random fields which is efficient for a large
class of practical models. Our algorithm par-
allelizes naturally over cliques and, for graphs
of bounded degree, its complexity is linear in
the number of cliques. Unlike its competi-
tors, our algorithm is fully parallel and for
log-linear models it is also data efficient, re-
quiring only the local sufficient statistics of
the data to estimate parameters.

1. Introduction

Markov Random Fields (MRFs), also known as undi-
rected probabilistic graphical models, are ubiquitous
structured probability models that have significantly
impacted a large number of fields, including computer
vision (Li, 2001; Szeliski et al., 2008), computational
photography and graphics (Agarwala et al., 2004),
computational neuroscience (Ackley et al., 1985), bio-
informatics (Yanover et al., 2007), sensor networks
(Liu & Ihler, 2012), social networks (Strauss & Ikeda,
1990), Markov logic (Richardson & Domingos, 2006),
natural language processing (Lafferty et al., 2001; Sut-
ton & McCallum, 2012) and statistical physics (Kin-
dermann & Snell, 1980). As pointed out in Wainwright
& Jordan (2008) there are also many applications
in statistics, constraint satisfaction and combinatorial
optimization, error-correcting codes and epidemiology.
Not surprisingly, many comprehensive treatments of
this important topic have appeared in the last four
decades (Kindermann & Snell, 1980; Lauritzen, 1996;
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Bremaud, 2001; Koller & Friedman, 2009; Murphy,
2012).

Despite the great success and impact of these models,
fitting them to data remains a formidable challenge.
Although the log-likelihood is typically convex in the
parameters, the gradient of these models is intractable.

In many cases, maximum likelihood in these models
is data efficient in the sense that the data term in
the gradient can be easily precomputed, making its
evaluation trivial during optimization. The main diffi-
culty with maximum likelihood is that it is not model
efficient since evaluating the gradient involves com-
puting expectations over the model distribution. This
requires evaluating a sum with exponentially many
terms, which is intractable for even moderately sized
models. The intractability of exact maximum likeli-
hood has prompted the introduction of many approx-
imate methods of parameter estimation (Besag, 1975;
Hinton, 2000; Hyvärinen, 2005; Marlin et al., 2010;
Varin et al., 2011; Marlin & de Freitas, 2011; Swersky
et al., 2011).

An important class of approximate method for this
problem are stochastic approximation methods, which
approximate the model term by drawing samples from
the model distribution, typically via MCMC. This sim-
ulation is costly and often many samples are required
for accurate estimation. Moreover, in settings where
the parameters or data must be distributed across
many machines such simulation poses additional diffi-
culties.

Another approach is to approximate the maximum
likelihood objective with a factored alternative. The
leading method in this area is pseudo-likelihood. In
this approach the joint distribution over all variables
in the MRF is replaced by a product of conditional
distributions for each variable. Replacing the joint dis-
tribution with a product of conditionals eliminates the
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model term from the gradient of the pseudo-likelihood
objective, which circumvents the model inefficiency of
maximum likelihood estimation. However, pseudo-
likelihood is not data efficient, since the conditional
distributions often depend on the actual data and the
current value of the parameters. We return to this
issue in more detail in Section 2.3.

Applying pseudo likelihood in a distributed setting
is also difficult, because the conditional distribu-
tions share parameters. Several researchers have ad-
dressed this issue by proposing to approximate pseudo-
likelihood by disjointly optimizing each conditional
and combining the parameters using some form of av-
eraging (Ravikumar et al., 2010; Wiesel & Hero III,
2012; Liu & Ihler, 2012).

In this paper we introduce a new approach to parame-
ter estimation in MRFs with untied parameters, which
avoids the model inefficiency of maximum likelihood
for an important class of models while preserving its
data efficiency. Moreover, our algorithm is embarrass-
ingly parallel and can be implemented in a distributed
setting without modification. Our algorithm replaces
the joint maximum likelihood problem with a collec-
tion of much smaller auxiliary maximum likelihood
problems which can be solved independently.

We prove that if the auxiliary problems satisfy certain
conditions, the relevant parameters in the auxiliary
problems converge to the values of the true parameters
in the joint model. Our experiments show that good
performance is achieved in this case and that good
performance is still achieved when these conditions are
not satisfied. Violating the conditions for convergence
sacrifices theoretical guarantees in exchange for even
further computational savings while maintaining good
empirical performance.

Under a strong assumption, we prove that our algo-
rithm is exactly equal to maximum likelihood on the
full joint distribution. While not directly applicable,
this result provides additional insight into why our ap-
proach is effective.

A similar method was recently, and independently, in-
troduced in the context of Gaussian graphical models
by Meng et al. (2013). In that paper, the authors
consider local neighbourhoods of nodes, whereas we
consider neighbourhoods of cliques, and they rely on a
convex relaxation via the Schur complement to derive
their algorithm for inverse covariance estimation. At
the time of revising this paper, the same authors have
shown that the convergence rate to the true param-
eters with their method is comparable to centralized
maximum likelihood estimation (Meng et al., 2014).

Although our work and that of Meng et al. arrive
at distributed learning via different paths, and while
theirs is restricted to (pair-wise) Gaussian graphical
models, both works show that it is possible to cap-
italize on graph structures beyond low tree-width to
design algorithms that are both data and model effi-
cient and exhibit good empirical performance.

2. Model Specification and Objectives

We are interested in estimating the parameter vector
θ of a positive distribution p(x |θ) > 0 that satisfies
the Markov properties of an undirected graph G. That
is, a distribution that can be represented as a product
of factors, one per maximal clique,

p(x |θ) =
1

Z(θ)

∏
c∈C

ψc(xc |θc), (1)

where C is the set of maximal cliques of G,
ψc(xc |θc) ≥ 0 is the potential function or factor asso-
ciated with the variables in clique c, and Z(θ) is the
partition function: Z(θ) =

∑
x

∏
c∈C ψc(xc |θc). In

such models we often use exponential functions to rep-
resent the potentials, ψc(xc |θc) = exp(−E(xc |θc)),
where E(xc |θc) ∈ R is called the energy , which we
will assume is chosen so that the parameters are iden-
tifiable. The resulting joint distribution can then be
written as a Gibbs distribution

p(x |θ) =
1

Z(θ)
exp(−

∑
c

E(xc |θc)).

When the energy is a linear function of the parameters,
i.e. E(xc |θc) = −θT

c φc(xc) where φc(xc) is a feature
vector derived from the values of the variables xc, we
have a maximum entropy or log-linear model (Wasser-
man, 2004; Buchman et al., 2012; Murphy, 2012). The
features in these models are also referred to as local
sufficient statistics.

Notation: We use x to refer to the vector of all vari-
ables (nodes). When needed, we increase the precision
in our notation by using S to denote the set of all vari-
ables and use xS for the vector of all variables in the
MRF. We restrict the symbols n and c so that xn refers
to the n-th observation of all the variables in the MRF,
and xc refers to the subset of variables associated with
clique c. Finally xmn refers to the n-th observation of
node m.

2.1. Maximum Likelihood

There is (in general) no closed form solution for the
maximum likelihood (ML) estimate of the parameters
of an MRF, so gradient-based optimizers are needed.
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Consider the fully-observed maximum entropy model

p(x |θ) =
1

Z(θ)
exp(

∑
c

θT
c φc(x)) (2)

where c indexes the maximal cliques. The scaled log-
likelihood is given by

`(θ) =
1

N

N∑
n=1

log p(xn |θ)

=
1

N

N∑
n=1

[∑
c

θT
c φc(xn)− logZ(θ)

]

which is a convex function of θ.

The derivative for the parameters of a particular
clique, q, is given by

∂`

∂θq
=

1

N

N∑
n=1

[
φq(xn)− ∂ logZ(θ)

∂θq

]
, (3)

where

∂ logZ(θ)

∂θq
= E

[
φq(x) |θ

]
=
∑
x

φq(x)p(x |θ). (4)

Equation (4) is the expectation of the feature φq(x)
over the model distribution. For many models of in-
terest this quantity is intractable.

The full derivative of the log-likelihood contrasts the
model expectation against the expected value of the
feature over the data,

∂`

∂θq
=

1

N

N∑
n=1

φq(xn)− E
[
φq(x) |θ

]
. (5)

At the optimum these two terms will be equal and the
empirical distribution of the features will match the
model predictions.

2.2. Maximum Pseudo-Likelihood

To surmount the intractable problem of computing
expectations over the model distribution, pseudo-
likelihood considers a simpler factorised objective
function,

`PL(θ) =
1

N

N∑
n=1

M∑
m=1

log p(xmn |x−mn,θ) (6)

where x−mn denotes all the components of the n-th
data vector, except for component m. (For models
with sparse connectivity, we only need to condition on
the neighbors of node m.) In the binary, log-linear

case, the gradient of this objective can be expressed in
contrastive form,

∂`PL

∂θq
=

1

N

∑
n,m

p(x̄mmn |x−mn,θ)
[
φq(xn)− φq(x̄m

n )
]
,

where x̄m
n is the data vector x̄n with the m-th bit

flipped. That is, x̄imn = 1 − xmn if i = m and xmn

otherwise (Marlin et al., 2010).

2.3. Model and Data Efficiency

There are two terms in the gradient of Equation 5. The
first term is an empirical expectation, 1

N

∑N
n=1 φq(xn),

and depends only on the data. The value of this term
for each clique can be pre-computed before parameter
optimization begins, making this term of the gradient
extremely cheap to evaluate during optimization.

The data term in the ML gradient is contrasted
with an expectation over the model distribution,
E
[
φq(x) |θ

]
, which is a sum over exponentially many

configurations. For large models this term is in-
tractable.

We describe this situation by saying that ML estima-
tion is data efficient, since the terms involving only the
data can be computed efficiently. However, ML is not
model efficient, since the model term in the gradient
is intractable, and the difficulty in evaluating it is the
primary motivation for the development of alternative
objectives like pseudo-likelihood.

Pseudo-likelihood addresses the model inefficiency of
ML by eliminating the model term from the gradient,
which makes pseudo-likelihood model efficient. How-
ever, pseudo-likelihood is not data efficient, since com-
puting the gradient requires access to the full condi-
tional distributions p(x̄mmn |x−mn,θ). Because of this
the outer sum over data examples must be computed
for each gradient evaluation. (Note that for binary
models the full conditionals correspond to logistic re-
gressions, so any advances in scaling logistic regression
to massive models and datasets would be of use here.)

In the following section we introduce a Linear And
Parallel (LAP) algorithm, which uses a particular de-
composition of the graph to avoid the exponential cost
in ML, but unlike pseudo-likelihood LAP is fully paral-
lel and maintains the data efficiency of ML estimation.
LAP is therefore both model and data efficient.

3. Algorithm Description

The LAP algorithm operates by splitting the joint pa-
rameter estimation problem into several independent
sub-problems which can be solved in parallel. Once
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Algorithm 1 LAP

Input: MRF with maximal cliques C
for q ∈ C do

Construct auxiliary MRF over the variables in Aq.

Estimate parameters α̂ML of auxiliary MRF.
Set θ̂q ← α̂ML

q .
end for

the sub-problems have been solved, it combines the
solutions to each sub-problem together into a solution
to the full problem.

For a fixed clique q we define its 1-neighbourhood

Aq =
⋃

c∩q 6=∅

c

to contain all of the variables of q itself as well as the
variables with at least one neighbour in q.

LAP creates one sub-problem for each maximal clique
in the original problem by defining an auxiliary MRF
over the variables in Aq. Details on how to construct
the auxiliary MRF will be discussed later, for now we
assume we have an auxiliary MRF on Aq and that
it contains a clique over the variables in q that is
parametrized the same way as q in the original prob-
lem.

LAP derives the parameter vector θq for the full prob-
lem by estimating parameters in the auxiliary MRF
on Aq using maximum likelihood and reading off the
parameters for the clique q directly. The steps of the
algorithm are summarized in Algorithm 1.

In a log-linear model, when estimating the vector of
parameters α of the auxiliary MRF by maximum like-
lihood, the relevant derivative is

∂`Mq

∂αq
=

1

N

N∑
n=1

φq(xAqn)− E
[
φq(xAq

)|α
]
.

This approach is data efficient, since the suffi-
cient statistics 1

N

∑N
n=1 φq(xAqn) can be easily pre-

computed. Moreover, the data vector xn can be stored
in a distributed fashion, with the node estimating the
auxiliary MRF only needing access to the sub-vector
xAqn. In addition, LAP is model efficient since the ex-
pectation E

[
φq(xAq )|α

]
can be easily computed when

the number of variables in Aq is small. To illustrate
this point, consider the models shown in Figure 1. For
dense graphs, such as the restricted Boltzmann ma-
chine, the exponential cost of enumerating over all the
variables in Aq is prohibitive. However, for other prac-
tical MRFs of interest, including lattices and Chimeras
(Denil & de Freitas, 2011), this cost is acceptable.

(a)

(b)

(c)

(d)

(e)

Figure 1. The left column shows several popular MRFs:
(a) a restricted Boltzmann machine (RBM), (b) a chain
graph, (c) a 2-D Ising grid, (d) a Chimera 3× 3× 4 lattice,
and (e) a 3-D Ising lattice. The right hand side shows the
corresponding 1-neighborhoods Aq for cliques of interest
(in green). Models (b) to (e) have small 1-neighborhoods
and can learned efficiently with the LAP algorithm.

3.1. Construction of the Auxiliary MRF

The effectiveness of LAP comes from proper construc-
tion of the auxiliary MRF. As already mentioned, the
auxiliary MRF must contain the clique q, which must
be parametrized in the same way as in the joint model.
This requirement is clear from the previous section,
otherwise the final step in Algorithm 1 would be in-
valid.
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We will see in the analysis section that it is desirable
for the auxiliary MRF to be as close to the marginal
distribution on xAq as possible. This means we must
include all cliques from the original MRF which are
subsets of Aq. Additionally, marginalization may in-
troduce additional cliques not present in the original
joint distribution. It is clear that these cliques can
only involve variables in Aq \ q, but determining their
exact structure in general can be difficult.

We consider three strategies for constructing auxiliary
MRFs, which are distinguished by how they induce
clique structures on Aq \ q. The three strategies are as
follows.

Exact: Here we compute the exact structure of the
marginal distribution over Aq from the original prob-
lem. We have chosen our test models to be ones where
the marginal structure is readily computed.

Dense: For many classes of model the marginal over
Aq involves a fully parametrized clique over Aq \ q for
nearly every choice of q (for example, this is the case
in lattice models). The dense variant assumes that
the marginal always has this structure. Making this
choice will sometimes over-parametrize the marginal,
but avoids the requirement of explicitly computing its
structure.

Pairwise: Both the exact and dense strategies create
high order terms in the auxiliary MRF. While high or-
der terms do exist in the marginals of discrete MRFs, it
is computationally inconvenient to include them, since
the add many parameters to each sub-problem. In the
pairwise variant we use the same graph structure as in
dense, but here we introduce only unary and binary
potentials over Aq \ q. This results in a significant
computational savings for each sub-problem in LAP,
but fails to capture the true marginal distribution in
many cases (including all of the example problems we
consider).

4. Experiments

In this section we describe some experiments designed
to show that the LAP estimator has good empirical
performance. We focus on small models where exact
maximum likelihood is tractable in order to allow per-
formance to be measured. We chose to focus our ex-
periments on demonstrating accuracy rather than scal-
ability since the scaling and data efficiency properties
of LAP are obvious.

The purpose of the experiments in this section is to
show two things:

1. The accuracy of LAP estimates is not worse than
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Figure 2. Left: Relative error of parameter estimates
compared to maximum likelihood for LAP and pseudo-
likelihood on a 4 × 4 Ising grid. Error bars show the stan-
dard deviation over several runs. Right: Variance of the
parameter estimates for each algorithm.

its main competitor, pseudo-likelihood; and

2. LAP achieves good performance even when the
exact marginal structure is not used.

In all of our experiments we compare pseudo-likelihood
estimation against LAP using the three different
strategies for constructing the auxiliary MRF dis-
cussed in the previous section. In each plot, lines la-
beled PL correspond to pseudo-likelihood and ML cor-
responds to maximum likelihood. LAP E, LAP D and
LAP P refer respectively to LAP with the exact, dense
and pairwise strategies for constructing the auxiliary
MRF.

We compare LAP and pseudo-likelihood to maximum
likelihood estimation on three different model classes.
The first is a 4 × 4 Ising grids with 4-neighborhoods,
and the results are shown in Figure 2. The second is a
4× 4× 4 Ising lattice with 6-neighborhoods, which is
shown in Figure 3. Finally, we also consider a Chimera
3× 3× 3 model, with results shown in Figure 4.

The procedure for all models is the same: we choose
the generating parameters uniformly at random from
the interval [−1, 1] and draw samples approximately
from the model. We then fit exact maximum likelihood
parameters based on these samples, and compare the
parameters obtained by pseudo-likelihood and LAP to
the maximum likelihood estimates. The left plot in
each figure shows the mean relative error of the param-
eter estimates using the maximum likelihood estimates
as ground truth. Specifically, we measure

err(θ) = ‖θML‖−1 · ‖θ − θML‖

for each estimate on each set of samples and average
over several runs.

We also measure the variance of the estimates pro-
duced by each algorithm over several runs. In this
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Figure 3. Left: Relative error of parameter estimates
compared to maximum likelihood for LAP and pseudo-
likelihood on a 4 × 4 × 4 Ising lattice. Error bars show
the standard deviation over several runs. Right: Variance
of the parameter estimates for each algorithm.

case we measure the variance of the estimates of each
parameter separately and average these variances over
all parameters in the model. These measurements are
shown in the right plot in each figure. For reference
we also show the variance of the maximum likelihood
estimates in these plots.

In all of the experiments we see that the performance
of all of the LAP variants is basically indistinguish-
able from pseudo-likelihood, except for small numbers
of samples. Interestingly, LAP P does not perform no-
ticeably worse than the other LAP variants on any of
the problems we considered here. This is interesting
because LAP P approximates the marginal with a pair-
wise MRF, which is not sufficient to capture the true
marginal structure in any of our examples. LAP P is
also the most efficient LAP variant we tested, since
the auxiliary MRFs it uses have the fewest number of
parameters.

5. Theory

In this section show that matching parameters in the
joint and the marginal distributions is valid, provided
the parametrisations are chosen correctly. We then
prove consistency of the LAP algorithm and illustrate
its connection to ML.

Undirected probabilistic graphical models can be spec-
ified, locally, in terms of Markov properties and con-
ditional independence and, globally, in terms of an en-
ergy function

∑
cE(xc|θc). The Hammersley-Clifford

theorem (Hammersley & Clifford, 1971) establishes the
equivalence of these two representations.

One important fact that is often omitted is that the
energy function and the partition function are not
unique. It is however possible to obtain uniqueness,
for both of these functions, by imposing normalization
with respect to a setting of the random variables of the
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Figure 4. Left: Relative error of parameter estimates com-
pared to ML for LAP and pseudo-likelihood on a Chimera
3 × 3 × 3 model. Error bars show the standard deviation
over several runs. Right: Variance of the parameter esti-
mates for each algorithm.

potential. This gives rise to the concept of normalized
potential (Bremaud, 2001):

Definition 1. A Gibbs potential {E(xc|θc)}c∈C is said
to be normalized with respect to zero if E(xc|θc) = 0
whenever there exists t ∈ c such that xt = 0.

(In this section, we use the term Gibbs potential, or
simply potential, to refer to the energy so as to match
the nomenclature of (Bremaud, 2001).) The following
theorem plays a central role in understanding the LAP
algorithm. The proof can be found in (Griffeath, 1976;
Bremaud, 2001):

Theorem 2. [Existence and Uniqueness of the
normalized potential] There exists one and only one
(Gibbs) potential normalized with respect to zero cor-
responding to a Gibbs distribution.

5.1. The LAP Argument

Suppose we have a Gibbs distribution p(xS |θ) that
factors according to the clique system C, and let q ∈ C
be a clique of interest. Let the auxiliary MRF

p(xAq |α) =
1

Z(α)
exp(−

∑
c∈Cq

E(xc |αc))

have the same form as the marginal distribution on
Aq (with clique system Cq) parametrised so that the
potentials are normalized with respect to zero.

We can obtain the marginal from the joint in the fol-
lowing way

p(xAq |θ) =
∑

xS\Aq

p(xS |θ)

=
1

Z(θ)

∑
xS\Aq

exp(−
∑
c∈C

E(xc |θc))

=
1

Z(θ)
exp(−E(xq |θq)−

∑
c∈Cq\{q}

E(xc |θS\q))
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Proposition 3. If the parametrisations of p(xS |θ)
and p(xAq |α) are chosen to be normalized with respect
to zero, and if the parameters are identifiable with re-
spect to the potentials, then θq = αq.

Proof. The terms E(xq |θq) and E(xq |αq) appear as
separate factors in p(xAq |θ) and p(xAq |α) respec-
tively. By existence and uniqueness of the normalized
potentials (Theorem 2), we have

E(xq |αq) = E(xq |θq)

which implies that θq = αq if the parameters are iden-
tifiable.

5.2. Consistency of LAP

Let θ? be the true vector of parameters taken
from the unknown generating distribution p(xS |θ?)
parametrized such that the potentials are normalized
with respect to zero. Suppose we have N samples

drawn iid from this distribution. Let θ̂
ML

be the ML
estimate of θ given the data and let α̂ML the corre-
sponding ML estimate for the auxiliary MRF with true
parameters α?.

Proposition 4. If the true marginal distributions are
contained in the class of auxiliary MRFs, we have for
all q that α̂ML

q → θ?
q as N →∞.

Proof. Let q ∈ C be an arbitrary clique of interest. It
is sufficient to show that α̂ML

q → θ?
q . By marginaliza-

tion, we have

p(xAq
|θ?) =

∑
xS\Aq

p(xS |θ?).

By the lap argument (Proposition 3), we know that
α?

q = θ?
q . Since ML is consistent under smoothness

and identifiability assumptions (for example, see Fien-
berg & Rinaldo (2012)), we also have α̂ML → α?, so

α̂ML
q → θ?

q

Note that in the above proposition, the class of aux-
iliary MRFs can be more general than the class of
marginal MRFs, but must contain the latter. Asymp-
totically, superfluous terms in the auxiliary MRF van-
ish to zero.

5.3. Relationship to ML

Here we prove that, under certain (strong) assump-
tions, LAP is exactly equal to ML. The main result
here will be that under the required assumptions, es-
timation by ML and marginalization commute.

Suppose we have a discrete MRF on xS which factor-
izes according to the cliques C, and let q ∈ C be a
particular clique of interest.

We will make use of the following characterization of
ML estimates, which is proved in (Jordan, 2002).

Lemma 5. If a distribution p̂(xS) satisfies that for
each c ∈ C

p̂(xc) = p̃(xc)

then p̂(xS) is an ML estimate for the empirical distri-
bution p̃(xS).

This characterization allows us to derive an explicit
expression for an ML estimate of p̂(xS).

Proposition 6. The distribution

p̂(xS) =
p̃(xAq

)p̃(xS\q)

p̃(xAq\q)

is an ML estimate for p̃(xS).

Proof. To see this we compute∑
xq

p̂(xS) =
∑
xq

p̃(xAq )p̃(xS\q)

p̃(xAq\q)
= p̃(xS\q)

and ∑
xS\Aq

p̂(xS) =
∑

xS\Aq

p̃(xAq
)p̃(xS\q)

p̃(xAq\q)
= p̃(xAq

)

For an arbitrary clique c ∈ C, either c ⊂ S\q or c ⊂ Aq,
and we see that p̂(xc) = p̃(xc) by further marginalizing
one of the above expressions. This shows that our
expression for p̂(xS) satisfies the criteria of Lemma 5,
and is therefore an ML estimate for p̃(xS).

Suppose we have a family of distributions F on xS

which satisfy the Markov properties of the MRF, and
suppose that p̂(xS) ∈ F where p̂(xS) is defined as in
Proposition 6.

Define the auxiliary family Fq associated with the
clique q as follows.

Fq = {
∑

xS\Aq

p(xS) | p(xS) ∈ F}

That is, Fq is the family of distributions obtained by
marginalizing the family F over xS\Aq

.

Proposition 7. The auxiliary family Fq contains
the marginal empirical distribution p̃(xAq

). Moreover
p̂(xAq

) = p̃(xAq
) is an ML estimate for p̃(xAq

) in Fq.
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Proof. Recall that p̂(xS) from Proposition 6 is in F by
assumption. Thus,∑

xS\Aq

p̂(xS) = p̃(xAq )

is in Fq by definition. That p̂(xAq
) ∈ Fq is an ML

estimate follows since the log likelihood gradient in
Equation 5 is zero when the model and empirical dis-
tributions are equal.

Suppose we can represent the family F as a Gibbs
family, i.e.

F = F(Θ) = {p(xS |θ) |θ ∈ Θ}

for some domain of parameters Θ, where

p(xS |θ) =
1

Z(θ)
exp(−

∑
c∈C

E(xc |θc)) .

Moreover, suppose we have chosen this parametrisa-
tion so that the potential functions are normalized
with respect to zero.

Since F is representable as a Gibbs family then the
auxiliary family Fq is also representable as a Gibbs
family with

Fq = Fq(Ψ) = {p(xAq
|α) |α ∈ Ψ}

for some domain of parameters Ψ. We will again sup-
pose that this parametrisation is chosen so that the po-
tential functions are normalized with respect to zero.

We have already shown that ML estimates for p̃(xS)
and p̃(xAq

) exist in the families F and Fq, respectively.
Since we have chosen the parametrisations of these
families to be normalized we also have unique ML pa-
rameters θ̂ ∈ Θ and α̂ ∈ Ψ such that p(xS | θ̂) ∈ F(Θ)
is an ML estimate for p̃(xS) and p(xAq

| α̂) ∈ F(Ψ) is
an ML estimate for p̃(xAq

).

We can now prove the main result of this section.

Theorem 8. Under the assumptions used in this sec-
tion, estimating the joint parameters by ML and in-
tegrating the resulting ML distribution gives the same
result as integrating the joint family of distributions
and performing ML estimation in the marginal family.
Concisely, ∑

xS\Aq

p(xS | θ̂) = p(xAq
| α̂)

Proof. We have the following sequence of equalities:

p(xS | θ̂)
(1)
= p̂(xS)

(2)
=
p̃(xAq

)p̃(xS\q)

p̃(xAq\q)

(3)
=
p̂(xAq )p̃(xS\q)

p̃(xAq\q)

(4)
=
p(xAq | α̂)p̃(xS\q)

p̃(xAq\q)

The first equality follows from the parametrisation of
F , the second follows from Proposition 6, the third
from Proposition 7 and the fourth follows from the
parametrisation of Fq. The theorem is proved by sum-
ming both sides of the equality over xS\Aq

.

Applying the LAP argument (Proposition 3) to Theo-

rem 8 we see that θ̂q = α̂q.

Remark: The assumption that p̂(xS) ∈ F amounts
to assuming that the empirical distribution of the data
factors according to the MRF. This is very unlikely to
hold in practice for finite data. However, if the true
model structure is known then this property does hold
in the limit of infinite data.

6. Conclusion

We have presented a distributed learning algorithm for
practical MRFs, where the parameters of each clique
can be estimated in different machines. The algorithm
is also data efficient in log-linear models, since the esti-
mation of each clique parameter only requires access to
local sufficient statistics of the data. Not only are the
statistics local to the 1-neighborhoods of each clique,
but they can also be precomputed.

Our experiments indicate that the LAP estimators be-
have similarly to pseudo-likelihood and maximum like-
lihood for large sample sizes. However, these alterna-
tive estimators do not enjoy the same data and model
efficiencies as LAP. Finally, we proved that the pro-
posed estimator is consistent.

This work opens up many directions for future work,
including the application of LAP to model selection
problems, models with latent variables, and models
with tied parameters. Since LAP is fully parallel,
our experiments focused on the question of statistical
efficiency. However, implementations on distributed
computing platforms, such as Apache Spark/Hadoop,
would be very valuable. A further addition to the the-
ory would be the derivation of PAC bounds to improve
our understanding of the sampling complexity of these
estimators.
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