
Artificial Intelligence 274 (2019) 91–132
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Foundations of ontology-based data access under bag

semantics ✩

Charalampos Nikolaou a,∗, Egor V. Kostylev a, George Konstantinidis b,a,
Mark Kaminski a, Bernardo Cuenca Grau a, Ian Horrocks a

a Department of Computer Science, University of Oxford, UK
b Department of Electronics and Computer Science, University of Southampton, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2018
Received in revised form 10 February 2019
Accepted 12 February 2019
Available online 15 February 2019

Keywords:
Ontology-based data access
Description logics
Bag semantics
Query answering
Query rewriting

Ontology-based data access (OBDA) is a popular approach for integrating and querying
multiple data sources by means of a shared ontology. The ontology is linked to the sources
using mappings, which assign to ontology predicates views over the data. The conventional
semantics of OBDA is set-based—that is, the extension of the views defined by the
mappings does not contain duplicate tuples. This treatment is, however, in disagreement
with the standard semantics of database views and database management systems in
general, which is based on bags and where duplicate tuples are retained by default. The
distinction between set and bag semantics in databases is very significant in practice, and
it influences the evaluation of aggregate queries.
In this article, we propose and study a bag semantics for OBDA which provides a solid
foundation for the future study of aggregate and analytic queries. Our semantics is
compatible with both the bag semantics of database views and the set-based conventional
semantics of OBDA. Furthermore, it is compatible with existing bag-based semantics for
data exchange recently proposed in the literature. We show that adopting a bag semantics
makes conjunctive query answering in OBDA coNP-hard in data complexity. To regain
tractability of query answering, we consider suitable restrictions along three dimensions,
namely, the query language, the ontology language, and the adoption of the unique name
assumption. Our investigation shows a complete picture of the computational properties of
query answering under bag semantics over ontologies in the DL-Lite family.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ontology-based data access (OBDA) is an increasingly popular approach to enable uniform access to multiple data sources
with diverging schemas [2–7]. An ontology in OBDA is represented using a fragment of first-order logic and provides a
unifying conceptual model for the data sources. The ontology is linked to the schema of each data source by global-as-view
(GAV) mappings [8], which declaratively assign views over the data to predicates in the vocabulary of the ontology. Users of
OBDA systems are typically unaware of the details of the source schemas or the mappings, and access the data by means of

✩ This article extends our IJCAI-2017 conference publication [1].

* Corresponding author.
E-mail addresses: charalampos.nikolaou@cs.ox.ac.uk (C. Nikolaou), egor.kostylev@cs.ox.ac.uk (E.V. Kostylev), g.konstantinidis@soton.ac.uk

(G. Konstantinidis), mark.kaminski@cs.ox.ac.uk (M. Kaminski), bernardo.cuenca.grau@cs.ox.ac.uk (B. Cuenca Grau), ian.horrocks@cs.ox.ac.uk (I. Horrocks).
https://doi.org/10.1016/j.artint.2019.02.003
0004-3702/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.artint.2019.02.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.02.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:charalampos.nikolaou@cs.ox.ac.uk
mailto:egor.kostylev@cs.ox.ac.uk
mailto:g.konstantinidis@soton.ac.uk
mailto:mark.kaminski@cs.ox.ac.uk
mailto:bernardo.cuenca.grau@cs.ox.ac.uk
mailto:ian.horrocks@cs.ox.ac.uk
https://doi.org/10.1016/j.artint.2019.02.003
http://creativecommons.org/licenses/by/4.0/

92 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
(conjunctive) queries formulated using only the vocabulary of the ontology. The answers to a query are those that logically
follow from the union of the ontology and the materialisation over the sources of the views defined by the mappings.

The formalism of choice for representing ontologies in OBDA is the description logic DL-LiteR [9], which underpins the
Web ontology language OWL 2 QL [10]. DL-LiteR is a language designed to ensure that all input queries to the OBDA system
are first-order rewritable—that is, the answers to every input query can be obtained by first reformulating the query as a
set of relational queries over the source schemas, and then evaluating the reformulated queries over the source data [2]. In
practice, such reformulation involves two steps known as rewriting and unfolding [8,11]. In the rewriting step, the original
query is transformed into a first-order query that captures the relevant information in the ontology; in turn, in the unfolding
step, the query computed in the rewriting step is further rewritten as a set of relational queries over the schemas of the
sources using the relevant mappings.

OBDA has received a great deal of attention in recent years. Researchers have studied the limits of first-order rewritability
in ontology languages [9,12], established bounds on the size of rewritings [13,14], developed optimisation techniques [15–
17], and implemented systems well-suited for real-world applications [3,5].

Example 1. Consider a music encyclopedia that collects metadata about music records and makes it available to the public.
The encyclopedia gathers data from record labels, which are maintained in separate relational tables. For instance, it contains
the table Columbia(art_nm, r_title, r_year, r_date, r_loc) that provides the names of the records (r_title) artists (art_nm)
have cut on the record label Columbia together with their release years (r_year), recording dates (r_date), and locations
(r_loc). In addition, we consider the table Verve_Wind(name, title, year) that provides information about the names of the
records (title) artists (name) playing wind instruments have cut on Verve (for the sake of illustration, we assume that
records by Verve are organised in different tables according to the type of instrument played by the lead performer; in our
running example, we restrict ourselves to wind instruments). The following is a relational database instance Dex providing
information about the records that trumpeter Miles Davis and pianist Keith Jarrett have cut on these two labels.

Columbia: art_nm r_title r_year r_date r_loc

M. Davis Kind of Blue 1959 2/3/59 and 22/4/59 New York
M. Davis A Tribute to Jack Johnson 1971 7/4/70 New York
K. Jarrett Expectations 1972 5/4/72–27/4/72 New York

Verve_Wind: name title year

M. Davis Ascenseur pour l’Échafaud 1958

To integrate this data, the music encyclopedia relies on a DL-LiteR ontology with TBox Tex , which defines unary pred-
icates, called concepts, such as Musician, WindPlayer, and Record, and binary predicates, called roles, such as hasMusician.
TBox Tex describes the meaning of these predicates using the following axioms, called inclusions:

WindPlayer � Musician, saying that every player of a wind instrument is a musician,

Record � ∃hasMusician, saying that every record is associated to some musician.

The extension of the concepts and roles in the ontology based on the data in Columbia and Verve_Wind tables is
determined by a set of GAV mapping assertions of the form �(x) � A(x) or �(x, y) � P (x, y), where �(x) and �(x, y)

are SQL queries, A is a concept, and P is a role. Such mappings can also be seen as database views with names A or
P and definitions �(x) or �(x, y), respectively. The following set �ex of mappings is used to populate concepts Musician,
WindPlayer, and Record, as well as role hasMusician with data from Dex:

σ1: SELECT art_nm AS x FROM Columbia � Musician(x),

σ2: SELECT name AS x FROM Verve_Wind � WindPlayer(x),

σ3: SELECT r_title AS x FROM Columbia � Record(x),

σ4: SELECT title AS x FROM Verve_Wind � Record(x),

σ5: SELECT r_title AS x, art_nm AS y FROM Columbia � hasMusician(x,y),

σ6: SELECT title AS x, name AS y FROM Verve_Wind � hasMusician(x,y).

Finally, user queries are formulated using only the vocabulary of Tex , and users are typically unaware of the schema of
Dex and the definition of the mappings. �

An important observation about the conventional semantics of OBDA is that it is set-based: the materialisation of the
views defined by the mappings is formalised as a virtual ABox consisting of a set of facts, called assertions, over the ontol-
ogy predicates. This treatment is, however, in disagreement with the standard semantics of database views and database
management systems in general, which is based on bags and where duplicate tuples are retained by default [18,19]. The

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 93
distinction between set and bag semantics in databases is significant in practice; in particular, it influences the evaluation of
aggregate queries that combine various aggregation functions such as MIN, MAX, SUM, COUNT, and AVG with the grouping
functionality provided in SQL by the GROUP BY construct.

The mismatch between the set semantics of OBDA and the bag semantics of database views manifests itself already in
our running example.

Example 2. Consider TBox Tex, mappings �ex , and database instance Dex specified in Example 1. Consider also the query
qex(x) = Musician(x), which asks for all musicians. Under the conventional OBDA semantics, the virtual ABox Aex corre-
sponding to Dex and �ex comprises the following assertions:

Musician(M. Davis), Musician(K. Jarrett), WindPlayer(M. Davis),
Record(Kind of Blue), Record(A Tribute to Jack Johnson), Record(Expectations),
Record(Ascenseur pour l’Échafaud),
hasMusician(Kind of Blue, M. Davis), hasMusician(A Tribute to Jack Johnson, M. Davis),
hasMusician(Expectations, K. Jarrett), hasMusician(Ascenseur pour l’Échafaud, M. Davis).

The answers to qex(x) over ontology 〈Tex, Aex〉 are given by the set {M. Davis, K. Jarrett} since M. Davis and K. Jarrett are the
only instances of concept Musician entailed by the ontology 〈Tex, Aex〉.

To compute these answers in practice, however, an OBDA system would exploit the first-order rewritability property of
OBDA. In particular, it would first rewrite qex(x) into the union of queries Musician(x) and WindPlayer(x) using inclusion
WindPlayer � Musician in Tex . Then, in a second step, the system would unfold each disjunct of the rewritten query into a
query over the database Dex using the mappings in �ex . The result is the SQL query �ex(x) comprising the union of the
SQL queries �σ1 (x) and �σ2 (x) mentioned on the left-hand side of mappings σ1 and σ2, respectively. The query �ex(x) is
finally evaluated directly over Dex .

According to the semantics of OBDA, the answers to �ex(x) over ontology 〈Tex, Aex〉 should coincide with the evaluation
of SQL query �ex(x) over Dex . This is, however, not the case in our example. In particular, evaluating �ex(x) over Dex yields
a bag containing two occurrences of M. Davis and one occurrence of K. Jarrett. This is because duplicates in the answers to
SQL queries are kept by default unless duplicate elimination is explicitly requested by using the DISTINCT operator in the
SELECT clause of a query.1

This discrepancy between OBDA semantics and the semantics of database views may occur even if the TBox of the
ontology is empty. In particular, in such a case the evaluation of qex(x) over ABox Aex does not coincide with the evaluation
of the rewritten query (�σ1(x) in this case) over Dex . �

Example 2 suggests that the conventional approach to OBDA can faithfully represent only a subset of GAV mapping
assertions—those whose SQL query contains the DISTINCT operator in the top-level SELECT clause.

In this paper, we propose and study a bag semantics for OBDA, which provides a solid foundation for future research on
aggregate and analytic queries. Our semantics is compatible with (i) the bag semantics of database views; (ii) the set-based
conventional semantics of OBDA; and (iii) the bag semantics recently proposed by Hernich and Kolaitis [20] in the context
of data exchange.

1.1. Contributions and organisation

The contributions and organisation of this paper are as follows. In Section 3 we introduce the bag semantics of an OBDA
setting 〈T ,�,D〉 consisting of a DL-LiteR TBox T , a set of GAV mappings �, and a (bag) database instance D. We also
define the notion of certain answers to conjunctive queries as well as the associated query answering problem.

In Section 4 we define the ontology language DL-LitebR and two of its natural fragments. A distinctive feature of DL-LitebR
is that ABoxes are bags of assertions rather than sets. Syntactically, this language allows for the same TBoxes as DL-LiteR ,
but their semantics also takes multiplicities into account. We show that, as in the case of conventional OBDA, the certain
answers to a query over an OBDA setting 〈T ,�,D〉 can be characterised as those that logically follow from the union of
the TBox T and a virtual bag ABox A�,D representing the materialisation of the views defined by the mappings � over the
database D. As a result, the data complexity of OBDA query answering under bag semantics coincides with that of query
answering over DL-LitebR .

In Section 5 we then establish the relationship between bag and set semantics of DL-LitebR and DL-LiteR , respectively. In
particular, we show that, on the one hand, satisfiability checking in DL-LitebR reduces to satisfiability checking in DL-LiteR
and, on the other hand, query answers under bag and set semantics coincide if multiplicities are ignored. There are, however,
key properties of the conventional semantics of DL-LiteR that are no longer satisfied by the bag semantics: unlike the set

1 Bag semantics offers two types of union, called maximal and arithmetic; the first computes the maximum number of occurrences for every tuple in the
provided operands whereas the second adds these numbers up. The answer we provide here is based on maximal union for reasons that will be made
clear later on in this article. The use of arithmetic union does not affect our motivation.

94 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
case, DL-LitebR ontologies may not have a universal model for conjunctive queries—that is, a single model the answers over
which are precisely the certain answers to all such queries; moreover, query answers may be sensitive to the adoption of
the unique name assumption (UNA).

In Section 6 we show that conjunctive query answering under bag semantics is computationally more challenging than
in the set case. In particular, we establish three incomparable coNP lower bounds for the data complexity of the problem.
We first show that it is coNP-hard even if we restrict the ontology language to DL-Liteb

core
—that is, the language where role

inclusions are disallowed—regardless of whether the UNA is adopted or not. Second, we show that without the UNA the
problem is hard even if the ontologies do not have existential quantification on the right-hand side of concept inclusions
(i.e., in the DL-Liteb

rdfs
ontology language) and the queries are restricted to the so-called rooted conjunctive queries [21]—that

is, conjunctive queries with all their connected components containing at least one constant or answer variable; this class
of queries comprises most practical OBDA queries. The third hardness result is established for the same settings as in the
second case except that the UNA is adopted, but there are no restrictions on inclusion axioms.

In Section 7 we make a first step on the way to regain tractability of conjunctive query answering. In particular, we show
that rooted conjunctive queries admit a universal model over DL-Liteb

core
ontologies, regardless of the adoption of the UNA.

In Section 8 we employ this result to show that rooted conjunctive queries are rewritable over DL-Liteb
core

to queries in a
bag analogue of relational calculus, BCALC, which can be evaluated directly on the ABox of the ontology. Using known results
on bag databases, we conclude that the corresponding query answering problem is tractable, in particular, in LogSpace.

In Section 9 we establish similar results for arbitrary conjunctive queries and DL-Liteb
rdfs

—that is, the language that allows
for role inclusions, but does not allow for existential quantification on the right-hand side of concept inclusions; however,
these positive results hold only when the UNA is adopted, while we already know that without the UNA the problem is
coNP-hard and hence non-rewritable to BCALC.

In Section 10 we combine the results of the previous two sections and establish rewritability and tractability of query
answering for the ontology language DL-LitebR− capturing both DL-Liteb

core
and DL-Liteb

rdfs
. This language allows for both role

inclusions and existential quantification on the right-hand side of concept inclusions. To establish rewritability, however, the
language essentially forbids interaction between these two features. Also, the setting inherits all of the restrictions imposed
on the previous cases—that is, it adopts the UNA and considers only rooted conjunctive queries.

Finally, in Section 11 we provide a comprehensive discussion of related work, and in Section 12 we discuss possible
extensions of our OBDA framework.

2. Preliminaries

In this section we recapitulate the basic definitions that we use in the remainder of the paper. In Section 2.1 we introduce
the syntax and (set-based) model-theoretic semantics of the standard ontology and query languages for OBDA. Then, in
Section 2.2, we introduce conjunctive queries and define the associated query answering problem. In Section 2.3 we review
the common operations on bags. Finally, in Section 2.4 we specify a bag relational calculus that we will exploit later on
to express query rewritings over ontologies; our calculus is embeddable into the bag algebra for relational databases by
Grumbach and Milo [22], which we discuss in the accompanying Appendix.2

2.1. Syntax and semantics of DL-LiteR ontologies

We fix a vocabulary consisting of countably infinite and pairwise disjoint sets of individuals I (or constants), variables X,
atomic concepts C (unary predicates) and atomic roles R (binary predicates). A role is an atomic role P in R or its inverse
P− . A concept is an atomic concept in C or an existentially quantified concept ∃R , where R is a role. An inclusion axiom (or
just inclusion) is an expression of the form S1 � S2 with S1 and S2 either both concepts, in which case we speak of a
concept inclusion, or both roles, in which case we speak of a role inclusion. A disjointness axiom is an expression of the form
Disj(S1, S2) with S1 and S2 either both concepts or both roles. A DL-LiteR TBox is a finite set of inclusions and disjointness
axioms. A concept assertion is of the form A(a) with a ∈ I and A ∈ C. A role assertion is of the form P (a, b) with a, b ∈ I and
P ∈ R. A DL-LiteR ABox is a finite set of concept and role assertions. A DL-LiteR ontology is a pair 〈T , A〉 with T a DL-LiteR
TBox and A a DL-LiteR ABox.

An interpretation I (or set interpretation, when the context matters) is a pair 〈�I , ·I 〉, where the domain �I is a non-
empty set, and the interpretation function ·I maps each individual a ∈ I to an element aI ∈ �I , each atomic concept A ∈ C
to a subset AI of �I , and each atomic role P ∈ R to a subset P I of �I × �I . The interpretation function extends to other
concepts and roles as follows:

(R−)I = {(u, v) | (v, u) ∈ R I },
(∃R)I = {u | ∃v such that (u, v) ∈ R I}.

2 There are alternative algebraic query languages for bags, such as that by Libkin and Wong [23]; however, their expressive power is equivalent to that
of Grumbach and Milo’s algebra and hence the choice of an underpinning algebraic query language is immaterial to the results in this article.

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 95
Interpretation I is finite if so is �I . An interpretation I = 〈�I , ·I 〉 satisfies the unique name assumption (or UNA) whenever
I interprets distinct individuals from I with distinct elements from �I —that is, the inequality aI �= bI holds when a, b ∈ I
with a �= b. An interpretation I satisfies an inclusion S1 � S2 if S I

1 ⊆ S I
2, and it satisfies a disjointness axiom Disj(S1, S2)

if S I
1 ∩ S I

2 = ∅. Interpretation I satisfies a TBox T , written I |= T , if I satisfies every axiom in T . A TBox T entails an
axiom α, written T |= α, if every interpretation satisfying T also satisfies α; TBox T entails α under the UNA if the same
holds for every interpretation satisfying the UNA. An interpretation I satisfies an ABox A if aI ∈ AI for all A(a) ∈ A and
(aI , bI) ∈ P I for all P (a, b) ∈ A. An interpretation is a model of a DL-LiteR ontology 〈T , A〉 if it satisfies T and A. An
ontology K = 〈T , A〉 is satisfiable if it has a model, and it is satisfiable under the UNA if it has a model satisfying the UNA.

It is well-known that a DL-LiteR ontology is satisfiable if and only if it is satisfiable under the UNA, and this can be
tested in NLogSpace in general and in AC

0 if the TBox is fixed; similarly, a DL-LiteR TBox entails an axiom if and only if it
entails the axiom under the UNA [24].

In this paper, we will also consider the following three sublanguages of DL-LiteR:

– DL-Litecore restricts DL-LiteR by disallowing in TBoxes role inclusions and role disjointness axioms;
– DL-Literdfs restricts DL-LiteR by disallowing in TBoxes concept and role disjointness axioms as well as existentially

quantified concepts on the right-hand side of concept inclusions;
– DL-LiteR− restricts DL-LiteR by disallowing in TBoxes T inclusions of the form C � ∃R whenever T contains inclusion

R � S for some role S different from R .

Note that DL-Litecore and DL-Literdfs are incomparable fragments of DL-LiteR , whereas DL-LiteR− extends both DL-Litecore

and DL-Literdfs . The restrictions imposed in DL-LiteR− limit the interaction between concept and role inclusions in TBoxes.

2.2. Queries over ontologies

A conjunctive query (or CQ) q(x) with answer variables x is a formula ∃y. φ(x, y) in first-order logic with equality, where x
and y are (possibly empty) repetition-free tuples of variables from X and φ(x, y) is a conjunction of atoms of the form A(t),
P (t1, t2) or (z = t), where A ∈ C, P ∈ R, z ∈ x ∪ y, and t, t1, t2 ∈ x ∪ y ∪ I. If x is clear from the context, then we may write q
instead of q(x). The equality atoms of the form (z = t) in a CQ q(x) = ∃y. φ(x, y) yield an equivalence relation ∼ on terms
x ∪ y ∪ I, and we write t̃ for the equivalence class of a term t . The Gaifman graph of q(x) has a node t̃ for each t ∈ x ∪ y ∪ I in
φ, and an edge {t̃1, ̃t2} for each atom P (t1, t2) in φ. In what follows, we (silently) assume that all CQs q(x) = ∃y. φ(x, y) are
safe—that is, such that for each z ∈ x ∪ y, the class z̃ contains either an individual from I or a variable mentioned in an atom
of φ(x, y) that is not an equality. A CQ is Boolean if its answer variables x are the empty tuple 〈〉. Furthermore, following
Bienvenu et al. [21], a CQ q(x) is rooted if each connected component of its Gaifman graph has a node with a term in x ∪ I.
A union of CQs (UCQ) is a disjunction of CQs with the same answer variables. A UCQ is Boolean (or rooted, or both) if so are
all of its component CQs.

The answers qI to a (U)CQ q(x) over an interpretation I are the set of all tuples a of individuals from I with |a| = |x|
such that the formula q(a) holds in I (where |a| and |x| are the sizes of a and x, respectively). The certain answers to
a (U)CQ q(x) over a DL-LiteR ontology K are the intersection of the answers to q(x) over all models of K. The certain
answers qK to q(x) over K under the UNA are the intersection of the answers to q(x) over all models of K satisfying the
UNA. In fact, for DL-LiteR , the (usual) certain answers always coincide with the certain answers under UNA, and checking
whether a tuple of individuals is in the certain answers to a (U)CQ q over a DL-LiteR ontology 〈T , A〉 is an NP-complete
problem with AC

0 data complexity (i.e., when T and q are fixed) [9,24]. The latter follows from the rewritability of the class
of UCQs to itself over DL-LiteR [9]. Informally, the key ideas for rewritability is as follows. First, every DL-LiteR ontology
possesses a so-called canonical interpretation, which is a model if the ontology is satisfiable, and which is homomorphically
embeddable to every other model. Moreover, this model is universal for UCQs in the sense that the answers to every UCQ
on the canonical interpretation coincide with the certain answers over the ontology. Finally, for every UCQ and every TBox
it is always possible to construct another UCQ such that, for every ABox, the answers to the original UCQ over the universal
model of the resulting ontology are the same as the answers to the new UCQ over just the ABox. We will formally define
the notions of rewritability, canonical interpretation, and universal model later in the article.

To conclude, we note that our definition of CQs is slightly non-standard in that it allows for equality atoms, which are
usually regarded as inessential. Making equalities explicit in the query will be convenient later on when computing query
rewritings, where we will sometimes need to force an answer variable to become equal to another answer variable or to an
individual. This is, however, just a technicality; in particular, none of our complexity lower bounds to query answering or
negative rewritability results depend on the presence of equalities in the query.

2.3. Bags

A bag over a set M is a function 	 : M → N∞
0 , where N∞

0 is the set of non-negative integers N0 extended with
infinity ∞. The value 	(c) is the multiplicity of c in 	. A bag 	 is finite if there are finitely many c ∈ M with 	(c) > 0
and there is no c with 	(c) = ∞. The empty bag ∅ over M is the bag satisfying ∅(c) = 0 for all c ∈ M . Given bags 	1 and

96 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
	2 over M , we say that 	1 is a subbag of 	2, in symbols 	1 ⊆ 	2, if 	1(c) ≤ 	2(c) for each c ∈ M . Often, especially in
examples, we will use an alternative syntax for bags: for instance, we will write { | c : 5,d : 3 | } for the bag that assigns 5 to
c, 3 to d, and 0 to all other elements.

In this paper, we use the following common set of operators encountered in the literature on algebras over
bags [22,23,25–27]. The intersection ∩, maximal union ∪, arithmetic union �, and difference − are the binary operators
defined for bags 	1 and 	2 over the same set M , and for every c ∈ M as follows:

(1 ∩ 	2)(c) = min{	1(c),	2(c)},
(1 ∪ 	2)(c) = max{	1(c),	2(c)},
(1 � 	2)(c) = 	1(c) + 	2(c), and

(1 − 	2)(c) = max{0,	1(c) − 	2(c)}.
Note that bag difference is well-defined only when 	2 does not assign ∞ to any element in M . Also, the unary duplicate
elimination ε operator is defined for a bag 	 over a set M and for every c ∈ M as follows:

(
ε()

)
(c) =

{
1, if 	(c) > 0,

0, otherwise.

Note that, for every two finite bags 	1 and 	2 over the same set M , the following identities hold [26]:

	1 ∪ 	2 = 	1 � (2 − 	1) and 	1 ∩ 	2 = (1 � 	2) − (1 ∪ 	2). (1)

However, these identities may not hold if the bags are infinite.

2.4. A calculus for querying bag databases

A database schema is a non-empty finite set S of predicates with non-negative arities that are disjoint from C and R.
Given a database schema S and a set of constants (i.e., individuals) I, a database fact is an expression of the form S(a),
where S ∈ S and a is a tuple of constants from I of size equal to the arity of S . Then, a bag database instance D is a finite
bag over all the facts over S and I.

Grumbach and Milo [22] proposed an algebraic query language for bag databases called BALG, which is sufficiently
powerful to capture relational algebra over bags [19]. BALG allows for nesting of bags and can be seen as the union of the
sublanguages BALGk , k ≥ 1, each of which allowing for up to k − 1 levels of nesting. In this article we restrict ourselves
to BALG1, which does not allow for bag nesting. Grumbach and Milo [22] studied the data complexity of answering BALG1

queries under a unary encoding of numbers in the input and showed that it is strictly “sandwiched” between complexity
classes AC

0 and LogSpace; it is therefore tractable, but strictly harder than the data complexity of relational queries over
set databases. We defer a full treatment of Grumbach and Milo’s algebra and its associated decision problem to Appendix A.

We next introduce BCALC—a calculus for querying bag databases based on Grumbach and Milo’s algebra. Using a calculus
formulation instead of an algebraic one will significantly simplify the presentation of our query rewriting algorithms later
on. In Appendix B we show that our calculus can be easily embedded into BALG1 and thus inherits its LogSpace upper
bound for data complexity of query answering.

The syntax of BCALC for a database schema, formally presented in the following inductive definition, extends the syntax
of (U)CQs given in Section 2.2 with several new operations. Domain-dependent queries, inexpressible in algebraic query
languages, are precluded by introducing restrictions on the use of variables (intuitively, a query is domain-dependent if its
answers over a fixed database instance may change when the underlying set of constants is modified; see [28] for details).

Definition 3. Given a database schema S and a set of constants I, a BCALC query �(x) with answer variables x is any of the
following, where �, �1, and �2 are BCALC queries:

– S(t), where S ∈ S and t is a tuple over x ∪ I of size equal to the arity of S mentioning all variables in x;
– �1(x1) ∧ �2(x2), where x = x1 ∪ x2;
– �(x0) ∧ (x = t), where x ∈ x0, t ∈ X ∪ I, and x = x0 ∪ ({t} \ I);
– ∃y. �(x, y), where y is a tuple of distinct variables from X that are not in x;
– �1(x) op�2(x), where op ∈ {∨, ∨· , \}; or
– δ �(x).

A BCALC query is positive if it does not mention the difference operator \. A positive BCALC query is a BCALC conjunctive
query (CQ) if it additionally does not mention operators ∨, ∨· , and δ. A BCALC maximal (or arithmetic) union of CQs is a BCALC
query of the form �1(x) ∨ · · · ∨ �n(x) (or of the form �1(x) ∨· · · · ∨· �n(x), respectively), where each �i is a BCALC CQ.

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 97
Next we formally define the semantics of BCALC queries, which are bags of tuples of constants.

Definition 4. The bag answers �D to a BCALC query �(x) over a bag database instance D is the finite bag over I|x| defined
inductively by the following equations for every tuple a over I with |a| = |x|, where ν : x ∪ I → I is the function such that
ν(x) = a and ν(a) = a for all a ∈ I:

– �D(a) =D(S(ν(t))), if �(x) = S(t);
– �D(a) = �D

1 (ν(x1)) × �D
2 (ν(x2)), if �(x) = �1(x1) ∧ �2(x2);

– �D(a) = �D(ν(x0)), if �(x) = �(x0) ∧ (x = t) and ν(x) = ν(t);
– �D(a) = 0, if �(x) = �(x0) ∧ (x = t) and ν(x) �= ν(t);
– �D(a) = ∑

ν ′ : y→I �
D(a, ν ′(y)), if �(x) = ∃y. �(x, y);

– �D(a) = (�D
1 op�D

2)(a), if �(x) = �1(x) op′ �2(x), where op is ∪, �, or −, and op′ is ∨, ∨· , or \, respectively;
– �D(a) = (

ε(�D)
)
(a), if �(x) = δ �(x).

The decision problem of query answering for BCALC is defined as follows, where all numbers in the input are assumed
to be represented in unary and the bag (i.e., the database instance) is explicitly defined only for a finite number of facts
while the multiplicities of all other facts are assumed to be 0.

QueryAnswering[BCALC]

Input: BCALC query �(x), bag database instance D,
tuple a of constants over I, and number k ∈N0.

Question: Is �D(a) ≥ k?

The data complexity of this problem is the complexity when query � is considered to be fixed and only D, a, and k form
the input.

The LogSpace upper bound for the data complexity of QueryAnswering[BCALC] is obtained by showing that for each
BCALC query � one can construct a BALG1 algebra expression E� such that the bag answers to � over every bag database
D coincide with the bag answers to E� over D; this serves the need, because, as we already mentioned, BALG1 can be
evaluated in LogSpace. The proof of this claim, which is rather technical but conceptually straightforward, is deferred to
Appendix B.

Proposition 5. QueryAnswering[BCALC] is in LogSpace in data complexity.

We conclude by observing that in the literature on query optimisation under bag semantics [29–31] it is common to
encounter the notion of bag-set semantics for databases, where input database instances are sets—that is, do not allow for
multiplicities greater than 1—while permitting query answers and views to be bags. The bag semantics we consider in this
article generalises the bag-set semantics, and restricting ourselves to bag-set semantics would not change any of our results.

3. Ontology-based data access under bag semantics

In this section, we introduce our OBDA framework as a natural generalisation of that by Poggi et al. for OBDA under set
semantics [2]. We start by defining the syntax of OBDA settings.

Definition 6. A bag OBDA setting is a triple 〈T ,�,D〉 where

– T is a DL-LiteR TBox;
– � is a set of global-as-view (GAV) mapping assertions (or mappings) of the form

�(x) � A(x) or �(x, y) � P (x, y),

where � and � are BCALC queries, while A and P are an atomic concept and atomic role, respectively; and
– D is a bag database instance.

A couple of observations about Definition 6 are in order. First, recall that in all our motivating examples so far we have
written mappings using SQL queries, which reflects the way in which mappings are defined in practice. To formally study
OBDA, however, the use of a bag query language close to first-order logic, such as BCALC, is more appropriate. Second, in
contrast to the definitions by Poggi et al. [2], we do not allow for function symbols on the right-hand side of mappings.

98 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
This restriction does not affect the computational properties of query answering in OBDA under set semantics [2], and it is
adopted in most theoretical papers on data integration [8,32]; it is also immaterial to our technical results, and yet allows
us to simplify the presentation.

Example 7. The mappings �ex in Example 1 are equivalently expressed using BCALC as follows:

σ1 = ∃y1, y2, y3, y4.Columbia(x, y1, y2, y3, y4) � Musician(x),

σ2 = ∃y1, y2.Verve_Wind(x, y1, y2) � WindPlayer(x),

σ3 = ∃y1, y2, y3, y4.Columbia(y1, x, y2, y3, y4) � Record(x),

σ4 = ∃y1, y2.Verve_Wind(y1, x, y2) � Record(x),

σ5 = ∃y1, y2, y3.Columbia(y, x, y1, y2, y3) � hasMusician(x, y),

σ6 = ∃y1.Verve_Wind(y, x, y1) � hasMusician(x, y). �
The semantics of bag OBDA settings is based on bag interpretations I , which are defined as set interpretations (see

Section 2.1) with the exception that concepts and roles are now interpreted as bags rather than sets. The extension of the
interpretation function to non-atomic concepts and roles is defined in a natural way: for example, the concept ∃P for an
atomic role P is interpreted as the bag projection of the interpretation P I of P to its first component, where each occurrence
of a pair (u, v) in P I contributes separately to the multiplicity of a domain element u in (∃P)I .

Definition 8. A bag interpretation I is a pair 〈�I , ·I 〉 where the domain �I is a non-empty set, and the interpretation function ·I

maps each individual a ∈ I to an element aI ∈ �I , each atomic concept A ∈ C to a bag AI over �I , and each atomic role
P ∈ R to a bag P I over �I × �I . Interpretation function ·I extends to complex concepts (P−)I and (∃R)I , for P ∈ R and R a
role, as follows, for all u, v ∈ �I :

(P−)I (u, v) = P I (v, u) and (∃R)I (u) =
∑
v∈�I

R I (u, v).

A bag interpretation I is finite if �I is a finite set and I assigns a finite bag to each A ∈ C and each P ∈ R.

We are now ready to specify the semantics of bag OBDA settings in terms of bag interpretations (note that satisfaction
of axioms is defined in the same way as in the set case, but the symbols ⊆, ∩, and ∅ denote the subbag relation, bag
intersection, and the empty bag, respectively).

Definition 9. A bag interpretation I satisfies the UNA if aI �= bI whenever a, b ∈ I with a �= b. A bag interpretation I satisfies
an inclusion S1 � S2 if S I

1 ⊆ S I
2, and it satisfies a disjointness axiom Disj(S1, S2) if S I

1 ∩ S I
2 = ∅. A bag interpretation I satisfies

a TBox T , written I |=b T , if I satisfies every axiom in T . A TBox T entails an axiom α under bag semantics, written T |=b α,
if every bag interpretation satisfying T satisfies α; T entails α under bag semantics and the UNA if only bag interpretations
satisfying the UNA are considered.

A bag interpretation I satisfies a set of mappings � with respect to a bag database instance D if the following holds, for
all mappings �(x) � A(x) and �(x, y) � P (x, y) in �, and all individuals a, a1, a2 ∈ I:

∑
b∈I: bI =aI

�D(b) ≤ AI (aI) and
∑

bi∈I: bI
i =aI

i , i=1,2

�D(b1,b2) ≤ P I (aI
1,aI

2).

A bag interpretation I is a model of a bag OBDA setting 〈T ,�,D〉, denoted by I |=b 〈T ,�,D〉, if I |=b T and I satisfies �
with respect to D. An OBDA setting 〈T ,�,D〉 is satisfiable if it has a model, and it is satisfiable under the UNA if it has a
model satisfying the UNA.

Note that if a bag interpretation I satisfies the UNA, then the notion of satisfaction for a set of mappings � as defined
above becomes equivalent to requiring that inequalities �D(a) ≤ AI (aI) and �D(a1, a2) ≤ P I (aI

1, a
I
2) hold for all mappings

�(x) � A(x) and �(x, y) � P (x, y) in �, and all individuals a, a1, a2 ∈ I.

Example 10. Consider the bag OBDA setting 〈Tex, �ex, Dex〉 in Example 1. Let Iex be the bag interpretation with domain
�Iex = I that maps all individuals to themselves, and assigns bags to concepts and roles as follows:

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 99
MusicianIex = {|M. Davis : 2, K. Jarrett : 1 |},
WindPlayerIex = {|M. Davis : 1 |},

RecordIex = {|Kind of Blue : 1, A Tribute to Jack Johnson : 1, Expectations : 1,

Ascenseur pour l’Échafaud : 1 |},
hasMusicianIex = {| (Kind of Blue, M. Davis) : 1, (A Tribute to Jack Johnson, M. Davis) : 1,

(Expectations, K. Jarrett) : 1, (Ascenseur pour l’Échafaud, M. Davis) : 1 |}.
To show that Iex |=b 〈Tex, �ex, Dex〉, we argue that Iex satisfies �ex with respect to Dex and that Iex |=b Tex . For the for-
mer, we first compute the bag answers to the BCALC queries �1, . . . , �6 appearing on the left-hand side of the mappings
σ1, . . . , σ6 over database instance Dex . These are specified as follows:

�
Dex
1 = {|M. Davis : 2, K. Jarrett : 1 |},

�
Dex
2 = {|M. Davis : 1 |},

�
Dex
3 = {|Kind of Blue : 1, A Tribute to Jack Johnson : 1, Expectations : 1 |},

�
Dex
4 = {|Ascenseur pour l’Échafaud : 1 |},

�
Dex
5 = {| (Kind of Blue, M. Davis) : 1, (A Tribute to Jack Johnson, M. Davis) : 1, (Expectations, K. Jarrett) : 1 |},

�
Dex
6 = {| (Ascenseur pour l’Échafaud, M. Davis) : 1 |}.

It is now immediate to verify that the inequalities stipulated by Definition 9 hold for σ1, . . . , σ6; thus, Iex satisfies �ex with
respect to Dex . We next argue that Iex |=b Tex . Indeed, by Definition 8, the interpretation of ∃hasMusician is the bag

{|Kind of Blue : 1, A Tribute to Jack Johnson : 1, Expectations : 1, Ascenseur pour l’Échafaud : 1 |},
so C Iex is a subbag of D Iex for each inclusion C � D in Tex , as required. �

We next discuss an important aspect of Definition 9 concerning the presence of different mappings defining the same
view. In such cases, the extension of the view intuitively corresponds to the union of the answers to the queries specified
on the left-hand side of the contributing mappings. However, bag query languages, such as BCALC, come with two versions
of the union operation: maximal and arithmetic union. Moreover, in different settings one of these unions can be more
intuitive and preferable than the other. On the one hand, Definition 9 tacitly commits to the maximal union by requiring
that a model for � and D satisfies each contributing mapping independently. On the other hand, this is not a limitation
of our OBDA framework since GAV mapping assertions can always be rewritten to reflect the alternative choice based on
arithmetic union.

Example 11. Consider the bag OBDA setting 〈Tex, �′
ex, Dex〉 obtained from our running example by augmenting �ex to the

set �′
ex that additionally contains mapping

σ7 = ∃y1, y2.Verve_Wind(x, y1, y2) � Musician(x).

Note that both mappings σ1 and σ7 define the extension of concept Musician. By Definition 9 interpretations such as Iex in
Example 10, which interpret Musician as the maximal union of the bags corresponding to the musicians mentioned in the
Columbia and Verve_Wind tables, are valid models of 〈Tex, �′

ex, Dex〉. Let us now define �′′
ex as the mappings obtained from

�ex by replacing σ1 by(∃y1, y2, y3, y4.Columbia(x, y1, y2, y3, y4)
) ∨· (∃y1, y2.Verve_Wind(x, y1, y2)

) � Musician(x).

In this case, every model of 〈Tex, �′′
ex, Dex〉 interprets Musician as the arithmetic union of the bags corresponding to musi-

cians in the relevant tables. In particular, interpretation Iex in Example 10 is not a model, as required. �
We are now ready to define CQ answering under bag semantics. We first define the answers qI to a CQ q(x) over a

bag interpretation I; this is a natural extension to (possibly infinite) interpretations of the notion of bag answers to a CQ
over a bag database (see Section 2.4). Specifically, qI is a bag of tuples of individuals such that each valid embedding λ of
the atoms in q into I contributes separately to the multiplicity of the tuple λ(x) in qI , and where the contribution of each
specific λ is the product of the multiplicities of the images of the query atoms under λ in I .

Definition 12. Let q(x) = ∃y. φ(x, y) be a CQ and I = 〈�I , ·I 〉 be a bag interpretation. The bag answers qI to q over I are the
bag over tuples of individuals from I of size |x| such that, for every such tuple a,

qI (a) =
∑
λ∈�

∏
S(t) in φ(x,y)

S I (λ(t)),

where � is the set of all valuations λ : x ∪ y ∪ I → �I such that λ(x) = aI , λ(a) = aI for each a ∈ I, and λ(z) = λ(t) for each
z = t in φ(x, y).

100 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
If q is Boolean then the bag answers qI are defined only for the empty tuple 〈〉. Also, conjunction φ(x, y) may contain
repeated atoms, and hence can be seen as a bag of atoms; while repeated atoms are redundant in the set case, they are
essential in the bag setting [29,33], and thus the definition of qI (a) should be read in the way that it treats each copy of a
query atom S(t) separately in the product.

The following definition of certain answers, which captures open-world query answering, is a natural extension of the
set notion to bags: a query answer is certain with multiplicity k if it is an answer with multiplicity at least k over every
model of the OBDA setting.

Definition 13. The bag certain answers q〈T ,�,D〉 to a CQ q over a bag OBDA setting 〈T ,�,D〉 are the bag⋂
I |=b 〈T ,�,D〉

qI .

The bag certain answers under the UNA are defined in the same way except that the intersection ranges only over the models
satisfying the UNA.

Example 14. Consider the OBDA setting 〈Tex, �ex, Dex〉 of our running example. Let T ′
ex augment Tex with the addi-

tional inclusion ∃hasMusician− � Musician specifying the range of role hasMusician, and let qex(x) = Musician(x). We
argue that q

〈T ′
ex,�ex,Dex〉

ex (M. Davis) = 3. On the one hand, consider interpretation Jex extending Iex in Example 10 by set-
ting Musician Jex = { | M. Davis : 3, K. Jarrett : 1 | }; it can be easily checked that Jex is a model of 〈T ′

ex, �ex, Dex〉 satisfying
q Jex

ex (M. Davis) = 3. On the other hand, we argue that every bag model I of 〈T ′
ex, �ex, Dex〉 satisfies qI

ex(M. Davis) ≥ 3. The fact
that I satisfies �ex with respect to Dex (and, in particular, mappings σ5 and σ6) implies that hasMusicianI associates with
M. Davis at least three elements. So, (∃hasMusician−)I (M. Davis) ≥ 3. But then, since T ′

ex contains ∃hasMusician− � Musician

and I satisfies T ′
ex , we have that MusicianI (M. Davis) ≥ 3. Therefore, q〈T ′

ex,�ex,Dex〉
ex (M. Davis) = 3 holds as well. �

The decision problem BagCertObda[Q, O] corresponding to computing the bag certain answers to a CQ from a class Q
over an OBDA setting with a TBox from an ontology language O (i.e., DL-LiteR or one of its sublanguages) is defined as
follows, where we again assume that all numbers in the input are represented in unary and the bag is explicitly defined
only for a finite number of facts.

BagCertObda[Q,O]
Input: CQ q from Q, bag OBDA setting 〈T ,�,D〉 with T from O,

tuple a of individuals from I, and number k ∈N∞
0 .

Question: Is q〈T ,�,D〉(a) ≥ k?

The UNA version BagCertObda
UNA[Q, O] of this problem is defined in the same way as BagCertObda[Q, O] except that the

certain answers are considered under the UNA. The data complexity of these problems is the complexity when the query q,
TBox T , and mappings � are considered to be fixed, and only D, a, and k form the input.

4. The ontology language DL-LitebR

In Section 4.1 we define the ontology language DL-LitebR and its natural fragments, where the distinctive feature of
DL-LitebR is that ABoxes consist of bags of facts rather than sets. We then show in Section 4.2 that, analogously to the case
of conventional OBDA, the materialisation of the mappings over the sources can be represented by a virtual bag ABox; as
a result, the data complexity of OBDA query answering under bag semantics coincides with that of query answering over
DL-LitebR .

4.1. The syntax and semantics of DL-LitebR

We start by introducing the notion of a bag ABox and describing its semantics in terms of bag interpretations.

Definition 15. A bag ABox is a finite bag over the set of concept and role assertions. A bag interpretation I = 〈�I , ·I 〉 satisfies
a bag ABox A, written I |=b A, if, for each concept assertion A(a) and role assertion P (a1, a2), the following holds:∑

b∈I: bI =aI

A(A(b)) ≤ AI (aI) and
∑

b ∈I: bI =aI , i=1,2

A(P (b1,b2)) ≤ P I (aI
1,aI

2).
i i i

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 101
If a bag interpretation I satisfies the UNA, then ABox satisfaction amounts to checking whether the inequalities
A(A(a)) ≤ AI (aI) and A(P (a1, a2)) ≤ P I (aI

1, a
I
2) hold for each concept and role assertion A(a) and P (a1, a2), respectively.

We can now introduce the notion of a bag ontology and define the ontology language DL-LitebR and its fragments.

Definition 16. A DL-LitebR ontology is a pair 〈T , A〉 of a DL-LiteR TBox T and bag ABox A. The sublanguages DL-Liteb
core

,
DL-Liteb

rdfs
, and DL-LitebR− of DL-LitebR are defined in the same way except that only DL-Litecore , DL-Literdfs , and DL-LiteR−

TBoxes are allowed, respectively.
A bag interpretation I is a model of a DL-LitebR ontology 〈T , A〉, written I |=b 〈T , A〉, if I |=b T and I |=b A. A DL-LitebR

ontology is satisfiable if it has a model; it is satisfiable under the UNA if it has a model satisfying the UNA.

The following definition of certain answers, which captures open-world query answering, is a natural extension of the
set notion for DL-LiteR to bags: a query answer is certain for a given multiplicity if it occurs with at least that multiplicity
in the bag answers to the query over every model of the ontology.

Definition 17. The bag certain answers qK to a CQ q over a DL-LitebR ontology K are the bag
⋂

I|=bK qI . The bag certain
answers under the UNA are defined in the same way except that only models satisfying the UNA are considered in the
intersection.

Similarly to the OBDA case, the decision problem corresponding to computing the bag certain answers to a CQ from a
class Q over an ontology in a bag ontology language O (e.g., DL-LitebR or one of its sublanguages) is defined as follows,
where we again assume that all numbers in the input are represented in unary and the bag is explicitly defined only for a
finite number of facts.

BagCert[Q,O]
Input: CQ q from Q, ontology K = 〈T ,A〉 from O,

tuple a of individuals from I, and number k ∈N∞
0 .

Question: Is qK(a) ≥ k?

The UNA version BagCert
UNA[Q, O] of this problem is defined in the same way as BagCert[Q, O] except that the certain

answers are considered under the UNA. The data complexity of this problem is the complexity when the query q and the
TBox T are considered to be fixed, and only A, a, and k form the input.

We conclude this section by introducing the notion of rewritability for our bag semantics. Our definition is analogous to
that of Calvanese et al. [9] for the set case. Note that a bag ABox A can be seen as a database instance, so we can write
�A for a BCALC query � over the unary and binary predicates for atomic concepts and roles, respectively.

Definition 18. A BCALC query � is a rewriting of a CQ q with respect to a TBox T if all the individuals, atomic concepts and
atomic roles of � appear in q or T , and q〈T ,A〉 = �A for every bag ABox A with satisfiable 〈T , A〉. A class of CQs Q is
rewritable to a class of BCALC queries Q′ over an ontology language O if, for every query in Q and every TBox in O, there
exists in Q′ a rewriting of the query with respect to the TBox. Rewritings and rewritability under the UNA are defined in the
same way except that only ontologies satisfiable under the UNA and certain answers under the UNA are considered.

Note that by restricting the signature of � to that of q and T in this definition we are considering the problem of
finding a pure rewriting of q with respect to T . In the set case, it was shown that pure rewritings may have to be of larger
size than their impure counterparts [13]. However, our negative results on rewritability (i.e., Propositions 45 and 63) do not
depend on this restriction, and may be shown for the more general case; we impose this restriction to facilitate exposition
of some proofs.

Note also that in the set case the target query language for rewriting is typically a class of UCQs, since Calvanese et al. [9]
showed that arbitrary CQs are rewritable to UCQs over DL-LiteR . In the case of bags, however, we will see that the situation
is markedly different, and we will focus on BCALC as the target language for rewriting.

4.2. Relationship to query answering in OBDA

In conventional OBDA, the certain answers to a query over 〈T ,�,D〉 can be characterised as those that logically follow
from the union of the TBox T and the virtual ABox A�,D , which represents the materialisation of the views defined by
the mappings � over the database instance D. As a result, query answering in OBDA amounts to query answering over
DL-LiteR , and the rewritability and data complexity properties of both problems coincide [2].

102 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
In what follows, we show that an analogous correspondence holds under bag semantics. We start by introducing the
notion of a virtual bag ABox, which captures the materialisation of the views specified in a bag OBDA setting.

Definition 19. The virtual DL-LitebR ABox of the bag OBDA setting 〈T ,�,D〉 is the bag ABox A�,D defined as follows, for
all A ∈ C, P ∈ R, and a, a1, a2 ∈ I:

A�,D(A(a)) = max
{
�D(a) | �(x) � A(x) ∈ �

}
,

A�,D(P (a1,a2)) = max
{
�D(a1,a2) | �(x, y) � P (x, y) ∈ �

}
.

The following example illustrates the notion of virtual ABoxes.

Example 20. The virtual ABox Aex of the bag OBDA setting 〈Tex, �ex, Dex〉 where Tex is specified in Example 1 and �ex, Dex

in Example 7 is the following bag of assertions:

{| Musician(M. Davis) : 2, Musician(K. Jarrett) : 1, WindPlayer(M. Davis) : 1,

Record(Kind of Blue) : 1, Record(A Tribute to Jack Johnson) : 1,

Record(Expectations) : 1, Record(Ascenseur pour l’Échafaud) : 1,

hasMusician(Kind of Blue, M. Davis) : 1, hasMusician(A Tribute to Jack Johnson, M. Davis) : 1,

hasMusician(Expectations, K. Jarrett) : 1, hasMusician(Ascenseur pour l’Échafaud, M. Davis) : 1 |}. �
The following lemma shows that the models of a bag OBDA setting 〈T ,�,D〉 coincide with those models satisfying the

TBox T and the virtual bag ABox A�,D .

Lemma 21. For every bag OBDA setting 〈T ,�,D〉 and every bag interpretation I , we have that I |=b 〈T ,�,D〉 if and only if I |=b

〈T , A�,D〉.

Proof. It suffices to show that I is a model of A�,D if and only if I satisfies � with respect to D as in Definition 9. For
this, let I be a model of A�,D and, for all S ∈ C ∪ R and tuples a of individuals, let �S,a(x) � S(x) be the mapping in �
such that �D

S,a(a) = max
{
�D(a) | �(x) � S(x) ∈ �

}
where x has the same arity as a. By the definition of I |=b A�,D and

Definition 19, the following inequality holds for every S ∈ C ∪ R, tuples a of individuals, and mapping �(x) � S(x) in �:

S I (aI) ≥
∑

b over I: bI =aI

A�,D(S(b)) =
∑

b over I: bI =aI

�D
S,b(b) ≥

∑
b over I: bI =aI

�D(b).

By Definition 9, this is equivalent to requiring that I satisfies � with respect to D, as desired. �
Having Lemma 21 at our disposal, we can relate the problems of satisfiability checking and query answering for bag

OBDA settings to the corresponding problems for DL-LitebR .

Theorem 22. The following statements hold:

1. a bag OBDA setting 〈T ,�,D〉 is satisfiable if and only if 〈T , A�,D〉 is satisfiable;
2. for every bag OBDA setting 〈T ,�,D〉 and every CQ q we have q〈T ,�,D〉 = q〈T ,A�,D〉; and
3. BagCertObda[Q, O] and BagCert[Q, O] are mutually reducible in LogSpace with respect to data complexity, for Q a class of

CQs and for O a sublanguage of DL-LitebR or DL-LitebR itself.

All three statements also hold when the problems are considered under the UNA.

Proof. We concentrate on the general case; the case of the UNA is analogous. The first two statements are direct conse-
quences of Lemma 21 and the definitions of satisfiability and certain answers.

To show the third statement, we start by reducing BagCertObda[Q, O] to BagCert[Q, O]. For this, fix an instance of
BagCertObda[Q, O] consisting of a CQ q ∈ Q, an OBDA setting 〈T ,�,D〉 with TBox T in O, a tuple a of individuals, and a
number k. By Statement 2, BagCertObda[Q, O] is true on the aforementioned instance if and only if BagCert[Q, O] is true
on an instance consisting of q, 〈T , A�,D〉, a, and k, where A�,D is the virtual ABox corresponding to � and D. Because T
and � are of fixed size, it is clear by Definition 19 and Proposition 5 on the data complexity of BCALC that the construction
of A�,D is feasible in LogSpace.

The reduction of BagCert[Q, O] to BagCertObda[Q, O] is straightforward: for an instance of BagCert[Q, O] consist-
ing of a CQ q ∈ Q, an ontology 〈T , A〉 in O, a tuple a of individuals, and a number k, we just consider an instance of
BagCertObda[Q, O] consisting of q, 〈T , �, A〉, a, and k, where A is considered as a bag database instance and � is a set
of identity mappings S(x) � S(x) for all atomic concepts and roles S appearing in A. �

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 103
This theorem allows us to talk only about DL-LitebR ontologies in the rest of the paper, silently assuming that all the
results apply to OBDA settings as well.

5. Relationship of bag and set semantics in the context of DL-LiteR

In this section we discuss the main similarities and differences between our bag semantics of DL-LitebR and the conven-
tional set semantics of DL-LiteR . First, in Section 5.1, we argue that our bag semantics can be seen as a generalisation of
the set semantics, in the sense that, on the one hand, satisfiability checking in DL-LitebR reduces to satisfiability checking in
DL-LiteR and, on the other hand, query answers under bag and set semantics coincide if multiplicities are ignored. There
are, however, key properties of the conventional semantics for DL-LiteR that are no longer satisfied by the bag semantics. In
particular, in Section 5.2, we discuss the influence of the UNA on query answering and show fundamental differences with
the set case. Furthermore, in Section 5.3, we show that a universal model—a representative model of a satisfiable ontology
over which each CQ can be correctly evaluated—may not exist under bag semantics; this is in contrast to the set case, where
the fact that a universal model always exists is key to ensuring favourable computational properties of query answering.

5.1. Satisfiability, entailment of axioms, and query answering

The following theorem shows that our bag semantics is compatible with the conventional set semantics of DL-LiteR .
The first statement in the theorem shows that satisfiability under bag semantics reduces to the set case: to check whether
a DL-LitebR ontology K′ is satisfiable, it suffices to check satisfiability of the DL-LiteR ontology K obtained from K′ by
setting all non-zero multiplicities in the ABox to 1. The second statement establishes that entailment of axioms under set
and bag semantics coincide; this means that the adoption of bag semantics does not affect the standard TBox reasoning
services implemented in ontology development tools. Finally, the third statement shows that certain answers under bag and
set semantics coincide if multiplicities are ignored—that is, a tuple is a set certain answer to a query with respect to an
ontology if and only if it is also a bag certain answer with multiplicity at least one. All three statements in the theorem
hold regardless of whether the UNA is adopted.

Theorem 23. Let K = 〈T , A〉 be a DL-LiteR ontology and let K′ = 〈T , A′〉 be a DL-LitebR ontology with the same TBox such that
A = {S(t) |A′(S(t)) ≥ 1}. Then, the following statements hold:

1. K is satisfiable if and only if K′ is satisfiable;
2. T |= α if and only if T |=b α, for each DL-LiteR axiom α; and
3. a ∈ qK if and only if qK′

(a) ≥ 1, for each CQ q and each tuple a over I.

All three statements also hold when the problems are considered under the UNA.

Proof. We concentrate on the general case; the case of the UNA is analogous.
(Statement 1) Assume that K has a model I = 〈�I , ·I 〉. Let I ′ = 〈�I , ·I ′ 〉 be the bag interpretation defined as follows, for each
a ∈ I, A ∈ C, P ∈ R, and u, v ∈ �I :

aI ′ = aI , AI ′(u) =
{

∞, if u ∈ AI ,

0, otherwise,
P I ′(u, v) =

{
∞, if (u, v) ∈ P I ,

0, otherwise.

Bag interpretation I ′ satisfies A′ and all axioms in T . Thus, I ′ is a model of K′ and, therefore, K′ is satisfiable, as required.
Conversely, suppose that K′ has a model I ′ = 〈�I ′ , ·I ′ 〉. We construct an interpretation I = 〈�I ′ , ·I 〉 as follows, for each a ∈ I,
A ∈ C, P ∈ R, and u, v ∈ �I ′ :

aI = aI ′ ,
u ∈ AI if and only if AI ′(u) > 0,

(u, v) ∈ P I if and only if P I ′(u, v) > 0.

Interpretation I is a model of K by construction, which completes the proof of Statement 1.

(Statement 2) We show the claim by considering a case for each kind of axiom in T .
Let first α be S1 � S2 where S1 and S2 are either both concepts or both roles. To show that T |=b S1 � S2 implies

T |= S1 � S2, assume that T |=b S1 � S2 but T �|= S1 � S2. Then, the following DL-LiteR ontology must be satisfiable [9]:
〈T ∪ {S � S1, Disj(S, S2)}, {S(a)}〉, where S is fresh. By Statement 1, the DL-LitebR ontology consisting of the same TBox and
a bag ABox A′ = { | S(a) : 1 | } is satisfiable. Thus, there exists a bag interpretation I such that I |=b T , S I ⊆ S I

1, S I ∩ S I
2 = ∅,

and S I (u) > 0 for some tuple u of domain elements. From this we derive that S I
1(u) > 0 and S I

2(u) = 0 and hence S I
1 � S I

2,
which then implies T �|=b S1 � S2, contradicting our assumption.

104 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
We now show that T |= S1 � S2 implies T |=b S1 � S2. Let T ′ be the TBox extending T with the following inclusions
for each role inclusion R1 � R2 in T : ∃R1 � ∃R2, ∃R−

1 � ∃R−
2 , and R−

1 � R−
2 , for R−

1 and R−
2 the inverses of R1 and

R2, respectively. Following [34], T |= S1 � S2 implies that either T |= Disj(S1, S1), or there exists a chain of inclusions
T0 � T1, . . . , Tn−1 � Tn in T ′ such that T0 = S1 and Tn = S2. In the first case, we have that T |=b Disj(S1, S1) by definition.
In the second case, the chain of inclusions in T ′ implies that T ′ |=b S1 � S2 since T I

0 ⊆ T I
1 ⊆ · · · ⊆ T I

n should hold for every
bag interpretation I satisfying T ′ . Then, T |=b S1 � S2 follows from the fact that every bag interpretation satisfying T
satisfies also the additional inclusions in T ′ by construction.

Let now α be Disj(S1, S2) where S1, S2 are either both concepts or both roles. If T �|=b Disj(S1, S2), then there exists
a bag interpretation I such that I |=b T and S I

1 ∩ S I
2 �= ∅. Let I ′ be the set interpretation constructed in the proof of

Statement 1 on the basis of I . By construction we have that I ′ |= T and S I ′
1 ∩ S I ′

2 �= ∅; thus T �|= Disj(S1, S2), as required. The
other direction can be shown in exactly the same way.

(Statement 3) First, let a ∈ qK—that is, let a belong to the certain answers to q over K—and assume for the sake of contra-
diction that qK′

(a) = 0. The latter means that there exists a model I ′ of K′ such that qI ′ (a) = 0. Consider the interpretation
I constructed on the basis of I ′ as in the proof of Statement 1. Interpretation I is a model of K such that I �|= q(a), which
yields a contradiction. Thus, qK′

(a) ≥ 1, as required. The other direction can be shown in exactly the same way. �
5.2. Unique name assumption

As we mentioned before, in the set case general satisfiability and satisfiability under the UNA coincide for DL-LiteR , and
the same holds for axiom entailment. The following corollary, which states similar claims for bag semantics, is an immediate
consequence of Statements 1 and 2 of Theorem 23 and this property.

Corollary 24. A DL-LitebR ontology is satisfiable if and only if it is satisfiable under the UNA. A DL-LiteR TBox entails an axiom under
bag semantics if and only if it entails this axiom under bag semantics and the UNA.

Artale et al. [24] showed that query answering over satisfiable DL-LiteR ontologies is also independent of whether the
UNA is adopted or not; indeed the UNA may influence query answers under set semantics only if the ontology language
allows for some form of equality (e.g., functionality constraints). We next argue that the situation is markedly different
under bag semantics. The following proposition shows that the UNA can influence query answering under bag semantics as
soon as role inclusions are allowed in the ontology language.

Proposition 25. There exists a satisfiable DL-LitebR ontology K and a rooted CQ q such that the (general) certain answers to q over K
differ from the certain answers under the UNA.

Proof. Let K = 〈T , A〉 be a DL-LitebR ontology with T = {P ′ � P } and A = { | P (a,b1) : 1, P ′(a,b2) : 1 | }. Let also q =
∃y. P (a, y). Under the UNA, we have that qK(〈〉) = 2. Indeed, in all models I satisfying the UNA, individuals b1 and b2
are interpreted as different elements; as a result, in each such I , the element aI is associated with at least two elements in
P I . In contrast, if the UNA is not adopted, then the certain answer is 1, which is witnessed by an interpretation that maps
b1 and b2 to the same element of the domain. �

As we will see later on (in Corollary 43), the presence of role inclusions is crucial for this mismatch, and the certain
answers to rooted CQs over DL-Liteb

core
ontologies do not depend on whether the UNA is adopted.

5.3. Universal models

An important property of each satisfiable DL-LiteR ontology K is the existence of so-called universal models for CQs—
that is, models I such that the certain answers to every CQ q over K can be obtained by evaluating q over I [9]. Existence
of such universal models is critical to the favourable computational properties of DL-LiteR . The notion of a universal model
for bags is the same as for sets.

Definition 26. A model I of an ontology K is universal for a class of queries Q if qK = qI for all q ∈ Q. It is universal under
the UNA if the certain answers under the UNA are considered.

In the set case, it is well-known that universal models for the class of CQs always exist for satisfiable ontologies K. In
fact, they are canonical interpretations—that is, interpretations that can be obtained by a restricted chase procedure applied
to K [35]. It is also well-known that a model of K is universal for the class of CQs if and only if it can be homomorphically
embedded into every other model of K [9]. Unfortunately, in contrast to the set case, even DL-Liteb

core
ontologies may not

admit universal models for all CQs.

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 105
Proposition 27. There exists a satisfiable DL-Liteb
core

ontology K that has neither a universal model nor a universal model under the
UNA for the class of all CQs.

Proof. Let K = 〈T , A〉 be the DL-Liteb
core

ontology with T = {A � ∃P , ∃P− � B} and A = { | A(a) : 1, B(b) : 1 | }. Consider the
bag interpretation I1 with domain {a, b} that interprets the individuals by themselves and interprets the concepts and roles
as follows:

AI1 = {|a : 1 |}, B I1 = {|b : 1 |}, P I1 = {| (a,b) : 1 |}.
Similarly, consider the bag interpretation I2 with domain {a, b, u} that interprets the individuals by themselves and inter-
prets concepts and roles as follows:

AI2 = {|a : 1 |}, B I2 = {|b : 1, u : 1 |}, P I2 = {| (a, u) : 1 |}.
It is immediate to verify that both I1 and I2 are models of K. Moreover, for the Boolean CQs

qr = P (a,b) and qnr = ∃y. B(y),

we have that

qI1
r (〈〉) = 1, qI2

r (〈〉) = 0,

qI1
nr(〈〉) = 1, qI2

nr(〈〉) = 2;
thus, neither model is universal for {qr, qnr}.

Suppose now there is a universal model I for {qr, qnr}. Then, since qI
r(〈〉) must be 0, we have that P I (aI , bI) = 0. Since

assertion A(a) occurs in A with multiplicity 1 and inclusion A � ∃P belongs to T , we have that P I (a, v) ≥ 1 for some v ∈
�I distinct from element bI . Since inclusion ∃P− � B is in T , it follows that B I (v) ≥ 1, and, hence, qI

nr(〈〉) ≥ 2, contradicting
universality of I .

Finally, note that the proof also works under the UNA. �
6. Lower bounds for the data complexity of query answering under bag semantics

The lack of universal models illustrated in Section 5.3 suggests that CQ answering under bag semantics is computationally
more challenging than in the set case. In this section, we show that this is indeed the case and establish three incomparable
coNP lower bounds in data complexity. These are in stark contrast to the well-known AC

0 upper bound in the set case for
CQ answering over DL-LiteR .

The first lower bound is given in Theorem 28, where we show that CQ answering is coNP-hard even if we restrict the
ontology language to DL-Liteb

core
regardless of the adoption of the UNA. The second and third lower bounds are established

in Theorem 29, where we show similar coNP-hardness results for the cases where the query language is restricted to the
class of rooted CQs and the ontology language is allowed to contain role inclusions.

Theorem 28. Both BagCert

[
CQs, DL-Liteb

core

]
and BagCert

UNA
[
CQs, DL-Liteb

core

]
are coNP-hard in data complexity.

Proof. We prove that there exists a DL-Liteb
core

TBox T and a Boolean CQ q such that checking whether q〈T ,A〉(〈〉) ≥ k
for an input bag ABox A and k ∈ N∞

0 is coNP-hard regardless of whether the UNA is adopted or not. Following ideas of
Kostylev and Reutter [36], we provide a reduction of the complement of the 3-colourability problem for directed graphs, a
well-known coNP-complete problem, to query answering.

We first address the case of BagCert
UNA . Let G = 〈V , E〉 be a directed graph with vertices V and edges E . We construct

a DL-Litecore TBox T and a Boolean CQ q, neither of which depends on G , as well as a bag ABox AG based on G , such that
G is not 3-colourable if and only if q〈T ,AG 〉(〈〉) ≥ 3 × |V | + 2.

First, let T consist of the inclusions

V ertex � ∃hasColour and ∃hasColour− � Colour,

where V ertex and Colour are atomic concepts, and hasColour is an atomic role, and let q be the Boolean CQ

∃x, y, z, w. Edge(x, y) ∧ hasColour(x, z) ∧ hasColour(y, z) ∧ Colour(w).

Then, let AG be the bag ABox defined as given next, where we use an individual av for each vertex v ∈ V , an individual
a representing an auxiliary “vertex”, individuals r, g , and b representing three colours, atomic role Edge, as well as the
concepts and roles introduced before:

– V ertex(av) has multiplicity 1, for each vertex v ∈ V ;
– Edge(av1 , av2) has multiplicity 1, for each edge (v1, v2) ∈ E;

106 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
– Colour(r) has multiplicity |V | + 1 for colour r;
– Colour(g) and Colour(b) each has multiplicity |V | for colours g and b;
– V ertex(a), Edge(a, a), and hasColour(a, r) each has multiplicity 1 for the auxiliary “vertex” a; and
– all other assertions have multiplicity 0.

Concept V ertex and role Edge are used to encode G . The role hasColour represents a colour assignment to the vertices of
G , where inclusions V ertex � ∃hasColour and ∃hasColour− � Colour necessitate the association of each vertex to a colour.
Concept Colour provides a sufficient number of pre-defined copies of the three colours; every proper colour assignment of
G shall use at most |V | times each of these colours. We next exploit these properties for showing that

G is not 3-colourable if and only if q〈T ,AG 〉(〈〉) ≥ 3 × |V | + 2.

First, let G be not 3-colourable. Consider an arbitrary model I of 〈T , AG〉. We next show that qI (〈〉) ≥ 3 × |V | + 2. Since
I is a model of bag ABox AG , the valuation λ defined as λ(x) = λ(y) = aI and λ(z) = λ(w) = r I contributes to qI (〈〉) a
multiplicity of at least |V | + 1; this is because AG contains assertion Colour(r) with multiplicity |V | + 1 and assertions
V ertex(a), Edge(a, a), and hasColour(a, r) with multiplicity 1. Similarly, each valuation that differs from λ by sending w
to either gI or bI contributes to qI (〈〉) a multiplicity of at least |V |. We have two possibilities for I: either there exists an
element u ∈ �I different from r I , gI and bI such that ColourI (u) ≥ 1 or not. In the first case the valuation that differs from
λ by sending w to u instead of r I contributes to qI (〈〉) a multiplicity of at least 1, so overall we have q(〈〉)I ≥ 3 × |V | + 2,
as required. In the second case we can consider a colour assignment γ to V such that, for every v ∈ V , γ (v) is red if
hasColourI (aI

v , r I) ≥ 1, it is green if hasColourI (aI
v , gI) ≥ 1, and it is blue if hasColourI (aI

v , bI) ≥ 1 (if there are several
possible options for some v we can just pick any of them). Since G is not 3-colourable, there exists an edge (v1, v2)

in E such that γ (v1) = γ (v2). Consider the valuation λ′ such that λ′(x) = aI
v1

, λ′(y) = aI
v2

, λ′(z) is one of r I , gI and bI

corresponding to the colour of v1 and v2 under γ , and λ′(w) = r I . By construction, λ′ contributes to qI (〈〉) a multiplicity of
at least |V | + 1. Therefore, overall we have that q(〈〉)I ≥ 3 × |V | + 2, as required.

Assume now that G is 3-colourable. It suffices to show that there exists a model I of 〈T , AG〉 for which
qI (〈〉) < 3 × |V | + 2. Since G is 3-colourable, there is an assignment γ : V → {r, g, b} such that, for every (v1, v2) ∈
E , γ (v1) �= γ (v2). Consider a bag interpretation I with the domain consisting of all the individuals (i.e.,
�I = {av | v ∈ V } ∪ {a, r, g,b}) that interprets all the individuals by themselves, and such that V ertexI , EdgeI and ColourI

are defined precisely according to AG (e.g., V ertexI (c) =AG(V ertex(c)) for every individual c), while

hasColourI (u1, u2) =

⎧⎪⎨
⎪⎩

1, if u1 = av and u2 = γ (v) for v ∈ V ,

1, if u1 = a and u2 = r,

0, otherwise.

In other words, interpretation I is defined on the basis of the 3-colouring of G . By construction, I is a model of 〈T , AG〉.
Next, we show that qI (〈〉) = 3 × |V | + 1. First, we observe that the first three atoms Edge(x, y), hasColour(x, z), and
hasColour(y, z) of q match exactly once (i.e., under the valuation sending x and y to a, and z to r). Next, there are pre-
cisely three possibilities for variable w , namely r, g , and b, contributing multiplicity 3 × |V | + 1 in total. Consequently,
qI (〈〉) = 3 × |V | + 1, as desired.

We now address the case of BagCert by discussing the required modifications in the aforementioned reduction. For this,
it is enough to ensure that, first, the auxiliary “vertex” a is not interpreted by the same element as any of the vertices
of G; and, second, that the colour individuals r, g , and b are interpreted by pairwise different elements. To ensure this,
we use atomic concepts Va , V G , Red, Green, and Blue. We add the following disjointness axioms to TBox T : Disj(Va, V G),
Disj(Red, Green), Disj(Red, Blue), and Disj(Green, Blue). We also modify bag ABox AG by setting the multiplicity of Va(a),
Red(r), Green(g), Blue(b), and V G(av), for every vertex v ∈ V , to 1 (and the multiplicity of all other assertions over the new
concepts to 0). Following the same argumentation as for the case of BagCert

UNA , we can show that the above reduction
works when the UNA is dropped. �

Note that the query constructed in the proof of Theorem 28 is not rooted; furthermore, the use of the disconnected
atom Colour(w) in the query is instrumental to the correctness of the reduction. In Section 8 we show that rooted CQs are
rewritable to BCALC over DL-Liteb

core
regardless of the adoption of the UNA—that is, the problems are in LogSpace in data

complexity.
Unfortunately, the restriction to rooted CQs alone is not sufficient to ensure tractability of query answering for bag

ontology languages allowing for role inclusions. In the first part of Theorem 29 we show that answering rooted CQs is
intractable (coNP-hard) even if we restrict ourselves to DL-Liteb

rdfs
ontologies, which allow for role inclusions while at the

same time disallowing existential quantification on the right-hand side of concept inclusions. This lower bound, however,
critically depends on the fact that the UNA is not adopted; indeed, in Section 9 we will show that all CQs (and not just
rooted ones) are rewritable to BCALC over DL-Liteb

rdfs
under the UNA. On the other hand, even if adopting the UNA can make

rooted CQ answering easier, in the second part of Theorem 29 we show that it remains intractable in general: answering
rooted CQs over DL-Liteb is coNP-hard under the UNA.
R

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 107
Theorem 29. BagCert

[
rooted CQs, DL-Liteb

rdfs

]
and BagCert

UNA
[
rooted CQs, DL-LitebR

]
are coNP-hard in data complexity.

Proof. We first prove the claim for the case of BagCert, and then show how to adapt the proof to the case of BagCert
UNA .

The proof is again by reduction of the complement of the 3-colouring problem for directed graphs; however, the reduction
is more involved. Let G = 〈V , E〉 be a directed graph with vertices V and edges E . Next, we define a DL-LiteR TBox T and
Boolean rooted CQ q, neither of which depends on G , as well as a bag ABox AG , based on G , such that G is not 3-colourable
if and only if q〈T ,AG 〉(〈〉) ≥ 3 × |V | + 2.

First, let T consist of a single role inclusion

hasColour � Colour,

where hasColour and Colour are atomic roles. Let also q be the following Boolean rooted CQ, where a0 is a “root” individual,
and Edge, Beg , End and V ertex are atomic roles:

∃xv , xc, ye, y1
v , y2

v , yc. V ertex(a0, xv) ∧ Colour(xv , xc) ∧
Edge(a0, ye) ∧ Beg(ye, y1

v) ∧ hasColour(y1
v , yc) ∧ End(ye, y2

v) ∧ hasColour(y2
v , yc).

Finally, let the bag ABox AG mention the “root” individual a0 of q, individuals av and cv associated to vertices v ∈ V ,
individuals r, g , and b corresponding to the three colours, individuals ae associated to edges e ∈ E , as well as an auxiliary
“vertex” individual a and “edge” individual a∗; let also AG assign 1 to the following assertions (and 0 to all others):

– V ertex(a0, av), Colour(av , r), Colour(av , g), Colour(av , b), hasColour(av , cv), for each vertex v ∈ V ,
– Edge(a0, ae), Beg(ae, av1), End(ae, av2), for each e = (v1, v2) in E ,
– V ertex(a0, a), Colour(a, r), hasColour(a, r), and
– Edge(a0, a∗), Beg(a∗, a), End(a∗, a).

Having the reduction complete, next we show that it is correct—that is, that

G is not 3-colourable if and only if q〈T ,AG 〉(〈〉) ≥ 3 × |V | + 2.

Intuitively, every model of 〈T , AG 〉 has 3 × |V | + 1 contributing valuations for q that send the subquery of q over the y
variables to the (interpretations of) the assertions over the auxiliary a∗ , a and r, while the subquery over the x variables to
the assertions over one of av and a, and one of r, g , and b. Then, if some cv is interpreted as neither r, nor g , nor b, we
can construct one more valuation sending xc to the interpretation of cv (here we make use of the TBox T). Otherwise, the
identifications of cv can be seen as a colouring of the vertices (represented by av individuals), and every valid colouring
corresponds to the model possessing exactly 3 × |V | + 1 valuations. Next, we make this intuition formal. In fact, in the both
directions of the correctness proof we make use of the following fact.

Claim 30. For every bag interpretation I satisfying all assertions in AG , qI (〈〉) ≥ 3 × |V | + 1.

Proof. Let I be a bag interpretation satisfying ABox AG . Consider all the valuations λ such that λ(ye) = aI∗ ,
λ(y1

v) = λ(y2
v) = aI , λ(yc) = r I , as well as λ(xv) is one of av , for v ∈ V , and λ(xc) is one of r I , gI , and bI . Since I satis-

fies AG , each of these valuations contribute at least 1 to qI (〈〉), and there are overall 3 × |V | of them. Note that we rely
only on the cardinality of the ABox here, so even if the interpretations of the individuals are not pairwise distinct—that
is, if the UNA is violated—and some of these valuations may coincide, the total contribution of these valuations is still at
least 3 × |V | by Definition 15. Consider now the valuation λ′ that is the same as before on ye , y1

v , y2
v and yc , but such that

λ(xv) = aI and λ(xc) = r I . This valuation also contributes a multiplicity of at least 1. Moreover, for the same reason as before,
the contribution of each of the considered valuations is separate—that is, the total contribution is at least 3 × |V | + 1. �

Having this claim at hand, we are ready to show correctness of the reduction. Let first G be not 3-colourable. Consider
an arbitrary model I of 〈T , AG〉. Since I satisfies all assertions in AG , by Claim 30 we know that there are valuations that
contribute 3 ×|V | + 1 to qI (〈〉). So, it is enough to show that there is a valuation with a non-zero and different contribution.
We have two possibilities: either there is a vertex v ∈ V such that cI

v is distinct from r I , gI , and bI , or not.
In the first case, consider such a vertex v and the valuation λ that is the same as in Claim 30 on yc , y1

v , y2
v and yc ,

but such that λ(xv) = aI
v and λ(xc) = cI

v . On the one hand, A(hasColour(av , cv)) = 1 and T has the inclusion hasColour �
Colour, so ColourI (aI

v , cI
v) ≥ 1 and, therefore, the contribution of this valuation is at least 1. On the other hand, we have not

considered this valuation yet, because cI
v is different from r I , gI , and bI by assumption.

Consider now the second case—that is, the case when cI
v is among r I , gI and bI for each v . Construct a colour assignment

γ to vertices such that, for each such vertex v , γ (v) is red if cI
v = r I , it is green if cI

v = gI , and it is blue if cI
v = bI (if some

of r I , gI , and bI coincide, then there are many of such assignments and γ can be any of them). We know that G does not
have a valid colouring, so there is an edge e = (v1, v2) in E with both v1 and v2 assigned to the same colour. For brevity,

108 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
Table 1
Data complexity of BagCert[Q, O] and BagCert

UNA[Q, O] with references to the corresponding theorems (the bounds without references follow immedi-
ately from the others).

UNA Q O
DL-Liteb

core
DL-Liteb

rdfs
DL-LitebR− DL-LitebR

No CQs coNP-hard [Theorem 28] coNP-hard coNP-hard coNP-hard
Rooted CQs in LogSpace [Corollary 59] coNP-hard [Theorem 29] coNP-hard coNP-hard

Yes CQs coNP-hard [Theorem 28] in LogSpace [Corollary 68] coNP-hard coNP-hard
Rooted CQs in LogSpace in LogSpace in LogSpace [Corollary 79] coNP-hard [Theorem 29]

consider only the case when this colour is red; the other two cases are symmetric. Let λ be the valuation that agrees with
a valuation in Claim 30 on the variables xv and xc , and follows the following assignment for the rest of the variables:
λ(ye) = aI

e , λ(y1
v) = aI

v1
, λ(y2

v) = aI
v2

, λ(yc) = r I . On the one hand, the contribution of this valuation to qI (〈〉) is at least 1
by construction. On the other hand, this valuation is different from the ones considered in Claim 30.

Therefore, in both cases we have that qI (〈〉) ≥ 3 × |V | + 2, as required.

Let now G be 3-colourable—that is, there is a colour assignment γ to V such that the vertices of each edge are coloured
differently. We next show that q〈T ,AG 〉(〈〉) < 3 × |V | + 2. To this end, consider the bag interpretation I defined as follows:

– for each vertex v ∈ V , cI
v is r if γ (v) is red, it is g if γ (v) is green, and it is b if γ (v) is blue;

– all other individuals are interpreted by themselves; and
– all the atomic roles are interpreted as dictated by the ABox (i.e., S I (uI

1, u
I
2) =AG(S(u1, u2)) for every atomic role S and

every pair of individuals u1, u2).

On the one hand, interpretation I is a model of 〈T , AG〉 by construction, because the identification of all cI
v with one

of r, g and b makes I satisfy the inclusion of T for the only relevant assertions hasColour(av , cv). On the other hand,
qI (〈〉) = 3 × |V | + 1: indeed, it is at least 3 × |V | + 1 by Claim 30, and it is immediate to check that there are no more
valuations with a non-zero contribution to qI (〈〉). So, I is a witness for the fact that q〈T ,AG 〉(〈〉) < 3 × |V | + 2.

We are left to show the second part of the theorem—that is, coNP-hardness of BagCert for the case when the UNA is
adopted, but arbitrary DL-LiteR TBoxes are allowed. In fact, we can essentially repurpose the same reduction as in the first
part. The only modifications in the reduction are that the ABox AG does not have assertions hasColour(av , cv), for v ∈ V
(i.e., does not use individuals cv at all), while the TBox T additionally has the inclusion ∃V ertex− � ∃hasColour. Then, the
correctness proof goes along the same lines as in the first case, except that anonymous domain elements uv , which are
enforced by the new inclusion for each v ∈ V , are used instead of the cI

v . �
Since the data complexity of BCALC is strictly contained in LogSpace, the lower bounds in Theorems 28 and 29 imply

non-rewritability to BCALC for the relevant query and ontology languages.

Corollary 31. The class of all CQs is not rewritable to BCALC over DL-Liteb
core

, both in general and under the UNA. The class of rooted
CQs is not rewritable to BCALC over DL-Liteb

rdfs
in general and over DL-LitebR under the UNA.

In the following sections, we investigate how to regain tractability of query answering and rewritability to BCALC by con-
sidering suitable restrictions on the query and ontology languages that allow us to circumvent the bounds in Theorems 28
and 29. In Sections 7 and 8 we focus on DL-Liteb

core
and show that the class of rooted CQs is rewritable to BCALC both in

general and under the UNA. In Section 9 we focus on the ontology language DL-Liteb
rdfs

and show that all CQs (and not
just rooted ones) are rewritable to BCALC under the UNA. Finally, in Section 10 we show rewritability of rooted CQs over
DL-LitebR− , which extends both DL-Liteb

core
and DL-Liteb

rdfs
, under the UNA. For the convenience of the reader, we summarise

in Table 1 all the data complexity results proved in this paper.

7. Universal models for rooted conjunctive queries over DL-LitebCORE ontologies

Our next main goal is to show tractability of answering rooted CQs over DL-Liteb
core

in data complexity and their BCALC
rewritability, both regardless of the adoption of the UNA. Towards this goal, in this section we show that every satisfiable
DL-Liteb

core
ontology admits a universal model for rooted CQs, both in general and under the UNA. To this end, we proceed

as in the set case: we first define a special bag interpretation for each DL-Liteb
core

ontology, which we call canonical, and
then, after developing dedicated machinery, prove that it is indeed universal for the class of rooted CQs when the ontology
is satisfiable. However, in contrast to the set case, the requirement for CQs to be rooted is crucial here: recall Proposition 27,
where we constructed a DL-Liteb

core
ontology that does not have a universal model for all CQs.

To formalise canonical bag interpretations, we need two auxiliary notions. First, the concept closure cclT [u, I] of an
element u ∈ �I in a bag interpretation I = 〈�I , ·I 〉 over a TBox T is the bag of concepts such that, for every concept C ,

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 109
b A : 4, B : 3B : 4 d

c

a
A : 2B : 2

w1
a,P

w1
w1

a,P ,R

w1
b,P

w2
b,P

w1
w1

b,P ,R

w1
w2

b,P ,R

w1
d,R

w2
d,R

P

P

P
PR

R

R

R

P

P

R

R

Fig. 1. The canonical bag interpretation of the DL-Liteb
core

ontology considered in Example 33.

cclT [u, I](C) = max{C I
0(u) | T |= C0 � C}.

In other words, cclT [u, I](C) is the maximum value of C I
0(u) amongst all concepts C0 satisfying T |= C0 � C—that is,

cclT [u, I](C) is the minimal multiplicity of C J (u) required for an extension J of I to satisfy TBox T locally in u.
Second, the union I ∪ J of two bag interpretations I = 〈�I , ·I 〉 and J = 〈� J , · J 〉 interpreting all the individuals in the

same way—that is, such that aI = a J for all a ∈ I—is the bag interpretation 〈�I ∪ � J , ·I∪ J 〉 with aI∪ J = aI for all individuals
a ∈ I and S I∪ J = S I ∪ S J for all atomic concepts and roles S ∈ C ∪ R (recall that S I and S J are bags, so S I ∪ S J is the bag
maximal union).

Definition 32. The canonical bag interpretation Can(K) of a DL-Liteb
core

ontology K = 〈T , A〉 is the bag interpretation that is
the union

⋃
i≥0 Cani(K) of the bag interpretations Cani(K) defined as follows:

– Can0(K) = 〈�Can0(K), ·Can0(K)〉 is the bag interpretation corresponding to bag ABox A—that is, such that �Can0(K) = I,
aCan0(K) = a for each a ∈ I, and SCan0(K)(a) =A(S(a)) for each S ∈ C ∪ R and individuals a;

– for each i > 0, Cani(K) = 〈�Cani(K), ·Cani(K)〉 extends Cani−1(K) by satisfying all the inclusions that are not satisfied in
Cani−1(K)—that is,

�Cani(K) = �Cani−1(K) ∪ {
w1

u,R , . . . , wδ
u,R | u ∈ �Cani−1(K) and R is a role such that

δ = cclT [u, Cani−1(K)](∃R) − (∃R)Cani−1(K)(u)
}
,

where w j
u,R are fresh domain elements, called anonymous, and, for all a ∈ I, A ∈ C, P ∈ R, and domain elements u and v ,

aCani(K) = a,

ACani(K)(u) =
{

cclT [u, Cani−1(K)](A), if u ∈ �Cani−1(K),

0, otherwise,

P Cani(K)(u, v) =

⎧⎪⎨
⎪⎩

P Cani−1(K)(u, v), if u, v ∈ �Cani−1(K),

1, if u = w j
v,P or v = w j

u,P− ,

0, otherwise.

We have just defined canonical bag interpretations in a declarative way. Note, however, that they can also be obtained
by applying a variant of the restricted chase procedure [35] extended to bags—a procedure where, starting from the ABox,
violations of the inclusions in the TBox are successively “repaired” by extending the interpretation of concepts and roles in
a minimal way. We now illustrate Definition 32 with an example.

Example 33. Consider the DL-Liteb
core

ontology K = 〈T , A〉 specified as

T = {A � B, B � ∃P , ∃P− � ∃R} and A = {| A(a) : 2, A(b) : 4, B(b) : 3, P (b,d) : 2, P (a,d) : 1, R(d, c) : 1 |}.
The canonical bag interpretation of K is depicted in Fig. 1. Let us now follow the steps involved in its construction according

to Definition 32. Interpretation Can0(K), enclosed in the shaded area, reflects the bag ABox A: interpretations of concepts
are shown by labels of the individuals, which include the multiplicities (e.g., label A : 2 of a indicates that ACan0(K)(a) =
2), while interpretations of roles are shown by solid lines (e.g., two lines between b and d labelled by P indicate that
P Can0(K)(b, d) = 2). Interpretation Can1(K) increases the multiplicities of the elements a and b in the interpretation of B
(e.g., b has a label B : 3 inside the shaded area indicating that BCan0(K)(b) = 3 and a label B : 4 outside of it indicating

110 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
that BCan1(K)(b) = 4), introduces the anonymous domain elements w1
b,P , w2

b,P , w1
a,P , w1

d,R and w2
d,R , and extends the

interpretations of the roles accordingly, which is shown by dashed lines. Interpretation Can2(K) further introduces three
anonymous elements and extends the interpretations of the roles. No further changes occur for i > 2, and hence Can(K) =
Can0(K) ∪ Can1(K) ∪ Can2(K). �

Inspecting Definition 32 and Example 33, we observe that every canonical bag interpretation interprets each concept with
a bag of individuals but only with a set of anonymous elements; similarly, multiplicities greater than 1 in the interpretations
of roles are possible only for pairs of elements that are both individuals. This is an important property of canonical bag
interpretations, which we are going to use in this section.

Note that the canonical bag interpretation satisfies the UNA. The following is another simple and intuitive observation,
which holds regardless of the UNA and can be checked by the construction.

Proposition 34. If a DL-Liteb
core

ontology is satisfiable then its canonical bag interpretation is its model.

In the rest of this section, we show that the canonical bag interpretations of satisfiable DL-Liteb
core

ontologies are universal
models for the class of rooted CQs regardless of the adoption of the UNA. There are two key ideas here, which are similar
to the set case, but more subtle.

First, the canonical bag interpretation of a satisfiable DL-Liteb
core

ontology admits a homomorphism of a special type to
every model of the ontology. Such homomorphisms, which we call multiplicity-preserving on the individuals, have a hybrid
nature: for the concept interpretations, they preserve multiplicities of the interpretations of individuals, but are not required
to do so for anonymous elements; similarly, for role interpretations, they preserve multiplicities of the pairs having at least
one element being the interpretation of an individual, but are not required to do so for pairs of anonymous elements.

Second, each valuation of a rooted CQ over the canonical bag interpretation sends at least one term of each connected
component to the interpretation of an individual. So, since DL-Liteb

core
does not allow for role inclusions, if two such val-

uations are different, then they are different on the non-anonymous part of the canonical interpretation. Moreover, the
canonical bag interpretation is essentially set-based on the anonymous elements. Therefore, a valuation contributing to the
answers and its multiplicity are determined solely by the non-anonymous part of the image of the valuation.

Putting these two ideas together, we can conclude that the composition of a valuation of a rooted CQ over the canonical
bag interpretation and a homomorphism from the canonical interpretation to another model that is multiplicity-preserving
on the individuals is also a valuation, and its contribution to the certain answers over the latter model is at least as large as
the contribution of the former valuation over the canonical interpretation; moreover, different valuations over the canonical
interpretation contribute independently to the certain answers over the latter model. This means that the canonical bag
interpretation has the smallest possible certain answers to every rooted CQ—that is, by definition, it is the universal model
for the class of such queries.

Even though these ideas may seem quite intuitive, their formalisation requires additional machinery, which we do not
have yet. The problem is that with the current terminology we cannot unambiguously refer to each particular occurrence of
an element in a bag, which is highly desirable for the formalisation. Therefore, we start by introducing new terminology for
bags and other bag-based notions.

Definition 35. An enumerated bag (or e-bag) � over a set M is a set of pairs [c:m] with c ∈ M and positive integer m ∈N ,
such that if [c:m] ∈ � then [c:m − 1] ∈ � for all m ∈N .

There is a straightforward one-to-one correspondence between bags and e-bags, and we call the e-bag corresponding to
a bag 	 the enumerated version of 	 and denote it 	e . We can extend this notation to bag interpretations and consider the
enumerated version Ie of a bag interpretation I = 〈�I , ·I 〉 defined as the pair 〈�I , ·Ie 〉 such that aIe = aI for each individual
a and S Ie = (S I)

e
for each concept or role S .

The use of enumerated versions of interpretations allows us to refer, in an unambiguous way, to the different occur-
rences of elements and pairs of elements in the bags corresponding to concepts and roles, respectively. An enumerated
homomorphism between two interpretations is then defined as a standard homomorphism that additionally establishes a
correspondence for each enumerated tuple of elements in each bag of the relevant bag interpretations.

Definition 36. Given two bag interpretations I and J , an enumerated homomorphism (or e-homomorphism) from Ie = 〈�I , ·Ie 〉
to Je = 〈� J , · Je 〉 is a family (h, hS , . . .), with S ∈ C ∪ R, of functions

h : �I → � J ,

hS : S Ie → S Je , for all S ∈ C ∪ R,

such that

– h(aIe) = a Je for each a ∈ I,
– hA([u:m]) = [h(u):�] for all A ∈ C and [u:m] ∈ AIe , where � is a number in N ,

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 111
– hP ([(u, v):m]) = [(h(u), h(v)):�] for all P ∈ R and [(u, v):m] ∈ P Ie , where � is a number in N .

To handle some cases uniformly, we sometimes write hP− ([(v, u):m]) instead of hP ([(u, v):m]), for P ∈ R.

E-homomorphisms have no essential differences with usual homomorphisms because they can send several enumerated
tuples to just one without any restrictions. In contrast, the next definition formalises the aforementioned idea of multi-
plicity preservation: e-homomorphisms that are multiplicity-preserving on the individuals preserve multiplicities on the
non-anonymous part of the source interpretation.

Definition 37. An e-homomorphism (h, hS , . . .) from Ie = 〈�I , ·Ie 〉 to Je = 〈� J , · Je 〉 is multiplicity-preserving on individuals I
if, for each a ∈ I, the following holds, where u = aIe :

– hA([u:m]) �= hA([u:�]) for all A ∈ C and all [u:m], [u:�] ∈ AIe with m �= �,
– hR([(u, v1):m]) �= hR([(u, v2):�]) for all roles R and all [(u, v1):m], [(u, v2):�] ∈ R Ie with v1 �= v2 or m �= �.

The following lemma then formalises the first key idea about the canonical bag interpretation in terms of e-
homomorphisms that are multiplicity-preserving on the individuals.

Lemma 38. For every DL-Liteb
core

ontology K and every model I of K there exists an e-homomorphism from Cane(K) to Ie that is
multiplicity-preserving on I.

Proof. Consider a DL-Liteb
core

ontology K = 〈T , A〉 with the canonical bag interpretation Can(K) = ⋃
i≥0 Cani(K) such that

Cani(K) = 〈�Cani(K), ·Cani(K)〉 and a model I = 〈�I , ·I 〉 of K. We first define a witnessing e-homomorphism (h, hS , . . .) from
Cane(K) to Ie for the elements in �Can0(K)—that is, for the (interpretations of the) individuals I—that is multiplicity-
preserving on I, then extend it to the elements introduced in Can1(K)—that is, to the anonymous elements on the first
level of the canonical bag interpretation—and, finally, inductively define it on all other elements.

To begin, recall that a = aCan0(K) for every a ∈ I and let h : �Can0(K) → �I be such that h(aCan0(K)) = aI for every
a ∈ �Can0(K)—that is, for every a ∈ I. We now define function hS : SCane0 (K) → S Ie for every S ∈ C ∪ R. For this, consider a
tuple of individuals a such that SCan0(K)(a) = k, for k ∈N—that is, such that [a:m] ∈ SCane0 (K) for all m ∈N with m ≤ k. By
the definition of Can0(K), we have that A(S(a)) = k. Since I is a model of K, it satisfies A, and, in particular,

S I (aI) ≥
∑

b tuple over I: bI =aI

A(S(b)) ≥ A(S(a)) = k.

As a result, since h(a) = aI , we have that [h(a):m] ∈ S Ie for all m ≤ k; thus we can set hS ([a:m]) = [h(a):m] for all such m.
By construction, (h, hS , . . .) satisfies all conditions stipulated by Definitions 36 and 37, thus it is an e-homomorphism from
Cane0 (K) to Ie that is multiplicity-preserving on I.

We now show the claim for Cane1 (K). To this end, we extend (h, hS , . . .) from the case of Cane0 (K). By construction of
Cane1 (K), it is enough to extend hA on �Can0(K) = I for A ∈ C, to define h on the anonymous elements introduced to the
domain of Cane1 (K), and to define hR on the role links between these anonymous elements and corresponding individuals.

For the extension for atomic concepts, consider an arbitrary concept name A ∈ C and an element u ∈ �Can0(K) =
I. By definition, we have ACan1(K)(u) = cclT [u, Can0(K)](A). Therefore, to show that it is possible to extend hA in
such a way that different enumerated elements are sent to different enumerated elements, it suffices to prove that
AI (uI) ≥ cclT [u, Can0(K)](A). By the definition of concept closure, there must exist a concept C such that T |= C � A and
C Can0(K)(u) = cclT [u, Can0(K)](A). If C is an atomic concept, then C Can0(K)(u) = A(C(u)) by construction, and AI (uI) ≥
A(C(u)) follows from the fact that I is a model of both A and T , and the fact that T |= C � A is equivalent to T |=b C � A
(see Statement 2 of Theorem 23). If C is ∃P or ∃P− , then C Can0(K)(u) = ∑

a∈I A(P (u, a)) or C Can0(K)(u) = ∑
a∈I A(P (a, u)),

respectively, and the argument is analogous.
For the extension for the introduced anonymous elements and corresponding role links, it is enough to consider ar-

bitrary P ∈ R and u ∈ �Can0(K) = I. By definition, �Can1(K) extends �Can0(K) with fresh anonymous elements w j
u,P , for

j = 1, . . . , cclT [u, Can0(K)](∃P) − (∃P)Can0(K)(u), and P Can1(K)(u, w j
u,P) is set to 1 for each of these elements; the same is

done for P− instead of P . We consider only the first set, since the second can be handled in the same way. To extend h to
the new elements w j

u,P and hP to the pairs (u, w j
u,P), it suffices to show that (∃P)I (uI) ≥ cclT [u, Can0(K)](∃P). This can

be done in exactly the same way as the proof of AI (uI) ≥ cclT [u, Can0(K)](A) in the atomic concept case, by taking ∃P
instead of A.

To complete the proof we argue that having an e-homomorphism (h, hS , . . .) from Canei (K) to Ie that is multiplicity-
preserving on I, for i ≥ 1, we can extend it to Canei+1(K). This can be shown analogously to the case of Cane1 (K). The only
additional observation is that for every i ≥ 1 and every S ∈ C ∪ R, bag SCani+1(K) extends SCani(K) with tuples u of elements
that are all anonymous, for which SCani (K)(u) = 1 by definition. �

112 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
We next move to the formalisation of the second intuitive idea. Recall that a Boolean CQ can be seen as a bag of atoms.
Therefore, in the following definition we can consider the enumerated version qe of a Boolean CQ q, which is the e-bag of its
atoms; this formulation allows us to distinguish different occurrences of atoms in q. Then, an enumerated valuation from a
CQ to an interpretation is essentially an e-homomorphism where the CQ is seen as a bag interpretation.

Definition 39. An enumerated valuation (e-valuation) of a Boolean CQ q over a bag interpretation I = 〈�I , ·I 〉 is a family
(ν, νS , . . .), for S ∈ C ∪ R, of the following functions, where qS is the subquery of q consisting of all its atoms over S:

ν : y ∪ I → �I ,

νS : qeS → S Ie , for all S ∈ C ∪ R,

such that

– ν(a) = aI for each a ∈ I,
– ν(y) = ν(t) for all equality atoms y = t in q,
– νA([A(t):m]) = [ν(t):�] for all A ∈ C and [A(t):m] ∈ qeA , where � is a number in N , and
– νP ([P (t1, t2):m]) = [(ν(t1), ν(t2)):�] for all P ∈ R and [P (t1, t2):m] ∈ qeP , where � is a number in N .

We sometimes write νP− ([P−(t2, t1):m]) instead of νP ([P (t1, t2):m]), for P ∈ R.

It is straightforward to check that the number of e-valuations of a Boolean CQ q over a bag interpretation I is precisely
the multiplicity of the empty tuple in the certain answers to q over I .

Proposition 40. The number of e-valuations of a Boolean CQ q over a bag interpretation I is qI (〈〉).

The following lemma formalises the second idea: if two e-valuations over the canonical bag interpretation coincide on
all the (enumerated occurrences of the) atoms of a rooted CQ that involve terms evaluating to (the interpretations of)
individuals, then they are the same e-valuation.

Lemma 41. Let q be a rooted Boolean CQ and K be a DL-Liteb
core

ontology. If two e-valuations (ν1, ν1
S , . . .) and (ν2, ν2

S , . . .) of q over
Can(K) are different, then there exists an individual a ∈ I, an atom S(t) in q, a number m ∈N , and i ∈ {1, 2} such that ν i(a) appears
in the tuple ν i(t) and ν1

S ([S(t):m]) �= ν2
S ([S(t):m]).

Proof. Let e-valuations (ν1, ν1
S ′ , . . .) and (ν2, ν2

S ′ , . . .) of qe over Cane(K) be different, but, for the sake of contradiction,
ν1

S ([S(t):m]) = ν2
S ([S(t):m]) for all a ∈ I, [S(t):m] ∈ qe and i ∈ {1, 2} such that ν i(a) is in ν i(t). Since the e-valuations

are different, there exists [S(t):m] ∈ qe such that ν1
S ([S(t):m]) �= ν2

S ([S(t):m]). Moreover, by assumption t consists of only
variables. We consider only the case when S(t) is P (x1, x2), where P ∈ R (and the case when S(t) is A(x) for A ∈ C can be
handled in the same way).

Boolean CQ q is rooted, so there exists a sequence

[R1(t
′
0, t1):m1], [R2(t

′
1, t2):m2], . . . , [Rk(t

′
k−1, tk):mk]

such that t′
0 ∈ I, [Rk(t′

k−1, tk):mk] is either [P (x1, x2):m] or [P−(x2, x1):m], and, for each j = 1, . . . , k, t′
j ∼ t j and either

[R j(t′
j−1, t j):m j] is in qe , if R j is an atomic role, or [P j(t′

j, t j−1):m j] is in qe , if R j = P−
j for an atomic role P j .

We claim that

ν1
R j

([R j(t
′
j−1, t j):m j]) = ν2

R j
([R j(t

′
j−1, t j):m j]) (2)

for all j = 1, . . . , k (which, in particular, contradicts our assumption on [P (x1, x2):m]). To prove this claim, suppose for the
sake of contradiction that it is not the case, and let i ∈ {1, . . . , k} be the smallest number such that (2) does not hold.
By assumption, we know that ν i(t′

j−1) �= ν i(a) for both i = 1, 2 and every a ∈ I (therefore, j �= 1, because t′
0 ∈ I). How-

ever, since j is the smallest number, ν1(t′
j−1) = ν2(t′

j−1). So, the element u = ν1(t′
j−1) in the canonical bag interpretation

Can(K) = ⋃
i≥0 Cani(K) was not introduced in Can0(K), which implies, by construction, that (∃R j)

Can(K)(u) ≤ 1. In fact,
since (ν1, ν1

S , . . .) is an e-valuation, (∃R j)
Can(K)(u) = 1—that is, there exists just one v ∈ �Can(K) such that RCan(K)

j (u, v) ≥ 1,

and, moreover, RCan(K)
j (u, v) = 1. In other words, [(u, v): 1] ∈ RCane(K)

j , but [(u, v): 2] /∈ RCane(K)
j . Since (ν1, ν1

S , . . .) and

(ν2, ν2
S , . . .) are e-valuations, ν1

R j
and ν2

R j
send [R j(t′

j−1, t j):m j] to some enumerated pairs in RCane(K)
i , which, by assump-

tion, are different. However, we also know that ν1(t j−1) = ν2(t j−1), so the only possibility for both ν1
R j

([R j(t′
j−1, t j):m j])

and ν2
R j

([R j(t′
j−1, t j):m j]) is [(u, v): 1]. Therefore, our assumption on the existence of j was wrong and (2) indeed holds for

all j. In particular, it holds for j = k, which contradicts the fact that ν1 ([P (x1, x2):m]) �= ν2 ([P (x1, x2):m]). �
P P

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 113
Lemma 41 relies both on the fact that there are no role inclusions in the TBox and on the fact that the CQ is rooted. It
is easy to construct counter-examples to this lemma if any one of these requirements is violated.

Having Lemmas 38 and 41 at hand, we are ready to prove that, for satisfiable DL-Liteb
core

ontologies, the canonical bag
interpretation is the universal model for the class of rooted CQs. The idea is that the composition of an e-valuation of a
rooted CQ and an e-homomorphism that is multiplicity-preserving on the individuals is also an e-valuation; moreover, the
mapping between e-valuations defined by the e-homomorphism in this way is injective and therefore preserving the size of
the domain of the mapping.

Theorem 42. The canonical bag interpretation Can(K) of a satisfiable DL-Liteb
core

ontology K is a universal model for the class of
rooted CQs. The same holds if universality is considered under the UNA.

Proof. First, note that it is enough to consider only Boolean rooted CQs, because the required property for a non-Boolean
rooted CQ q(x) follows from the property for all Boolean CQs obtained from q(x) by replacing variables x by individuals
from I. For a Boolean rooted CQ q it is enough to show that for every DL-Liteb

core
ontology K, every model I of K, and every

e-valuation (ν, νS , . . .) of q over Can(K) there exists a unique e-valuation (ν ′, ν ′
S , . . .) of q over I . By Lemma 38 we know

that there exists an e-homomorphism (h, hS , . . .) from Cane(K) to Ie that is multiplicity-preserving on I. Therefore, we can
take the composition (ν, νS , . . .) ◦ (h, hS , . . .) = (ν ◦ h, νS ◦ hS , . . .) as (ν ′, ν ′

S , . . .); indeed, the result of this composition is an
e-valuation of q over I and, by Lemma 41, this result is unique among all e-valuations of q over Can(K).

Given that Can(K) satisfies the UNA, this result implies also that Can(K) is universal under the UNA for the class of
rooted CQs and satisfiable DL-Liteb

core
ontologies K. �

The following is an important corollary of Theorem 42 and Corollary 24, which allows us to forget the UNA in the rest
of the paper when talking about rooted CQ answering over DL-Liteb

core
.

Corollary 43. The certain answers to rooted CQs over DL-Liteb
core

ontologies do not depend on the adoption of the UNA.

Another important corollary of Theorem 42, the structural properties of rooted CQs, and the definition of the canonical
interpretation is that, similarly to the set case, the bag certain answers qK to a rooted CQ q over a satisfiable DL-Liteb

core

ontology K can be computed over the sub-interpretation Cann(K) of Can(K) with n depending only on q.

Corollary 44. If K is a satisfiable DL-Liteb
core

ontology with Can(K) = ⋃
i≥0 Cani(K) and q is a rooted CQ having n atoms, then

qK = qCann(K) .

8. Rewritability of rooted conjunctive queries over DL-LitebCORE

First-order rewritability of CQs is a key property of DL-Lite query answering under set semantics. In this section, we
show rewritability of rooted CQs over DL-Liteb

core
to BCALC (recall that by Corollary 43 this result is agnostic to the adoption

of the UNA).

8.1. Non-rewritability to BCALC unions of conjunctive queries

In the case of set semantics, the target language for rewritings is that of unions of conjunctive queries (UCQs). There are
two natural counterparts to UCQs in the bag setting: BCALC maximal union of CQs and BCALC arithmetic union of CQs. Our
first result is negative and in stark contrast to the set case: in general, rewriting to either of these classes of BCALC queries
is not possible, even over DL-Liteb

core
.

Proposition 45. Rooted CQs are rewritable neither to BCALC maximal nor to BCALC arithmetic unions of CQs over DL-Liteb
core

.

Proof. We first prove the claim for BCALC maximal unions of CQs. Consider the satisfiable DL-Liteb
core

ontology K =
〈T , A〉 over atomic concepts A and B , and atomic role P with TBox T = {A � ∃P , ∃P− � B}, and ABox A =
{ | A(a) : 3, P (a,b) : 2, B(b) : 3 | }. Let also q(x) = ∃y. P (x, y) ∧ B(y). Then, Can(K) is the interpretation with domain �Can(K) =
I ∪ {w1

a,P } that interprets individuals by themselves and predicates as follows:

ACan(K) = {|a : 3 |}, P Can(K) = {| (a,b) : 2, (a, w1
a,P) : 1 |}, BCan(K) = {|b : 3, w1

a,P : 1 |}.
Evaluating q over Can(K), we get qCan(K)(a) = 7 for individual a. Assume for the sake of contradiction that there exists
a rewriting of q to a BCALC maximal union �(x) of CQs with respect to T . By the semantics of the BCALC maximal
union, there exists a BCALC CQ q0 in � with qA0 (a) = qCan(K)(a). Observe that A contains three distinct assertions with
multiplicities 3, 2, and 3. Hence, whenever there is a valuation of the terms of q0 that maps an atom of q0 to one of these
assertions, the multiplicity is either 2 or 3. Because q0 is a CQ, every valuation of q0 contributes to qA(a) a multiplicity that
0

114 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
is a multiple of 2 or 3. Since 7 is prime, there can be no valuation contributing multiplicity 7. Moreover, there are only two
ways to get 7 as an instance of a polynomial with coefficients 2 and 3, namely, 2 + 2 + 3 and 2 × 2 + 3. For the former sum,
this means that there exist three distinct valuations contributing to qA0 (a) with multiplicities 2, 2, and 3, respectively, which
is impossible given the fact that, to get 2, query q0 must be set equal to ∃y. P (x, y), which excludes the possibility of getting
the multiplicity 3. For the latter sum, there must exist two distinct valuations contributing to qA0 (a) with multiplicities 4
and 3, respectively, which is again impossible given the fact that, to get 4, query q0 must be set to ∃y, z. P (x, y) ∧ P (x, z) or
to ∃y. P (x, y) ∧ P (x, y), which in either case excludes the possibility of getting the multiplicity 3.

We now prove the claim for BCALC arithmetic unions of CQs. Consider the DL-Liteb
core

ontology K = 〈T , A〉 over atomic
concepts A and B with TBox T = {A � B} and ABox A = { | A(a) : 3, A(b) : 2, B(a) : 2, B(b) : 3 | }, and the rooted query
q(x) = B(x). Observe that qK = BCan(K) = { | a : 3, b : 3 | }. We have the following possible cases for a BCALC arithmetic union
�(x) of CQs:

– if �(x) = A(x), then �A = { | a : 3, b : 2 | };
– if �(x) = B(x), then �A = { | a : 2, b : 3 | };
– if �(x) = A(x) ∧ B(x), then �A = { | a : 6, b : 6 | };
– if �(x) = A(x) ∨· B(x), then �A = { | a : 5, b : 5 | };
– if �(x) contains A(x) at least twice, then �A(a) ≥ 9; and
– if �(x) contains B(x) at least twice, then �A(b) ≥ 9.

So, none of these cases satisfies �A = BCan(K) , which is required for a rewriting of q with respect to T . �
8.2. General ideas for rewritability to BCALC queries

Next, we show that rooted CQs are rewritable to a richer fragment of BCALC over DL-Liteb
core

, which also features the
operation of difference. This ensures LogSpace membership in data complexity of query answering. Our rewriting algorithm
is inspired by that of Kikot et al. [37] for DL-LiteR . The key observation behind our approach is that, for a DL-Liteb

core

ontology K and a rooted CQ q(x) = ∃y. φ(x, y), the bag answers to q over the canonical bag interpretation Can(K), which,
by Theorem 42, coincide with the bag certain answers to q over K, can be partitioned as

qCan(K) =
⊎
z⊆y

[q, z]Can(K), (3)

where each [q, z]Can(K) is the bag of answers to q over Can(K) supported by valuations of q(x) over Can(K) that send all
the variables in a subset z of the variables y to anonymous elements and all other variables to individuals. Next, we define
such partitions formally.

Definition 46. Let q(x) = ∃y. φ(x, y) be a rooted CQ and let K be a DL-Liteb
core

ontology. Given a subset z of variables y, let
[q, z]Can(K) be the bag of tuples over I such that, for each tuple a of individuals,

[q, z]Can(K)(a) =
∑
λ∈�z

∏
S(t) in φ(x,y)

SCan(K)(λ(t)),

where �z is the set of valuations λ : x ∪ y ∪ I → �Can(K) such that λ(x) = a, λ(a) = a for each a ∈ I, λ(x) = λ(t) for each
x = t in φ(x, y), λ(z) is an anonymous element for each z ∈ z, and λ(y) ∈ I for each y ∈ y \ z.

Following this key observation, given a rooted CQ, the rewriting algorithm first constructs a set of BCALC queries each
one accounting for the bag [q, z]Can(K) for a subset z and then adjoins them using the arithmetic union to produce the
actual rewriting, which is still a BCALC query. In particular, every subset z is processed along the following three steps:

1. z is checked for T -realisability—that is, whether the corresponding subquery can be folded to the anonymous part of a
canonical bag interpretation—and disregarded from consideration in (3) if the check fails;

2. each connected component of the subquery corresponding to z is replaced in the query of [q, z]Can(K) by a single
representative role atom; and

3. each concept atom and each representative atom is rewritten to a BCALC query that takes into account the TBox and
the fact that z should be sent to anonymous elements.

In the following three sections we formalise each of these steps and prove their correctness.

8.3. Step 1: checking for realisability

In the first step, every subset z of existentially quantified variables y in a rooted CQ q(x) is checked for T -realisability.
Intuitively, z is T -realisable if the subquery of q(x) induced by z can be “folded” into the anonymous forest-shaped part of

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 115
{y2}

{x}

{y1, c}

{y3, y4}

{y5}

{d}

(a)

{y2} {y5}

{y3, y4}

(b)

Fig. 2. Gaifman graph of CQ in Example 47 and its subgraph corresponding to {y2, . . . , y5}.

Can(K) for some ontology K having TBox T . Therefore, non-realisable z cannot contribute to partitioning (3) and their asso-
ciated subqueries can be disregarded for the purpose of query rewriting. To provide the formal definition of T -realisability,
we need to introduce some preliminary definitions and notations.

Let q(x) = ∃y. φ(x, y) be a rooted CQ and T be a DL-Litecore TBox.
First, recall that the Gaifman graph G of q has the equivalence class t̃ for each term t ∈ x ∪ y ∪ I in φ as a node, and an

edge {t̃1, ̃t2} for each atom P (t1, t2) in φ. A subset z of y is equality-consistent if z̃ ⊆ z for every z ∈ z.
Second, each equality-consistent subset z of y has a corresponding subgraph G|z of Gaifman graph G—that is, the sub-

graph on the set of nodes {z̃ | z ∈ z}. This subgraph may have several connected components; a subset v of z is maximally
connected if it is also equality-consistent and the subgraph of G|z corresponding to v is a connected component of G|z .
Therefore, z can be partitioned to its maximal connected subsets.

Third, for every maximally connected subset v of an equality-consistent z ⊆ y and for each individual a, we define the
query

qa
v = ∃v,v′. φv ∧

∧
t∈tv

(t = a) ∧
∧
v∈v

(v �= a),

where φv is the conjunction of all atoms in φ mentioning at least one variable in v, tv is the set of all terms appearing in
φv but not in v, and v′ = (x ∪ y) ∩ tv . This query is a Boolean CQ, except that it may have equalities of two individuals and
inequalities of terms. The semantics of CQs in Definition 12 can be extended to such queries in a straightforward way: the
additional requirement on each valuation λ contributing to the sum is that λ should satisfy λ(x) �= λ(t) for each inequality
atom (x �= t) in the query (and the requirement for equalities of individuals is the same as for usual equalities).

Example 47. Consider the rooted CQ

q(x) = ∃y. P (x, y1) ∧ P (x, y2) ∧ P (x, y3) ∧ P (x, y4) ∧ P (d, y4) ∧ R(y3, y5) ∧ (y1 = c) ∧ (y3 = y4)

with y = y1, . . . , y5 over atomic roles P and R , and its Gaifman graph, depicted in Fig. 2a. Observe that no subset of y
containing y1 is equality-consistent because q contains equality y1 = c and c is not in y. Furthermore, every subset of
y containing y3 or y4 but not both is also not equality-consistent. However, z = {y2, . . . , y5} is equality-consistent. The
corresponding subgraph G|z is depicted in Fig. 2b. It has two connected components, and therefore z partitions into two
maximally connected subsets, v1 = {y2} and v2 = {y3, y4, y5}. For the first, we have φv1 = P (x, y2), tv1 = {x}, and, for an
individual a,

qa
v1

= ∃y2, x. P (x, y2) ∧ (x = a) ∧ (y2 �= a). (4)

For the second, we have φv2 = P (x, y3) ∧ P (x, y4) ∧ P (d, y4) ∧ R(y3, y5) ∧ (y3 = y4), tv2 = {x, d}, and

qd
v2

= ∃v2, x. φv2 ∧ (x = d) ∧ (d = d) ∧ (y3 �= d) ∧ (y4 �= d) ∧ (y5 �= d). � (5)

We are now ready to define the notion of realisability, which is inspired by the notion of tree witnesses proposed by
Kikot et al. [37] in the context of query rewriting over DL-LiteR .

Definition 48. Let q(x) = ∃y. φ(x, y) be a rooted CQ and T be a DL-Litecore TBox. A subset z of variables y is T -realisable if
it is equality-consistent and every maximally connected subset v of z satisfies the following conditions, where, as before, φv
is the conjunction of all atoms in φ mentioning at least one variable in v and tv is the set of all terms appearing in φv but
not in v:

1. there is at most one individual in tv;
2. all the atoms in φv mentioning terms in tv are over the same atomic role Pv and have these terms at the same position

pv ∈ {1, 2};
3. (qa

v)
Can(Kv)(〈〉) ≥ 1, where a is the individual in tv if it exists or a fresh individual otherwise, and, for a fresh individual

b, Kv is 〈T , { | Pv(a,b) : 1 | }〉 if pv = 1 or 〈T , { | Pv(b,a) : 1 | }〉 if pv = 2.

116 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
Note that realisability checking is clearly decidable. In particular, by Corollary 44, Condition 3 can be checked over a
bounded fragment of the relevant canonical bag interpretation.

Example 49. Consider the DL-Litecore TBox T = {A � ∃P , ∃P− � ∃R} over atomic concept A and atomic roles P and R , the
rooted CQ q(x) specified in Example 47, and the equality-consistent subset z = {y2, . . . , y5} with two maximally connected
subsets, v1 = {y2} and v2 = {y3, y4, y5}. Subset z is T -realisable. To see this, note first that Conditions 1 and 2 are imme-
diately satisfied by both v1 and v2, with no individuals in tv1 , one individual d in tv2 , Pv1 = Pv2 = P and pv1 = pv2 = 1. To
verify Condition 3 for v1, note that Kv1 = 〈T , { | P (a,b) : 1 | }〉 for fresh individuals a and b, and therefore

ACan(Kv1) = ∅, P Can(Kv1) = {| (a,b) : 1 |}, RCan(Kv1) = {| (b, w1
b,R) : 1 |};

so qa
v1

, defined in (4), evaluates to 1 for 〈〉 over Can(Kv1). Condition 3 for v2 can be verified in exactly the same way, except
that Kv2 and Can(Kv2) have d instead of a, and qd

v2
is defined in (5). �

The next lemma establishes the key property of realisability: for any ABox, a non-realisable z cannot contribute to the
partitioning (3) of the bag query answers over the canonical bag interpretation.

Lemma 50. Let q(x) = ∃y. φ(x, y) be a rooted CQ and let T be a DL-Litecore TBox. If a subset z of y is not T -realisable, then
[q, z]Can(〈T ,A〉) = ∅ for every bag ABox A.

Proof. Let K = 〈T , A〉 where A is an arbitrary bag ABox, and z be a subset of y that is not T -realisable. By Definition 48,
either z is not equality-consistent, or there exists a maximally connected subset of z for which one of the three conditions
does not hold.

It is straightforward to check that [q, z]Can(K) = ∅ if z is not equality-consistent: indeed, in this case the CQ contains
an equality atom (y = t) with y ∈ z and t /∈ z, which cannot be satisfied over the canonical bag interpretation Can(K) by
any valuation contributing to [q, z]Can(〈T ,A〉) because y is mapped to anonymous elements of Can(K) by such valuations,
whereas t is mapped to individuals.

Similarly, if there is a maximally connected v ⊆ z for which Condition 1 does not hold, then [q, z]Can(K) = ∅: indeed,
if tv contains two different individuals, then no contributing valuation can send v to anonymous elements, because v is
connected, while Can(K) has independent tree-shaped anonymous parts connected to these two individuals.

Next, if there is a maximally connected v ⊆ z for which Condition 2 does not hold, then again [q, z]Can(K) = ∅: indeed,
if φv contains two atoms over different atomic roles with terms in tv or two atoms over the same atomic role but with the
terms in tv in different positions, then no contributing valuation can send v to anonymous elements by the same reasons as
in the case of Condition 1 and the fact that no anonymous element is connected to another element in two different ways
in Can(K) by construction.

Finally, consider the case when there is a maximally connected v ⊆ z for which Conditions 1 and 2 hold but Condition 3
does not. Reasoning as in the previous two cases, we conclude that all variables in v are sent by every contributing valuation
to anonymous elements generated by the same individual in the canonical bag interpretation, and all terms in tv are sent to
this individual. By Condition 2, every atom in φv that has a term in tv is over atomic role Pv and has the term in position
pv . Therefore, (qa

v)
Can(Kv)(〈〉) is the factor corresponding to φv in the multiplicity of every valuation satisfying the conditions

of [q, z]Can(K) , and (qa
v)

Can(Kv)(〈〉) = 0 means that there are no valuations with non-zero contribution. �
8.4. Step 2: replacing subqueries with representatives

Consider a T -realisable subset z of the variables y in a rooted CQ q(x) = ∃y. φ(x, y) for a DL-Litecore TBox T . As estab-
lished in the previous section, maximally connected subsets v of z are always disjoint, so the corresponding conjunctions of
atoms φv from φ that mention at least one variable in v do not share atoms either. So, q(x) can be put into the following
form for the given z in a unique way, where ψz consists of all atoms in φ(x, y) not contained in any φv:

q(x) = ∃y.ψz ∧
∧

maximally
connected v ⊆ z

φv. (6)

The rewriting step introduced in this section can be informally explained as follows. By definition, every valuation
contributing to bag [q, z]Can(〈T ,A〉) with an arbitrary bag ABox A sends z to anonymous elements of the canonical bag
interpretation. So, since each φv is connected and mentions a variable from z in each of its atoms as well as a term outside
z, conjunction φv contributes to every valuation for [q, z]Can(〈T ,A〉) a multiplicity of at most 1 (recall that the canonical
bag interpretation involves only multiplicities 0 and 1 in the anonymous part). Moreover, whether φv can be appropriately
embedded into Can(〈T ,A〉) depends solely on whether φv can be embedded into the canonical bag interpretation of the
ontology consisting of T and a prototypical bag ABox that comprises a single assertion with multiplicity 1 in such a way

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 117
that all terms of φv that are outside z are sent to one of the individuals of the assertion. Therefore, when computing
[q, z]Can(〈T ,A〉) , the whole φv can be replaced in q by just a single role atom mentioning a representative variable and a
term not in v as well as several equalities identifying all the terms not in v.

Next, we formalise this idea and prove its correctness.

Definition 51. Let q(x) = ∃y. φ(x, y) be a rooted CQ and let T be a DL-Litecore TBox. For every T -realisable subset z of y, let

qz(x) = ∃yz, z′.ψz ∧
∧

maximally
connected v ⊆ z

(
αv ∧

∧
y ∈ (x ∪ y) ∩ tv,

t ∈ tv

(y = t)

)
, (7)

where ψz is defined as in (6), yz is the set of all variables in y appearing in ψz , atom αv is defined as follows, for every
maximally connected v ⊆ z with terms tv , role Pv , and position pv defined as in Definition 48, as well as for a term t ∈ tv

and a fresh variable yv:

αv =
{

Pv(t, yv), if pv = 1,

Pv(yv, t), if pv = 2,

and z′ is the set of all variables yv introduced for the atoms αv .

Formally speaking, this definition is non-deterministic, because the terms t in the atoms αv are chosen arbitrarily from tv .
However, this choice does not influence the semantics of qz(x) because of the equalities introduced in (7). Therefore, we
assume that qz(x) is well-defined.

Example 52. Consider the rooted CQ q(x), DL-Litecore TBox T , and T -realisable subset z with maximally connected subsets
v1 and v2 introduced in Examples 47 and 49. We know that tv1 = {x}, tv2 = {x, d}, Pv1 = Pv2 = P , and pv1 = pv2 = 1, so
αv1 = P (x, yv1), αv2 = P (x, yv2), and

qz(x) = ∃y1, yv1 , yv2 . P (x, y1) ∧ (y1 = c) ∧
(

P (x, yv1) ∧ (x = x)
)

∧
(

P (x, yv2) ∧ (x = d) ∧ (x = x)
)
.

In contrast to q, CQ qz does not contain any R atoms. Indeed, such atoms are not needed: sending y3 and y4 to the same
anonymous element w and given that w must be a P -successor of d in the canonical bag interpretation, it follows that w
must have an R-successor due to inclusion ∃P− � ∃R in T . Thus, we only need a representative yv1 for y3 and y4. �

In the second step, our algorithm generates the query qz(x) for each T -realisable subset z of y. The next lemma justifies
this step by showing that we can consider in (3) only T -realisable z and replace q with qz for each such z.

Lemma 53. Let q(x) = ∃y. φ(x, y) be a rooted CQ and let T be a DL-Litecore TBox. If a subset z of y is T -realisable then
[q, z]Can(〈T ,A〉) = [qz, z′]Can(〈T ,A〉) for every bag ABox A, where z′ as in Definition 51.

Proof. Let K = 〈T , A〉 where A is an arbitrary bag ABox, and let z be a T -realisable subset of y. First, for every valuation
λ ∈ �z as in Definition 46 of [q, z]Can(K) , let λz be the valuation of x ∪ yz ∪ z′ ∪ I to �Can(K) that is the same as λ on I and
all the terms of ψz , and, for each maximally connected subset v of z, λz(yv) = λ(y), where y is a variable in v such that
φv contains an atom Pv(t, y) or an atom Pv(y, t), for some t ∈ tv; in other words, λz is the same as λ except that each v is
replaced by its representative with the corresponding value. It suffices to show that every valuation λ ∈ �z contributes to
[q, z]Can(K) the same multiplicity as λz contributes to [qz, z′]Can(K) .

Consider first a valuation λ ∈ �z contributing to [q, z]Can(K) a non-zero multiplicity. By construction, Can(K) interprets
all concepts with multiplicity at most 1 on the anonymous elements and all roles with multiplicity at most 1 on all pairs
with at least one anonymous element. Thus, the contribution of λ is equal to the contribution of (the relevant part of) λ to
the evaluation of ψz . So, it is enough to show that, for each maximally connected v ⊆ z, λz(αv) has multiplicity 1 in Can(K),
and all the equalities on tv introduced in (7) to qz hold for λz (i.e., for λ, because they coincide on tv). The former holds
immediately by construction of λz , while the latter follows from the fact that v are connected in q and sent to anonymous
elements by λ, while Can(K) is tree-shaped on the anonymous elements.

Consider now a valuation λ ∈ �z such that λz contributes to [qz, z′]Can(K) a non-zero multiplicity. Similarly to the pre-
vious case, the contribution of λz is equal to the contribution of (the relevant part of) λz to the evaluation of ψz . So, it is
enough to show that, for each maximally connected v ⊆ z, λ(φv) has multiplicity 1 in Can(K). However, this follows from
the fact that z is T -realisable (in particular, Condition 3) and the fact that λz(αv) has multiplicity 1 in Can(K). �

118 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
8.5. Step 3: rewriting atoms to BCALC queries

In the last step, our algorithm first transforms each CQ qz(x) computed in Step 2 for a T -realisable z to a BCALC query
�z(x) satisfying equality [qz, z′]Can(〈T ,A〉) = �A

z and then constructs the final rewriting of the input CQ q(x) = ∃y. φ(x,y)

with respect to the input DL-Litecore TBox T to the BCALC query

�q(x) =
∨·

T -realisable z⊆y

�z(x). (8)

The intuition behind the construction of �z(x) from qz(x) and T hinges on the observation that, for every bag ABox
A, the multiplicities of individuals in the interpretations of concepts and roles in Can(〈T , A〉) are determined by the
multiplicities of the assertions in A as follows:

– for a concept C , the multiplicity of an individual a in C Can(〈T ,A〉) is the maximum multiplicity of a in the interpretation
of the concepts subsumed by C with respect to T in the bag interpretation corresponding to A;

– for a role P , the multiplicity of a pair of individuals (a, b) in P Can(〈T ,A〉) coincides with the multiplicity of assertion
P (a, b) in A (which is justified by the fact that DL-Litecore TBoxes do not allow for role inclusions).

Therefore, for a role R , the number of anonymous R-successors of an individual a in the canonical bag interpretation is
precisely the multiplicity of a in the interpretation of the concept ∃R minus the number of individual R-successors of a in
the ABox. We can then exploit these observations to construct a BCALC query �z(x) such that the bag answers to �z(x)

over every ABox A coincide with the bag [qz, z′]Can(〈T ,A〉) (where all valuations contributing to the latter bag map z′ to
anonymous elements and the rest to individuals). For this, it suffices to apply to qz , which has the form (7), the following
replacements:

– each atom over an atomic concept A in the conjunction ψz of qz with a BCALC query retrieving the maximum multi-
plicity over all concepts subsumed by A in T ;

– each atom αv = Pv(t, yv), for a maximally connected v ⊆ z, with a BCALC query that subtracts the number of Pv-
successors in the ABox from the maximum multiplicity over all concepts subsumed by ∃Pv in T ; and

– each atom αv = Pv(yv, t), for a maximally connected v ⊆ z, with a BCALC query that subtracts the number of Pv-
predecessors in the ABox from the maximum multiplicity over all concepts subsumed by ∃P−

v in T .

Note that atoms over atomic roles in ψz are left intact because T does not allow for role inclusions.
Next, we formalise this intuition and define the BCALC query �z(x) in terms of qz(x) and T .

Definition 54. Let q(x) = ∃y. φ(x, y) be a rooted CQ, T be a DL-Litecore TBox, and let z be a T -realisable subset of y. The
BCALC query �z(x) is obtained from qz(x) by replacing

– each occurrence of an atom A(t) in ψz with∨
T |=C�A

ζC (t), (9)

– for each maximally connected v ⊆ z, the atom Pv(t, yv) and the atom Pv(yv, t) with the following BCALC query, where
Rv is Pv and P−

v , respectively:(∨
T |=C�∃Rv

ζC (t)

) ∖
ζ∃Rv(t), (10)

where, for every concept C and term t , and for a fresh variable y,

ζC (t) =
{

C(t), if C is an atomic concept,

∃y. ξR(t, y), if C is of the form ∃R,

and, for every atomic role P and terms t1 and t2, ξP (t1, t2) = P (t1, t2) and ξP− (t1, t2) = P (t2, t1).

Before proving correctness of the last step of the rewriting, we illustrate the definitions on our running example.

Example 55. Consider the DL-Litecore TBox T = {Record � ∃hasMusician, ∃hasMusician− � Musician} and the rooted CQ

q(x) = ∃y.hasMusician(x, y) ∧ Musician(y).

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 119
There are two subsets of y, namely ∅ and y, and it is immediate to check that both of them are T -realisable. Moreover,

q∅(x) = q(x) and qy(x) = ∃y′.hasMusician(x, y′).

For the first of these CQs, all valuations contributing to the bag [q∅, ∅]Can(K) map all variables of q∅ to individuals,
for every K with TBox T . Therefore, the atom hasMusician(x, y) remains intact in �∅ whereas the atom Musician(y) is
rewritten to a BCALC query retrieving the multiplicity of an individual a in MusicianCan(K) , which is equal to the maximum
multiplicity of a amongst the concepts Musician and ∃hasMusician− over the ABox of K. As a result,

�∅(x) = ∃y.hasMusician(x, y) ∧ (
Musician(y) ∨ ∃z.hasMusician(z, y)

)
.

For the second CQ, qy , all valuations contributing to the bag [qy, y′]Can(K) map y′ to an anonymous element and x to an
individual, for every K with T . Hence, each such valuation contributes to [qy, y′]Can(K) multiplicity 1, while all valuations λ
agreeing on x contribute to [qy, y′]Can(K) an overall multiplicity equal to the number of anonymous hasMusician-successors
of λ(x). This number is the multiplicity of λ(x) in the interpretation of ∃hasMusician under Can(K) minus the number of
individual hasMusician-successors of λ(x). Inspecting T , we finally derive

�y(x) = (
Record(x) ∨ ∃y′.hasMusician(x, y′)

) \ ∃y′′.hasMusician(x, y′′).

Consider now the ABox

A = {|Record(Expectations) : 2, hasMusician(Expectations,K. Jarrett) : 1 |}.
Evaluating the two rewritings on this ABox, we get �A

∅ = �A
y = { | Expectations : 1 | }. Therefore, we have

�A
q = (�∅ ∨· �y)

A = {|Expectations : 2 |}, which is equal to qCan(〈T ,A〉) = q〈T ,A〉 as expected. �
The following lemma establishes correctness of Step 3 of our rewriting approach as formalised in Definition 54.

Lemma 56. Let q(x) = ∃y. φ(x, y) be a rooted CQ and T a DL-Litecore TBox. Then [qz, z′]Can(〈T ,A〉) = �A
z for every bag ABox A and

every T -realisable subset z of y with z′ as in Definition 51.

Proof. We first claim that it is enough to show that, for every T -realisable subset z of y and every maximally consistent
v ⊆ z, the bag answers to the rewritings (9) and (10) of atoms A(t) and ξRv (t, yv), respectively, in qz over every bag ABox
A are equal to the bag answers [A(t), ∅]Can(K) and [∃yv. ξRv (t, yv), yv]Can(K) , respectively, for K = 〈T , A〉. Indeed, on the
one hand, �z is obtained from qz by applying only these replacements; on the other hand, the atoms that are not rewritten
in �z are of the form P (t1, t2) or (t1 = t2), for terms t1 and t2 that are mapped to individuals by each valuation λ ∈ �z , so
such atoms do not need to be rewritten by the fact that atoms P (t1, t2) satisfy P Can(K)(λ(t1), λ(t2)) =A(P (λ(t1), λ(t2))) for
every λ ∈ �z , whereas equalities do not contribute to multiplicities.

We now argue the correctness of replacements (9) and (10). By the definitions of canonical bag interpretation and
concept closure, for all individuals a and concepts C ,

C Can(K)(a) = C Can1(K)(a) = cclT [a, Can0(K)](C) =
max(max{A(A0(a)) | A0 ∈ C, T |= A0 � C},

max{∑b∈I A(P0(a,b)) | P0 ∈ R, T |= ∃P0 � C}, max{∑b∈I A(P0(b,a)) | P0 ∈ R, T |= ∃P−
0 � C}).

(11)

First, by substituting A for C in (11) and by the semantics of BCALC queries, we immediately derive the following for every
a ∈ I and A ∈ C:

[A(a),∅]Can(K) =
(∨

T |=C�A

ζC (a)

)A

,

which proves the claim for concept atoms. For Rv atoms, note that, for each individual a, [∃yv. ξRv (a, yv), yv]Can(K) is
the number of anonymous Rv-successors of a in the bag canonical interpretation, which is (∃Rv)

Can(K)(a) − (∃Rv)
A(a).

Therefore, by substituting ∃Rv for C in (11) and by the semantics of BCALC queries, we get the following for every a ∈ I and
A ∈ C:

[∃yv. ξRv(a, yv), yv]Can(K) =
((∨

T |=C�∃Rv

ζC (a)

) ∖
ξ∃Rv(a)

)A

,

which proves the claim for Rv atoms. �

120 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
8.6. Rewriting and complexity

Putting the results of the previous three sections together, we obtain the following theorem, which establishes the
correctness of our rewriting approach.

Theorem 57. For every rooted CQ q and every DL-Liteb
core

ontology K = 〈T , A〉 we have that qCan(K) = �A
q .

Proof. Consider a rooted CQ q(x) = ∃y. φ(x, y) and a DL-Liteb
core

ontology K = 〈T , A〉. By (3), by Lemmas 50, 53, and 56,
and by (8) we have the sequence of equalities

qCan(K) =
⊎
z⊆y

[q, z]Can(K) =
⊎

T -realisable z⊆y

[qz, z′]Can(K) =
⊎

T -realisable z⊆y

�A
z =

(∨·
T -realisable z⊆y

�z

)A

= �A
q ,

which proves the statement of the theorem. �
Theorems 42 and 57, together with the fact that �q does not depend on A, imply our main rewritability result.

Corollary 58. The class of rooted CQs is rewritable to BCALC over DL-Liteb
core

.

Recall that by Corollary 43 the rewritability result applies regardless of the adoption of the UNA. Note also that we
need to manipulate only finite bags when evaluating the rewriting �q . Since BCALC maximal union is expressible via BCALC
arithmetic union and difference for such bags according to equation (1), we can strengthen Corollary 58 and claim that
there always exists a rewriting that uses only ∧, ∨· , \, equalities, and existential quantification.

We conclude with the LogSpace upper bound on the data complexity of the query answering for rooted CQs over
DL-Liteb

core
. We can decide this problem by checking the ontology for non-satisfiability as in the usual set setting and, if

the check fails, evaluating the BCALC rewriting of the input query on the ABox. The algorithm is correct by Statement 1 of
Theorem 23 on the equivalence of satisfiability under bag and set semantics, and by Corollaries 43 and 58. Both steps can
be done in LogSpace by Proposition 5 on the LogSpace membership of the query answering problem for BCALC and the
results obtained by Calvanese et al. [9].

Corollary 59. BagCert

[
rooted CQs, DL-Liteb

core

]
and BagCert

UNA
[
rooted CQs, DL-Liteb

core

]
are in LogSpace in data complexity.

9. Rewritability of conjunctive queries over DL-LitebRDFS under UNA

In this section we show BCALC rewritability of CQs over DL-Liteb
rdfs

under the UNA as well as tractability of the corre-
sponding query answering problem in data complexity. This result holds only under the UNA since, as shown in Theorem 29,
even rooted CQ answering over DL-Liteb

rdfs
is coNP-hard in data complexity if the UNA is dropped. Note, however, that the

results of this section hold for arbitrary CQs and not just rooted ones.
We proceed analogously to the case of DL-Liteb

core
described in the previous two sections; however, the absence of

existential quantification on the right-hand side of concept inclusions considerably simplifies the exposition.
First, to formalise canonical bag interpretations for DL-Liteb

rdfs
, we introduce the notion of role closure, which is analogous

to that of concept closure in Section 7. The role closure rclT [(u, v), I] of a pair (u, v) of elements u, v ∈ �I in a bag
interpretation I = 〈�I , ·I 〉 over a TBox T is the bag of roles such that, for every role R ,

rclT [(u, v), I](R) = max{R I
0(u, v) | T |= R0 � R}.

In other words, rclT [(u, v), I](R) is the maximum value of R I
0(u, v) amongst all roles R0 satisfying T |= R0 � R .

We are now ready to define canonical bag interpretations for DL-Liteb
rdfs

ontologies.

Definition 60. Let K = 〈T , A〉 be a DL-Liteb
rdfs

ontology and Can0(K) be the bag interpretation corresponding to A—that is,
such that �Can0(K) = I, aCan0(K) = a for each a ∈ I, and SCan0(K)(a) = A(S(a)) for each S ∈ C ∪ R and tuple of individuals a.
Let also CanR(K) be the bag interpretation with domain I that interprets individuals and atomic concepts as Can0(K) and,
for each atomic role P and individuals a, b,

P CanR(K)(a,b) = rclT [(a,b), Can0(K)](P).

The canonical bag interpretation Can(K) of K is the bag interpretation with domain I that interprets individuals and atomic
roles as CanR(K), and, for each atomic concept A and individual a, satisfies

ACan(K)(a) = cclT [a, CanR(K)](A).

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 121
There are two main differences between the canonical bag interpretations for DL-Liteb
rdfs

and DL-Liteb
core

ontologies. On
the one hand, canonical bag interpretations for DL-Liteb

rdfs
do not involve anonymous domain elements; this is because the

logic does not support existentially quantified concepts on the right-hand side of inclusions. On the other hand, canonical
bag interpretations for DL-Liteb

rdfs
need to satisfy role inclusions, which is ensured using the notion of role closure. As

expected, the aforementioned definitions of a canonical bag interpretation coincide for ontologies that are both in DL-Liteb
rdfs

and DL-Liteb
core

.
We next argue that the canonical bag interpretation in Definition 60 is a universal model for CQs under the assumptions

in this section.

Proposition 61. The canonical bag interpretation of a DL-Liteb
rdfs

ontology is a universal model for the class of all CQs under the UNA.

Proof. First, note that every DL-Liteb
rdfs

ontology is satisfiable under the UNA, because it does not have any disjointness
axioms (or any other axioms that may cause an inconsistency). Moreover, the canonical bag interpretation Can(K) is a model
of a DL-Liteb

rdfs
ontology K by construction. Second, every bag interpretation I satisfying the UNA has the corresponding

bag interpretation Is satisfying the standard name assumption—that is, Is is the same as I except that, for every a ∈ I, the
individual a itself is used in Is as an element instead of aI ; moreover, qI = qIs for every query q. Therefore, it is enough
to show that, for every model I of K, Is contains Can(K), in the sense that �Can(K) ⊆ �Is and SCan(K) ⊆ S Is for every
S ∈ C ∪ R. However, this follows from the definitions of a bag interpretation and the canonical bag interpretation, because
concept and role closures essentially encode satisfaction of the inclusions. �
Example 62. Consider the DL-Liteb

rdfs
ontology K = 〈T , A〉 where T is the TBox defined as

T = {∃hasMusician � Record, playsOn− � hasMusician}
and A is the bag ABox defined as

A = {|Record(Expectations) : 1, hasMusician(Expectations,K. Jarrett) : 1, playsOn(P. Motian,Expectations) : 1 |}.
The canonical bag interpretation Can(K) is the bag interpretation having domain �Can(K) = I, interpreting all individuals by
themselves, and assigning bags to atomic concepts and atomic roles as follows:

RecordCan(K) = {|Expectations : 2 |},
playsOnCan(K) = {| (P. Motian,Expectations) : 1 |},

hasMusicianCan(K) = {| (Expectations,K. Jarrett) : 1, (Expectations,P. Motian) : 1 |}.
By Definition 60, the bag interpretations Can0(K) and CanR(K) are involved in the construction of Can(K). These are
specified as follows. Bag interpretation Can0(K) reflects the bag ABox A and maps Record to { | Expectations : 1 | }, hasMusician
to { | (Expectations,K. Jarrett) : 1 | }, and playsOn to { | (P. Motian,Expectations) : 1 | }. Bag interpretation CanR(K) extends Can0(K)

by setting the multiplicity of tuple (Expectations, P. Motian) in role hasMusician to 1, thus, satisfying the role inclusion axiom
in T . Then, interpretation Can(K) is defined on the basis of CanR(K) by setting the multiplicity of element Expectations in
Record to 2, thus, satisfying the concept inclusion in T .

Observe that satisfying concept inclusions only after role inclusions have been satisfied is crucial for deriving a model of
K. This is because satisfaction of role inclusions may result in the increase of an individual’s multiplicity in the interpretation
of a concept, which clearly affects satisfaction of concept inclusions. Indeed, it is easy to verify that the interpretation
resulting from the parallel satisfaction of the inclusions in T is not a model of K, because it assigns to role Record the bag
{ | Expectations : 1 | }, hence, violating the concept inclusion in T . �

Next, we investigate BCALC rewritability of CQs over DL-Liteb
rdfs

under the UNA. We start by arguing that rooted CQs can
be rewritten to neither BCALC maximal nor BCALC arithmetic unions of CQs.

Proposition 63. The class of rooted CQs is rewritable neither to BCALC maximal nor to BCALC arithmetic unions of CQs over DL-Liteb
rdfs

under the UNA.

Proof. For BCALC maximal unions of CQs, consider the Boolean rooted CQ q = A(a) for an atomic concept A and individual
a, and the DL-Liteb

rdfs
ontology K = 〈T , A〉 with T = {P � R, ∃R � A} and A = { | P (a,b) : 1, R(a, c) : 1 | }, for atomic roles P

and R as well as individuals b and c. By Proposition 61, we have qK(〈〉) = qCan(K)(〈〉); moreover, �Can(K) = I, while

ACan(K) = {|a : 2 |}, P Can(K) = {| (a,b) : 1 |}, RCan(K) = {| (a,b) : 1, (a, c) : 1 |}.
As a result, we have qK(〈〉) = 2. Assume now for the sake of contradiction that there exists a BCALC maximal union of
CQs � such that �A(〈〉) = 2. By the semantics of maximal union, this means that � contains a CQ q0 = ∃y. φ(y) satisfying
qA(〈〉) = 2. There are only two ways in which this is possible:
0

122 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
– if there is only one valuation λ : y ∪ I → I for q0 contributing multiplicity 2 to qA0 (〈〉), then φ(y) must contain an atom
S(t) such that SA(λ(t)) = 2; however, this is not possible because A does not have any assertions with multiplicity 2;

– there exist two distinct valuations for q0, each contributing multiplicity 1; however, this is not possible because A does
not have two assertions with multiplicity 1 over the same atomic concept or role.

As a result, we conclude that � cannot contain any such CQ q0, and hence � cannot be a rewriting of q with respect to T .
Finally, non-rewritability to BCALC arithmetic unions of CQs follows already from the proof of the second part of Propo-

sition 45, where the relevant TBox consists only of an inclusion between two atomic concepts. �
In what follows, we show how to construct a BCALC rewriting of an arbitrary CQ with respect to a DL-Literdfs TBox. The

construction is much simpler than that for DL-Liteb
core

in Section 8 since the canonical bag interpretation of a DL-Liteb
rdfs

ontology does not contain anonymous elements. In particular, there is no need to identify T -realisable subsets of existen-
tially quantified variables and to transform the input CQ accordingly, which implies that Steps 1 and 2 in Section 8 are no
longer required. As a result, a BCALC rewriting of the CQ can be directly constructed following an analogous approach to
that of Step 3 in Section 8, and yet the operations of arithmetic union and difference are no longer required. Note, however,
that the BCALC query resulting from the rewriting is not a BCALC maximal union of CQs since it interleaves maximal unions
with existential quantification.

Definition 64. Let q(x) = ∃y. φ(x, y) be a CQ and T be a DL-Literdfs TBox. The BCALC query �q(x) is obtained from q(x) by
replacing each occurrence of an atom A(t) and an atom P (t1, t2) with∨

T |=C�A

ζC (t) and
∨

T |=R�P

ξR(t1, t2), respectively, (12)

where, for every concept C and term t , and for a fresh variable y,

ζC (t) =
⎧⎨
⎩

C(t), if C is an atomic concept,

∃y.
(∨

T |=R0�R
ξR0(t, y)

)
, if C is of the form ∃R,

and, for every atomic role P and terms t1 and t2, ξP (t1, t2) = P (t1, t2) and ξP− (t1, t2) = P (t2, t1).

So, analogously to Definition 54 in the DL-Liteb
core

case, we replace each concept atom A(t) with a BCALC maximal
union of all atoms over t corresponding to concepts subsumed by A in T ; in contrast to Definition 54, however, we also
need to take into account role inclusions, which results in the inclusion of further disjuncts in the second part of the
definition of ζC (t). Then, each role atom P (t1, t2) is replaced by the BCALC maximal union of all binary atoms over t1 and
t2 corresponding to roles subsumed by P in T .

We now provide an example illustrating the construction of a rewriting.

Example 65. Consider TBox T from Example 62 and the Boolean CQ q = ∃y1, y2. Record(y1) ∧hasMusician(y1, y2). Following
Definition 64, the relevant concepts for rewriting the atom Record(y1) are Record itself, ∃hasMusician, and ∃playsOn− as
these are all the concepts subsumed by Record in T . Similarly, the relevant roles for rewriting the atom hasMusician(y1, y2)

are hasMusician itself and playsOn− as these are all the roles subsumed by hasMusician in T . Thus atoms Record(y1) and
hasMusician(y1, y2) are replaced in q with expressions

ζRecord(y1) ∨ ζ∃hasMusician(y1) ∨ ζ∃playsOn−(y1) = Record(y1) ∨
∃y. (hasMusician(y1, y) ∨ playsOn(y, y1)) ∨ ∃y.playsOn(y, y1)

and ξhasMusician(y1, y2) ∨ ξplaysOn−(y1, y2) = hasMusician(y1, y2) ∨ playsOn(y2, y1),

respectively, resulting in the rewriting

�q = ∃y1, y2.
(
Record(y1) ∨ ∃y. (hasMusician(y1, y) ∨ playsOn(y, y1)) ∨ ∃y.playsOn(y, y1)

) ∧(
hasMusician(y1, y2) ∨ playsOn(y2, y1)

)
.

Consider now ABox

A = {|Record(Expectations) : 1, hasMusician(Expectations,K. Jarrett) : 1, playsOn(P. Motian,Expectations) : 1 |},
from Example 62 and the canonical bag interpretation Can(K) of the DL-Liteb

rdfs
ontology K = 〈T , A〉, specified there. On

the one hand, evaluating q over Can(K) results in the bag qCan(K) = { | 〈〉 : 4 | }. On the other hand, it is immediate to check
that �q also evaluates to { | 〈〉 : 4 | } over A. �

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 123
We next prove correctness of the rewriting formalised in Definition 64.

Theorem 66. For every CQ q and every DL-Liteb
rdfs

ontology K = 〈T , A〉 we have that qCan(K) = �A
q .

Proof. Let q(x) = ∃y. φ(x, y) be a CQ and K = 〈T , A〉 be DL-Liteb
rdfs

ontology. To prove the claim, it suffices to show that
for each atom A(t) and P (t1, t2) in φ(x, y), and for each valuation λ : x ∪ y ∪ I → �Can(K) , the multiplicities ACan(K)(λ(t))
and P Can(K)(λ(t1), λ(t2)) are equal to the multiplicities of λ(t) and (λ(t1), λ(t2)) in the bag answers to the BCALC queries
of (12) over ABox A, respectively.

Canonical interpretation Can(K) assigns to every atomic concept A and every atomic role P the bag defined as
ACan(K)(u) = cclT [u, CanR(K)](A) and P Can(K)(u, v) = rclT [(u, v), Can0(K)](P) for all elements u, v ∈ �Can(K) , respectively.
By unfolding the definition of closures, we get the following, for every atom A(t) and P (t1, t2) in φ(x, y), and every valua-
tion λ:

ACan(K)(λ(t)) = max(max{A(A0(λ(t))) | A0 ∈ C, T |= A0 � A},
max{(∃R)CanR(K)(λ(t)) | R a role, T |= ∃R � A}), (13)

P Can(K)(λ(t1), λ(t2)) = max(max{A(P0(λ(t1), λ(t2))) | P0 ∈ R, T |= P0 � P },
max{A(P0(λ(t2), λ(t1))) | P0 ∈ R, T |= P−

0 � P }). (14)

Consider first the right-hand side of (13). Observe that the first subexpression involving the max function can be equiv-

alently written as
(∨

A0∈C, T |=A0�A A0(t)
)A

(λ(t)). As for the second subexpression, it can be equivalently written as (⋃
T |=∃R�A(∃R)CanR(K)

)
(λ(t)) where bag (∃R)CanR(K) can be further written as

(∃y′.
(∨

T |=R0�R ξR0(t, y′)
))A

. Thus, by
substituting

∨
for ∪ in the aforementioned expression and for the outer max function in (13), and by the definition of

ζC (t) in Definition 64, we derive

ACan(K)(λ(t)) =
(∨

T |=C�A
ζC (t)

)A
(λ(t)),

as required. To complete the proof of the theorem, observe that from (14) and the semantics of BCALC queries we immedi-

ately obtain P Can(K)(λ(t1), λ(t2)) =
(∨

T |=R�P ξR(t1, t2)
)A

(λ(t1), λ(t2)), as required. �
From Proposition 61 and Theorem 66 we obtain the rewritability result of this section.

Corollary 67. The class of all CQs is rewritable to positive BCALC over DL-Liteb
rdfs

under the UNA.

All DL-Liteb
rdfs

ontologies are satisfiable, so the data complexity upper bound for the corresponding query answering
problem can be established as a straightforward consequence of Proposition 5 and Corollary 67.

Corollary 68. BagCert
UNA

[
CQs, DL-Liteb

rdfs

]
is in LogSpace in data complexity.

10. Rewritability of rooted conjunctive queries over DL-LitebR− under UNA

In this section we consider BCALC rewritings of rooted CQs over the ontology language DL-LitebR− , which extends both
DL-Liteb

core
and DL-Liteb

rdfs
. As defined in Section 2.1, this language provides all the constructs available in DL-LiteR , but

allows concept inclusions of the form C � ∃R only for roles R that do not have more general roles in the ontology.
Similarly to the case of DL-Liteb

rdfs
considered in the previous section, we focus on the semantics that adopts the UNA;

this is justified by Theorem 29, where we showed that (rooted) CQ answering over ontology languages allowing for role
inclusions is coNP-hard in data complexity if the UNA is not adopted. However, in contrast to the previous section, we focus
on rooted CQs rather than general CQs; this choice is justified by Theorem 28, where we established coNP-hardness of CQ
answering over DL-Liteb

core
under the UNA.

The strategy behind our proof of BCALC rewritability of rooted CQs over DL-LitebR− is to seamlessly combine the tech-
niques developed in the previous three sections for DL-Liteb

core
and DL-Liteb

rdfs
. We start with the definition of the canonical

bag interpretation. The construction is divided into two steps: first, we build the canonical bag interpretation of the
DL-Liteb

rdfs
sub-ontology consisting only of role inclusions, and then use the resulting interpretation as the starting point for

the recursive model construction done for DL-Liteb
core

, where we now ignore the role inclusions.

Definition 69. The canonical bag interpretation Can(K) of a DL-LitebR− ontology K = 〈T , A〉 is the bag interpretation ⋃
i≥0 Cani(K), where Can0(K) is the canonical bag interpretation of the DL-Liteb

rdfs
ontology obtained from K by keep-

ing only the role inclusions in T (as defined in Definition 60), and, for each i ≥ 1, interpretation Cani(K) is defined on the
basis of Cani−1(K) as in Definition 32 by considering only the concept inclusions in T .

124 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
It is immediate to check that this definition generalises the definitions of canonical bag interpretations for DL-Liteb
core

and DL-Liteb
rdfs

. We next illustrate the aforementioned definition with an example.

Example 70. Consider the DL-LitebR− ontology K = 〈T , A〉, where

T = {Record � ∃hasMusician,∃hasMusician− � Musician, playsOn− � hasMusician},
A = {|Record(Expectations) : 2, playsOn(K. Jarrett, Expectations) : 1 |}.

The canonical bag interpretation Can(K) has domain �Can(K) = I ∪ {w1
Expectations,∃hasMusician}, interprets all the individuals by

themselves, and assigns bags to atomic concepts and atomic roles as follows:

RecordCan(K) = {|Expectations : 2 |},
MusicianCan(K) = {|K. Jarrett : 1, w1

Expectations,∃hasMusician : 1 |},
playsOnCan(K) = {| (K. Jarrett, Expectations) : 1 |},

hasMusicianCan(K) = {| (Expectations, K. Jarrett) : 1, (Expectations, w1
Expectations,∃hasMusician) : 1 |}. �

Note that the canonical bag interpretation of a satisfiable DL-LitebR− ontology K = 〈T , A〉 is always a model of K by
construction and the fact that T does not have concept inclusions of the form C � ∃R whenever R has a more general role
in T . This fact guarantees that the subinterpretation of Can(K) corresponding to the set of concept inclusions in T , namely ⋃

i≥1 Cani(K), does not violate the role inclusions in T that have been already satisfied in Can0(K). Given this property, the
following is a generalisation of Proposition 34 for the canonical bag interpretations of DL-Liteb

core
ontologies, which holds

again regardless of whether the UNA is adopted or not (recall that this was automatic for the case of DL-Liteb
rdfs

because
this language does not allow for any inconsistencies).

Proposition 71. If a DL-LitebR− ontology is satisfiable then its canonical bag interpretation is its model.

We next show that the canonical bag interpretation is universal for the class of rooted CQs. For this, we establish the
counterpart of Lemma 38 for the case of DL-LitebR− ontologies.

Lemma 72. For every DL-LitebR− ontology K and every model I of K there exists an e-homomorphism from Cane(K) to Ie that is
multiplicity-preserving on I.

Proof. The proof goes along the same lines as the proof of Lemma 38. The only difference is the way in which we define
a witnessing multiplicity-preserving e-homomorphism (h, hS , . . .) for atomic roles and the elements in �Can0(K)—that is,
on the (interpretations of the) individuals I. However, the existence of such an e-homomorphism follows from the proof
of Proposition 61, which shows universality of the canonical bag interpretation for DL-Liteb

rdfs
. Indeed, the fact that for

every model I of K the corresponding model Is (i.e., the model satisfying the standard name assumption) is such that
�Can0(K) ⊆ �Is and SCan0(K) ⊆ S Is for every S ∈ C ∪ R implies the existence of an e-homomorphism. �

Using Lemma 72 and the fact that Lemma 41 transfers trivially to DL-LitebR− ontologies, we can conclude that Theorem 42
(as well as Proposition 61) generalises to the case of DL-LitebR− .

Theorem 73. The canonical bag interpretation Can(K) of a satisfiable DL-LitebR− ontology K is a universal model for the class of
rooted CQs under the UNA.

We next move to the BCALC rewritability of rooted CQs over DL-LitebR− . We start by pointing out that this class of queries
is rewritable to neither BCALC maximal nor to BCALC arithmetic unions of CQs over DL-LitebR− under the UNA, which is a
direct consequence of Propositions 45 and 63, as well as the fact that DL-LitebR− extends both DL-Liteb

core
and DL-Liteb

rdfs
. In

fact, the rewriting algorithm can be seen as a combination of the corresponding algorithms for DL-Liteb
core

and DL-Liteb
rdfs

,
described in Sections 8 and 9, respectively. When given as input a DL-LiteR− TBox T and a rooted CQ q(x) = ∃y. φ(x, y), the
algorithm considers each subset z of y independently and then takes the BCALC arithmetic union of the resulting rewritings.
In particular, for each such z, we proceed according to the following three steps:

1. as specified in Definition 48, z is checked for TC-realisability, where TC is the set of concept inclusions in T , and
disregarded from consideration if the check fails,

2. as specified in Definition 51, each maximally connected component of the subquery corresponding to z is replaced by
a single representative role atom, resulting in a CQ; and

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 125
3. all atoms are rewritten to a BCALC query that takes into account the TBox and the fact that z should be mapped to
anonymous elements.

The only essential difference to the algorithm for DL-Liteb
core

is in the last step, where we now take into account also the
presence of role inclusions, as in the case of DL-Liteb

rdfs
.

The construction of the rewriting is formalised by the following definition.

Definition 74. Let q(x) = ∃y. φ(x, y) be a rooted CQ and T a DL-LiteR− TBox. For a TC-realisable subset z of y, let �z(x) be
the query obtained from the CQ qz(x), given in Definition 51, by replacing

– each occurrence of an atom A(t) and an atom P (t1, t2) with∨
TC|=C�A

ζC (t) and
∨

T |=R�P

ξR(t1, t2), respectively, (15)

– the atom Pv(t, yv) and the atom Pv(yv, t) for each maximally connected v ⊆ z with the following BCALC query, where
Rv is Pv and P−

v , respectively:(∨
TC|=C�∃Rv

ζC (t)

) ∖
ζ∃Rv(t), (16)

where, for every concept C and term t , and for a fresh variable y,

ζC (t) =
⎧⎨
⎩

C(t), if C is an atomic concept,

∃y.
(∨

T |=R0�R
ξR0(t, y)

)
, if C is of the form ∃R,

and, for every atomic role P and terms t1, t2, ξP (t1, t2) = P (t1, t2) and ξP− (t1, t2) = P (t2, t1).
Finally, let

�q(x) =
∨·

TC-realisable z⊆y

�z(x).

The structure of the rewriting in Definition 74 is similar to that for DL-Liteb
core

in Definition 54. The main differences are
as follows:

– when rewriting atoms not having variables in z, we take into account the role inclusions as in the DL-Liteb
rdfs

case; and
– when rewriting role atoms Pv(t, yv) and Pv(yv, t) for maximally connected subsets v of variables, we distinguish be-

tween different types of subconcepts of ∃Pv and ∃P−
v , respectively: for atomic concepts we follow the rewriting for

DL-Liteb
core

, while for existentially quantified subconcepts we take into account the role inclusions as in the DL-Liteb
rdfs

case.

Example 75. Consider TBox T from Example 70 and the rooted CQ q(x) = ∃y. hasMusician(x, y) ∧ Musician(y), same as in
Example 55. As before, there are two TC-realisable subsets of y, namely ∅ and y, and

q∅(x) = q(x) and qy(x) = ∃y′.hasMusician(x, y′).

The rewritings of these CQs are

�∅(x) = ∃y.
(
hasMusician(x, y) ∨ playsOn(y, x)

) ∧ (
Musician(y) ∨ ∃y′.

(
hasMusician(y′, y) ∨ playsOn(y, y′))

)
,

�y(x) = (
Record(x) ∨ ∃y′′. (hasMusician(x, y′′) ∨ playsOn(y′′, x))

) \ ∃y′′.
(
hasMusician(x, y′′) ∨ playsOn(y′′, x)

)
.

Evaluating the two rewritings on ABox A from Example 70, we get �A
∅ = �A

y = { | Expectations : 1 | }. Therefore, �A
q = (�∅ ∨·

�y)
A = { | Expectations : 2 | }, which is equal to qCan(〈T ,A〉) = q〈T ,A〉 as expected. �

We show the correctness of the approach by means of the following generalisation of Lemma 56.

Lemma 76. Let q(x) be a rooted CQ and T a DL-LiteR− TBox. Then [qz, z′]Can(〈T ,A〉) = �A
z for every bag ABox A and every TC-

realisable subset z of y.

126 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
Proof. The proof is similar to the proofs of Lemma 56 and Theorem 66. Consider an arbitrary bag ABox A and let K =
〈T , A〉 be the resulting DL-LitebR− ontology. We need to show that the bag answers over each bag ABox A to the rewritings
of atoms A(t), P (t1, t2) and ξPv (t, yv) in qz as these appear on the left- and right-hand side of (15), as well as in (16),
respectively, are equal to the bag answers [A(t), ∅]Can(K) , [P (t1, t2), ∅]Can(K) , and [∃yv. ξPv (t, yv), yv]Can(K) , respectively.

We now argue the correctness of replacements (15) and (16) in Definition 74. To begin, let TR be the set of role inclusions
in T , let IA = 〈�IA , ·IA 〉 be the bag interpretation corresponding to ABox A—that is, the interpretation defined as �IA = I,
aIA = a for all a ∈ I, and S IA (a) = A(S(a)) for all S ∈ C ∪ R and tuples of individuals a, and let CanR(〈TR, A〉) be the bag
interpretation for the DL-Liteb

rdfs
ontology 〈TR, A〉 defined on the basis of IA according to Definition 60 (note that we use

IA instead of Can0(K) since the definition of the latter in DL-LitebR− differs from the one in DL-Liteb
rdfs

). By the definitions
of canonical bag interpretations for DL-LitebR− ontologies as well as concept and role closures, for all individuals a and b,
concepts C , and atomic roles P , we have the following equalities:

C Can(K)(a) = C Can1(K) = cclTC [a, Can0(K)](C) =
max(max{A(A0(a)) | A0 ∈ C, T |= A0 � C}, max{(∃R)CanR(〈TR,A〉)(a) | R a role, TC |= ∃R � C}), (17)

P Can(K)(a,b) = rclTR [(a,b), IA](P) = rclT [(a,b), IA](P) =
max(max{A(P0(a,b)) | P0 ∈ R, T |= P0 � P }, max{A(P0(b,a)) | P0 ∈ R, T |= P−

0 � P }). (18)

From (17), (18), and the semantics of BCALC queries, we immediately derive the following, for every a, b ∈ I, A ∈ C, and
P ∈ R (see also the derivations for (13) and (14) in the proof of Theorem 66):

[A(a),∅]Can(K) =
(∨

TC|=C�A

ζC (a)

)A

and [P (a,b),∅]Can(K) =
(∨

T |=R�P

ξR(a,b)

)A

,

which proves the claim for atoms of the form A(t) and P (t1, t2). The claim for Pv atoms is proved using (17) and similarly
to the proof of Lemma 56. �

Using this lemma, the following theorem can be proved in exactly the same way as Theorem 57.

Theorem 77. For every rooted CQ q(x) and every DL-LitebR− ontology K = 〈T , A〉 we have that qCan(K) = �A
q .

Combining Theorem 73 and Theorem 77, we derive the following corollary.

Corollary 78. The class of rooted CQs is rewritable to BCALC over DL-LitebR− under the UNA.

Similarly to Corollary 58 in the DL-Liteb
core

case, we can strengthen Corollary 78 and claim that there always exists a
rewriting that uses only ∧, ∨· , \, equalities, and existential quantification.

We conclude this section by establishing the data complexity of rooted CQ answering over DL-LitebR− . Problem
BagCert

UNA[rooted CQs, DL-LitebR−] can be decided in the same way as BagCert[rooted CQs, DL-Liteb
core

] (see Section 8.6)
with the only difference that the rewriting �q is now computed as in Definition 74. Correctness of the algorithm follows
from Theorems 73 and 77, and yields the following data complexity bound.

Corollary 79. BagCert
UNA[rooted CQs, DL-LitebR−] is in LogSpace in data complexity.

11. Related work

In this section, we establish bridges between our bag semantics for OBDA and existing work in the literature on data
exchange and query answering over DL-Lite.

11.1. Bag semantics in data exchange

Hernich and Kolaitis [20] have recently studied CQ answering under bag semantics in the context of data exchange. As
is customary in conventional treatments of data exchange [32], their setting considers disjoint source and target database
schemas, which are related via source-to-target GLAV mappings. In the data exchange literature it is common to also con-
sider dependencies over the target schema (which can equivalently be seen as ontological axioms); however, the semantics
by Hernich and Kolaitis is defined only under the assumption that no such dependencies exist.

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 127
Definition 80. A bag data exchange setting is a tuple 〈S,T,�,D〉 where

– S is a source database schema;
– T is a target database schema disjoint from S;
– � is a finite set of global-and-local-as-view (GLAV) mapping assertions (or mappings) of the form

q(x) � p(x)

where q(x) is a CQ over S and p(x) is a CQ over T;3 and
– D is a bag database instance over S.

In the conventional set-based case, a solution of a data exchange setting is a finite database over the target schema that
satisfies all the mappings together with the source database. Hernich and Kolaitis [20] defined two possible generalisations
of this notion to bag semantics.

Definition 81. Let 〈S,T,�,D〉 be a bag data exchange setting. A bag database instance B over T is

– an incognizant solution (or i-solution), if qD ⊆ pB for every mapping q(x) � p(x) in �;
– a cognizant solution (or c-solution), if, for each mapping σ = q(x) � p(x) in �, there exists a bag database instance Bσ

over T with qD ⊆ pBσ such that⊎
σ∈�

Bσ ⊆ B.

In other words, the incognizant semantics adopts the maximal union approach for interpreting mappings defining the
same view—that is, when applied to GAV mappings q1(x) � S(x) and q2(x) � S(x) for a predicate S , and a database D,
an incognizant solution B must satisfy qD1 ∪ qD2 ⊆ SB; in contrast, the cognizant semantics adopts the arithmetic union
approach and requires that a solution B satisfies qD1 � qD2 ⊆ SB .

Query answering in bag data exchange settings is defined as the problem of computing the bag certain answers to a
query over the target schema with respect to the set of solutions.

Definition 82. Let 〈S,T,�,D〉 be a bag data exchange setting and let q be a CQ over T. The incognizant certain answers
i-certain〈S,T,�,D〉(q) to q with respect to 〈S,T,�,D〉 are defined as follows:

i-certain〈S,T,�,D〉(q) =
⋂

B is an i-solution for
〈S,T,�,D〉

qB.

The cognizant certain answers c-certain〈S,T,�,D〉(q) to q with respect to 〈S,T,�,D〉 are defined in the same way except that
c-solutions are considered in the intersection instead of i-solutions.

We are now ready to establish the connection between our OBDA framework and that of Hernich and Kolaitis for data
exchange. Note that there are several differences between our OBDA settings, introduced in Definition 6, and data exchange
settings. First, target schemas in OBDA are restricted to predicates of arity one and two, whereas in data exchange the
arity of target predicates is unbounded. Second, data exchange mappings have CQs on both sides, whereas OBDA mappings
have arbitrary BCALC queries on the source side, but only atomic queries of the form A(x) and P (x, y) on the target side.
Third, an OBDA setting comes with a TBox, whereas the data exchange setting in [20] does not allow for any dependencies
over the target schema. Finally, from a semantics point of view, certain answers in OBDA are defined in terms of (possibly
infinite) models, whereas certain answers in data exchange are defined in terms of (finite) database solutions.

We next show that, despite these mismatches, our semantics is compatible with that of Hernich and Kolaitis. For this
we note that OBDA and data exchange settings are syntactically compatible if we assume target predicates of arity only one
and two, absence of an ontology, and restrict ourselves to GAV mappings with CQs on the source side and atoms A(x) and
P (x, y) on the target side. Under these assumptions, we argue that our semantics coincides with the incognizant semantics
of Hernich and Kolaitis; furthermore, their cognizant semantics can be simulated in our setting by means of a suitable
rewriting of their mappings. Note also that the following proposition is stated for the OBDA semantics without the UNA;
however, adopting the UNA would not affect this result, because in case of an empty ontology the two semantics coincide.

Proposition 83. Let 〈S,T,�,D〉 be a data exchange setting such that T consists only of unary and binary predicates and all mappings
in � have atoms of the form A(x) or P (x, y) on the target side. Then, for every CQ q over T,

3 Note that Hernich and Kolaitis do not allow for equality atoms in CQs, but this does not affect expressivity.

128 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
1. i-certain〈S,T,�,D〉(q) = q〈∅,�,D〉 , and

2. c-certain〈S,T,�,D〉(q) = q〈∅,�′,D〉 , where �′ is obtained from � by replacing, for each atom S(x), all the mappings with S(x) on
the target side with∨·

q(x)�S(x) in �

q(x) � S(x).

Proof. Given a bag database B over T, let IB be the bag interpretation corresponding to B—that is, the interpretation having
the set of individuals (i.e., constants) appearing in B as the domain and satisfying S IB = SB for every predicate S ∈ T. We
claim that, for every bag database B over T,

1. B is an i-solution for 〈S,T,�,D〉 if and only if IB is a model of 〈∅, �, D〉, and
2. B is a c-solution for 〈S,T,�,D〉 if and only if IB is a model of 〈∅, �′, D〉.

The first claim follows from Definitions 81 and 9 of the semantics of data exchange and OBDA, respectively.
Consider now the second claim. The fact that B is a c-solution for 〈S,T,�,D〉 means that there are bag database

instances Bσ , for σ ∈ �, such that qD ⊆ (S(x))Bσ for each σ = q(x) � S(x) and
⊎

σ∈� Bσ ⊆ B. This is equivalent to the
fact that, for each atom S(x),⊎

q(x)�S(x) in �

qD ⊆ S IB ,

which means that IB is a model of 〈∅, �′, D〉 by the definition of �′ . To conclude the proof, note that, since an ontology
with an empty TBox has a unique finite model that is minimal with respect to bag inclusion, by Lemma 21, it is enough to
consider only finite interpretations when computing the bag certain answers to q. �

Note that the second statement in this proposition is essentially illustrated in Example 11.
We conclude this section by observing that, at least in principle, we could have defined a “cognizant” bag semantics for

DL-LitebR , which is based on arithmetic union rather than maximal union. Under such a semantics, inclusions A � C and
B � C would be satisfied by a bag interpretation I only if AI � B I ⊆ C I ; this is in contrast to our current “incognizant”
semantics where we require that AI ∪ B I ⊆ C I . Such a semantics would, however, come with clear disadvantages. For
example, every model I of the ontology with TBox {A � B, B � A, C � B} and ABox { | A(a) : 1, B(a) : 1, C(a) : 1 | } would
need to satisfy

AI ⊆ B I , B I ⊆ AI , C I ⊆ B I , AI � C I ⊆ B I ,

and, hence, would have to include infinitely many occurrences of element aI in both AI and B I .

11.2. Count aggregate queries over ontologies

Our approach to OBDA query answering under bag semantics is closely related to existing approaches for answering
conjunctive counting aggregate queries over DL-LiteR [36,38]. Indeed, under bag semantics, CQs are intrinsically equipped
with counting power: the result of evaluating a CQ over a (set or bag) interpretation under bag semantics is a bag of answer
tuples, where each tuple comes with a multiplicity (i.e., a “count”).

Calvanese et al. [38] proposed an epistemic semantics, where query answers are obtained by evaluating the query over
the (finite) set of all ABox facts entailed by the ontology. Although this approach is well-suited for practical implementa-
tions, it can easily lead to counter-intuitive answers. To remedy this, Kostylev and Reutter [36] proposed a certain answers
semantics that requires the query to be evaluated over all models of the ontology, which yields more intuitive answers at
the expense of increased computational cost.

In what follows we take a closer look at Kostylev and Reutter’s framework, which is formalised in the following def-
inition. The main difference between their setting and ours is that they consider set ABoxes and conventional set-based
semantics of ontologies.

Definition 84. A count aggregate query is the expression qc(x, Count()) = ∃y. φ(x, y), where φ(x, y) is a conjunction of atoms
over atomic concepts and roles. A (set) interpretation I satisfies qc(a, m), for a tuple a over I with |a| = |x| and a number
m ∈N∞

0 , if there are exactly m valuations λ : x ∪y ∪I → �I with λ(x) = aI and λ(a) = aI for each a ∈ I that make φ(x, y) true
in I . A number n ∈N∞

0 is in the count aggregate certain answers Cert(qc, a, K) to qc for a tuple of individuals a and DL-LiteR
ontology K if n ≤ min{m ∈N∞

0 | there is I |= K satisfying qc(a, m)}. Count aggregate certain answers CertUNA(qc, a, K) under
the UNA are defined in the same way except that only interpretations satisfying the UNA are considered.

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 129
Intuitively, the count associated to a in the count aggregate certain answers to qc is the minimum number of matching
valuations over all models of the ontology. The following proposition establishes a correspondence between our setting and
theirs: under suitable restrictions on the TBox, assuming only set ABoxes, and adopting the UNA, the certain answers to CQs
under our bag semantics coincide with the answers to the corresponding count query as given in Definition 84.

Proposition 85. For every DL-LiteR ontology Ks = 〈T , As〉 such that T does not contain any inclusions of the form ∃R � C , every
count aggregate query qc(x, Count()) = ∃y. φ(x, y), every tuple of individuals a, and every n ∈N∞

0 ,

n ∈ CertUNA(qc,a,Ks) if and only if n ≤ qK
b,UNA(a),

where q is the CQ ∃y. φ(x, y), Kb is the DL-LitebR ontology obtained from Ks by considering As as a bag ABox (i.e., as the bag ABox
assigning 1 to all assertions in As and 0 to all others), and qKb,UNA is the certain answers to q over Kb under the UNA.

Proof. First, we claim that for every set interpretation Is that is a model of Ks there exists a bag interpretation Ib that is
a model of Kb such that, for every tuple of individuals a, qIb

(a) = m where m is the number with Is satisfying qc(a, m).
Indeed, given such an Is we can take as Ib the bag version of Is—that is, the bag interpretation such that S Ib

(b) = 1 for
an atomic concept or role S and individuals b if b ∈ S Is

and S Ib
(b) = 0 otherwise. Bag interpretation Ib is a model of

Kb because the restriction on the TBox rules out any forced increase of multiplicities, while qIb
(a) = m holds for every a

because each valuation contributes to qIb
(a) with multiplicity 0 and 1, and the ones with 1 are precisely those that turn φ

to true.
Second, we claim that for every bag interpretation Ib that is a model of Kb there exists a set interpretation Is that is

a model of Ks such that Is satisfies qc(a, m) for every tuple of individuals a and for a number m ≤ qIb
(a). Indeed, given

such an Ib we can take as Is the “characteristic” version of Ib—that is, the set interpretation such that b ∈ S Is
for an atomic

concept or role S and individuals b if and only if S Ib
(b) ≥ 1. Set interpretation Is is a model of Ks just by definition, while

Is additionally satisfies qc(a, m) for a tuple a and a number m ≤ qIb
(a) because, by construction, a valuation contributes to

qIb
(a) a multiplicity greater than 0 if and only if it turns φ to true.
These two claims immediately imply the statement of the proposition. �
Note, however, that both the UNA and the restriction on TBoxes are necessary for Proposition 85 to hold, and dropping

any of these makes the two frameworks incompatible. Indeed, if the UNA is not adopted, then, for the simple ontology
〈∅, {A(a), A(b)}〉, the aggregate query counting A(y) has certain answer 1, while the corresponding CQ has the empty tuple
with multiplicity 2 in the answer. Similarly, for the ontology 〈{B � ∃P , ∃P− � A}, {B(a), B(b)}〉, we have the same situation
if we drop the restriction on the TBox.

We conclude by pointing out that the work by Kostylev and Reutter is also strongly related to existing approaches in
the database literature for answering counting aggregate queries in the presence of incomplete information [39–41]. As
observed by Kostylev and Reutter, however, these approaches are not directly applicable to answering counting queries in
the presence of an ontology, and we refer to [36] for a detailed discussion.

11.3. Other related work

Jiang [42] proposed a bag semantics for the description logic ALC . The author focuses on satisfiability checking and
provides a tableaux-based decision procedure. Their semantics is, however, incomparable to ours. For example, concepts
of the form ∃R.� are not interpreted as the bag projection on the first argument of role R , which makes the semantics
incompatible with SQL.

Query answering and optimisation under bag semantics have received significant attention in the database litera-
ture [22,23,27,29–31,33,43]. These works study the relative expressive power of bag algebra primitives, the relationship
with set-based algebras, and establish the data complexity of query answering, query containment, and query equivalence.
More recently, Console et al. [44] studied query answering under bag semantics in incomplete relational databases. Query
answering and its data complexity under bag semantics have been recently studied as well in the setting of the Semantic
Web query languages [45,46].

12. Conclusion and future work

In this article, we have proposed a novel bag semantics for OBDA and studied the computational properties of its asso-
ciated query answering problems. The key advantage of our semantics is that it allows us to faithfully represent arbitrary
GAV mappings (and not just those whose source query involves duplicate elimination) in a way that is compatible with SQL.
Furthermore, our semantics is compatible with existing bag-based semantics for databases with incomplete information and
data exchange.

We see many interesting directions for future work. First, we are planning to extend the query language to allow for
database-style aggregate functions and to study suitable restrictions ensuring rewritability of such queries. Second, it would

130 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
be interesting to try to push the rewritability boundaries for CQs to include some constant-free Boolean queries. For this,
an interesting starting point could be the notion of local concepts and queries proposed by Gutiérrez-Basulto et al. [47] as a
means of regaining decidability of query answering over DL-LiteR for the class of CQs with inequalities. Finally, our rewriting
algorithms are not designed with an efficient implementation in mind. We plan to develop a practically applicable rewriting
algorithm for our bag semantics.

Acknowledgements

This work was supported by the Royal Society under a University Research Fellowship, the EPSRC projects ED3
(EP/N014359/1) and DBOnto (EP/L012138/1), and the Research Council of Norway via the Sirius SFI (237889).

Appendix A. BALG1: algebraic query language for bag databases

In this appendix we introduce the algebraic query language for bag databases of Grumbach and Milo [22], called BALG1.
Queries in BALG1 are algebra expressions built upon predicates in a database schema by the composition of the operations
defined in Section 2.3 for bags, as well as the operations of tupling τ , attribute projection α, bagging β , Cartesian product ×,
selection σ , and projection π .4 The semantics of these algebra expressions is defined formally below, where the operations
are grouped into those that operate on tuples over the database domain I and those that operate on bags of tuples.

1. Operations on tuples:
– tupling τ (a1, ..., ak) for a1, . . . , ak ∈ I is the k-ary tuple (a1, ..., ak);
– attribute projection αi(a) for a tuple a over I of size k and i ∈ [1, k] is the i-th component of a;
– bagging β(a) for a tuple a over I is the bag of tuples over I of size |a| assigning 1 to a and 0 to other tuples.

2. Operations on bags of tuples:
– intersection ∩, maximal union ∪, arithmetic union �, difference −, and duplicate elimination ε on bags of tuples over I

of the same size are defined as in Section 2.3;
– Cartesian product 	1 × 	2 of bags 	1 and 	2 of tuples of size k and �, respectively, over I is the bag of tuples of size

k + � assigning 	1(a) × 	2(b) to the concatenation a, b of each two tuples a and b of size k and �, respectively;
– selection σE1(X)=E2(X)() of a bag 	 of tuples over I of size k for BALG1 algebra expressions E1 and E2 with a tuple

variable X is the bag of tuples over I of size k that assigns 	(a) to each a with E1(a) = E2(a) and 0 to all other
tuples;

– projection πi1,...,in () of a bag 	 of tuples over I of size k for i1, . . . , in ∈ [1, k] and n ≥ 1 is the bag of tuples of size
n over I that assigns to each tuple a′ of size n the sum of 	(a) over all a that have a′ as components i1, . . . , in .

The bag answers ED to a BALG1 algebra expression E (operating on bags) over a database instance D over the same
schema is the bag of tuples resulting in the evaluation of E on D.

We now define the decision problem corresponding to computing the bag answers to BALG1 algebra expressions as it
was introduced in [22], where we again assume that all numbers in the input are represented in unary and the bag database
instance is explicitly defined only for a finite number of facts.

QueryAnswering
=[BALG1]

Input: BALG1 algebra expression E , bag database instance D,
tuple a of constants over I, and number k ∈N0.

Question: Is ED(a) = k?

The data complexity of this problem is the complexity when the expression E is considered to be fixed and only D, a, and k
form the input.

We stress here that in this problem the question is whether the equality �D(a) = k holds. However, we are more
interested in the threshold version QueryAnswering[BALG1] where �D(a) ≥ k is checked instead.

The following proposition shows that, in data complexity, our problem is not any harder than the one of Grumbach and
Milo.

Proposition 86. QueryAnswering[BALG1] is AC
0 reducible to QueryAnswering

=[BALG1] in data complexity.

4 Note that the language of Grumbach and Milo [22] includes a restructuring operation instead of projection. Our convenient deviation does not change
the expressivity of the language since these two operations are expressible via each other in the presence of the other operations [22].

C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132 131
Proof. Let E be a fixed BALG1 algebra expression, D be a bag database instance, a be a tuple of constants over I, and k be
a number in N0. Consider the bag database instance D0 over I and schema extended with a fresh predicate T of arity |a|
in which T assigns k to a and 0 to all other tuples of size |a|, while every other predicate is as in D.

Let E0 = T − E . We claim that ED(a) ≥ k if and only if ED0
0 (a) = 0. Indeed, assuming ED(a) ≥ k, we derive ED0

0 (a) = 0.
Similarly, assuming ED(a) < k, we derive ED0

0 (a) > 0.
The above many-one reduction is computable, for each D, a, and k, by a Boolean circuit with arbitrary fan-in AND and

OR gates whose depth depends only on E . We conclude that language {(D, a, k) | ED(a) ≥ k} is contained in {(D, a, k) |
ED(a) = k} under LogSpace-uniform AC

0 reductions, as required. �
Grumbach and Milo [22] studied the expressive power of QueryAnswering

=[BALG1] and showed that it is strictly in
between AC

0 and LogSpace. Therefore, we can conclude the following fact.

Corollary 87. QueryAnswering[BALG1] is in LogSpace in data complexity.

Appendix B. Relationship between BCALC and BALG1

Theorem 88. For each BCALC query � there is a BALG1 algebra expression E� such that �D = ED
� for every bag database instance

D.

Proof. In this proof we assume that all the variables X are globally ordered, and each tuple of repetition-free variables has
its variables according to this order; moreover, for a BCALC query ∃y. �(x, y) we assume that all y are after all x in the
order, which is done without loss of generality, because BCALC is agnostic to renaming of variables.

We define BALG1 algebra expression E� for each BCALC query � by induction on the structure of � as follows:

– if �(x1, . . . , xn) = S(t1, . . . , tk) for a predicate S and a tuple of terms t1, . . . , tk with the first occurrence of each xi in a
position pi , then, for c1, . . . , ck ∈ I such that c j is fresh if t j is a variable and c j is t j otherwise for each j,

E� = πp1,...,pn

(
σα1(X)=αm1 (X)

(· · ·σαk(X)=αmk (X)

(
S × β(τ (c1, . . . , ck))

) · · ·)),
where, for each j, m j = pi if t j is xi and m j = j + k otherwise;

– if �(x) = �(x) ∧ (x1 = x2) with x1 and x2 in positions i and j in x, then E� = σαi(X)=α j(X)(E�);
– if �(x1, . . . , xk) = �(x1, . . . , x j−1, x j+1, . . . , xk) ∧ (xi = x j) for i, j ∈ [1, k], i �= j, then E� = π1,..., j−1,i, j+1,...,k(E�);
– if �(x1, . . . , xk) = �(x1, . . . , xk) ∧ (xi = a) for i ∈ [1, k], then E� = π1,...,k(σαi(X)=αk+1(X)(E� × β(τ (a))));
– if �(x1, . . . , xk) = �1(xi1 , . . . , xim) ∧ �2(x j1 , . . . , x jn) with {i1, . . . , im, j1, . . . , jn} = {1, . . . , k}, then

E� = πp1,...,pk

(
σαm+1(X)=αs1 (X)

(· · ·σαm+n(X)=αsn (X)

(
E�1 × E�2) · · ·)),

where, for each � ∈ [1, k], p� is the position of the first occurrence of � in i1, . . . , im, j1, . . . , jn and, for each � ∈ [1, n],
s� is the position of the first occurrence of j� in i1, . . . , im, j1, . . . , jn;

– if �(x) = ∃y.�(x, y), then E� = π1,...,|x|(E�);
– if �(x) = �1(x) ∨ �2(x), then E� = E�1 ∪ E�2 ;
– if �(x) = �1(x) ∨· �2(x), then E� = E�1 � E�2 ;
– if �(x) = �1(x) \ �2(x), then E� = E�1 − E�2 ; and
– if �(x) = δ �(x), then E� = ε(E�).

It is now straightforward to check that �D = ED
� for every bag database D. �

The following fact is a direct consequence of Corollary 87 and Proposition 88.

Proposition 88 QueryAnswering[BCALC] is in LogSpace in data complexity.

References

[1] C. Nikolaou, E.V. Kostylev, G. Konstantinidis, M. Kaminski, B. Cuenca Grau, I. Horrocks, The bag semantics of ontology-based data access, in: Proceedings
of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 1224–1230.

[2] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. 10 (2008) 133–173.
[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D.F. Savo, The MASTRO system for ontology-

based data access, Semant. Web 2 (1) (2011) 43–53.
[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, Ontologies and databases: the DL-Lite approach, in: Pro-

ceedings of 5th International Summer School on Reasoning Web: Semantic Technologies for Information Systems, Tutorial Lectures, 2009, pp. 255–356.
[5] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational

databases, Semant. Web 8 (3) (2017) 471–487.

http://refhub.elsevier.com/S0004-3702(19)30042-6/bibDF9F89B2086864AC4EF1E3EA54242443s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibDF9F89B2086864AC4EF1E3EA54242443s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibED5967D073D09A5A3A62677EFD0E144Es1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib321BFE069ACF3169D50E47619DD04C58s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib321BFE069ACF3169D50E47619DD04C58s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibA74F684093B45F5BCD9177E6A811B879s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibA74F684093B45F5BCD9177E6A811B879s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibBCC046BF70DABF7198DDA55CED5C32CCs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibBCC046BF70DABF7198DDA55CED5C32CCs1

132 C. Nikolaou et al. / Artificial Intelligence 274 (2019) 91–132
[6] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M. Rezk, M.G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, I. Horrocks,
Ontology based access to exploration data at Statoil, in: Part II of the Proceedings of the 14th International Semantic Web Conference, 2015, pp. 93–112.

[7] E. Kharlamov, T.P. Mailis, K. Bereta, D. Bilidas, S. Brandt, E. Jiménez-Ruiz, S. Lamparter, C. Neuenstadt, Ö.L. Özçep, A. Soylu, C. Svingos, G. Xiao, D.
Zheleznyakov, D. Calvanese, I. Horrocks, M. Giese, Y.E. Ioannidis, Y. Kotidis, R. Möller, A. Waaler, A semantic approach to polystores, in: Proceedings of
the IEEE International Conference on Big Data, 2016, pp. 2565–2573.

[8] M. Lenzerini, Data integration: a theoretical perspective, in: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 2002, pp. 233–246.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite
family, J. Autom. Reason. 39 (3) (2007) 385–429.

[10] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 Web ontology language profiles, second edition, W3C Recommendation.
[11] A. Doan, A.Y. Halevy, Z.G. Ives, Principles of Data Integration, Morgan Kaufmann, 2012.
[12] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. Artif. Intell. Res. 36 (2009) 1–69.
[13] G. Gottlob, S. Kikot, R. Kontchakov, V.V. Podolskii, T. Schwentick, M. Zakharyaschev, The price of query rewriting in ontology-based data access, Artif.

Intell. 213 (2014) 42–59.
[14] M. Bienvenu, S. Kikot, R. Kontchakov, V.V. Podolskii, M. Zakharyaschev, Ontology-mediated queries: combined complexity and succinctness of rewritings

via circuit complexity, J. ACM 65 (5) (2018) 28.
[15] F.D. Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, D.F. Savo, Optimizing query rewriting in ontology-based data access, in:

Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18–22, 2013, 2013, pp. 561–572.
[16] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, M. Zakharyaschev, Answering SPARQL queries over databases under OWL 2 QL entailment regime,

in: Part I of the Proceedings of the 13th International Semantic Web Conference, 2014, pp. 552–567.
[17] J.F. Sequeda, M. Arenas, D.P. Miranker, OBDA: query rewriting or materialization? in practice, both!, in: The Semantic Web – ISWC 2014 – 13th

International Semantic Web Conference, Riva del Garda, Italy, October 19–23, 2014, Proceedings, Part I, 2014, pp. 535–551.
[18] A. Gupta, I.S. Mumick, Materialized Views: Techniques, Implementations, and Applications, MIT Press, 1999.
[19] H. García-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book, 2nd edition, Pearson Education, 2009.
[20] A. Hernich, P.G. Kolaitis, Foundations of information integration under bag semantics, in: Proceedings of the 32nd Annual ACM/IEEE Symposium on

Logic in Computer Science, 2017, pp. 1–12.
[21] M. Bienvenu, C. Lutz, F. Wolter, Query containment in description logics reconsidered, in: Proceedings of the 13th International Conference on Principles

of Knowledge Representation and Reasoning, 2012, pp. 221–231.
[22] S. Grumbach, T. Milo, Towards tractable algebras for bags, J. Comput. Syst. Sci. 52 (3) (1996) 570–588.
[23] L. Libkin, L. Wong, Query languages for bags and aggregate functions, J. Comput. Syst. Sci. 55 (2) (1997) 241–272.
[24] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. Artif. Intell. Res. 36 (2009) 1–69.
[25] U. Dayal, N. Goodman, R.H. Katz, An extended relational algebra with control over duplicate elimination, in: Proceedings of the ACM Symposium on

Principles of Database Systems, 1982, pp. 117–123.
[26] J. Albert, Algebraic properties of bag data types, in: Proceedings of the 17th International Conference on Very Large Data Bases, 1991, pp. 211–219.
[27] S. Grumbach, L. Libkin, T. Milo, L. Wong, Query languages for bags: expressive power and complexity, SIGACT News 27 (2) (1996) 30–44.
[28] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[29] S. Chaudhuri, M.Y. Vardi, Optimization of real conjunctive queries, in: Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, 1993, pp. 59–70.
[30] T.S. Jayram, P.G. Kolaitis, E. Vee, The containment problem for REAL conjunctive queries with inequalities, in: Proceedings of the 25th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, 2006, pp. 80–89.
[31] S. Cohen, Equivalence of queries that are sensitive to multiplicities, VLDB J. 18 (3) (2009) 765–785.
[32] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering, Theor. Comput. Sci. 336 (1) (2005) 89–124.
[33] Y.E. Ioannidis, R. Ramakrishnan, Containment of conjunctive queries: beyond relations as sets, ACM Trans. Database Syst. 20 (3) (1995) 288–324.
[34] D. Lembo, V. Santarelli, D.F. Savo, Graph-based ontology classification in OWL 2 QL, in: Proceedings of the 10th International Conference on The

Semantic Web: Semantics and Big Data, 2013, pp. 320–334.
[35] A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: query answering under expressive relational constraints, J. Artif. Intell. Res. 48 (2013) 115–174.
[36] E.V. Kostylev, J.L. Reutter, Complexity of answering counting aggregate queries over DL-Lite, J. Web Semant. 33 (2015) 94–111.
[37] S. Kikot, R. Kontchakov, M. Zakharyaschev, Conjunctive query answering with OWL 2 QL, in: Proceedings of the 13th International Conference on

Principles of Knowledge Representation and Reasoning, 2012, pp. 275–285.
[38] D. Calvanese, E. Kharlamov, W. Nutt, C. Thorne, Aggregate queries over ontologies, in: Proceedings of the 2nd International Workshop on Ontologies

and Information Systems for the Semantic Web, 2008, pp. 97–104.
[39] M. Arenas, L.E. Bertossi, J. Chomicki, X. He, V. Raghavan, J.P. Spinrad, Scalar aggregation in inconsistent databases, Theor. Comput. Sci. 296 (3) (2003)

405–434.
[40] L. Libkin, Data exchange and incomplete information, in: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, 2006, pp. 60–69.
[41] F.N. Afrati, P.G. Kolaitis, Answering aggregate queries in data exchange, in: Proceedings of the 27th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, 2008, pp. 129–138.
[42] Y. Jiang, Description logics over multisets, in: Proceedings of the 6th International Workshop on Uncertainty Reasoning for the Semantic Web, 2010,

pp. 1–12.
[43] L. Libkin, L. Wong, New techniques for studying set languages, bag languages and aggregate functions, in: Proceedings of the 13th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, 1994, pp. 155–166.
[44] L.L. Marco Console, Paolo Guagliardo, On querying incomplete information in databases under bag semantics, in: Proceedings of the 26th International

Joint Conference on Artificial Intelligence, 2017, pp. 993–999.
[45] M. Kaminski, E.V. Kostylev, B. Cuenca Grau, Query nesting, assignment, and aggregation in SPARQL 1.1, ACM Trans. Database Syst. 42 (3) (2017) 17.
[46] R. Angles, C. Gutierrez, The multiset semantics of SPARQL patterns, in: Part I of the Proceedings of the 15th International Semantic Web Conference,

2016, pp. 20–36.
[47] V. Gutiérrez-Basulto, Y.A. Ibáñez-García, R. Kontchakov, E.V. Kostylev, Queries with negation and inequalities over lightweight ontologies, J. Web Semant.

35 (2015) 184–202.

http://refhub.elsevier.com/S0004-3702(19)30042-6/bib3554C71CADBFA95429F14230289BA273s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib3554C71CADBFA95429F14230289BA273s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib4B3A760F751729A65098704CF85C90E9s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib4B3A760F751729A65098704CF85C90E9s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib4B3A760F751729A65098704CF85C90E9s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib7462B4C35659C89B5AC150CD2EDD6179s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib7462B4C35659C89B5AC150CD2EDD6179s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibADB2A76974F4EC84C0F686259CBA0EF8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibADB2A76974F4EC84C0F686259CBA0EF8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib0B3572AD0986742C566B5E218891F2E8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibC2FAA1EA1BC7FD0C82EA924A5FEF4474s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib145E007D349EB6DC5203F58F3353D5F8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib145E007D349EB6DC5203F58F3353D5F8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib2E3E687F334BAE63E3C4ED90F1FA559As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib2E3E687F334BAE63E3C4ED90F1FA559As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib03D1753522947BBAF08DADA438EEB3BDs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib03D1753522947BBAF08DADA438EEB3BDs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibCC097E2AFEBE86A38AAAB05DD7FD02FBs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibCC097E2AFEBE86A38AAAB05DD7FD02FBs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib61834E5621025BC433E266926AFD2381s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib61834E5621025BC433E266926AFD2381s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib9B9BE5636FCD5D2E17FA3B8203058955s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib450064A410A724CE626D44E0C1397059s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib457F91DF4928F1C78BFE3F0C252C489Cs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib457F91DF4928F1C78BFE3F0C252C489Cs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib6416DB74791917F226571EBDDF956DF8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib6416DB74791917F226571EBDDF956DF8s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib733AE42780FF7A635F1AA60B70945D23s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib178CFEDD4C77E3908D3ED25914379CFFs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib5CEE2D46630EAD4CB4C465C30B3531DBs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib411BB61888E4438BE3BD7859EA7C85F6s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib411BB61888E4438BE3BD7859EA7C85F6s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB0473C64C26756CB638CBF94C0A6C2EAs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibC74710833C81533BFED3DF5C05F88E57s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB7047C3A2B8F9CC69C60E1C25C75975Fs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibD9A6CEC428F16412B814B3723C1EAE6Ds1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibD9A6CEC428F16412B814B3723C1EAE6Ds1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib8F900AE9B91BE80E4CA2FBC03B92C164s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib8F900AE9B91BE80E4CA2FBC03B92C164s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibC3DC0CB5F08E393E3D52B80FB997B679s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib93D472EADDB4905C9AC6305E6040846Bs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibFE5ADB5E9165DDCD00E81B7249630408s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib83800E1A3CC94CE9D03E7FD6B6EC395Cs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib83800E1A3CC94CE9D03E7FD6B6EC395Cs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib14489461788003B3AEBF22CC2C05F7B7s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibE8A6D656FCD0A24B0B90C3287529DA22s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibBC07D2087E5124E51F351CC2C25CA7EFs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibBC07D2087E5124E51F351CC2C25CA7EFs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib06B5A97B4BEF293EA239856097FF1C3As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib06B5A97B4BEF293EA239856097FF1C3As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB9E657A900F44B331A05D6949126E3C1s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB9E657A900F44B331A05D6949126E3C1s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib4CE82AA70DE63AB65BC7386B3C0FE2B0s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib4CE82AA70DE63AB65BC7386B3C0FE2B0s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibA9636F678C5CCBB83702F0E0A8A9895As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibA9636F678C5CCBB83702F0E0A8A9895As1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib987D8899AC3640C68DE8A7642291E711s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib987D8899AC3640C68DE8A7642291E711s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB17DDD8EA05FAECCDC1E25D331AE43E3s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB17DDD8EA05FAECCDC1E25D331AE43E3s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib29E15AEAEEE240C7B69BAD3249E870ECs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bib29E15AEAEEE240C7B69BAD3249E870ECs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibDD1739736C875C596BF32488514D0327s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibD1A0E97E5970CCD286B59CEF070CCAE2s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibD1A0E97E5970CCD286B59CEF070CCAE2s1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB5650E791C6A8C6B4B5AD91AEAA906CBs1
http://refhub.elsevier.com/S0004-3702(19)30042-6/bibB5650E791C6A8C6B4B5AD91AEAA906CBs1

	Foundations of ontology-based data access under bag semantics
	1 Introduction
	1.1 Contributions and organisation

	2 Preliminaries
	2.1 Syntax and semantics of DLLiteR ontologies
	2.2 Queries over ontologies
	2.3 Bags
	2.4 A calculus for querying bag databases

	3 Ontology-based data access under bag semantics
	4 The ontology language DLLitebR
	4.1 The syntax and semantics of DLLitebR
	4.2 Relationship to query answering in OBDA

	5 Relationship of bag and set semantics in the context of DLLiteR
	5.1 Satisfiability, entailment of axioms, and query answering
	5.2 Unique name assumption
	5.3 Universal models

	6 Lower bounds for the data complexity of query answering under bag semantics
	7 Universal models for rooted conjunctive queries over DLLitebCORE ontologies
	8 Rewritability of rooted conjunctive queries over DLLitebCORE
	8.1 Non-rewritability to BCALC unions of conjunctive queries
	8.2 General ideas for rewritability to BCALC queries
	8.3 Step 1: checking for realisability
	8.4 Step 2: replacing subqueries with representatives
	8.5 Step 3: rewriting atoms to BCALC queries
	8.6 Rewriting and complexity

	9 Rewritability of conjunctive queries over DLLitebRDFS under UNA
	10 Rewritability of rooted conjunctive queries over DLLitebR− under UNA
	11 Related work
	11.1 Bag semantics in data exchange
	11.2 Count aggregate queries over ontologies
	11.3 Other related work

	12 Conclusion and future work
	Acknowledgements
	Appendix A BALG1: algebraic query language for bag databases
	Appendix B Relationship between BCALC and BALG1
	References

