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Abstract. Taxonomy plays a key role in e-commerce, categorising items
and facilitating both search and inventory management. Concept sub-
sumption prediction is critical for taxonomy curation, and has been the
subject of several studies, but they do not fully utilise the categorical
information available in e-commerce settings. In this paper, we study the
characteristics of e-commerce taxonomies, and propose a new subsump-
tion prediction method based on the pre-trained language model BERT
that is well adapted to the e-commerce setting. The proposed model
utilises textual and structural semantics in a taxonomy, as well as the
rich and noisy instance (item) information. We show through extensive
evaluation on two large-scale e-commerce taxonomies from eBay and
AliOpenKG, that our method offers substantial improvement over strong
baselines.
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1 Introduction

Taxonomies capture the is-a relationships between concepts, facilitating their
storage, classification and organisation [4]. In e-commerce, taxonomy provides the
basis for item categorisation, and is vital for search, inventory management and
recommendation. Most e-commerce sites support two methods for users to locate
a product: category browsing and keyword search. For the former, the taxonomy
itself is presented to the user to navigate; for the latter, the taxonomy also provides
important information to the search engine, which usually attempts to narrow
the range of search results down to one or a few categories before retrieving and
ranking items. For item recommendation, placement in the taxonomy is one of
the most important heuristics in relevance scoring [31]. As such, the completeness
and accuracy of the taxonomy has a major impact on sales and user experience.

Taxonomy-related research mainly includes taxonomy construction, curation
and applications. These tasks have a close bond with natural language processing
(NLP) and ontology engineering [13], the latter of which studies similar abstrac-
tions but typically involves more complex representations and utilises logical
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Fig. 1: Example of missing subsumptions in the e-commerce taxonomy

reasoning. Many taxonomies start as lightweight catalogues that can simply be
curated by hand. However, as numerous taxonomies are constantly being created
and existing ones constantly expanded, these tasks often become very labour
intensive, and therefore their automation has become an important research topic.
Among these tasks, subsumption prediction concerns adding new is-a relations
between concepts, and is a major component of taxonomy curation.

The task of subsumption prediction is challenging. When taxa have complex,
multifaceted semantics (e.g., e-commerce categories), the taxonomies are usually
constructed in a way that each level specifies one or several facets (e.g., brand,
material, function, etc.) on top of the parent category [18]. Theoretically, the order
at which some facets are specified can be interchangeable, with no influence on
the class’s overall semantics. This leads to one kind of missing subsumption. For
instance in Figure 1, the categories Men’s Vintage Clothing and Men’s Vintage
T-Shirts3 should be considered subcategories of, respectively, Men’s Clothing and
Men’s T-Shirts,4 because all vintage clothing is clothing and all vintage t-shirts
are t-shirts. Similarly, Women’s Football Clothing is in reality a subcategory of
Women’s Clothing. However, these subsumptions may not be recognised because
the categories belong to different branches in the hierarchy, although the two
branches actually converge to a significant extent. A corollary of this observation
is that while many taxonomies are organised into trees, the branches of these
trees are not necessarily mutually exclusive; in our example there is some overlap
between "Specialty CSA" and "Men’s CSA".

While many missing subsumptions can be found by analysing the semantics
of class labels, the underlying item level information could also be helpful. Each
category in an e-commerce taxonomy is not only an abstract taxon, but also a
label for a collection of inventory items. In Figure 1, it is easy to judge from
the class labels that Football Air Pumps and Basketball Air Pumps5 are similar

3 Browse this category and the taxonomy around it at https://www.ebay.com/b/
175781

4 https://www.ebay.com/b/15687
5 https://www.ebay.com/b/261761 and https://www.ebay.com/b/261791

https://www.ebay.com/b/175781
https://www.ebay.com/b/175781
https://www.ebay.com/b/15687
https://www.ebay.com/b/261761
https://www.ebay.com/b/261791
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categories, but it is not obvious that such pumps are compatible with each
other and that the two categories should thus be mutually subsuming (i.e.,
equivalent). Discovering this kind of subsumption might be possible using a
statistical approach based on the very large (and noisy) sets of relevant inventory
items. However, it is unclear how to integrate the semantic understanding of
category labels with the information from items.

Related Works. There is a large body of work on related areas, most promi-
nently knowledge graph (KG) link prediction and taxonomy enrichment. KG link
prediction is concerned with predicting relational facts (e.g., (France, hasCapital,
Paris)) [29,30], often utilising different kinds of KG embedding models such
as TransE [3], DistMult [38], and HolE [26]. However, these methods aim at
relational facts, which can be understood as a multi-relation graph. They are not
directly applicable in our e-commerce taxonomy curation given the taxonomy’s
noisy, multi-faceted, and hierarchical nature. Taxonomy enrichment [15] mines
new concepts from a corpus and adds them to a taxonomy. Some enrichment
methods can perform subsumption prediction for e-commerce taxonomies. Octet
[24] is a two-stage pipeline that tackles edge prediction by applying a feed forward
NN over features obtained from graph embeddings, word embeddings, and lexical
metrics such as edit distance. While the model has achieved major improvements
over non e-commerce specialised baselines, it uses non-contextual word embed-
dings, which leaves much room for improvement. AliCoCo [23] builds a massive,
multi-layered KG of e-commerce concepts and links the concepts with items.

Another closely related field is ontology curation using deep learning. While
numerous ontology embeddings such as OPA2Vec [34] and OWL2Vec*[6] can
be applied to predict subsumptions, the amount of work focusing on optimising
subsumption prediction is limited. BERTSubs [5] utilises BERT [9], a pre-trained
language model (PLM) that has been shown to produce high quality contex-
tual embeddings, and applies templates to convert candidate subsumptions into
sentences for classification with BERT. The BERT is then attached to a clas-
sifier layer, and jointly fine-tuned using existing subsumptions. Evaluation on
ontologies shows that BERTSubs can dramatically outperform early KG link
prediction methods such as TransE and DistMult. However, BERTSubs ignores
the aforementioned characteristics of e-commerce taxonomies, especially the
existence of items.

In this work, we propose a new subsumption prediction approach that enhances
previous work, taking into consideration the noisiness and richness of e-commerce
taxonomies. Our approach features 1) BERT-based contextual embeddings with
carefully designed templates; 2) a pipeline based on existing NLP tools to
leverage lexical semantics in class labels; and 3) utilisation of instance data (i.e.,
product items). The practically optimal usage of BERT has been a long standing
problem for researchers [22]. Our solution to this problem with templates and
preprocessing proves to work well for subsumption prediction, and can generalise
to other tasks of a similar nature. We propose two ways to combine instances
with class label semantics, i.e., attention-based and template-based. Most BERT-
based classification models use a feed forward neural network classifier that
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applies to a fixed amount of embedding vectors to make one prediction. In our
instance-aware model, every prediction has to be based on a variably-sized set of
embedding vectors, with one vector corresponding to one instance. Therefore, we
also study two alternative classifiers besides feed forward layer: box embedding
and extensional inference via k-nearest neighbours.

We evaluate our method on two large scale e-commerce taxonomies from
eBay and AliOpenKG6. Both taxonomies are equipped with millions of items.
Experiments have verified the effectiveness of the sentence processing pipeline
and the consideration of items (instances), and clearly demonstrate that our
solutions on path text preprocessing, templates and fine-tuning can help realise
the full potential of BERT. We summarise our main contributions as follows:

1. Propose a taxonomy subsumption prediction framework based on contextual
representations and also able to exploit instance data.

2. Extensively evaluate our framework and associated techniques on two e-
commerce taxonomies.

2 Preliminaries

2.1 Pre-trained Language Model BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers
[9], is a transformer-based pre-trained language model (PLM) for contextual
representations. It consists of a stack of encoder units (12 units in the original
release bert-base) and self-attention heads. It is usually pre-trained with large,
general-purpose corpora to learn sufficient understanding of the language itself.
BERT is used in conjunction with a tokeniser based on WordPiece [32], where a
single word may be split into multiple sub-word tokens, e.g. stainless into "stain"
and "##less". The original BERT model is pre-trained on two tasks: masked
language modelling (MLM) and next sentence prediction (NSP) [9]. MLM aims
to predict some randomly masked tokens in the sentences, while NSP is to predict
the following sentence of a given sentence. For a given sentence, standalone BERT
can produce the contextual embedding of each individual token, as well as the
embedding of the entire sentence, which is the embedding of a special token
[CLS] added in front of the sentence.

An effective and popular way of applying BERT for downstream tasks is
attaching an additional neural layer, and fine-tuning both BERT and the ad-
ditional layer w.r.t. a task-specific loss and given samples. For classification,
the textual input is either "[CLS] Sentence" for tasks on a single sentence, or
"[CLS] Sentence A [SEP] Sentence B" for tasks on sentence pairs ([SEP] is a
special token for separating two sentences). In our work, we adopt this fine-tuning
paradigm as it allows BERT to adapt to the task’s peculiarities, i.e. uncommon
input and/or specialised classification objective.

6 Code and data available at https://anonymous.4open.science/r/bert_
subsumption-3325/

https://anonymous.4open.science/r/bert_subsumption-3325/
https://anonymous.4open.science/r/bert_subsumption-3325/
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2.2 Box Embeddings

The transitive, asymmetric nature of subsumption prohibits usage of symmetric
similarity measures, e.g. Cosine similarity and Euclidean distance, when making
predictions based on embeddings such as those produced by BERT. On the other
hand, some geometric embeddings [10,27,28,36] have a natural ability to express
subsumption and are thus suitable for embedding taxonomies. Box embeddings
[37] have recently received attention as an effective taxonomic embedding method,
where classes are mapped to high dimensional boxes and subsumption naturally
translates to box containment. Informally, one may think of box embeddings as
high dimensional Venn diagrams.

The original box embedding is a lattice structure in Rd. A box is defined as x =
(xm, xM ) where xm, xM ∈ Rd are the lower bound and upper bound coordinates,
respectively. For two boxes x and y, the intersection x ∧ y is naturally defined as
their geometric intersection. The volume of a box x is |x| =

∏
i(x

M
i − xm

i ). In
order to learn embedding parameters from known subsumptions, a naïve loss
function is to maximise proportional overlap:

L(x, y) = log |x ∧ y| − log |x| (1)

In other words, the ideal box embedding should have all child boxes completely
submerged in parent boxes. Unfortunately, this loss function leads to poor per-
forming models due to unbounded gradient and unfavorable local minima that
hinder optimisation [8,19]. Therefore, numerous approaches have been investi-
gated to soften the box boundaries [20] by redefining the box as a probabilistic
distribution along each dimension. In this paper, we adopt the state-of-the-art
soft box embedding to our knowledge, dubbed GumbelBox [8], that defines boxes
as multi-dimensional Gumbel variables [12]. Key merits of Gumbel distribution
are that 1) the max of two Gumbel variables with the same scale parameter β is
another Gumbel variable, therefore with careful definition one can assure that
the intersection of two Gumbel boxes is another Gumbel box; 2) it is smooth and
mildly skewed, resulting in easier gradient descent.

3 Problem Statement

We define a taxonomy to be a set T = (C,R), where C is a set of classes and
R ⊆ C × C is a set of is-a relations. By definition, R is a partial ordering over C,
thus is transitive. We say C subsumes D if (D,C) ∈ R or (D,C) can be entailed
from R via transitivity, and C ≡ D if C subsumes D and D subsumes C. Note
that many class hierarchies defined in OWL ontologies [2] can be regarded as a
kind of taxonomy. The subsumption (is-a) relation between two OWL classes is
defined by a built-in property rdfs:subClassOf.

We assume every class in the taxonomy has a text label and a set of instances
which can be empty: C = (l, P ). In the e-commerce taxonomy we investigate,
instances are items which are represented by a variety of modalities: text label,
image, property-value pairs, etc. For the time being, we only consider the text
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Fig. 2: Framework overview: (i) corpus construction, (ii) fine-tuning, (iii) joint
embedding of label paths and instances, (iv) subsumption prediction using feed
forward layer / box embedding / extensional inference with k-NN

modality and thus every pi ∈ P as well as every li are strings. We define the label
path of a class to be the sequence of labels for all its ancestor classes and itself:
If C0 ⊇ C1 ⊇ . . . ⊇ Ci is the longest possible subsumption chain for Ci, then the
label path (“path” for simplicity) li = (l0, l1, . . . , li). While the individual label
for a class often misses important information, the path provides a more complete
yet redundant textual description. The label for Men’s Vintage T-Shirts is in fact
just “T-Shirts” which is indistinguishable from many other classes, while the full
path “Clothing, Shoes & Accessories → Specialty → Vintage → Men’s Vintage
Clothing → T-Shirts” has duplicate occurrences of “Clothing” and “Vintage”, and
one may consider the co-occurrence of “Clothing” and “T-Shirts” to be another
type of redundancy since the former is a hypernym of the latter.

We model taxonomy subsumption prediction as a binary classification problem:
given two classes C1 = (l1, P1) and C2 = (l2, P2) in a taxonomy (C,R), a
score s ∈ [0, 1] indicating the likelihood of C1 ⊆ C2 is expected. Subsumption
can be interpreted in two ways, either intensionally or extensionally [7,35]: (i)
intentionally, the abstract class defined by the semantics of l2 encompasses that
of l1; (ii) extensionally, P2 encompasses P1 in the sense that any instance of P1

either appears directly in P2, or has a sufficiently close neighbour in P2.

4 Methodology

4.1 Framework Overview

Our framework, as shown in Figure 2, operates within the standard paradigm of
BERT fine-tuning for classification. Given a taxonomy, we start by constructing
the training corpus, consisting of instances and preprocessed label paths. A
fast and simple label preprocessing technique (the process Tokenset) is used
both as guidance for negative sampling and as a step in preparing the corpus.
Next, we fine-tune the BERT model using existing positive subsumptions and
negative subsumptions extracted from the previous step. We then use the trained
BERT to obtain either instance embeddings when instances are present, or
path embeddings, when instances are not present or not to be used. We ensure
that instance embeddings contain class label semantics via either an attention
mechanism or a concatenation template. Lastly, we convert the embeddings to
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subsumption predictions with one of three classifiers: feed forward layer, box
embedding, and extensional inference with k-nearest neighbours.

4.2 Sample Construction

The goal of this stage is to obtain two sets of class pairs, one positive and
one negative. The model first stores all the known subsumptions in a sparse
matrix, and constructs the label path for each class. Since any two classes could
potentially be a missing subsumption, it is difficult to safely sample negative pairs
without hitting false negatives. To circumvent this problem, we designed Tokenset,
a process that flattens out labels or paths into a list of keywords, allowing us
to apply a filtering heuristic. Tokenset uses WordNet [25] to tokenise sentences,
give part-of-speech tags to tokens and lemmatise them, as well as to identify and
delete the hypernym in any hypernym-hyponym pair present in the list, thus
removing the main source of noise in paths. An example of tokenset construction
is the Men’s T-Shirt class, whose label path is “Clothing, Shoes & Accessories
→ Men → Men’s Clothing → Shirts → T-Shirts”. Tokenset first produces the
set {clothing, shoe, accessory, men, shirt, t-shirt}, then removes clothing and
shirt in the hypernym reduction phase since both terms are hypernyms of t-shirt.
The final representation {men, accessory, t-shirt, shoe} contains all the relevant
information, i.e., men and t-shirt, and is much more concise. Accessory and shoe
were not removed by this process because they are the irrelevant terms in a
three way disjunction (“Clothing, Shoes & Accessories” really means “clothing” ∨
“shoes” ∨ “accessories”), and deletion of such terms would require construction of
logical expressions from natural language, which adds further complexities; we
leave this for future study.7

Once we obtain the abridged tokensets for two classes, we count the number
of unique tokens that appear in one set but not the other. Such tokens usually
represent semantic constraints that are unique to one of the classes. Taking into
account the case where a tokenset may contain a hyponym of the other set’s
token, we apply the following criterion for negative sampling:

|Tokenset(l1 ∪ l2)| −max (|Tokenset(l1)|, |Tokenset(l2)|) > 2 (2)

The equation demands that both tokensets contain at least three elements
that are unique to themselves. It is very unlikely that classes satisfying this
condition have a subsumption relationship.

We use all direct positive subsumptions as the positive set. For every positive
pair (C1, C2), we replace C2 with a random class and add the resulting pair to
the negative set if the above negative sampling criterion is satisfied.

7 The difficulty of such task is illustrated by labels featuring a mixture of conjunction
and disjunction, e.g., Suit Jackets & Blazers, which means “Suit Jackets” ∨ “Blazers”,
and North & Central America, which means “North America” ∨ “Central America”.
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4.3 Corpus and Fine-tuning

The tokenset representation obtained above is close to the actual training corpus.
In order to facilitate BERT’s understanding of this unusual type of input, we place
a fixed template “A category of products defined by:”8 before the tokenset.
The final input for Men’s T-Shirts is therefore “A category of products
defined by: t-shirt, men, accessory, shoe”. The phrasing of this template
is empirical, but the idea is to formulate the keyword-like taxonomic path as
natural language. Evaluation results in the next section make it clear that such
templates improve performance dramatically. A speculative explanation is that
these templates establish the context for BERT so that it reads the following
tokenset as related to categorisation, rather than as a random collection of words.
A recent prompt learning study [17] reveals a similar phenomenon on GPT-3,
another large PLM. It may be possible to improve the proposed templates by
fine-tuning the embedding of the template tokens, similarly to learning a soft
prompt[21]; we leave this for future study.

We denote the templated tokenset for a class Ci as li
∗
. The actual fine-tuning

task adds a feed forward layer on top of BERT as a classifier head for binary
classification. For a pair (C1, C2), we feed the standard classification template
[CLS] l1

∗
[SEP] l2

∗
into the model. In fine-tuning, we shuffle the order of tokens

within each tokenset to prevent the model from simply learning to match exact
sequences. The classifier uses the output of [CLS] token, a 768-dimensional vector
as input, and returns a score s ∈ [0, 1] indicating the predicted subsumption
likelihood. We use cross entropy loss over the corpus as the training objective,
and fine-tune the BERT and the classifier jointly using an Adam optimiser[16].
We do not use instance data for fine-tuning because most instance data are noisy
and have poorer quality compared to the human curated class labels.

4.4 Prediction

Prediction without instances When instances are not present or are disabled,
the model makes predictions with the feed forward NN classifier fine-tuned in
section 4.3. A broad list of candidate class pairs is either externally provided
or manually generated. There is no single best method of generating candidate
pairs, and we generate by ranking nearest neighbours w.r.t. Euclidean distances
between the classes’ embeddings. Note that the class embedding is the [CLS]
token output of the fine-tuned BERT given the class’s preprocessed tokensets.
For each candidate, we take the output of the classifier directly as prediction.

Prediction with instances The prediction process is very different when
instances are involved. First, the model input is no longer templated tokensets
but instance labels. The model yields an embedding for each instance, where we
apply either of the following two techniques to ensure the presence of class label
information in item embeddings:
8 For the Chinese AliOpenKG dataset (see section 5.1), the template is “产品类目：”
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– Attention. For an instance p = t1t2 . . . tk in a class with path l, we first sep-
arately compute the sentence embedding of l

∗
, denoted el, and the contextual

individual token embeddings of t1, t2, . . . , tk, denoted E = [e1, e2, . . . , ek]
T .

The final instance embedding is a weighted sum of individual embeddings,
where the weights are given by a softmax over the dot products between ei
and el:

e = softmax(
elE

T

√
d

)E (3)

where d = 768 is the embedding dimension. As an example, Figure 3 shows
the learned attention weights for the item titled “Original Kawasaki T-Shirt
Iron-On Vintage 70s UNUSED Transfer” w.r.t. the category Men’s Vintage
T-Shirts. Attention places a higher weight on tokens closer to the label-based
embedding, and consequently the instance embeddings gravitate towards it.

– Concatenation. Another approach is to concatenate the instance and label
using the template “[CLS] Item: p in the category defined by: l

∗
”, which may

vary for different taxonomies. For instance, we use “[CLS]产品名：p，类
目：l

∗
” for the AliOpenKG dataset.

Fig. 3: Attention weights of tokens in an item title given the preprocessed label
path “vintage, accessory, t-shirt, men, specialty, shoe”.

After we embed each instance for both classes, we effectively have two vector
clusters and the goal is to decide if one cluster encompasses the other. One of
the following three classifier heads is used to obtain a prediction:

– Feed forward. As in the case without instances, we use the BERT with feed
forward classifier. However, since the object is no longer a single sentence, we
perform a simple but widely used ensemble technique, i.e., for each instance
in the subclass, we pair it with a random instance in the superclass, predict
each pair and report the average score.

– Box embedding. The motivation for using box embedding is to “draw a box
around the cluster” and leverage the geometric properties of boxes. However,
the 768 dimensional space where BERT outputs reside is not suitable for box
embeddings, as volume and intersection become extremely unstable at such a
high dimension. Moreover, the vector clusters are often anisotropic and have
irregular shapes. As such, we train a multilayer perceptron (MLP) that uses
the means and standard deviations of a cluster along each dimension as input
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features, and projects this 1,536 dimensional feature to a low dimensional
GumbelBox embedding[8]. The training data for this MLP is based on the
same corpus for fine-tuning, with the label paths replaced by pre-computed
features for each class. We employ the KL-divergence loss and use an Adam
optimiser. The proportional box overlap |c1∧c2|

|c1| is reported as the final score
of the subsumption (C1, C2), where | · | measure the volumn of a box, c1 and
c2 denote the boxes of C1 and C2, respectively.

– Extensional inference with k-NN. In the problem statement, we inter-
preted a possibility for subsumption as the instances of the parent encom-
passing those of the child. We call this approach extensional inference as
the idea can trace its roots to the logical definition of hyponymy, where a
hypernym tends to have wider extension (or more objects) than its hyponym
[7,35,11]. We can thus find a concrete formulation of such idea in the context
of two vector clusters of C1 and C2, given as:

C1 ⊆ C2 ↔ ∀x ∈ V (C1).∃ y ∈ V (C2). (∥x− y∥ ≤ d0) (4)

where V (·) denotes the vectors of a class. In other words, all instances in the
subclass’s cluster are within distance d0 from some instance in the superclass’s
cluster in embedding space, for some constant d0 to be determined empirically.
When the sizes of clusters are not formidably large, it is possible to chase
this definition directly, and the resulting algorithm is a k-nearest neighbours
(k-NN) with k = 1. Perfect containment is rarely feasible in reality, so we
change the universal quantifier in the definition above to measuring the
percentage of subclass instances that have sufficiently close neighbours in
the superclass, reporting this percentage as the prediction score. Existing
similarity searching libraries like Faiss [14] can speed up k-NN computation.
This bruteforce approach can be seen as an upper bound for any prediction
method based on vector clusters. While it is slow and consumes massive
memory storing all the vectors, it utilises full, uncompromised information
from the instances, whereas box embedding loses significant information when
downsampling the n×768 vector cluster to a 2×768 feature. Our expectation
in evaluation is therefore not for the box embedding approach to beat k-NN,
but to approximate k-NN to a sufficient degree.

5 Evaluation

5.1 Datasets and setup

We conduct experiments on two taxonomies, the eBay taxonomy and the tax-
onomy extracted from the AliOpenKG ontology9. Since AliOpenKG stores the
classes and instances separately as TBox and ABox, we take the subset of TBox
formed by product categories under rdfs:subClassOf, and link it with the subset
of ABox formed by the label and category membership for each item. We publish
9 https://ali.openkg.org/

https://ali.openkg.org/
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this extracted dataset for benchmarking in other e-commerce curation tasks.
Table 1 lists basic statistics for the two datasets. Note that both taxonomies in
their original form are trees, therefore the number of direct subsumptions is one
less than the number of classes.

Table 1: Metadata of the taxonomies used in evaluation
Taxonomy #Classes Max depth Avg. depth #Instances Language

eBay 16,888 6 4.223 6.4M English
Alibaba 7,100 4 3.896 3.1M Chinese

Task. Manual labelling of subsumptions is difficult and expensive. Therefore, we
evaluate by predicting masked subsumptions in the taxonomy. We hold out 10% of
the direct subsumptions for testing, 10% for validation and use the remaining 80%
for training. Note that membership of instances is inherited along the hierarchy,
meaning that the non-leaf classes will automatically include instances from all
their descendants, obtained by transitive closure of the direct subsumptions. We
sample instance memberships prior to masking. To reflect masking and avoid
data leakage, we remove some memberships and truncate some paths accordingly.

Metrics. We report results for mean reciprocal rank (MRR), hits@5 (H@5),
precision (P) and recall (R). For each testing or validating subsumption (C1, C2),
we create a set of negative subsumptions by replacing C2 with false subsumers.
False subsumers come from two sources:

1. Random classes that pass the Tokenset negativity test, which serve as the
easy negatives.

2. Taxonomic neighbours. We consider the taxonomy as a graph and enumerate
C2’s distance-1 and distance-2 neighbours. These classes will be the grandpar-
ents, parents, siblings, children and grandchildren of C2. We select random
classes from this pool and add them to the negative set if the selected class
does not subsume C1 in the original taxonomy. This process is repeated
until either n negatives are found or the pool is exhausted, in which case we
consider the distance-3 neighbors, then distance-4 neighbours, etc. We set
n = 20 for both datasets. These classes serve as the hard negatives.

We maintain a 1:1 ratio of easy and hard negatives. The ranking set for each
subsumption is therefore {C2, Cneg1, . . . , Cneg2n} with a size of 41. To calculate
P and R, we set a prediction threshold for each model by optimising F1 on the
validation set, and apply the threshold to prediction scores on ranking sets.

Model. The eBay dataset is processed with bert-base-cased, while the Alibaba
dataset is processed with bert-base-chinese. Both models can be found at
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HuggingFace Transformers10, and both are proven to have strong understanding
of generic day-to-day language.

Baselines. Our set of baselines include three well established ontology embeddings,
Onto2Vec [33], OPA2Vec [34], and OWL2Vec* [6], along with BERTSubs, a recent
strong-performing subsumption prediction framework based on BERT fine-tuning
[5]. Note that disabling instance data, path template and tokenset preprocessing
from our method makes it effectively equivalent to the Path Context (PC) variant
of BERTSubs for intra-ontology named subsumption prediction; further disabling
paths, i.e., working with single class labels, is equivalent to the Isolated Class
(IC) variant. Both methods use the output of the [CLS] token to represent a
sequence and feed it to a classifier. Template formulations are identical in the
case of IC, and differ minimally in the case of PC. We also take well-established
ontology embeddings, including Onto2vec, OPA2Vec, and OWL2Vec*, which are
all based on ontology tailored non-contextual word embeddings, as baselines.

Implementation. We ran all the experiments on a 6-core Intel Core i9 computer
with 1x Tesla V100 GPU. We ran 5 epochs for fine-tuning with a learning rate
of 5× 10−5, and 30 epochs for box embedding training with a learning rate of
2×10−5. The MLP in box embedding has 4 hidden layers with a total of 1.9×105

trainable parameters, producing 24 dimensional box embeddings.

5.2 Evaluation results

Table 2 presents the results of our models and the baselines on predicting masked
subsumptions in the eBay taxonomy. A common characteristic of all rows is
that recall is significantly higher than precision, which is a consequence of the
overwhelmingly negative ranking set. To optimise F1, the prediction thresholds
are often set quite low. Consistent with [5], BERTSubs has a significant edge
over ontological embedding baselines, showing the superiority of contextual
word embedding by BERT. Unsurprisingly, the path-only variant outperforms
BERTSubs-IC and BERTSubs-PC, thanks to the template introduced in Section
4.3 and the Tokenset pipeline.

Adding instances results in little if any improvement when the feed forward
ensemble is used as the classifier. However, the benefit of instances gets pronounced
when the classifier is designed for vector clusters. Both box embedding and k-NN
show promising results, and box embedding is able to close the gap with the
bruteforce approach to 2% , while running much more quickly and being more
generalisable (more detailed account on inference speed in section 5.3). Both box
embedding and k-NN substantially outperform the feed forward classifier for two
reasons. First, while BERT has been pre-trained and can handle item titles, the
feed forward layer has not been trained with titles and should not be expected to
perform well on them. Second, the ensemble mechanism does not fully capture the
10 https://huggingface.co/bert-base-cased and https://huggingface.co/

bert-base-chinese

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-chinese
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Table 2: Results of predicting masked subsumptions of the eBay taxonomy
Method Feed forward Box embedding k-NN

P R F1 MRR H@5 P R F1 MRR H@5 P R F1 MRR H@5
Onto2Vec .135 .709 .227 .265 .357 .166 .748 .272 .321 .414 .176 .754 .285 .335 .457
OPA2Vec .160 .732 .263 .308 .401 .182 .781 .295 .347 .437 .189 .776 .304 .359 .462

OWL2Vec* .174 .733 .281 .326 .436 .200 .772 .318 .369 .483 .207 .785 .328 .381 .495
BERTSubs-IC .382 .869 .531 .557 .714 N/A N/A
BERTSubs-PC .197 .840 .319 .493 .625 N/A N/A

Ours: P .544 .872 .670 .601 .768 N/A N/A
Ours: P+I (att) .463 .835 .596 .552 .729 .502 .854 .632 .611 .765 .585 .791 .673 .633 .783
Ours: P+I (con) .456 .862 .596 .555 .736 .493 .840 .621 .618 .758 .588 .810 .681 .629 .786

Legend P : path, I : instances, att : attention, con: concatenation

Table 3: Results of predicting masked subsumptions of the Alibaba taxonomy
Method Feed forward Box embedding k-NN

P R F1 MRR H@5 P R F1 MRR H@5 P R F1 MRR H@5
Onto2Vec .140 .658 .231 .223 .296 .137 .664 .227 .228 .296 .142 .696 .236 .228 .312
OPA2Vec .151 .698 .248 .246 .327 .153 .689 .250 .245 .311 .155 .715 .254 .249 .333

OWL2Vec* .189 .742 .301 .284 .380 .194 .736 .307 .290 .393 .199 .721 .311 .300 .408
BERTSubs-IC .397 .796 .529 .468 .540 N/A N/A
BERTSubs-PC .359 .783 .492 .432 .519 N/A N/A

Ours: P .454 .806 .580 .503 .636 N/A N/A
Ours: P+I (att) .485 .834 .613 .540 .667 .518 .828 .637 .562 .693 .532 .830 .648 .583 .715
Ours: P+I (con) .480 .838 .610 .532 .656 .520 .831 .640 .569 .704 .534 .829 .650 .580 .713

Legend P : path, I : instances, att : attention, con: concatenation

essence of subsumption in the vector cluster context, as defined by Equation (4).
The best results are achieved with k-NN on the attention variant, but otherwise
attention and concatenation remain close in efficacy.

Results on the Alibaba taxonomy, shown in Table 3, displays a similar ad-
vantage for our method. In particular, the addition of instance data now gives
an improvement even with the feed forward ensemble classifier. The baselines
Onto2Vec, OPA2Vec and OWL2Vec* struggle more on this dataset since pre-
trained word embeddings are not available in Chinese. Combined with Table 2,
the results on the two datasets compared against four baselines strongly confirm
the effectiveness of our model.

Ablation studies. We now investigate the individual effects of the template and
Tokenset. Table 4 presents the results on the eBay masked taxonomy recovery
task, using the setting of Path+Instance with attention. A significant loss in
all metrics when the template is removed indicates that setting an appropriate
semantic context is very useful when representing oddly shaped textual data
with BERT and that a suitable template is one way to achieve this. Tokenset
can give an additional boost to performance when the template is present, but
it barely improves efficacy without the template. This suggests that removing
duplicate information from the input may help BERT identify and concentrate
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Table 4: Results of different preprocessing settings on predicting masked sub-
sumptions of the eBay taxonomy

Template Tokenset Feed forward
P R F1 MRR H@5

no no .215 .786 .338 .422 .578
no yes .228 .760 .351 .419 .557
yes no .441 .817 .573 .529 .671
yes yes .463 .835 .596 .552 .729

on key segments related to the problem, but only when the appropriate context
has already been established.

5.3 Observations

Complexities. Due to the downsampling and approximative nature of box em-
bedding based prediction, it is able to save much time and space compared
to k-NN prediction. For a task with m child instances and n parent instances,
k-NN consumes O(m log n) time and O(m + n) space, while box embedding
consumes O(m + n) time and O(1) space. In reality, a single k-NN inference
with m = n = 1000 takes around 0.1s on the hardware in section 5.1, while box
embedding takes a few milliseconds.

Dependency on labels. The Tokenset process makes an important contribution to
our model’s competitive performance, but it also makes a hidden assumption on
class labels. By converting the path to a flat keyword list, Tokenset essentially
treats each label as a conjunction of constraints. This treatment is inappropriate
when the label contains disjunctive parts, as exemplified in Section 4.2. While
disjunction handling could be solved by a more sophisticated approach, there
are taxonomies / ontologies where the labels are convoluted, technical phrases
that any bag-of-words style treatment cannot tackle accurately, e.g., medical
terminology ontologies. Therefore, our approach works well when class labels are
relatively short and concise. Another reason to prefer short labels is that paths
are more valuable in this case. Tokenset is effective in combining information
from multiple labels, since its motivation is to address the scenario where the
class’s own label does not provide a full description, but its path does. This is
the case in most e-commerce taxonomies. One can also apply Tokenset to label
sequences other than paths, e.g., the breadth-first context corpus constructed
in BERTSubs [5]. Overall, the Tokenset preprocessing helps clean noisy labels,
resulting in a more compact contextual representation of the class.

Dependency on instances. For instances to contribute to subsumption prediction,
they must either have good quality, or have abundant quantity that compensates
for the quality. This condition is naturally met in our case of e-commerce taxonomy
with the large pool of items. However, the language models used in our experiments
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are not pre-trained with e-commerce specific corpus, such as queries and item
titles. It is a reasonable assumption that such pre-training can enhance the
model’s understanding of instance data and therefore overall performance. We
will further investigate the role of instances and the impact of their quality in
taxonomy curation in our future work.

6 Discussions and Conclusion

In this paper, we propose a new subsumption prediction model for taxonomies
using PLMs such as BERT, with logical geometric embeddings and inferences.
Inspired by the e-commerce setting, we design our model to utilise both class-level
and instance-level information. At the class level, the model learns meaningful
representations by using a template and preprocessing with lexical semantics
to convert class labels into a concise list of tokens. At the instance level, we
enrich the representations of class labels with instance data, and experiment with
three classifier heads: feed forward, box embedding and extensional inference.
Our evaluation on the eBay taxonomy in English and the Alibaba taxonomy
in Chinese confirms our model’s effectiveness. Furthermore, the experiments
demonstrate the importance of templates and preprocessing, the advantage of
instance-aware models with domain-specific PLM pretraining, and shows that box
embedding is a promising alternative to the computationally expensive bruteforce
method with either the feed forward classifier or direct extensional inference.

While this paper focuses on intra-taxonomy subsumption prediction, the
techniques we describe could be applied to inter-taxonomy/ontology subsumption
prediction. As shown in BERTSubs [5], inter-taxonomy subsumptions and indirect
subsumptions inferred from existential restrictions can be expressed in templates
and captured by PLMs. Furthermore, Tokenset and the modelling of ABox data
can be directly generalised to the cases of inter-taxonomy and ontology.

Finally, we identify a few directions for future work: Multi-modality has drawn
wide attention in recent machine learning and KG research [1,39]. E-commerce
offers an ideal setting for investigating multi-modal KGs and multi-modal learning.
Images, different kinds of properties and property values could be highly valuable
complements to item titles for many taxonomy curation tasks, because most item
titles are phrased to catch the eye and do not prioritise accurate and complete
description of the item. Another interesting extension of this work would be
taxonomy enrichment by inferring new classes from existing classes. In Figure
1, we notice that applying facet constraints in different orders can lead to valid
classes that are missing in the current taxonomy, e.g., Vintage Clothing, a concept
that is currently split into Men’s Vintage Clothing and Women’s Vintage Clothing
but does not exist on its own. The identification of these missing classes requires
no external information, and in a sense fills the semantic “holes” of the taxonomy.
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