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Abstract. Dow Jones is a leading provider of market, industry and port-
folio intelligence serving a wide range of financial applications including
asset management, trading, analysis and bankruptcy/restructuring. The
information needed to provide such intelligence comes from a variety
of heterogeneous data sources. Integrating this information and answer-
ing complex queries over it presents both conceptual and computational
challenges. In order to address these challenges Dow Jones have used the
RDFox system to integrate the various sources in a large RDF knowledge
graph. The knowledge graph is being used to power an expanding range
of internal processes and market intelligence products.

1 Background and Motivation

Dow Jones is a leading provider of market, industry and portfolio intelligence
serving a wide range of financial applications including asset management, trad-
ing, analysis and bankruptcy/restructuring.4 Dow Jones supports businesses,
governments and financial institutions with award-winning journalism, deep con-
tent archiving and indexing, robust data sets, and flexible information tools; it
provides a portfolio of information solutions covering diverse customer needs in-
cluding uncovering market advantage, integrating data into workflows and man-
aging risk. The goal of Dow Jones is to deliver trusted news and data that can
help businesses and society to make better decisions.

High quality market intelligence is critical to corporate decision making. For
example, decision makers in a given company may need to be alerted to news
items about competitor companies that operate in a related sector to themselves
or one of their subsidiaries. The information needed to answer such questions can
come from a wide range of heterogeneous sources, including structured sources
such as company data and financial data, and unstructured sources such as news
feeds. This data needs to be integrated so as to allow for suitable queries to be
formulated across multiple sources. This can be very challenging: even if the
data from all sources is loaded into a single database, the resulting schema can
be very complex, and formulating suitable queries can be very difficult, requir-
ing a combination of knowledge and expertise in the domain, the data sources
and the query language. Moreover, the resulting queries can be computationally
challenging for a typical database system.

4 https://www.dowjones.com/
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The solution adopted at Dow Jones is to use relevant information from mul-
tiple sources to construct a large RDF knowledge graph. This is achieved by
using the standard direct mapping to transform structured sources into RDF
triples [3], and by using an NLP process to extract relevant facts from news
feed articles and transform them into triples. Fast loading and updating of the
graph is critical to the feasibility of this approach: the graph currently consists
of approximately 2.6 billion triples, and while some of these are derived from
relatively static data sources (such as company data) others come from rapidly
changing sources (such as news feeds).

The knowledge graph will power a wide range of internal processes and mar-
ket intelligence products, with knowledge from the graph being accessed via
SPARQL queries [6]. For example, Dow Jones researchers maintain data about
competitor relationships between companies, and to support this they use an
in-house tool to explore information about companies and their relationships
retrieved from the graph via back-end SPARQL queries. Using SPARQL queries
over the knowledge graph provides applications with both power and flexibility,
but it means that fast SPARQL query answering is critical in order to provide
acceptable response times in applications.

In order to meet these requirements, Dow Jones has chosen to use the RDFox
knowledge graph system. RDFox provides fast parallelised data loading and is
able to load all 2.6 billion triples in approximately 26 minutes using only a
relatively modest 4 vCPU server; it also supports incremental updates, and can
add/delete several thousand triples per second. RDFox also provides a highly op-
timised SPARQL engine which not only exploits novel in-memory data structures
but also employs sideways information passing to optimise complex SPARQL
queries; as a result, typical queries can be answered in milliseconds, and even
hard “stress-test” queries can be answered in only a few seconds.

In the remainder of the paper we will provide more details about the con-
struction of the knowledge graph and how it is used in applications (Section 2);
review the relevant features of RDFox, and in particular the data loading and
query answering capabilities that are critical in this setting (Section 3); present
some data on system performance (Section 4); and discuss future plans for ex-
tending the system and its application (Section 5).

2 Knowledge Graph Construction and Applications

2.1 Knowledge Graph Construction

The knowledge graph integrates data from a wide range of sources that are
maintained by and hosted in various different parts of the company. The majority
of the data comes from the following sources:

– Basic information about companies. This is stored in a relational database
and consists of basic information about more than 70 million companies
including name, address, normalized code for the region of the address, in-
dustry codes (NAICS, SIC, NACE), other identifiers (such as DUNS or LEI),
and other name aliases that might be found in news feeds.
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– Company hierarchy information. This is stored in a relational database and
consists of information that links a DUNS coded company to its parent
company, forming a company hierarchy graph in relational form.

– Executives. This is stored in a relational database and consists of information
about more than 140 million company executives including their name, the
companies that they are associated with and the roles that they play in these
companies.

– Stock information about companies This is stored in a relational database
and consists of information about approximately 100,000 company stock
market listings including their stock ticker (a unique identifier assigned to
each security traded on a particular market), whether this is the main listing
or not, and in which stock exchanges they are listed.

– Stock exchanges. This is stored in a CSV file and consists of information
about stock exchanges including their name, location and relationship to
other exchanges. The data is publicly available and can be accessed from
https://www.iso20022.org/market-identifier-codes.

– Geonames. This is a public domain geographical names database derived
from official public sources, and extended and improved via crowdsourcing. It
consists of information about more than 25 million locations, including name
variants, latitude, longitude, elevation, population, etc. The data is already
available as RDF and can be accessed via https://www.geonames.org/.

The relational data sources are transformed into RDF triples via the standard
Direct Mapping of Relational Data to RDF [3]. A similar process is used to
transform the CSV data into RDF. The Geonames data is already in RDF form.
Integration of this data is relatively straightforward as the structured sources are
well curated, and include industry standard identifiers such as ticker symbols,
DUNS numbers, and NAICS codes. Some cleanup of ”messy” identifiers may be
required in the future if other data sources are added, but this is not currently
an issue for Dow Jones.

The above sources yield a total of approximately 2.3 billion triples, and con-
stitute about 90% of the triples in the knowledge graph. These sources are con-
tinuously curated and updated, but the rate of change is relatively low, and
in order to simplify the system architecture the whole ETL process is simply
repeated once per month.

In addition to this relatively static data, the graph also includes data ex-
tracted from financial news articles from several sources:

– Articles from Dow Jones publications including the Wall Street Journal,5

Market Watch6 and Baron’s Magazine.7 Approximately 7–10 thousand such
articles are available at any time, and this set is constantly changing as old
articles are deleted, new articles are added and existing articles are edited.

5 https://www.wsj.com/
6 https://www.marketwatch.com/
7 https://www.barrons.com/
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– Articles from the Dow Jones Factiva feed.8 Approximately 150–250 thousand
such articles are available at any time, and like the Dow Jones articles the
set of available articles is constantly changing.

Each available Dow Jones article is represented by an entity in the knowl-
edge graph, along with meta-data such as its title, news topics, and companies
and regions mentioned. Some of this meta-data is available directly, but some,
such as companies and regions mentioned, must be extracted from the text. This
is done using a custom NLP process that extracts not only this kind of meta-
data, but also so called signals that indicate relevant events such as earnings
announcements, initial public offerings (IPOs), acquisitions, mergers and Chap-
ter 11 bankruptcy filings. Each such signal is also represented by an entity in
the graph. The data extraction process exploits domain knowledge stored in the
graph and uses it to identify target entities (such as companies and regions), and
is designed so as to be easily adaptable to capture any kind of entity or signal
that might be of interest to Dow Jones customers, and that might help them to
identify relevant news content. Article and signal meta-data is stored as triples
in the knowledge graph associated with the relevant article and signal entities;
additional triples link signal entities to relevant articles, companies, regions, etc.

Articles from the Factiva feed are processed in the same way, but due to the
very large number of such articles they are only stored in the graph if they are
found to contain relevant entities or signals.

The above process typically yields in the range of 4-5 thousand new signals
each day, amounting to approximately 30–40 thousand triples. These are added
to the knowledge graph incrementally, which takes only a few seconds. At the
same time, triples relating to older articles that have been deleted from the
relevant news-feeds are removed from the knowledge graph; this is again done
incrementally, and again requires only a few seconds.

When signals are first added to the knowledge graph they are marked as
“potential” by adding a suitable triple to the signal entity. Potential signals are
checked and curated by human experts, and if confirmed the “potential” triple is
deleted; otherwise the whole signal is deleted. These deletions are again achieved
via incremental updates; such updates involve deleting only a small number of
triples, which typically requires only a few milliseconds.

Finally, Dow Jones also maintains data about competitor relationships be-
tween companies. This data is actively curated on a continuous basis using an
in-house tool that exploits knowledge graph queries to identify and analyse pos-
sible competitors. The resulting competitor relationship data is stored back into
the knowledge graph. This is again realised via incremental updates; as in the
case of signal curation, the number of triples involved in each update is relatively
small and such updates can be performed in only a few milliseconds.

When all these sources are loaded into RDFox the resulting knowledge graph
contains approximately 2.6 billion triples.

The resulting graph structure is very simple. The Direct Mapping of rela-
tional sources produces a structure that directly mimics the source tables; ar-

8 https://factiva.com/
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ticles and signals are represented by single entities, with attached (meta-) data
triples; and triples are used to link signals, articles and other entities in the
graph. Dow Jones have chosen to use the W3C Shape Expressions Language
(ShEx) to describe this structure [18]. This could in principle be used for data
validation, but it is used at Dow Jones simply to document the graph struc-
ture. Dow Jones application developers and knowledge engineers use the ShEx
schema to help them to write queries, and they chose ShEx over SHACL [19]
for this purpose because they find ShEx syntax to be more natural and easier
to understand. For example, the following extract specifies the graph structure
of stock listings:

cande-shex:StockListing {

a [ cande:StockListing ] ;

cande:lists_company IRI // orm:continuation cande-shex:Company ;

cande:has_ticker_symbol xsd:string ;

cco:designated_by @cande-shex:StockListingIdentifier * ;

cande:listed_in IRI // orm:continuation cande-shex:StockExchange ;

cande:is_primary_listing xsd:boolean ;

}

cande-shex:StockListingIdentifier {

a [ cande:SEDOL cande:ISIN cande:CUSIP ] ;

common:id_literal xsd:string ;

}

From this the developers and engineers can quickly identify the relevant pred-
icates for accessing information about stock listings, e.g., they can access the
ticker symbol via the cande:has ticker symbol predicate, and for navigating
to other entities, e.g., they can navigate to the relevant company entity via the
cande:lists company predicate; moreover, they can see that the structure of
companies is specified by the shape expression cande-shex:Company.

As mentioned above, ShEx could in principle be used for data validation,
but it is not supported by RDFox. However, it would be an easy matter to
translate ShEx into SHACL, which is supported by RDFox, if data validation
were required.

2.2 Knowledge Graph Applications

The knowledge graph can be used to answer questions that would be difficult
or impossible to answer without integrating multiple data sources. For example,
given a company C specified by <companyIri>, the following query Q1 retrieves
competitor companies that are listed in the stock exchange and are in the same
or related sector as C or that are in the exact same sector as one of C’s direct
subsidiaries:

SELECT DISTINCT ?competitor ?industryCode ?industryCodeType

WHERE {

BIND(?company AS <companyIri>)

{

?company cande:has_industry_code/skos:relatedMatch/^skos:relatedMatch
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?industry .

} UNION {

[] cco:is_subsidiary_of ?company ;

cande:has_industry_code ?industry .

}

?industry a ?industryCodeType ;

cande:has_id ?industryCode .

FILTER(?industryCodeType IN (djid:DJIDCode, djn:DJNCode, naics2017:NAICSCode))

?competitor cande:has_industry_code ?industry .

[] cande:lists_company ?competitor ;

}

Answering this query requires integrating basic company data, company hierar-
chy data, competitor relationships data and stock listings data. Such queries can
be relatively easily constructed by consulting the ShEx specification outlined in
Section 2.1 above.

The knowledge graph can power a wide range of internal processes and market
intelligence products. One such internal process is the construction of the knowl-
edge graph itself, and in particular the extraction of signals from news articles.
Here the knowledge graph is used to support validation and disambiguation; for
example, if the we find a potential signal of the form A is buying B, then A and
B should both be companies, and should be identified with specific companies
represented in the knowledge graph.

Another example is the identification of competitor relationships between
companies. As already mentioned in Section 2.1, data about competitor rela-
tionships is stored in the knowledge graph and is presented to customers in
“quote pages” which provide detailed information about given companies. Dow
Jones researchers continuously curate this competitor data using a tool that sup-
ports identifying and exploring possible competitors. Users can specify a range
of different search parameters and filters, and these are converted into SPARQL
queries over the knowledge graph which return (details about) relevant compa-
nies; see, for example, query Q1 above. Queries are constructed using templates
whose slots can be filled with values derived from the user-specified search and
filter parameters; in the case of Q1, the company of interest can be specified in
<companyIri>. The system is designed so that it is easy to add new parameters,
filters and query templates as needed to meet user requirements.

An example of a product in which the knowledge graph will be used is the
Wall Street Journal (WSJ) Bankruptcy Pro.9 This product provides a searchable
archive of relevant articles, and supplements articles with important data such
as competitor analyses, risk factor identification, capital structure, credit ratings
and recent filings. Users can specify a range of different search parameters and
filters, and these will be converted into SPARQL queries over the knowledge
graph which return (pointers to) relevant articles and data. Queries will be con-
structed using templates in the same way as for the competitor research tool
described above.

9 https://wsjpro.com/
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The knowledge graph will also enable a range of new and more powerful
applications that are currently under development including, e.g., personalised
recommendations for customers, including recommending relevant authors and
news articles, analysis of investment risk factors, and checks on regulatory com-
pliance. Many of these applications will involve heavy use of RDFox’s reasoning
capabilities.

3 RDFox

As we have seen in Sections 2.1 and 2.2, construction and maintenance of the
knowledge graph depends on fast loading and updating of triples, while appli-
cations of the knowledge graph depend on fast responses to SPARQL queries.
These were the main considerations that led Dow Jones to select the RDFox
system.

RDFox is a high performance knowledge graph and semantic reasoning en-
gine. Originally the result of research at the University of Oxford [14], RDFox
is now developed and marketed by Oxford Semantic Technologies.10 RDFox ex-
ploits a patented in-memory architecture and parallelised computation to pro-
vide high performance for data loading, reasoning and query answering. Key
features of RDFox include:11

– RDF triples, rules, and OWL 2 [17] and SWRL [8] axioms can be imported
either programmatically or from files in a range of formats including tur-
tle, datalog and OWL. RDF data can also be validated using the SHACL
constraint language.

– Information can be accessed directly from external data sources, such as
CSV files, relational databases, and Apache Solr.12

– Triples, rules and axioms can be exported into a number of different formats,
and the contents of the system can also be (incrementally) saved into a binary
file, which can later be used to restore the system’s state.

– Multi-user support with ACID transactional updates [5].
– Access control allows for individual information elements in the system to

be assigned different access permissions for different users.
– Full support for SPARQL 1.1, and functionality for monitoring query an-

swering and accessing query plans.
– Materialization-based reasoning, where all triples that logically follow from

the triples and rules in the system are materialized as new triples.
– Incremental update of materialized graphs: reasoning does not need to be

performed from scratch when the information in the system is updated.
– Explanation of reasoning results: RDFox is able to return a proof for any

new fact added to the store through materialization.

10 https://www.oxfordsemantic.tech/
11 See https://arxiv.org/pdf/2102.13027.pdf for a survey of RDF stores and their fea-

tures.
12 https://solr.apache.org/
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Fig. 1. RDFox Architecture

Figure 1 illustrates RDFox’s basic features and functionality. At startup,
RDFox can load data, rules, axioms and constraints in a range of different for-
mats as described above. It is also possible to import data directly from external
legacy sources including relational databases, CSV files and Apache Solr. Alter-
natively, the system can be restored from a previous state saved in a binary file.
An important feature in the Dow Jones application is that RDFox can import
multiple sources in parallel, and we will discuss this in more detail below.

After loading, RDFox performs materialization-based reasoning and con-
straint validation using a parallelized variant of the seminäıve algorithm [1, 13]
(see Section 3.1). Once the initial materialization process is complete the store
is ready for subsequent operations including querying and incremental updat-
ing. Access control and ACID transactions allow for control over user access to
data and ensure predictable behaviour when multiple users are updating the
store. The state of the system can also be saved in a binary file for subsequent
reloading.

Incremental updates can include deletion and addition of data, and also dele-
tion and addition of rules, axioms and constraints. RDFox deals with such up-
dates using FBF, a novel extension of the delete and rederive (DRed) view main-
tenance algorithm that avoids excessive overdeletion [11, 12]. Like data loading,
incremental updates are parallelized for improved performance. RDFox uses a
highly optimised SPARQL engine with sideways information passing; this is an-
other important feature in the Dow Jones application that we will discuss in
more detail below. Each query is evaluated on a single thread, but multiple
queries can be evaluated in parallel using multiple threads.

3.1 Parallelized Materialization

As already mentioned, RDFox materializes all implied triples using a parallelized
variant of the seminäıve algorithm [1, 13]. The triples that make up the RDF
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Fig. 2. Data Structure for Storing RDF Triples

graph are stored in a table. The triples are considered one at a time and matched
to the rules, with parallelization being achieved by assigning triples to available
threads. For example, given the following rules

⟨?x,C, ?y⟩ ∧ ⟨?y,E, ?z⟩ → ⟨?x,D, ?z⟩ (R1)

⟨?x,D, ?y⟩ ∧ ⟨?y,E, ?z⟩ → ⟨?x,C, ?z⟩ (R2)

and a triple ⟨a,E, b⟩, a thread will match it to the triple E(?y, ?z) in rule (R1)
and evaluate subquery ⟨?x,C, a⟩ to derive triples of the form ⟨?x,D, b⟩, and it
will handle rule (R2) analogously. We thus obtain independent subqueries, each
of which is evaluated on a distinct thread. The difference in subquery evaluation
times is irrelevant because of the large number of queries (i.e., proportional to
the number of triples) so threads are fully loaded.

A näıve application of this idea would be inefficient: if we have triples ⟨a,C, b⟩
and ⟨b, E, c⟩, then we would derive the triple ⟨a,D, c⟩ twice—that is, we would
consider the same rule instance twice. To address this source of inefficiency, the
seminäıve algorithm evaluates subqueries only over the triples that appear before
the triple being processed. For example, if ⟨a,C, b⟩ is processed first, then ⟨b, E, c⟩
will not be visible to the subquery and ⟨a,D, c⟩ will not be derived; however,
when ⟨b, E, c⟩ is processed, ⟨a,C, b⟩ will be visible to the subquery and ⟨a,D, c⟩
will be derived.

To support this idea in practice, RDFox uses patented data structures that
support both efficient evaluation of subqueries and efficient parallel updates [13,
9]. Like systems such as Hexastore [20] and RDF-3X [16], RDFox maintains
indexes over stored triples to support efficient (sub)query evaluation; RDFox,
however, uses hash-based indexes that allow for efficient ‘mostly’ lock-free par-
allel updates [7]: most of the time, at least one thread is guaranteed to make
progress regardless of the remaining threads.

RDFox stores triples in a six-column triple table as shown in Figure 2. As
usual in RDF systems, resources are encoded as integer IDs using a dictionary,
with IDs produced by a counting sequence so they can be used as array indexes.
Columns Rs, Rp, and Ro contain the integer encodings of the subject, predicate,
and object of each triple. Each triple participates in three linked lists: an sp-list
connects all triples with the same Rs grouped (but not necessarily sorted) by
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Rp, an op-list connects all triples with the same Ro grouped by Rp, and a p-list
connects all triples with the same Rp without any grouping; columns Nsp, Nop,
and Np contain the next-pointers. Triple pointers are implemented as offsets into
the triple table.

RDFox maintains various indexes to support matching triples with different
binding patterns (i.e., different configurations of variables in the triple). For
example, index Is maps each s to the head Is[s] of the respective sp-list; to
match a triple ⟨s, ?y, ?z⟩ in I, we look up Is[s] and traverse the sp-list to its
end; if ?y =?z, we skip triples with Rp ̸= Ro. Index Isp maps each s and p to
the first triple Isp[s, p] in an sp-list with Rs = s and Rp = p; to match a triple
⟨s, p, ?z⟩ in I, we look up Isp[s, p] and traverse the sp-list to its end or until we
encounter a triple with Rp ̸= p. Index Ispo contains each triple in the table, and
so it can match fully specified triples ⟨s, p, o⟩. Other indexes include Ip, and Io
and Iop. Indexes Is, Ip, and Io are realised as arrays indexed by resource IDs.
Indexes Isp, Iop, and Ispo are realised as open addressing hash tables storing
triple pointers.

Lock-freedom is achieved using compare-and-set (CAS) instructions:
CAS(loc, exp, new) loads the value stored at location loc into a temporary vari-
able old, stores the value of new into loc if old = exp, and returns old; hardware
ensures that all steps are atomic (i.e., without interference). CAS can be used
directly to update the linked lists in the triple table. For example, if thread T 1

has added a triple ⟨1, 3, 6⟩ to the table and is trying to add it to the Nsp list after
the triple ⟨1, 3, 2⟩, then T 1 will set the Nsp pointer of the ⟨1, 3, 6⟩ entry to point
to the Nsp pointer from the ⟨1, 3, 2⟩ entry and will use a CAS instructions to
try to set the Nsp pointer from the ⟨1, 3, 2⟩ entry to point to the ⟨1, 3, 6⟩ entry;
if the CAS instruction fails, then some other thread must have changed the Nsp

pointer, in which case T 1 repeats the insertion procedure.
The process of adding a new triple to the table is more complex as one must

atomically query Ispo (to check for duplicates), add the triple to the table, and
update Ispo. To do this, RDFox implements a form of localised locking: if a
thread does not find the new triple in Ispo, then it identifies a suitable empty
bucket and tries to lock it by using a CAS instruction to store a special marker
in the bucket. If this fails then some other thread may have already inserted the
same triple, and so the whole operation is repeated beginning with the query
to Ispo. If the CAS instruction succeeds, then we can add the new triple to the
table, store it in the bucket (effectively releasing the localised lock), and then
update all remaining indexes. In the meantime, we make sure that other threads
do not skip over the bucket until the marker is removed.

3.2 Parallelized data loading

Although originally designed to support parallelized materialization, the lock-
free data structures described in Section 3.1 also allow for the parallelization of
data loading. This can be achieved simply by assigning a thread to each data
source to be loaded. Each thread can then add triples to the triple table in the
same way as the multiple threads used for materialization.
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Additionally, when data is being loaded from files containing RDF triples in
turtle format, each file can use one thread for parsing and multiple threads for
adding parsed triples to the triple table. Parsing is single threaded because the
syntax of IRIs makes it difficult to parallelize, and in any case parsing is typically
much faster than adding triples to the data structures, so a single parser thread
can keep several data addition threads fully occupied. If the data is split into
multiple files, then these can be loaded in parallel using multiple threads.

3.3 SPARQL query answering

The indexed triple table described in Section 3.1 is designed to support efficient
(sub)query evaluation during materialisation and so already supports efficient
join evaluation in SPARQL query answering. However, SPARQL queries can be
(heavily) nested; i.e., the outer level query can have sub-queries as components.
A simple example is a query Q = Q1 MINUS Q2. In this case query Q is made
up of two sub-queries Q1 and Q2, with the answer to Q being the answer to Q1
minus the answer to Q2. Note that Q1 and Q2 could themselves contain sub-
queries and that this nesting of queries can continue to arbitrary depth. In order
to make query answering be more efficient and to use less memory we want to
evaluate the query “top-down”, that is, starting with the outer level queries and
working inwards. In our example, a näıve “bottom-up” method would compute
the answers to Q1 and Q2, and then subtract the answer to Q2 from the answer
toQ1; however, this would require computing and storing the full answers to both
sub-queries. In our “top-down” method we would iterate through the answers
to Q1, and for each such answer we would check if it is also an answer to Q2,
retaining it as an answer to Q only if it is not an answer to Q2. This requires
very little storage, and only requires us to check Q2 for tuples that we already
identified as answers to Q1. This technique is known in the literature as Sideways
Information Passing (SIP) [1]; in our example, information about answers to Q1
is passed “sideways” to Q2.

The above example is relatively simple, but SPARQL is a large language con-
taining many operators for modifying and combining queries (Filter, Bind, And,
Union, Minus, Distinct, Project, etc.) as well as a large number of built-in func-
tions for manipulating values including, e.g., arithmetic functions (plus, minus,
etc.), aggregation (sum, max, min, etc.) and string manipulation (concatenate,
sub-string, etc.). It is extremely challenging to design a SPARQL query evalu-
ation algorithm that maximises the efficiency benefits of SIP while at the same
time guarantees to conform to the SPARQL semantics, i.e., to compute the same
answers as would be computed by a näıve bottom-up method. Neumann and
Weikum presented a SIP algorithm for basic SPARQL pattern matching queries
[15], but this doesn’t consider nested queries using some or all of the above
mentioned features. RDFox uses a patented algorithm that extends SIP optimi-
sation to arbitrary queries by compiling the query into a tree and introducing
variable normalisation and expansion nodes as needed to ensure safe application
of SIP [10]. The combination of SIP and the optimised data structures discussed
in Section 3.1 allow for extremely efficient evaluation of SPARQL queries: most
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queries used in applications of the Dow Jones knowledge graph can be answered
in only a few milliseconds, and even the most complex queries require only a few
seconds (see Section 4).

4 Performance

In this section we present some performance data for RDFox using both standard
benchmarks and the Dow Jones knowledge graph.

4.1 Test Data and Environments

For standard benchmarks we used both LUBM and WatDiv [4, 2]. We used a
version of LUBM with 10,000 universities (LUBM-10k), which comprises ap-
proximately 1.3 billion asserted triples, with a further approximately 0.5 billion
triples added via materialisation of (rules derived from) the LUBM ontology; the
graph for query answering therefore comprises approximately 1.8 billion triples.
We used WatDiv 100M, which comprises approximately 150 million asserted
triples; WatDiv does not have an ontology. Each benchmark comes with a stan-
dard set of test queries. These tests used RDFox 5.4.0 running on a c5.18xlarge
AWS instance with 3.0 GHz Intel Xeon processors, 72 vCPUs and 144 GiB of
RAM.

For the knowledge graph tests we used the Dow Jones Knowledge Graph
(DJKG) described in Section 2.1, which comprises approximately 2.6 billion
triples, and a set of three test queries:

Q1 retrieves all the signals and their properties that were derived from an En-
glish language article that was published between 2020-05-24 and 2020-05-26,
and that talks about either Africa or North America.

Q2 retrieves all the signals and their properties that were derived from an En-
glish language article that was published between 2020-01-01 and 2020-09-28,
and that talks about a company with a given identifier.

Q3 retrieves the number of different companies in the knowledge graph grouped
by identifier type, industry, and country.

Q1 and Q2 are typical application queries; Q3 is not a realistic application
query but is designed to stress-test SPARQL query engines. The SPARQL for
these queries is too verbose to be given here, but they are available at https:
//bit.ly/3qGJS9I along with all non-confidential data. These tests used RDFox
4.0.0 running on a Google Cloud N1 with 4 vCPUs and 125 GB of RAM.

4.2 Data Loading

The data was split into multiple files to facilitate parallel loading. In the case of
WatDiv and LUBM the data was split into 72 files and loaded using 72 threads;
in the case of DJKG the data was split into 4 files and loaded using 4 threads.
Table 1 shows the loading time for the three data sets (Time) as well as the
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Table 1. Data loading times

Dataset Time Threads T/s T/T/s Speedup
DJKB 1,560.0 4 1,666,667 416,667 —
LUBM 273.0 72 4,761,905 66,138 —
WatDiv 272.3 1 400,285 400,285 1.00
WatDiv 85.7 4 1,271,852 317,963 3.18
WatDiv 26.6 16 4,097,658 256,104 10.24
WatDiv 17.5 32 6,242,710 195,085 15.56
WatDiv 17.5 64 6,228,441 97,319 15.56
WatDiv 16.8 72 6,487,959 90,111 16.21

number of threads (Threads), the loading rate in triples per second (T/s), the
relativised loading rate in triples per thread per second (T/T/s), and the speedup
relative to a single thread (Speedup) in the WatDiv case.

The same DJKB loading test was repeated using several other knowledge
graph systems. RDFox was at least an order of magnitude faster than any of
these other systems; unfortunately the licence conditions of these systems mean
that we are not able to present their results here.

Fig. 3. Number of threads vs. loading speed (triples per second)

Even the relativised (T/T/s) loading rates are not directly comparable across
different datasets as there may be a large difference in, e.g., the cost of parsing,
which can depend on many factors (such as the structure of URIs). In order to
give a clearer idea of the effectiveness of parallel loading we therefore repeated
the WatDiv loading test using different numbers of threads; these results are also
presented in Table 1, and we have additionally plotted T/s against the number
of threads in Figure 3. As we can see, the speedup from 1–32 threads is relatively
consistent, with 32 threads giving a nearly 16 times speedup, but there is little or
no additional speedup after that. The reasons for this are not fully understood,
and are difficult to investigate in a cloud computing environment; however, we
believe that there are only 36 physical cores, with the 72 vCPUs coming from
hyper-threading, so significant speedup beyond 36 times is not necessarily to be
expected.
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Table 2. Results on WatDiv 100M benchmark (times in ms)

Query #ans R1 R2 R3 R4 R5 Avg ms/ans
L1 2 1 1 1 1 1 1 <1
L2 595 16 210 24 60 7 63 <1
L3 24 1 1 1 1 1 1 <1
L4 603 20 11 9 8 7 11 <1
L5 958 16 41 5 12 1 15 <1
S1 6 1 1 1 1 1 1 <1
S2 249 10 12 19 50 5 19 <1
S3 0 29 26 33 30 29 29 –
S4 13 113 333 233 15 30 145 11
S5 68 15 13 11 17 10 13 <1
S6 81 4 15 11 1 6 7 <1
S7 0 1 1 1 1 1 1 –
F1 7 7 6 11 11 4 8 1
F2 58 1 6 9 4 1 4 <1
F3 128 1 7 12 5 1 5 <1
F4 382 6 5 4 5 6 5 <1
F5 43 1 1 1 1 1 1 <1
C1 201 30 23 34 23 20 26 <1
C2 22 140 65 75 62 59 80 4
C3 4,244,261 1,830 1,640 1,380 1,360 1,450 1,532 <1

4.3 Query Answering

The results on the WatDiv queries are presented in Table 2. For each query we
give the number of answers (#ans), the time to return all answers in 5 separate
runs (R1–R5), and the average time (Avg); we also give the average time per
answer (ms/ans). All times are in milliseconds. As can be seen, RDFox answers
most queries in only a few milliseconds; query C3 takes an average of 1,532ms,
but this is mainly due to the time taken to return over 4 million answers. The
average time per answer is less than 1ms in most cases, and never more than
11ms.

Table 3. Results on LUBM 10k benchmark (times in ms)

Query #ans t-1 t-10 t-100 t-all ms/ans
q1 4 2 1 1 1 0.21
q2 2,528 1,440 2,210 17,800 459,000 181.57
q3 6 1 1 1 1 0.11
q4 34 1 1 1 1 0.01
q5 719 1 1 1 1 0.00
q6 104,403,077 1 1 1 68,933 0.00
q7 67 1 1 1 1 0.01
q8 7,790 1 1 1 39 0.01
q9 2,721,773 1 1 5 128,000 0.05
q10 4 1 1 1 1 0.13
q11 224 1 1 1 1 0.00
q12 15 2 1 1 1 0.03
q13 46,366 1 1 1 303 0.01
q14 79,211,095 1 1 1 37,733 0.00

The results on the LUBM queries are presented in Table 3. For each query
we give the number of answers (#ans), the time to return the first answer (t-
1), the first 10 answers (t-10), the first 100 answers (t-100) and all answers
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(t-all); we also give the average time per answer (ms/ans). All times are in
milliseconds. Most of the queries are relatively easy for RDFox, with all answers
being returned within 1s, and in most cases in less than 1ms. Queries q6, q9 and
q14 take several seconds to fully evaluate, but this is only because of the very
large numbers of answers, ranging from 2.7 million up to more than 104 million;
the times to return the first 100 answers, and the times per answer, are still in
the (sub) millisecond range. Query q2 is the only query that can be considered
non-trivial; this is a “triangle” query, where there is no query plan that can avoid
computing a very large intermediate result that is subsequently pruned by other
query atoms. Even on this query, RDFox returns the first answer in only 1.4s,
and returns subsequent answers at a rate of approximately one every 180ms.

For the three DJKB test queries, the average execution time for RDFox was
300ms for Q1, 12ms for Q2 and 10,700ms for Q3. As mentioned in Section 4.1,
Q3 is not a realistic query but has been designed as a stress test. The same test
was again repeated with several other knowledge graph systems; RDFox was
always at least an order of magnitude faster and in some cases several orders of
magnitude faster.

5 Discussion and Future Directions

Using a knowledge graph at Dow Jones has had many advantages: it facilitates
the integration of data from multiple heterogeneous sources, SPARQL queries
provide a powerful and flexible mechanism for accessing information, and this
can be used to power a wide range of internal processes and user facing products.

Constructing and maintaining a large knowledge graph can be computation-
ally challenging, as can answering SPARQL queries over the graph. However,
RDFox boasts several features that help it to perform well on these tasks, in
particular lock-free data structures, parallelised data loading, incremental data
updates and a highly optimised SPARQL engine. As a result it can load the entire
2.6 billion triple data set in only 26 minutes and can answer typical application
queries in only a few milliseconds.

Currently, the majority of the data in the knowledge graph is kept up to
date by simply reloading it on a regular basis (once per month). This is feasible
given RDFox’s fast loading time, but is clearly not ideal. Dow Jones developers
are therefore working an a rearchitected system in which RDFox is connected
directly to data sources (a feature already supported by RDFox) and the graph
is automatically updated whenever the source data changes.

So far the knowledge graph has mainly been used as part of internal processes
such as the extraction of signals from news feed articles and the maintenance
of competitor relationships data. Work is underway to integrate the knowledge
graph into a wider range of internal processes, for example to support the Risk
and Compliance team, and into existing customer facing products. It is also
planned to develop several new and more powerful applications that were previ-
ously infeasible due to data integration issues and/or query performance issues.
One specific goal is to increase customer engagement by providing user specific
recommendations for relevant articles in news feeds.
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