
Optimised Maintenance of Datalog Materialisations

Pan Hu and Boris Motik and Ian Horrocks
Department of Computer Science, University of Oxford

Oxford, United Kingdom
firstname.lastname@cs.ox.ac.uk

Abstract

To efficiently answer queries, datalog systems often materi-
alise all consequences of a datalog program, so the materi-
alisation must be updated whenever the input facts change.
Several solutions to the materialisation update problem have
been proposed. The Delete/Rederive (DRed) and the Back-
ward/Forward (B/F) algorithms solve this problem for gen-
eral datalog, but both contain steps that evaluate rules ‘back-
wards’ by matching their heads to a fact and evaluating the
partially instantiated rule bodies as queries. We show that
this can be a considerable source of overhead even on very
small updates. In contrast, the Counting algorithm does not
evaluate the rules ‘backwards’, but it can handle only non-
recursive rules. We present two hybrid approaches that com-
bine DRed and B/F with Counting so as to reduce or even
eliminate ‘backward’ rule evaluation while still handling ar-
bitrary datalog programs. We show empirically that our hy-
brid algorithms are usually significantly faster than existing
approaches, sometimes by orders of magnitude.

1 Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) is a rule lan-
guage that is widely used in modern information systems.
Datalog rules can declaratively specify tasks in data anal-
ysis applications (Luteberget, Johansen, and Steffen 2016;
Piro et al. 2016), allowing application developers to fo-
cus on the objective of the analysis—that is, on specifying
what needs to be computed rather than how to compute it
(Markl 2014). Datalog can also capture OWL 2 RL (Motik
et al. 2009) ontologies possibly extended with SWRL rules
(Horrocks et al. 2004). It is implemented in systems such
as WebPIE (Urbani et al. 2012), VLog (Urbani, Jacobs,
and Krötzsch 2016), Oracle’s RDF Store (Wu et al. 2008),
OWLIM (Bishop et al. 2011), and RDFox (Nenov et al.
2015), and it is extensively used in practice.

When performance is critical, datalog systems usually
precompute the materialisation (i.e., the set of all conse-
quences of a program and the explicit facts) in a prepro-
cessing step so that all queries can later be evaluated di-
rectly over the materialisation. Recomputing the materialisa-
tion from scratch whenever the explicit facts change can be

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expensive. Systems thus typically use an incremental main-
tenance algorithm, which aims to avoid repeating most of
the work. Fact insertion can be effectively handled using
the seminaı̈ve algorithm (Abiteboul, Hull, and Vianu 1995),
but deletion is much more involved since one has to check
whether deleted facts have derivations that persist after the
update. The Delete/Rederive (DRed) algorithm (Gupta, Mu-
mick, and Subrahmanian 1993; Staudt and Jarke 1996), the
Backward/Forward (B/F) algorithm (Motik et al. 2015), and
the Counting algorithm (Gupta, Mumick, and Subrahmanian
1993) are well-known solutions to this problem.

The DRed algorithm handles deletion by first overdelet-
ing all facts that depend on the removed explicit facts,
and then rederiving the facts that still hold after overdele-
tion. The rederivation stage further involves rederiving all
overdeleted facts that have alternative derivations, and then
recomputing the consequences of the rederived facts un-
til a fixpoint is reached. The algorithm and its variants
have been extensively used in practice (Urbani et al. 2013;
Ren and Pan 2011). In contrast to DRed, the B/F algorithm
searches for alternative derivations immediately (rather than
after overdeletion) using a combination of backward and for-
ward chaining. This makes deletion exact and avoids the po-
tential inefficiency of overdeletion. In practice, B/F often,
but not always, outperforms DRed (Motik et al. 2015).

Both DRed and B/F search for derivations of deleted facts
by evaluating rules ‘backwards’: for each rule whose head
matches the fact being deleted, they evaluate the partially in-
stantiated rule body as a query; each query answer thus cor-
responds to a derivation. This has two consequences. First,
one can examine rule instances that fire both before and af-
ter the update, which is redundant. Second, evaluating rules
‘backwards’ can be inherently more difficult than match-
ing the rules during initial materialisation: our experiments
show that this step can, in some cases, prevent effective ma-
terialisation maintenance even for very small updates.

In contrast, the Counting algorithm (Gupta, Mumick, and
Subrahmanian 1993) does not evaluate rules ‘backwards’,
but instead tracks the number of distinct derivations of each
fact: a counter is incremented when a new derivation for the
fact is found, and it is decremented when a derivation no
longer holds. A fact can thus be deleted when its counter
drops to zero, without the potentially costly ‘backward’ rule
evaluation. The algorithm can also be made optimal in the

sense that it considers precisely the rule instances that no
longer fire after the update and the rule instances that only
fire after the update. The main drawback of Counting is that,
unlike DRed and B/F, it is applicable only to nonrecursive
rules (Nicolas and Yazdanian 1983). Recursion is a key fea-
ture of datalog, allowing one to express common properties
such as transitivity. Thus, despite its favourable properties,
the Counting algorithm does not provide us with a general
solution to the materialisation maintenance problem.

Towards the goal of developing efficient general-purpose
maintenance algorithms, in this paper we present two hy-
brid approaches that combine DRed and B/F with Counting.
The former tracks the nonrecursive and the recursive deriva-
tions separately, which allows the algorithm to eliminate all
‘backward’ rule evaluation and also limit overdeletion. The
latter tracks nonrecursive derivations only, which eliminates
‘backward’ rule evaluation for nonrecursive rules; however,
recursive rules can still be evaluated ‘backwards’ to eagerly
identify alternative derivations. Both combinations can han-
dle recursive rules, and they exhibit ‘pay-as-you-go’ be-
haviour in the sense that they become equivalent to Counting
on nonrecursive rules. Apart from the modest cost of main-
taining counters, our algorithms never involve more com-
putation steps than their unoptimised counterparts. Thus,
our algorithms combine the best aspects of DRed, B/F, and
Counting: without incurring a significant cost, they elimi-
nate or reduce ‘backward’ rule evaluation, are optimal for
nonrecursive rules, and can also handle recursive rules.

We have implemented our hybrid algorithms and have
compared them with the original DRed and B/F algorithms
on several synthetic and real-life benchmarks. Our experi-
ments show that the cost of counter maintenance is negli-
gible, and that our hybrid algorithms typically outperform
existing solutions, sometimes by orders of magnitude. Our
test system and datasets are available online.1

2 Preliminaries
We now introduce datalog with stratified negation. We fix
countable, disjoint sets of constants and variables. A term
is a constant or a variable. A vector of terms is written ~t,
and we often treat it as a set. A (positive) atom has the
form P (t1, . . . , tk) where P is a k-ary predicate and each
ti, 1 ≤ i ≤ k, is a term. A term or an atom is ground if it
does not contain variables. A fact is a ground atom, and a
dataset is a finite set of facts. A rule r has the form

B1 ∧ · · · ∧Bm ∧ notBm+1 ∧ · · · ∧ notBn → H,

where m ≥ 0, n ≥ 0, and Bi and H are atoms. The head
h(r) of r is the atom H , the positive body b+(r) of r is the
set of atoms B1, . . . , Bm, and the negative body b−(r) of r
is the set of atomsBm+1, . . . , Bn. Rule r must be safe: each
variable occurring in r must occur in a positive body atom.

A substitution σ is a mapping of finitely many variables to
constants. For α a term, literal, rule, conjunction, or a vector
or set thereof, ασ is the result of replacing each occurrence
of a variable x in α with σ(x) (if the latter is defined).

1http://krr-nas.cs.ox.ac.uk/2017/counting/

A stratification λ of a program Π maps each predicate
of Π to a positive integer such that, for each rule r ∈ Π with
h(r) = P (~t), (i) λ(P) ≥ λ(R) for each atomR(~s) ∈ b+(r),
and (ii) λ(P) > λ(R) for each atom R(~s) ∈ b−(r). Pro-
gram Π is stratifiable if a stratification λ of Π exists. A
rule r with h(r) = P (~t) is recursive w.r.t. λ if an atom
R(~s) ∈ b+(r) exists such that λ(P) = λ(R); otherwise, r
is nonrecursive w.r.t. λ. For each positive integer s, program
Πs = {r ∈ Π | λ(h(r)) = s} is the stratum s of Π, and pro-
grams Πs

r and Πs
nr are the recursive and the nonrecursive

subsets, respectively, of Πs. Finally, Os is the set of all facts
that belong to stratum s—that is, Os = {P (~c) | λ(P) = s}.

Rule r′ is an instance of a rule r if a substitution σ exists
mapping all variables of r to constants such that r′ = rσ.
For I a dataset, the set instr[I] of instances of r obtained by
applying a rule r to I , and the set Π[I] of facts obtained by
applying a program Π to I are defined as follows.

instr[I] = {rσ | b+(r)σ ⊆ I and b−(r)σ ∩ I = ∅} (1)

Π[I] =
⋃
r∈Π

{h(r′) | r′ ∈ instr[I]} (2)

We often say that each instance in instr[I] fires on I . We
are now ready to define the semantics of stratified datalog.
Given a dataset E of explicit facts and a stratification λ of
Π with maximum stratum index number S, we define the
following sequence of datasets: let I0

∞ = E; let Is0 = Is−1
∞

for index s with 1 ≤ s ≤ S; let Isi = Isi−1 ∪Πs[Isi−1] for
each integer i > 0; and let Is∞ =

⋃
i≥0 I

s
i . Set IS∞ is called

the materialisation of Π w.r.t. E and λ. It is well known
that IS∞ does not depend on λ, so we usually write it as
mat(Π, E). In this paper, we consider the problem of main-
taining mat(Π, E): given mat(Π, E) and datasets E− and
E+, our algorithm computes mat(Π, (E \ E−) ∪ E+) in-
crementally while minimising the amount of work.

3 Motivation and Intuition
As motivation for our work, we next discuss how evaluating
rules ‘backwards’ can be a significant source of inefficiency
during materialisation maintenance. We base our discussion
on the DRed algorithm for simplicity, but our conclusions
apply to the B/F algorithm as well.

3.1 The DRed Algorithm
To make our discussion precise, we first present the DRed
algorithm (Gupta, Mumick, and Subrahmanian 1993; Staudt
and Jarke 1996). Let Π be a program with a stratification λ,
let E be a set of explicit facts, and assume that the materi-
alisation I = mat(Π, E) of Π w.r.t. E has been computed.
Moreover, assume that E should be updated by deleting E−
and inserting E+. The DRed algorithm efficiently modi-
fies the ‘old’ materialisation I to the ‘new’ materialisation
I ′ = mat(Π, (E \ E−) ∪ E+) by deleting some facts and
adding others; we call such facts affected by the update.

Due to the update, some rule instances that fire on I will
no longer fire on I ′, and some rule instances that do not fire
on I will fire on I ′; we also call such rule instances affected
by the update. A key problem in materialisation maintenance

is to identify the affected rule instances. Clearly, the body
of each affected rule instance must contain an affected fact.
Based on this observation, the affected rule instances can
be efficiently identified by the following generalisation of
the operators instr[I] and Π[I] from Section 2. In particu-
lar, let Ip, In, P , and N be datasets such that P ⊆ Ip and
N ∩ In = ∅; then, let

instr[Ip, In ···P,N] =
{rσ | b+(r)σ ⊆ Ip and b−(r)σ ∩ In = ∅, and

b+(r)σ ∩ P 6= ∅ or b−(r)σ ∩N 6= ∅}
(3)

and let

Π[Ip, In ···P,N] =
⋃
r∈Π

{h(r′) | r′ ∈ instr[Ip, In ···P,N]}.

Intuitively, the positive and the negative rule atoms are eval-
uated in Ip and In; sets P and N identify the affected pos-
itive and negative facts; instr[Ip, In ···P,N] are the affected
instances of r; and Π[Ip, In ···P,N] are the affected conse-
quences of Π. We define instr[Ip, In] and Π[Ip, In] analo-
gously to above, but without the condition ‘b+(r)σ ∩ P 6= ∅
or b−(r)σ ∩N 6= ∅’. We omit for readability In whenever
Ip = In, and furthermore we omit N when N = ∅. Sets
Π[Ip, In] and Π[Ip, In ···P,N] can be computed efficiently
in practice by evaluating the body of each rule r ∈ Π as a
conjunctive query and instantiating the head as needed.

Algorithm 1 formalises DRed. The algorithm processes
each stratum s and accumulates the necessary changes to I
in the set D of overdeleted and the set A of added facts.
The materialisation is updated in line 6, so, prior to that, I
and (I \D) ∪A are the ‘old’ and the ‘new’ materialisation,
respectively. The computation proceeds in three phases.

In the overdeletion phase,D is extended with all facts that
depend on a deleted fact. In line 8 the algorithm identifies the
facts that are explicitly deleted (E− ∩ Os) or are affected by
deletions in the previous strata (Πs[I ···D \A,A \D]), and
then in lines 9–13 it computes their consequences. It uses a
form of the seminaı̈ve strategy, which ensures that each rule
instance is considered only once during overdeletion.

In the one-step rederivation phase, R is computed as the
set of facts that have been overdeleted, but that hold nonethe-
less. To this end, in line 4 the algorithm considers each fact
F in D ∩ Os, and it adds F to R if F is explicit or it is
rederived by a rule instance. The latter involves evaluating
rules ‘backwards’: the algorithm identifies each rule r ∈ Πs

whose head can be matched to F , and it evaluates over the
‘new’ materialisation the body of r as a query with the head
variables bound; fact F holds if the query returns at least
one answer. As we discuss shortly, this step can be a major
source of inefficiency in practice, and the main contribution
of this paper is eliminating ‘backward’ rule evaluation and
thus significantly improving the performance.

In the insertion step, in line 15 the algorithm combines the
one-step rederived facts (R) with the explicitly added facts
(E+ ∪ Os) and the facts added due to the changes in the
previous strata (Πs[(I \D)∪A ···A \D,D \A]), and then in
lines 16–20 it computes all of their consequences and adds
them to A. Again, the seminaı̈ve strategy ensures that each
rule instance is considered only once during insertion.

Algorithm 1 DRED(Π, λ, E, I, E−, E+)

1: D := A := ∅, E− = (E− ∩ E) \ E+, E+ = E+ \ E
2: for each stratum index s with 1 ≤ s ≤ S do
3: OVERDELETE

4: R := {F ∈ D ∩ Os | F ∈ E \ E− or there exist r ∈ Πs and
r′ ∈ instr[I \ (D \A), I ∪A] with F = h(r′)}

5: INSERT

6: E := (E \ E−) ∪ E+, I := (I \D) ∪A

7: procedure OVERDELETE

8: ND := (E− ∩ Os) ∪Πs[I ···D \A,A \D]

9: loop
10: ∆D := ND \D
11: if ∆D = ∅ then break
12: ND := Πs

r [I \ (D \A), I ∪A ···∆D]

13: D := D ∪∆D

14: procedure INSERT

15: NA := R ∪ (E+ ∩ Os) ∪Πs[(I \D) ∪A ···A \D,D \A]

16: loop
17: ∆A := NA \ ((I \D) ∪A)
18: if ∆A = ∅ then break
19: A := A ∪∆A

20: NA := Πs
r [(I \D) ∪A ···∆A]

3.2 Problems with Evaluating Rules ‘Backwards’
The one-step rederivation in line 4 of Algorithm 1 evaluates
rules ‘backwards’. In this section we present two examples
that demonstrate how this can be a major source of ineffi-
ciency. Both examples are derived from datasets we used in
our empirical evaluation that we present in Section 6; hence,
these problems actually arise in practice.

Our discussion depends on several details. In particular,
we assume that all facts are indexed so that all facts match-
ing any given atom (possibly containing constants) can be
identified efficiently. Moreover, we assume that conjunctive
queries corresponding to rule bodies are evaluated left-to-
right: for each match of the first conjunct, we partially in-
stantiate the rest of the body and match it recursively. Fi-
nally, we assume that query atoms are reordered prior to
evaluation to obtain an efficient evaluation plan.

Example 1. Let Π and E be the program and the dataset as
specified in (4) and (5), respectively.

R(x, y1) ∧R(x, y2)→ S(y1, y2) (4)
E = {R(ai, b), R(ai, ci) | 1 ≤ i ≤ n} (5)

The materialisation mat(Π, E) consists of E extended with
facts S(b, b), S(b, ci), S(ci, b), and S(ci, ci) for 1 ≤ i ≤ n.

During materialisation, the body of rule (4) can be eval-
uated efficiently left-to-right: we match R(x, y1) to either
R(ai, b) orR(ai, ci); this instantiatesR(x, y2) asR(ai, y2),
and we use the index to find the matching facts R(ai, b) and
R(ai, ci). Thus, R(x, y1) has 2n matches, each of which
contributes to two matches of R(x, y2), so the overall cost
of rule matching is O(n). The rule body is symmetric, so
reordering the body atoms has no effect.

Now assume that we delete all R(ai, ci) with 1 ≤ i ≤ n.
DRed then overdeletes all S(b, ci), S(ci, b) and S(ci, ci)

facts in lines 8–13, and this can be done efficiently as in
the previous paragraph. Next, in one-step rederivation, the
algorithm will match these facts to the head of the rule (4)
and obtain queries R(x, b) ∧R(x, ci), R(x, ci) ∧R(x, b),
andR(x, ci) ∧R(x, ci). All but the last of these queries con-
tain atom R(x, b) and, no matter how we reorder the body
atoms of (4), we have n queries where R(x, b) is evaluated
first. Each of these n queries identifies n candidate matches
R(ai, b) using the index only to find out that the second atom
cannot be matched. Thus, R(x, b) is matched to n2 facts in
total, so the cost of one-step rederivation is O(n2)—one de-
gree higher than for materialisation.

Example 1 shows that evaluating a rule ‘backwards’ can
be inherently more difficult than evaluating it during mate-
rialisation, thus giving rise to a dominating source of ineffi-
ciency. In fact, evaluating a rule with m body atoms ‘back-
wards’ can be seen as answering a query with m+ 1 atoms,
where the head of the rule is an extra query atom; since the
number of atoms determines the complexity of query evalu-
ation, this extra atom increases the algorithm’s complexity.

Our next example shows that this problem is exacerbated
if the space of admissible plans for queries corresponding
to rule bodies is further restricted. This is common in sys-
tems that provide built-in functions. In particular, to facilitate
manipulation of concrete values such as strings or integers,
datalog systems often allow rule bodies to contain built-in
atoms of the form (t := exp), where t is a term and exp is
an expression constructed using constants, variables, func-
tions, and operators as usual. For example, a built-in atom
can have the form (z := z1 + z2), and it assigns to z the sum
of z1 and z2. The set of supported functions vary among im-
plementations, but a common feature is that all values in exp
must be bound by prior atoms before the built-in atom can
be evaluated. As we show next, this can be problematic.
Example 2. Let program Π consist of rules (6) and (7). If
we read B(s, t, n) as saying that there is an edge from node
s to node t of length n, then the program entails D(s, n) if
there exists a path of length n from node a to node s.

B(a, y, z)→ D(y, z) (6)
D(x, z1) ∧B(x, y, z2) ∧ (z := z1 + z2)→ D(y, z) (7)

Let E be the dataset as specified below.

E = {B(a, b1, 1), B(a, ci, 1), B(bi, dj , 1) | 1 ≤ i, j ≤ n}

During materialisation, rule (6) first derivesD(b1, 1) and
all D(ci, 1) with 1 ≤ i ≤ n, so the cost of this step is O(n).
Next, atomD(x, z1) in rule (7) is matched to n factsD(ci, 1)
without deriving anything. Atom D(x, z1) is also matched
to D(b1, 1) once, so atom B(x, y, z2) is instantiated to
B(b1, y, z2) and matched to n facts B(b1, dj , 1), deriving
n facts D(dj , 2). Thus, the cost of rule matching is O(n).

Now assume that B(a, b1, 1) is deleted. Then, D(b1, 1)
and all D(dj , 2) can be efficiently overdeleted as in the pre-
vious paragraph, but trying to prove them is much more dif-
ficult. Matching each D(dj , 2) to the head of (6) produces
a query B(a, dj , 2), which does not produce a rule instance.
Moreover, matching D(dj , 2) to the head of (7) produces a
queryD(x, z1) ∧B(x, dj , z2) ∧ (2 := z1 + z2). Now, as we

discussed earlier, z1 and z2 must both be bound before we
can evaluate the built-in atom (2 := z1 + z2). If we evalu-
ate B(x, dj , z2) first, then we try n facts B(bi, dj , 1) with
1 ≤ i ≤ n; for each of them, atom D(x, z1) is instantiated
as D(bi, z1) and is not matched in the surviving facts. In
contrast, if we evaluate D(x, z1) first, then we try n facts
D(ci, 1); for each of them, atom B(x, dj , z2) is instantiated
as B(ci, y, z2) and is not matched. Thus, regardless of how
we reorder the body of (7), the first atom considers a total
of n2 facts, so the cost of one-step rederivation is O(n2).

To overcome this, one might rewrite the built-in atom as
(z1 := z − z1) or (z2 := z − z2) so that it can be evaluated
immediately after z and either z1 or z2 are bound. Either
way, one-step rederivation still takes O(n2) steps on our ex-
ample. Also, built-in expressions are often not invertible.

4 Combining DRed with Counting
We now address the inefficiencies we outlined in Section 3.
Towards this goal, in Section 4.1 we first present the intu-
itions, and then in Section 4.2 we formalise our solution.

4.1 Intuition
As we already mentioned in Section 1, the Counting algo-
rithm (Gupta, Mumick, and Subrahmanian 1993) does not
evaluate rules ‘backwards’; instead, it tracks the number of
derivations of each fact. The main drawback of Counting
is that it cannot handle recursive rules. We now illustrate
the intuition behind our DRedc algorithm, which combines
DRed with Counting in a way that eliminates ‘backward’
rule evaluation, while still supporting recursive rules.

The DRedc algorithm associates with each fact two coun-
ters that track the derivations via the nonrecursive and the
recursive rules separately. The counters are decremented
(resp. incremented) when the associated fact is derived in
overdeletion (resp. insertion), which allows for two impor-
tant optimisations. First, as in the Counting algorithm, the
nonrecursive counter always reflects the number of deriva-
tions from facts in earlier strata; hence, a fact with a nonzero
nonrecursive counter should never be overdeleted because
it clearly remains true after the update. This optimisation
captures the behaviour of Counting on nonrecursive rules
and it also helps limit overdeletion. Second, if we never
overdelete facts with nonzero nonrecursive counters, the
only way for a fact to still hold after overdeletion is if its
recursive counter is nonzero; hence, we can replace ‘back-
ward’ rule evaluation by a simple check of the recursive
counter. Note, however, that the recursive counters can be
checked only after overdeletion finishes. This optimisation
extends the idea of Counting to recursive rules to completely
avoid ‘backward’ rule evaluation. The following example il-
lustrates these ideas and compares them to DRed.

Example 3. Let Π be the program containing rule (8).

A(x) ∧B(x, y)→ A(y) (8)

Moreover, let E be defined as follows:

E = {A(a), A(b), A(d), B(a, c), B(b, c), B(c, d), B(d, e)}

T1: (1,0)
T2: (0,0)
T3: (0,0)
A(a)

A(b)
T1: (1,0)
T2: (1,0)
T3: (1,0)

T1: (0,2)
T2: (0,1)
T3: (0,1)
A(c)

T1: (1,1)
T2: (1,0)
T3: (1,1)
A(d)

T1: (0,1)
T2: (0,1)
T3: (0,1)
A(e)

Figure 1: Derivations for Example 3

The materialisation mat(Π, E) extends E with A(c) and
A(e). Figure 1 shows the dependencies between derivations
using arrows. For clarity, we do not show the B-facts.

Now assume that A(a) is deleted. The standard DRed al-
gorithm first overdeletesA(a),A(c),A(d), andA(e); it red-
erives A(d) since the fact is in E \ E−; it rederives A(c)
by evaluating rule (8) ‘backwards’; and it derives A(d) and
A(e) from the rederived facts.

Now consider applying the DRedc to the same update. For
each fact, Figure 1 shows a pair consisting of the nonrecur-
sive and the recursive counter before the update (row T1),
after overdeletion (row T2), and after the update (row T3).
Note that the presence of a fact in E is akin to a nonrecur-
sive derivation, so facts A(a), A(b), and A(d) have non-
recursive derivation counts of one before the update. Now
A(c) is derived from A(a) and A(b) using the recursive
rule (8), so the recursive counter for A(c) is two. Analo-
gously, A(d) and A(e) have just one recursive derivation
each. During overdeletion, A(a) is first removed from E,
so the nonrecursive counter of A(a) is decremented to zero
and the fact is deleted. Since A(a) derives A(c) via rule
(8), the recursive counter of A(c) is decremented; since the
nonrecursive counter of A(c) is zero, the fact is overdeleted.
Since A(c) derives A(d) via rule (8), the recursive counter
of A(d) is decremented. Now the nonrecursive counter of
A(d) is nonzero, so we know that A(d) holds after the up-
date; hence, the fact is not overdeleted, and the overdeletion
phase stops. Thus, while DRed overdeletes four facts, DRedc

overdeletes only A(a) and A(c), and does not ‘touch’ A(e).
Next, DRedc proceeds to one-step rederivation. The recur-

sive counter of A(c) is nonzero, which means that the fact
has a recursive derivation (from A(b) in this case) that is
not affected. Thus, DRedc rederivesA(c) without any ‘back-
ward’ rule evaluation.

Finally, DRedc applies insertion. SinceA(c) derivesA(d)
via (8), the recursive counter of A(d) is incremented. Fact
A(d), however, was not overdeleted, so insertion stops.

By avoiding ‘backward’ rule evaluation, DRedc removes
the dominating source of inefficiency on Examples 1 and 2.
In fact, on the nonrecursive program from Example 1, the re-
cursive counter is never used and DRedc performs the same
inferences as the Counting algorithm.

4.2 Formalisation
We now formalise our DRedc algorithm. Our definitions
use the standard notion of multisets—a generalisation of
sets where each element is associated with a positive inte-
ger called the multiplicity specifying the number of the ele-
ment’s occurrences in the multiset. Moreover, ⊕ is the mul-
tiset union operator, which adds the elements’ multiplicities.
If an operand of ⊕ is a set, it is treated as a multiset where
all elements have multiplicity one. Finally, we extend the no-
tion of rule matching to correctly reflect the number of times
a fact is derived: for Ip, In, P , and N datasets with P ⊆ Ip
and N ∩ In = ∅, we define Π

q
Ip, In ···P,N

y
as the multiset

containing a distinct occurrence of h(r′) for each rule r ∈ Π
and its instance r′ ∈ instr[Ip, In ···P,N]. This multiset can
be computed analogously to Π[Ip, In ···P,N].

Just like DRed, the DRedc takes as input a program Π,
a stratification λ, a set of explicit facts E and its material-
isation I = mat(Π, E), and the sets of facts E− and E+

to remove from and add to E. Additionally, the algorithm
also takes as input maps Cnr and Cr that associate each
fact F with its nonrecursive and recursive counters Cnr[F]
and Cr[F], respectively. These maps should correctly reflect
the relevant numbers of derivations. Formally, Cnr and Cr

must be compatible with Π, λ, and E, which is the case if
Cnr[F] = Cr[F] = 0 for each fact F 6∈ I , and, for each fact
F ∈ I and s the stratum index such that F ∈ Os (i.e., s is
the index of the stratum that F belongs to),
• Cnr[F] is the multiplicity of F in E ⊕Πs

nr

q
I
y

, and

• Cr[F] is the multiplicity of F in Πs
r

q
I
y

.
For simplicity, we assumes thatCnr andCr are defined on all
facts, and that Cnr[F] = Cr[F] = 0 holds for F 6∈ I; thus,
we can simply increment the counters for each newly de-
rived fact in procedure INSERT. In practice, however, one
can maintain counters only for the derived facts and initialise
the counters to zero for the freshly derived facts.

DRedc is formalised in Algorithm 2. Its structure is simi-
lar to DRed, with the following main differences: instead of
evaluating rules ‘backwards’, one-step rederivation simply
checks the recursive counters (line 24); a fact is overdeleted
only if the nonrecursive derivation counter is zero (line 34);
and the derivation counters are decremented in overdele-
tion (lines 29–32 and 36–37) and incremented in insertion
(lines 41–44 and 49–50). The algorithm also accumulates
changes to the materialisation in sets D and A by iteratively
processing the strata of λ in three phases.

In the overdeletion phase, DRedc first considers explic-
itly deleted facts or facts affected by the changes in earlier
strata (lines 29–32). This is analogous to line 8 of DRed, but
DRedc must distinguish Πs

nr from Πs
r so it can decrement the

appropriate counters. Next, DRedc identifies the set ∆D of
facts that have not yet been deleted and whose nonrecursive
counter is zero (line 34): a fact with a nonzero nonrecur-
sive counter will always be part of the ‘new’ materialisation.
Note that recursive derivations can be cyclic, so we cannot
use the recursive counter to further constrain overdeletion
at this point. Then, in lines 35–38 the algorithm propagates
consequences of ∆D just like Algorithm 1, with additionally
decrementing the recursive counters in line 37.

Algorithm 2 DREDc(Π, λ, E, I, E−, E+, Cnr, Cr)

21: D := A := ∅, E− = (E− ∩ E) \ E+, E+ = E+ \ E
22: for each stratum index s with 1 ≤ s ≤ S do
23: OVERDELETE

24: R := {F ∈ D ∩ Os | Cr[F] > 0}
25: INSERT

26: E := (E \ E−) ∪ E+, I := (I \D) ∪A

27: procedure OVERDELETE

28: ND := ∅
29: for F ∈ (E− ∩ Os)⊕Πs

nr

q
I ···D \A,A \D

y
do

30: ND := ND ∪ {F}, Cnr[F] := Cnr[F]− 1

31: for F ∈ Πs
r

q
I ···D \A,A \D

y
do

32: ND := ND ∪ {F}, Cr[F] := Cr[F]− 1

33: loop
34: ∆D := {F ∈ ND \D | Cnr[F] = 0}
35: if ∆D = ∅ then break
36: for F ∈ Πs

r

q
I \ (D \A), I ∪A ···∆D

y
do

37: ND := ND ∪ {F}, Cr[F] := Cr[F]− 1

38: D := D ∪∆D

39: procedure INSERT

40: NA := R
41: for F ∈ (E+ ∩ Os)⊕Πs

nr

q
(I \D) ∪A ···A \D,D \A

y
do

42: NA := NA ∪ {F}, Cnr[F] := Cnr[F] + 1

43: for F ∈ Πs
r

q
(I \D) ∪A ···A \D,D \A

y
do

44: NA := NA ∪ {F}, Cr[F] := Cr[F] + 1

45: loop
46: ∆A := NA \ ((I \D) ∪A)
47: if ∆A = ∅ then break
48: A := A ∪∆A

49: for F ∈ Πs
r

q
(I \D) ∪A ···∆A

y
do

50: NA := NA ∪ {F}, Cr[F] := Cr[F] + 1

In the one-step rederivation phase, instead of evaluating
rules ‘backwards’, DRedc just checks the recursive counter
of each fact F ∈ D ∩ Os (line 24): if Cr[F] 6= 0, then some
derivations of F were not ‘touched’ by overdeletion so F
holds in the ‘new’ materialisation. Conversely, if Cr[F] = 0,
then F ∈ D guarantees that Cnr[F] = 0 holds as well, so F
is not one-step rederivable by a rule in Π.

The insertion phase of DRedc just uses the seminaı̈ve
evaluation while incrementing the counters appropriately.

Without recursive rules, DRedc becomes equivalent to
Counting, and it is optimal in the sense that only affected
rule instances are considered during the update. Moreover,
the computational complexities of both DRedc and DRed are
the same as for the semi-naive materialisation algorithm: Ex-
pTime in combined and PTime in data complexity (Dantsin
et al. 2001). Finally, DRedc never performs more inferences
than DRed and is thus more efficient. Theorem 1 shows that
our algorithm is correct, and its proof is given in full in Ap-
pendix A.

Theorem 1. Algorithm 2 correctly updates I = mat(Π, E)
to I ′ = mat(Π, E′) for E′ = (E \ E−) ∪ E+, and it up-
dates Cnr and Cr so they are compatible with Π, λ, and E′.

5 Combining B/F with Counting
The B/F algorithm by Motik et al. (2015) uses a combina-
tion of backward and forward chaining that makes the dele-
tion phase exact. More specifically, when a fact F ∈ ∆D is
considered during deletion, the algorithm uses a combina-
tion of backward and forward chaining to look for alternative
derivations of F , and it deletes F only if no such derivation
can be found. Backward chaining allows B/F to be much
more efficient than DRed on many datasets, and this is par-
ticularly the case if a program contains many recursive rules.
Thus, we cannot hope to remove all ‘backward’ rule evalua-
tion without eliminating the algorithm’s main advantage.

Still, there is room for improvement: backward chaining
involves ‘backward’ evaluation of both nonrecursive and re-
cursive rules, and we can use nonrecursive counters to elim-
inate the former. Algorithm 3 formalises B/Fc—our com-
bination of the B/F algorithm by Motik et al. (2015) with
Counting. The main difference to the original B/F algorithm
is that B/Fc associates with each fact a nonrecursive counter
that is maintained in lines 59–60 and 89–90, and, instead of
evaluating nonrecursive rules ‘backwards’ to explore alter-
native derivations of a fact, it just checks in line 79 whether
the nonrecursive counter is nonzero. We know that a fact
holds if its nonrecursive counter is nonzero; otherwise, we
apply backward chaining to recursive rules only.We next de-
scribe the algorithm’s steps in more detail.

Procedure DELETEUNPROVED plays an analogous role
to the overdeletion step of DRed and DRedc. The procedure
maintains the nonrecursive counter for each fact in the same
way as DRedc, and the main difference is that a fact F is
deleted (i.e., added to ∆D) in line 66 only if no alternative
derivation can be found using a combination of backward
and forward chaining implemented in functions CHECK and
SATURATE. If an alternative derivation is found, F is added
to the set P of proved facts.

A call to CHECK(F) searches for the alternative deriva-
tions of F using backward chaining. The function main-
tains the set C of checked facts, which ensures that each F
is checked only once (line 71 and 78). The procedure first
calls SATURATE(F) to determine whether F follows from
the facts considered thus far; we discuss this step in more
detail shortly. If F is not proved, the procedure then exam-
ines in lines 73–76 each instance r′ of a recursive rule that
derives F in the ‘old’ materialisation, and it tries to prove
all body atoms of r′ from the current stratum. This involves
evaluating rules ‘backwards’ and, as we already discussed
in Section 5, this is the main advantage of the B/F algorithm
over DRed on a number of complex inputs. The function ter-
minates once F is successfully proved (line 76).

Set P accumulates facts that are checked and successfully
proved, and it is computed in function SATURATE using for-
ward chaining. Given a fact F that is being checked, it first
verifies whether F has a nonrecursive derivation. In the orig-
inal B/F algorithm, this is done by evaluating the nonrecur-
sive rules ‘backwards’ in the same way as in line 4 of DRed.
In contrast, B/Fc avoids this by simply checking whether the
nonrecursive counter is nonzero (line 79): if that is the case,
then F is known to have nonrecursive derivations and it is
added to P via lines 80 and 82. If F is proved, the proce-

dure propagates its consequences (line 80–85). In particular,
the procedure ensures that each consequence F ′ of P , the
facts in the ‘new’ materialisation in the previous strata, and
the recursive rules is added to P if F ′ ∈ C, or is added to the
set Y of delayed facts if F ′ 6∈ C. Intuitively, set Y contains
facts that are proved but that have not been checked yet. If
a fact in Y is checked at a later point, it is proved in line 79
without having to apply the rules again.

Since the deletion step of B/Fc is ‘exact’ in the sense
that it deletes precisely those facts that no longer hold after
the update, rederivation is not needed. Thus, DELETEUN-
PROVED is directly followed by INSERT, which is the same
as in DRed and DRedc, with the only difference that B/Fc

maintains only the nonrecursive counters.
Algorithm 3 is correct in the same way as B/F since

checking whether a fact has a nonzero nonrecursive counter
is equivalent to checking whether a derivation of the fact ex-
ists by evaluating nonrecursve rules ‘backwards’.

6 Evaluation
We have implemented the unoptimised and optimised vari-
ants of DRed and B/F and have compared them empirically.

Benchmarks We used the following benchmarks for our
evaluation: UOBM (Ma et al. 2006) is a synthetic bench-
mark that extends the well known LUBM (Guo, Pan, and
Heflin 2005) benchmark; Reactome (Croft et al. 2013) mod-
els biological pathways of molecules in cells; Uniprot (Bate-
man et al. 2015) describes protein sequences and their func-
tional information; ChemBL (Gaulton et al. 2011) repre-
sents functional and chemical properties of bioactive com-
pounds; and Claros describes archeological artefacts. Each
benchmark consists of a set of facts and an OWL 2 DL on-
tology, which we transformed into datalog programs of dif-
ferent levels of complexity and recursiveness. More specifi-
cally, the upper bound (U) programs were obtained using the
complete but unsound transformation by Zhou et al. (2013),
and they entail all consequences of the original ontology but
may also derive additional facts. The recursive (R) programs
were obtained using the sound but incomplete transforma-
tion by Kaminski, Nenov, and Grau (2016), and they tend to
be highly recursive. For Claros, the lower bound extended
(LE) program was obtained by manually introducing several
‘hard’ rules, and it was already used by Motik et al. (2015)
to compare DRed with B/F. Finally, to estimate the effect
of built-in literals on materialisation maintenance, we devel-
oped a new synthetic benchmark SSPE (Single-Source Path
Enumeration). Its dataset consists of a randomly generated
directed acyclic graph of 100 k nodes and 1 M edges, and its
program traverses paths from a single source analogously to
rules (6)–(7). All the tested programs are recursive, although
the percentage of the recursive rules varies. Table 1 shows
the numbers of facts (|E|), strata (S), the nonrecursive rules
(|Πnr|), and the recursive ones (|Πr|) for each benchmark.

Test Setup We conducted all experiments on a Dell Pow-
erEdge R720 server with 256GB RAM and two Intel Xeon
E5-2670 2.6GHz processors, running Fedora 24, kernel ver-
sion 4.8.12-200.fc24.x86 64. All algorithms handle inser-
tions using the seminaı̈ve evaluation. The only overhead is in

Algorithm 3 B/Fc(Π, λ, E, I, E−, E+, Cnr)

51: D := A := ∅, E− = (E− ∩ E) \ E+, E+ = E+ \ E
52: for each stratum index s with 1 ≤ s ≤ S do
53: C := P := Y := ∅
54: DELETEUNPROVED

55: INSERT

56: E := (E \ E−) ∪ E+, I := (I \D) ∪A

57: procedure DELETEUNPROVED

58: ND := ∅
59: for F ∈ (E− ∩ Os) ∪Πs

nr

q
I ···D \A,A \D

y
do

60: ND := ND ∪ {F}, Cnr[F] := Cnr[F]− 1

61: ND := ND ∪Πs
r [I ···D \A,A \D]

62: loop
63: ∆D := ∅
64: for F ∈ ND \D do
65: CHECK(F)
66: if F 6∈ P then ∆D := ∆D ∪ {F}
67: if ∆D = ∅ then break
68: ND := Πs

r [I \ (D \A), I ∪A ···∆D]
69: D := D ∪∆D

70: function CHECK(F)
71: if F 6∈ C then
72: if SATURATE(F) = f then
73: for each r ∈ Πs

r and each
r′ ∈ instr[I \ ((D ∪∆D) \A), I ∪A] s.t. h(r′) = F do

74: for G ∈ b+(r′) ∩ Os do
75: CHECK(G)
76: if F ∈ P then return

77: function SATURATE(F)
78: C := C ∪ {F}
79: if F ∈ Y or Cnr[F] > 0 then
80: NP := {F}
81: loop
82: ∆P := (NP ∩ C) \ P , Y := Y ∪NP \ C
83: if ∆P = ∅ then return t

84: P := P ∪∆P

85: NP := Πs
r [P ∪ (O<s ∩ (I \ (D \A))), I ∪A ···∆P]

86: else return f

87: procedure INSERT

88: NA := ∅
89: for F ∈ (E+ ∩ Os)⊕Πs

nr

q
(I \D) ∪A ···A \D,D \A

y
do

90: NA := NA ∪ {F}, Cnr[F] := Cnr[F] + 1

91: NA := NA ∪Πs
nr[(I \D) ∪A ···A \D,D \A]

92: loop
93: ∆A := NA \ ((I \D) ∪A)

94: if ∆A = ∅ then break
95: A := A ∪∆A

96: NA := NA ∪Πs
r [(I \D) ∪A ···∆A]

counter maintenance, which we measured during initial ma-
terialisation (which also uses seminaı̈ve evaluation). Hence,
the main focus of our tests was on comparing the perfor-
mance of our algorithms on ‘small’ and ‘large’ deletions. In
both cases, we first materialised the relevant program on the
explicit facts, and then we performed the following tests.

To test small deletions, we measured the performance on

Dataset |E| S |Πnr| |Πr| DRedc DRed B/Fc B/F
UOBM-U 254.8 M 5 135 144 179.24 1,185.87 1.18 31.96
UOBM-R 254.8 M 6 164 2,215 0.29 0.56 0.26 0.24

Reactome-U 12.5 M 9 814 28 0.06 1.03 0.05 1.00
Reactome-R 12.5 M 1 0 21,385 26.57 62.46 0.89 0.90
Uniprot-R 123.1 M 5 9,312 2,706 4.31 8.71 4.13 4.36

ChemBL-R 289.2 M 3 1,766 499 7.91 12.22 1.27 1.26

Claros-LE
Best 0.33 5,788.75 0.43 8.03

Worst 18.8 M 11 1,031 306 5,720.57 5,759.92 2,802.86 3,227.05
Average 1,143.55 1,741.66 560.61 653.04

SSPE 3.0 M 1 1 1 10.53 1,684.97 247.00 252.97

Table 1: Average running times for deleting 1000 facts (seconds)

Dataset |E−|/|E| DRedc DRed B/Fc B/F Remat Remat-1C Remat-2C
UOBM-U 50% 1.54 k 3.66 k 1.64 k 3.11 k 1.56 k 1.60 k 1.61 k
UOBM-R 36% 3.28 k 5.75 k 2.76 k 2.87 k 4.14 k 4.16 k 4.19 k

Reactome-U 68% 30.70 6.32 k 39.16 6.33 k 30.90 31.23 31.32
Reactome-R 31% 1.07 k 1.78 k 0.92 k 0.93 k 0.91 k 0.91 k 0.92 k
Uniprot-R 47% 1.57 k 3.47 k 1.92 k 2.86 k 1.98 k 1.99 k 2.00 k

ChemBL-R 69% 4.74 k 7.22 k 3.25 k 4.18 k 2.56 k 2.57 k 2.59 k
Claros-LE 8% 5.01 k 17.81 k 3.49 k 16.74 k 3.36 k 3.49 k 3.60 k

SSPE 2% 74.36 7.24 k 7.90 k 7.75 k 68.28 70.18 71.81

Table 2: Running times for handling large deletions (seconds)

ten randomly selected subsets E− ⊆ E of 1,000 facts. In
all apart from Claros-LE, the running times did not depend
significantly on the selected subset of E, so in Table 1 we
report the average times across all ten runs. On Claros-LE,
however, the running times varied significantly, so we report
in the table the best, the worst, and the average times.

To test large deletions, we identified the largest subset
E− ⊆ E on which either DRedc or B/Fc takes roughly
the same time as computing the ‘new’ materialisation from
scratch. We measured the performance of all algorithms on
E−, as well as the performance of rematerialisation with no
counters (Remat), just the nonrecursive counter (Remat-1C),
and both counters (Remat-2C). This test allows us to assess
the scalability of our algorithms. Table 2 reports the running
times and the percentages of the deleted facts.

Discussion DRedc outperformed DRed on all inputs for
small deletions. In particular, on SSPE, the average run-
ning time for DRed drops from 28 minutes to just over
10 seconds. On Reactome-U, the improvement is by sev-
eral orders of magnitude, albeit unoptimised DRed is al-
ready quite efficient. The improvement is also significant
in many other cases, including UOBM-U, Reactome-R, and
ChemBL-R. In fact, Reactome-U and SSPE exhibit data and
rule patterns outlined in Examples 1 and 2, which clearly
demonstrates the benefits of eliminating ‘backward’ rule
evaluation. Moreover, the program of Claros-LE contains
a symmetric and transitive predicate relatedPlaces , so the
materialisation contains several large cliques of constants
connected by this predicate (Motik et al. 2015). When a
fact relatedPlaces(a, b) is overdeleted, the DRed algorithm
overdeletes all relatedPlaces(c, d) where c and d belong to

the same clique as a and b, which requires a cubic num-
ber of derivations. However, DRedc can sometimes (but not
always) prove that relatedPlaces(a, b) holds using the non-
recursive counter; as one can see, this can considerably im-
prove the performance by avoiding costly overdeletion.

B/Fc also outperformed B/F for small deletions in many
cases: B/Fc was more than 20 times faster for UOBM-U,
Reactome-U, and the ‘best’ case of Claros-LE, which is
in line with our observation that ‘backwards’ rule evalua-
tion can be quite costly. In contrast, on the highly recursive
datasets (i.e., all R-datasets and SSPE), the performance of
B/Fc and B/F is roughly the same: the main source of diffi-
culty is due to the recursive rules, whose evaluation is unaf-
fected by the optimisations proposed in this paper.

B/Fc outperformed DRedc on all datasets but SSPE. This
is so because B/Fc eagerly identifies alternative derivations
of facts, which is often easy, and is beneficial since it can
considerably reduce overdeletion. However, as we discussed
earlier in Section 3, backward rule evaluation can be a dom-
inant source of inefficiencty (e.g., on SSPE). In such cases,
DRedc is faster than B/Fc since DRedc completely elimi-
nates backward rule evaluation, whereas B/Fc only avoids
backward evaluation on nonrecursive rules.

The tests for large deletions show that our algorithms can
efficiently delete large subsets of the explicit facts on all but
two benchmarks: Claros-LE and SSPE. Claros-LE is diffi-
cult due to the presence of cliques as explained earlier, and
SSPE is difficult because deleting a small percentage of the
explicit facts leads to the deletion of about half of the in-
ferred facts. Nevertheless, DRedc always considerably out-
performs DRed; the difference is particularly significant on
Reactome-U and SSPE, where DRedc is several orders of

magnitude faster. Similarly, B/Fc consistently outperforms
B/F on all cases apart from SSPE, where the latter is due to
the overhead of maintaining the counters.

Finally, the rematerialisation times show that counter
maintenance incurs only modest overheads: Remat-2C was
in the worst case only several percent slower than Remat.

7 Conclusion
We have presented two novel algorithms for the maintenance
of datalog materialisations, obtained by combining the well-
known DRed and B/F algorithms with Counting. Our evalu-
ation shows that our algorithms are generally more efficient
than the original ones, often by orders of magnitude. Our
algorithms could handle both small and large updates effi-
ciently, and have thus been shown to be ready for practi-
cal use. In future, we shall develop a modular approach to
materialisation and its maintenance that tackles the difficult
cases such as Claros-LE using reasoning modules that can
be ‘plugged into’ the seminaı̈ve evaluation to handle diffi-
cult rule combinations using custom algorithms.

Acknowledgments
This work was supported by the EPSRC projects MaSI3,
DBOnto, and ED3.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Bateman, A.; Martin, M.; O’Donovan, C.; Magrane, M.; Ap-
weiler, R.; Alpi, E.; Antunes, R.; Arganiska, J.; Bely, B.;
Bingley, M.; et al. 2015. UniProt: a hub for protein infor-
mation. Nucleic Acids Research 43(D1):D204–D212.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. OWLIM: A family of scalable
semantic repositories. SWJ 2(1):33–42.
Croft, D.; Mundo, A. F.; Haw, R.; Milacic, M.; Weiser, J.;
Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.; Kamdar,
M. R.; et al. 2013. The Reactome pathway Knowledgebase.
Nucleic acids research 42(D1):D472–D477.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys 33(3):374–425.
Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies,
M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.;
Al-Lazikani, B.; et al. 2011. ChEMBL: a large-scale bioac-
tivity database for drug discovery. Nucleic acids research
40(D1):D1100–D1107.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web 3(2):158–182.
Gupta, A.; Mumick, I. S.; and Subrahmanian, V. S. 1993.
Maintaining Views Incrementally. In SIGMOD. ACM.
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; Dean, M.; et al. 2004. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. W3C Mem-
ber Submission.

Kaminski, M.; Nenov, Y.; and Grau, B. C. 2016. Datalog
rewritability of Disjunctive Datalog programs and non-Horn
ontologies. Artificial Intelligence 236:90–118.
Luteberget, B.; Johansen, C.; and Steffen, M. 2016. Rule-
Based Consistency Checking of Railway Infrastructure De-
signs. In iFM, 491–507.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; Pan, Y.; and Liu, S. 2006.
Towards a Complete OWL Ontology Benchmark. The Se-
mantic Web: Research and Applications 125–139.
Markl, V. 2014. Breaking the Chains: On Declarative Data
Analysis and Data Independence in the Big Data Era. P-
VLDB 7(13):1730–1733.
Motik, B.; Patel-Schneider, P.; Parsia, B.; Bock, C.; Fokoue,
A.; Haase, P.; Hoekstra, R.; Horrocks, I.; Ruttenberg, A.;
Sattler, U.; et al. 2009. OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C.
Motik, B.; Nenov, Y.; Piro, R.; and Horrocks, I. 2015.
Incremental Update of Datalog Materialisation: the Back-
ward/Forward Algorithm. In AAAI, 1560–1568.
Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A Highly-Scalable RDF Store.
In ISWC, 3–20.
Nicolas, J.-M., and Yazdanian, K. 1983. An Outline of BD-
GEN: A Deductive DBMS. In IFIP Congress, 711–717.
Piro, R.; Nenov, Y.; Motik, B.; Horrocks, I.; Hendler, P.;
Kimberly, S.; and Rossman, M. 2016. Semantic Technolo-
gies for Data Analysis in Health Care. In ISWC, 400–417.
Ren, Y., and Pan, J. Z. 2011. Optimising Ontology Stream
Reasoning with Truth Maintenance System. In CIKM, 831–
836.
Staudt, M., and Jarke, M. 1996. Incremental Maintenance
of Externally Materialized Views. In VLDB, 75–86.
Urbani, J.; Kotoulas, S.; Maassen, J.; Van Harmelen, F.; and
Bal, H. 2012. WebPIE: A Web-scale Parallel Inference En-
gine using MapReduce. JWS 10:59–75.
Urbani, J.; Margara, A.; Jacobs, C. J. H.; van Harmelen, F.;
and Bal, H. E. 2013. DynamiTE: Parallel Materialization of
Dynamic RDF Data. In ISWC, 657–672.
Urbani, J.; Jacobs, C. J.; and Krötzsch, M. 2016. Column-
Oriented Datalog Materialization for Large Knowledge
Graphs. In AAAI, 258–264.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.;
Annamalai, M.; and Srinivasan, J. 2008. Implementing
an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In ICDE, 1239–1248. IEEE.
Zhou, Y.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; and Baner-
jee, J. 2013. Making the Most of your Triple Store: Query
Answering in OWL 2 Using an RL Reasoner. In Proceed-
ings of the 22nd international conference on World Wide
Web, 1569–1580. ACM.

A Proof of Correctness for Algorithm 2
Theorem 1. Algorithm 2 correctly updates I = mat(Π, E) to I ′ = mat(Π, E′) for E′ = (E \ E−) ∪ E+, and it updates Cnr

and Cr so they are compatible with Π, λ, and E′.

Proof. Let 	 be the multiset subtraction operator, and let Occ(F,M) be the multiplicity of F in multiset M . Due to line 21
of Algorithm 2, without loss of generality we assume that E− ⊆ E and E+ ∩ E = ∅. Now let E|o = E and let I0|o = ∅.
Moreover, for each 1 ≤ s ≤ S, let Is0 |o, Is1 |o, . . . be the sequence of sets where Is0 |o = Is−1|o ∪ (E|o ∩ Os), and for i > 0,
Isi |o = Isi−1|o ∪Πs[Isi−1|o]. Index k clearly exists at which the sequence reaches the fixpoint (i.e., Isk|o = Isk+1|o), so let
Is|o = Isk|o. Finally, let I|o = IS |o; we clearly have I|o = mat(Π, E|o)—that is, I|o is the ‘old’ materialisation. Now let
E|n = (E|o \ E−) ∪ E+, and let Isi |n, Is|n, and I|n be defined analogously, so I|n is the ‘new’ materialisation.

For each 1 ≤ s ≤ S and each F ∈ I|o ∩ Os, let Cnr[F]|o = Occ(F,E|o ⊕ Πs
nr

q
I|o

y
) and Cr[F]|o = Occ(F,Πs

r

q
I|o

y
); we

define Cnr[F]|n and Cr[F]|n analogously using I|n and E|n.
Now consider a run of Algorithm 2 on I|o, E−, and E+. Let D0 = A0 = R0 = ∅, and for each s with 1 ≤ s ≤ S, let

Ds, As, and Rs be the values of D, A, and R, respectively, after the loop in lines 22–25 finishes for stratum index s. Note that
during the execution of Algorithm 2, the set I is equal to I|o up to before line 26. Furthermore, for each fact F ∈ Is|o ∩ Os,
let Cnr[F]|d and Cr[F]|d be the values of Cnr[F] and Cr[F], respectively, at the point when OVERDELETE finishes for stratum
index s; similarly, for each fact F ∈ ((Is|o \ Ds) ∪ As) ∩ Os, let Cnr[F]|a and Cr[F]|a be the values of Cnr[F] and Cr[F],
respectively, at the point when INSERT finishes for stratum index s.

Πs
nr

q
Is|o

y
= Πs

nr

q
Is|o ···Ds \As−1, As−1 \Ds

y
⊕Πs

nr

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y
(9)

Πs
r

q
Is|o

y
= Πs

r

q
Is|o ···Ds \As−1, As−1 \Ds

y
⊕Πs

r

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y
(10)

Cnr[F]|o − Cnr[F]|d = Occ(F, (E− ∩ Os)⊕Πs
nr

q
Is|o ···Ds \As−1, As−1 \Ds

y
)

for each F ∈ Is|o ∩ Os (11)

Cr[F]|o − Cr[F]|d = Occ(F,Πs
r

q
Is|o ···Ds \As−1, As−1 \Ds

y
)

for each F ∈ Is|o ∩ Os (12)

Is|o \ Is|n ⊆ Ds ⊆ Is|o (13)

Os ∩Ds ∩Πs
r [I

s|o \ (Ds \As−1), Is|o ∪As−1] ⊆ Rs ⊆ Is|n (14)
Is|o ∩As ⊆ Ds (15)

(Is|o \Ds) ∪As = Is|n (16)

Cnr[F]|a − Cnr[F]|d = Occ(F, (E+ ∩ Os)⊕Πs
nr

q
(Is|o \Ds) ∪As

y
	Πs

nr

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y
)

for each F ∈ ((Is|o \Ds) ∪As) ∩ Is|o ∩ Os (17)

Cnr[F]|a = Occ(F, ((E|o \ E−) ∪ E+)⊕Πs
nr

q
(Is|o \Ds) ∪As

y
)

for each F ∈ (((Is|o \Ds) ∪As) \ Is|o) ∩ Os (18)

Cr[F]|a − Cr[F]|d = Occ(F,Πs
r

q
(Is|o \Ds) ∪As

y
	Πs

r

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y
)

for each F ∈ ((Is|o \Ds) ∪As) ∩ Is|o ∩ Os (19)

Cr[F]|a = Occ(F,Πs
r

q
(Is|o \Ds) ∪As

y
)

for each F ∈ (((Is|o \Ds) ∪As) \ Is|o) ∩ Os (20)

We shall prove that properties (13), (15), and (16) hold for each s with 0 ≤ s ≤ S, and that the other properties hold for
each s with 1 ≤ s ≤ S. Then, property (16) for s = S and line 26 of Algorithm 2 imply that I is correctly updated from I|o
to I|n. Moreover, Cnr[F]|o = Occ(F,E|o ⊕Πs

nr

q
I|o

y
) and properties (16), (9), (11) and (17) for 1 ≤ s ≤ S jointly imply the

following:

Cnr[F]|a = Cnr[F]|o − (Cnr[F]|o − Cnr[F]|d) + (Cnr[F]|a − Cnr[F]|d) = Occ(F,E|n ⊕Πs
nr

q
I|n

y
) = Cnr[F]|n

for each F ∈ Is|n ∩ Is|o ∩ Os (21)

In addition, (16) and (18) imply Cnr[F]|a = Cnr[F]|n for each F ∈ (Is|n \Is|o)∩Os. Therefore, we have Cnr[F]|a = Cnr[F]|n
for each F ∈ Is|n ∩ Os, which means the nonrecursive counts are correctly updated after the execution of the algorithm.
Cr[F]|a = Cr[F]|n can be shown analogously using properties (16), (10), (12), (19), and (20).

We prove properties (9)–(20) by induction on s. The base case where s = 0 is trivial since all relevant sets in (13), (15), and
(16) are empty. For the inductive step, we consider an arbitrary s with 1 ≤ s ≤ S such that (13), (15), and (16) hold for s− 1,
and we show that properties (9)–(20) hold for s. The proof is lengthy so we break it into several claims.

Claim 2. Properties (9) and (10) hold.

Proof. The way sets D and A are constructed ensures that (Ds \ Ds−1) ∩ O<s = ∅ and As−1 ⊆ O<s hold, and so
As−1 \Ds = As−1 \Ds−1 holds as well, which in turn implies Is|o ∪ (As−1 \ Ds) = Is|o ∪ (As−1 \ Ds−1). More-
over, the induction assumption Ds−1 ⊆ Is−1|o ensures Is|o ∪ (As−1 \ Ds−1) = Is|o ∪ As−1. Therefore, we have
Is|o ∪ (As−1 \ Ds) = Is|o ∪ As−1, which together with the definition of rule application ensures the correctness of the
two properties.

Claim 3. Property (11) holds.

Proof. Consider an arbitrary F ∈ Is|o ∩ Os, we have two cases here.
If F 6∈ (E−∩Os)⊕Πs

nr

q
Is|o ···Ds\As−1, As−1\Ds

y
, then the right-hand side of the equation in (11) equals zero. Moreover,

Πs
nr contains only nonrecursive rules, and As−1 \ Ds = As−1 \ Ds−1 holds for the same reason as explained in the proof of

claim 2; thus we have F 6∈ (E− ∩Os)⊕Πs
nr

q
Is|o ···Ds−1 \As−1, As−1 \Ds−1

y
; but then, line 29 of Algorithm 2 ensures that

the nonrecursive count of F is not decremented during the execution of the OVERDELETE procedure, so the left-hand side of
the equation is equal to zero as well. Therefore the property holds in this case.

If F ∈ (E− ∩ Os) ⊕ Πs
nr

q
Is|o ···Ds \ As−1, As−1 \ Ds

y
= (E− ∩ Os) ⊕ Πs

nr

q
Is|o ···Ds−1 \ As−1, As−1 \ Ds−1

y
, then

line 29 and line 30 guarantee that each distinct occurrence of F in (E− ∩Os)⊕Πs
nr

q
Is|o ···Ds−1 \As−1, As−1 \Ds−1

y
results

in decrementing the nonrecursive count of F by one. Thus the property also holds in this case.

Claim 4. Property (12) holds.

Proof. Line 34 and line 38 ensure that ∆D used in line 36 is different between two iterations of the loop in lines 33-38, so the
rule instances considered in line 36 are different between iterations. The total number of these rule instances is finite and is
bounded by the number of rule instances in

⋃
r′∈Πs

r
instr′ [I

s|o]. Thus the loop must terminate, and we let T be the total number
of iterations. Moreover, for each 1 ≤ i ≤ T , let Ds

i be the value of D at the beginning of the ith iteration of the loop, and let
Cr[F]|id be the value of Cr[F] for each F ∈ Is|o ∩ Os at the same time point. We prove by induction on i that (22) holds for
1 ≤ i ≤ T . Then (22) for i = T and As−1 \Ds−1 = As−1 \Ds ensure the correctness of property (12).

Cr[F]|o − Cr[F]|id = Occ(F,Πs
r

q
Is|o ···Ds

i \As−1, As−1 \Ds−1
y
) for each F ∈ Is|o ∩ Os (22)

For the base case, consider an arbitrary F ∈ Is|o ∩Os. It is easy to see that the recursive count of F has never been changed
and should be equal to Cr[F]|o before line 31 of procedure OVERDELETE for stratum s. But then, line 31 and line 32 ensure that
if F ∈ Πs

r

q
Is|o ···Ds−1 \ As−1, As−1 \Ds−1

y
, then each distinct occurrence of F in the multiset results in decrementing the

corresponding recursive count by one; moreover, if F 6∈ Πs
r

q
Is|o ···Ds−1\As−1, As−1\Ds−1

y
, then the corresponding recursive

count will not be changed; either way, Ds
1 = Ds−1 implies Cr[F]|o−Cr[F]|1d = Occ(F,Πs

r

q
Is|o ···Ds

1 \As−1, As−1 \Ds−1
y
),

as required.
For the inductive step, assume that (22) holds for i− 1 where 1 < i ≤ T , and consider arbitrary F ∈ Is|o ∩Os. Lines 34, 36

and 38 jointly imply (23).

Cr[F]|i−1
d − Cr[F]|id = Occ(F,Πs

r

q
Is|o \ (Ds

i−1 \As−1), Is|o ∪As−1 ···Ds
i \Ds

i−1

y
) (23)

We now show that the following holds:

Occ(F,Πs
r

q
Is|o ···Ds

i−1 \As−1, As−1 \Ds−1
y
) + Occ(F,Πs

r

q
Is|o \ (Ds

i−1 \As−1), Is|o ∪As−1 ···Ds
i \Ds

i−1

y
)

= Occ(F,Πs
r

q
Is|o ···Ds

i \As−1, As−1 \Ds−1
y
)

(24)

Between
⋃

r′∈Πs
r
instr′ [I

s|o ···Ds
i−1 \ As−1, As−1 \Ds−1] and

⋃
r′∈Πs

r
instr′ [I

s|o \ (Ds
i−1 \ As−1), Is|o ∪ As−1 ···Ds

i \Ds
i−1]

there is no rule instance repetition, so it is sufficient to show that (25) holds.⋃
r′∈Πs

r
instr′ [I

s|o ···Ds
i−1 \As−1, As−1 \Ds−1] ∪ instr′ [I

s|o \ (Ds
i−1 \As−1), Is|o ∪As−1 ···Ds

i \Ds
i−1]

=
⋃

r′∈Πs
r
instr′ [I

s|o ···Ds
i \As−1, As−1 \Ds−1]

(25)

The ⊆ direction of (25) trivially holds. Now consider the ⊇ direction, let r′′ be an arbitrary rule instance contained in the
right-hand side of (25), then there exists rule r′ ∈ Πs

r such that r′′ ∈ instr′ [I
s|o ···Ds

i \ As−1, As−1 \Ds−1] holds. If we have
r′′ ∈ instr′ [I

s|o ···Ds
i−1 \As−1, As−1 \Ds−1], then clearly r′′ is also contained in the left-hand side of (25). Otherwise, r′′ has

all positive atoms in Is|o but no positive atom in Ds
i−1 \As−1; moreover, all negative body atoms of r′′ have to be matched in

Is|o ∪ (As−1 \Ds−1) = Is|o ∪ As−1; furthermore, r′′ has at least one positive body atom in Ds
i \Ds

i−1; therefore, we have
r′′ ∈ instr′ [I

s|o \ (Ds
i−1 \As−1), Is|o ∪As−1 ···Ds

i \Ds
i−1], so r′′ is contained in the left-hand side of (25) in this case as well.

(23), (24) and the induction assumption that (22) holds for i − 1 imply the correctness of (22) for i, and this completes our
proof.

Claim 5. The right-hand inclusion of property (13) holds.

Proof. For each rule r ∈ Πs, procedure OVERDELETE for stratum index s considers in lines 29, 31, and 36 only instances
of r that are contained in instr[Is|o], so the facts derived by these rule instances are in Is|o. Thus, the claim holds by a
straightforward induction on the construction of the set Ds.

Claim 6. The left-hand inclusion of property (13) holds.

Proof. We show by induction that (26) holds for each i.

Isi |o \ Is|n ⊆ Ds (26)

For the base case, note that Is0 |o = Is−1|o ∪ (E|o ∩ Os) and that Is−1|o \ Is−1|n ⊆ Ds−1 holds for s − 1 by the in-
duction assumption. Now consider an arbitrary fact F ∈ E|o ∩ Os such that F 6∈ Is|n holds. Then, the latter ensures
F 6∈ E|o \ E−, which implies F ∈ E− and so F is added to ND in line 30. We next show that F is added to D in line 38:
F 6∈ Is|n and Is|n = Is|n ∪Πs[Is|n] imply Occ(F,Πs

nr

q
Is|n

y
) = 0, which in turn implies Occ(F,Πs

nr

q
Is−1|n

y
) = 0; but

then, Is−1|o \ (Ds−1 \As−1) ⊆ (Is−1|o \Ds−1) ∪As−1 and the induction assumption (Is−1|o \Ds−1) ∪As−1 = Is−1|n
ensure Occ(F,Πs

nr

q
Is−1|o \ (Ds−1 \As−1)), Is−1|o ∪As−1

y
= 0; together with (9), (11), and the definition of Cnr[F]|o this

implies Cnr[F]|d = 0, so the condition in line 34 is satisfied. Hence, F ∈ Ds holds, as required.
For the inductive step, assume that Isi−1|o satisfies (26) for i > 0, and consider arbitrary F ∈ Isi |o \ Is|n. If F ∈ Isi−1|o,

then F ∈ Ds holds by the induction assumption. Otherwise, there exist a rule r ∈ Πs and its instance r′ ∈ instr[Isi−1|o]
such that F ∈ h(r′). Definition (3) ensures b+(r′) ⊆ Isi−1|o ⊆ Is|o and b−(r′) ∩ Isi−1|o = ∅, and b−(r′) ⊆ O<s implies
b−(r′) ∩ Is−1|o = b−(r′) ∩ Is|o = ∅. Finally, F 6∈ Is|n implies r′ 6∈ instr[Is|n], so by definition (3) we have one of the fol-
lowing two possibilities.

• b+(r′) 6⊆ Is|n. Thus, a fact G ∈ b+(r′) exists such that G ∈ Isi−1|o \ Is|n holds. The induction assumption for (26) implies
G ∈ Ds, andG 6∈ Is|n impliesG 6∈ Is−1|n, so the induction assumption for (16) ensuresG 6∈ As−1; hence,G ∈ Ds \As−1.
• b−(r′) ∩ Is|n = b−(r′) ∩ Is−1|n 6= ∅. Thus, a fact G ∈ b−(r′) exists such that G ∈ Is−1|n \ Is−1|o holds; but then, the

right-hand inclusion of (13) impliesG 6∈ Ds−1, and the induction assumption for (16) impliesG ∈ As−1; therefore, we have
G ∈ As−1 \Ds−1 = As−1 \Ds.

Either way, the right-hand side of (11) or (12) is larger than zero. Hence, the count for F is decremented in OVERDELETE and
F is added to ND. Then, in the same way as in the proof of the base case we have F ∈ Ds, as required.

Claim 7. The right-hand inclusion of property (14) holds.

Proof. Consider an arbitrary F ∈ Rs. F can only be added to Rs in line 24, so we have F ∈ Ds ∩ Os and Cr[F]|d > 0;
F ∈ Ds ∩ Os and property (13) ensure F ∈ Is|o ∩ Os; but then, properties (12), (10) and Cr[F]|o = Occ(F,Πs

r

q
Is|o

y
)

jointly imply Cr[F]|d = Occ(F,Πs
r

q
Is|o \ (Ds \ As−1), Is|o ∪ As−1

y
); now Cr[F]|d > 0 implies Occ(F,Πs

r

q
Is|o \ (Ds \

As−1), Is|o∪As−1
y
) > 0. Next we show that Πs

r

q
Is|o \ (Ds \As−1), Is|o∪As−1

y
⊆ Πs

r

q
Is|n

y
: due to stratification negative

body atoms will only be matched against facts from lower strata, so we have Πs
r

q
Is|n

y
= Πs

r

q
Is|n, Is−1|n

y
; moreover, the

left-hand inclusion of property (13) implies Is|o \Ds ⊆ Is|n, which together with the induction assumption for property (16)
implies Is|o \ (Ds \ As−1) ⊆ (Is|o \ Ds) ∪ As−1 ⊆ Is|n; furthermore, the induction assumption for property (16) ensures
Is−1|n = (Is−1|o\Ds−1)∪As−1 ⊆ Is|o∪As−1; therefore we clearly have Πs

r

q
Is|o\(Ds\As−1), Is|o∪As−1

y
⊆ Πs

r

q
Is|n

y
.

But then, Occ(F,Πs
r

q
Is|o \ (Ds \ As−1), Is|o ∪ As−1

y
) > 0 implies Occ(F,Πs

r

q
Is|n

y
) > 0, so we have F ∈ Is|n, as

required.

Claim 8. The left-hand inclusion of property (14) holds.

Proof. Consider arbitrary F ∈ Os∩Ds∩Πs
r [I

s|o \ (Ds \As−1), Is|o∪As−1], and we show that F ∈ Rs holds. F ∈ Os ∩Ds

implies Cr[F]|d = Occ(F,Πs
r

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y
) in the same way as in the proof of claim 7; but then, the fact

that F ∈ Πs
r [I

s|o \ (Ds \As−1), Is|o ∪As−1] holds imply Cr[F]|d > 0, so line 24 of Algorithm 2 ensures that F is added to
Rs, as required.

Claim 9. Property (15) holds.

Proof. Consider an arbitrary fact F ∈ Is|o∩As: if F ∈ Is|o∩As−1 holds, then the induction assumption ensures that we have
F ∈ Ds−1 ⊆ Ds; if F ∈ Is|o ∩ (As \ As−1) holds, then F is added to ∆A in line 46 of procedure INSERT for stratum index
s, which ensures F 6∈ (Is|o \Ds) ∪As−1; but then, F ∈ Is|o implies F ∈ Ds, as required.

Claim 10. The ⊆ direction of property (16) holds.

Proof. We prove by induction on the construction ofA in INSERT that (Is|o \Ds) ∪A ⊆ Is|n holds. We first consider the base
case. Set A is equal to As−1 before the loop in lines 45–50; thus, property (16) is equivalent to (Is|o \Ds) ∪As−1 ⊆ Is|n;
now Is|o \Ds ⊆ Is|n is implied by the left-hand inclusion of property (13), whereas As−1 ⊆ Is|n holds by the induction
assumption.

For the inductive step, we assume that (Is|o \Ds) ∪A ⊆ Is|n holds, and we consider ways in which Algorithm 2 can add a
fact F toA. If F ∈ E+∩Os, then F ∈ Is|n clearly holds. Moreover, if F ∈ Rs holds, then F ∈ Is|n holds by (14). Otherwise,
F is derived in line 41, 43, or 49, so a rule r ∈ Πs and its instance r′ = instr[(Is|o \Ds) ∪A] exist such that F ∈ h(r′) holds.
But then, definition (3) ensures b+(r′) ⊆ (Is|o \Ds) ∪ A ⊆ Is|n and b−(r′) ∩ ((Is|o \Ds) ∪ A) = ∅, which together with
b−(r′) ⊆ O<s and the induction assumption for (16) implies b−(r′) ∩ Is|n = b−(r′) ∩ Is−1|n = ∅. Consequently, we have
r′ ∈ instr[Is|n], so F ∈ Is|n holds, as required.

Claim 11. The ⊇ direction of property (16) holds.

Proof. We show by induction that (27) holds for each i.

(Is|o \Ds) ∪As ⊇ Isi |n (27)

For the base case, we have Is0 |n = Is−1|n∪(E|n∩Os) = (Is−1|o \Ds−1)∪As−1∪(E|n∩Os) by the induction assumption
for (16). Is−1|o \ Ds−1 ⊆ Is|o \ Ds and As−1 ⊆ As clearly hold. Now consider arbitrary F ∈ E|n ∩ Os. If F ∈ E+, then
lines 41, 42, 46, and 48 ensure F ∈ (Is|o \Ds) ∪As. If F ∈ E|n \E+ = E|o \E−, then we clearly have F ∈ Is|o; but then,
Cnr[F]|o = Occ(F,E|o ⊕Πs

nr

q
I|o

y
) and property (11) imply Cnr[F]|d ≥ 1; thus, line 34 ensures F 6∈ Ds.

For the inductive step, assume that Isi−1|n satisfies (27) for i > 0, and consider arbitrary F ∈ Isi |n. If F ∈ Isi−1|n, then (27)
holds by the induction assumption. Otherwise, by definition a rule r and its instance r′ ∈ instr[Isi−1|n] exist where h(r′) = F .
Definition (3) and the induction assumption for (27) ensure b+(r′) ⊆ Isi−1|n ⊆ (Is|o \Ds)∪As. Moreover, definition (3) also
ensures b−(r′)∩ Isi−1|n = ∅, which together with the induction assumption that property (16) holds for s− 1 and the definition
of Isi−1|n implies b−(r′) ∩ ((Is−1|o \Ds−1) ∪As−1) = ∅; but then, b−(r′) ⊆ O<s implies b−(r′) ∩ ((Is|o \Ds) ∪As) = ∅.
Now we consider the following cases.

• b+(r′) ∩ (As \ As−1) 6= ∅. Facts in As \ As−1 are added to A via lines 46 and 48, so there is a point in the execution of
the algorithm where b+(r′) ∩ (As \ As−1) ∩ ∆A 6= ∅ holds in line 49 for the last time for ∆A. Since ∆A ⊆ A holds at
this point, we clearly have b+(r′) ⊆ (Is|o \ Ds) ∪ A; moreover, A ⊆ As and b−(r′) ∩ ((Is|o \ Ds) ∪ As) = ∅ ensure
b−(r′)∩ ((Is|o \Ds)∪A) = ∅. But then, r′ ∈ instr[(Is|o \Ds)∪A ···∆A] holds; F = h(r′) will be added to NA in line 50;
and lines 46 and 48 ensure F ∈ (Is|o \Ds) ∪As.

• b+(r′) ∩ (As \As−1) = ∅, so b+(r′) ⊆ (Is|o \Ds) ∪As−1 holds. We have the following two possibilities.
– b+(r′) ∩ (As−1 \ Ds) or b−(r′) ∩ (Ds \ As−1). But then, by the definition (3) of rule matching, we clearly have
r′ ∈ instr[(Is|o \Ds) ∪As−1 ···As−1 \Ds, Ds \As−1]. But then, lines 41–44 ensure that F = h(r′) is added to NA;
and lines 46 and 48 ensure F ∈ (Is|o \Ds) ∪As.

– b+(r′)∩(As−1\Ds) = b−(r′)∩(Ds\As−1) = ∅. But then, b−(r′)∩(Ds\As−1) = ∅ and b−(r′)∩(Is|o\Ds)∩As = ∅
imply b−(r′)∩ (Is|o∪As−1) = b−(r′)∩ (Is|o∪As) = ∅. Moreover, we argue that each factG ∈ b+(r′) ⊆ (Is|o \Ds)∪
As−1 satisfies G ∈ Is|o \ (Ds \ As−1). This clearly holds if G ∈ Is|o \Ds. If G ∈ As−1, then G 6∈ As−1 \Ds implies
G ∈ Ds, which in turn implies G ∈ Is|o by claim 5; thus, G ∈ Is|o \ (Ds \ As−1) holds. Now, definition (3) ensures
r′ ∈ instr[Is|o \ (Ds \ As−1), Is|o ∪ As−1], which implies F = h(r′) ∈ Is|o. If F 6∈ Ds, then F ∈ (Is|o \ Ds) ∪ As

trivially holds. If F ∈ Ds, property (14) implies F ∈ Rs; then, lines 40, 46, and 48 ensure F ∈ (Is|o \Ds) ∪As.

Claim 12. The following two properties hold.

Πs
nr

q
(Is|o \Ds) ∪As

y
= Πs

nr

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y

⊕ Πs
nr

q
(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1

y (28)

Πs
r

q
(Is|o \Ds) ∪As

y
= Πs

r

q
Is|o \ (Ds \As−1), Is|o ∪As−1

y

⊕ Πs
r

q
(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1

y (29)

Proof. By the definition of Π
q
Ip, In ···P,N

y
it is sufficient to show that for each rule r ∈ Πs, properties (30) and (31) hold.

instr[Is|o \ (Ds \As−1), Is|o ∪As−1] ∩ instr[(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1] = ∅ (30)

instr[(Is|o \Ds) ∪As] = instr[Is|o \ (Ds \As−1), Is|o ∪As−1]
∪ instr[(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1]

(31)

To prove (30), consider an arbitrary rule instance r′ ∈ instr[(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1]. By definition (3) we
have b+(r′) ∩ (As \Ds−1) 6= ∅ or b−(r′) ∩ (Ds−1 \As−1) 6= ∅; now we examine these two cases separately.

For the first case, let F be an arbitrary fact in b+(r′) ∩ (As \ Ds−1). Now if F ∈ As−1 \ Ds−1 holds, then the induction
assumption for (15) ensures F 6∈ Is−1|o, which in turn implies F 6∈ Is|o \ (Ds \ As−1); if F ∈ As \ As−1 holds, then in the
same way as in the proof of claim 9 we have F 6∈ (Is|o \Ds) ∪As−1, which implies F 6∈ Is|o \ (Ds \As−1); either way, we
have b+(r′) 6⊆ Is|o \ (Ds \As−1), so r′ 6∈ instr[Is|o \ (Ds \As−1), Is|o ∪As−1] holds.

For the second case, b−(r′)∩(Ds−1 \As−1) 6= ∅ and the induction assumption for property (13) imply b−(r′)∩Is−1|o 6= ∅,
which clearly implies b−(r′)∩ (Is|o ∪As−1) 6= ∅; thus, by definition (3) we have r′ 6∈ instr[Is|o \ (Ds \As−1), Is|o ∪As−1];
this completes our proof for (30).

Next we prove the⊇ direction of property (31). Consider an arbitrary rule instance r′ contained in the right-hand side of (31):
if r′ ∈ instr[(Is|o\Ds)∪As ···As\Ds−1, Ds−1\As−1] holds, then by definition (3) we clearly have r′ ∈ instr[(Is|o\Ds)∪As];
if we have r′ ∈ instr[Is|o \ (Ds \As−1), Is|o ∪As−1], then b+(r′) ⊆ Is|o \ (Ds \As−1) implies b+(r′) ⊆ (Is|o \Ds)∪As;
moreover, b−(r′) ∩ (Is|o ∪ As−1) = ∅ and b−(r′) ⊆ O<s jointly imply b−(r′) ∩ ((Is|o \Ds) ∪ As) = b−(r′) ∩ ((Is−1|o \
Ds−1) ∪As−1) = ∅; therefore, r′ ∈ instr[(Is|o \Ds) ∪As] holds by definition (3).

Finally, for the ⊆ direction of property (31), consider arbitrary r′ ∈ instr[(Is|o \Ds) ∪ As]. If b+(r′) ∩ (As \Ds−1) 6= ∅
or b−(r′) ∩ (Ds−1 \ As−1) 6= ∅ holds, then we clearly have r′ ∈ instr[(Is|o \ Ds) ∪ As ···As \ Ds−1, Ds−1 \ As−1] by
definition (3). Otherwise, let F be an arbitrary fact in b+(r′) and let G be an arbitrary fact in b−(r′), then we have F ∈
((Is|o \Ds) ∪ As) \ (As \Ds−1) and G 6∈ (Is|o \Ds) ∪ As ∪ (Ds−1 \ As−1). We next show that F ∈ Is|o \ (Ds \ As−1)
and G 6∈ Is|o ∪As−1 hold.

If F ∈ (Is|o \Ds) \ (As \Ds−1) holds, then F ∈ Is|o \ (Ds \As−1) trivially holds; if F ∈ As \ (As \Ds−1) holds, then
we have F ∈ As ∩ Ds−1 = As−1 ∩ Ds−1 = As−1 ∩ Ds, which in turn implies F 6∈ Ds \ As−1; moreover, F ∈ Ds and
property (13) imply F ∈ Is|o; therefore, F ∈ Is|o \ (Ds \As−1) holds, as required.
G 6∈ As and G 6∈ Ds−1 \ As−1 jointly imply G 6∈ Ds−1; but then, G ∈ O<s implies G 6∈ Ds, which together with

G 6∈ Is|o \Ds ensures G 6∈ Is|o; thus, G 6∈ Is|o ∪As−1 holds, as required.
F and G are chosen arbitrarily, so we have b+(r′) ∈ Is|o \ (Ds \ As−1) and b−(r′) 6∈ Is|o ∪ As−1; by definition (3) we

have r′ ∈ instr[Is|o \ (Ds \As−1), Is|o ∪As−1]. This completes our proof for (31).

Claim 13. Property (17) holds.

Proof. Due to claim 12 it is now sufficient to show that for each F ∈ ((Is|o \Ds) ∪ As) ∩ Is|o ∩ Os, the following property
holds.

Cnr[F]|a − Cnr[F]|d = Occ(F, (E+ ∩ Os)⊕Πs
nr

q
(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1

y
) (32)

Πs
nr contains only nonrecursive rules, so it is sufficient to prove

Cnr[F]|a − Cnr[F]|d = Occ(F, (E+ ∩ Os)⊕Πs
nr

q
(Is|o \Ds) ∪As−1 ···As−1 \Ds−1, Ds−1 \As−1

y
), (33)

which is ensured by line 41 and line 42 of the algorithm.

Claim 14. Property (18) holds.

Proof. F 6∈ Is|o ∩ Os ensures Cnr[F]|d = Cnr[F]|o = 0. Moreover, F 6∈ Πs
nr

q
Is|o

y
and property (9) jointly imply F 6∈

Πs
nr

q
Is|o \ (Ds \ As−1), Is|o ∪ As−1

y
. Now if F 6∈ (E+ ∩ Os)⊕Πs

nr

q
(Is|o \Ds) ∪As−1 ···As−1 \Ds−1, Ds−1 \As−1

y
,

then by property (28) and F 6∈ (E|o \ E−) ∩ Os we clearly have Occ(F, ((E|o \ E−) ∪ E+)⊕Πs
nr

q
(Is|o \Ds) ∪As

y
) = 0;

moreover, line 41 ensures that the nonrecursive count for F is not incremented in this case, so the left-hand side of (18) equals
zero as well. Otherwise, each occurrence of F in the multiset (E+∩Os)⊕Πs

nr

q
(Is|o\Ds)∪As−1 ···As−1\Ds−1, Ds−1\As−1

y

results in incrementing the nonrecursive count of F by one; together with F 6∈ (E|o \ E−) ∩ Os and F 6∈ Πs
nr

q
Is|o \ (Ds \

As−1), Is|o ∪As−1
y

this ensures the correctness of the property.

Claim 15. Property (19) holds.

Proof. Line 46 and line 48 ensure that ∆A used in line 49 is different between iterations of the loop in lines 45–50, so the rle
instances considered in line 49 are different between iterations. All these rule instances are in

⋃
r′∈Πs

r
instr′ [(I

s|o \Ds) ∪As],
which is equal to

⋃
r′∈Πs

r
instr′ [I

s|n] by property (16). Therefore, the loop will terminate. Now let T be the total number of
iterations; moreover, for each 1 ≤ i ≤ T , let As

i be the value of A at the beginning of the ith iteration of the loop, and let
Cr[F]|ia be the value of Cr[F] for each F ∈ ((Is|o \Ds)∪As)∩ Is|o ∩Os at the same time point. We next prove by induction
on i that (34) holds for 1 ≤ i ≤ T ; then (34) for i = T and property (29) ensure the correctness of the claim.

Cr[F]|ia − Cr[F]|d = Occ(F,Πs
r

q
(Is|o \Ds) ∪As

i
···As

i \Ds−1, Ds−1 \As
i

y
) (34)

For the base case, we have As
1 = As−1. Consider arbitrary F ∈ ((Is|o \Ds)∪As)∩ Is|o ∩Os. Lines 43 and 44 ensure that

each occurrence of F in Πs
r

q
(Is|o \Ds) ∪As−1 ···As−1 \Ds, Ds \As−1

y
results in incrementing the corresponding recursive

count by one. But then, stratification ensures Πs
r

q
(Is|o\Ds)∪As−1 ···As−1\Ds, Ds\As−1

y
= Πs

r

q
(Is|o\Ds)∪As−1 ···As−1\

Ds−1, Ds−1 \As−1
y

, so (34) holds for i = 1, as required.
For the inductive step, assume that (34) holds for i− 1 where 1 < i ≤ T , and consider arbitrary F ∈ ((Is|o \Ds) ∪ As) ∩

Is|o ∩ Os. Lines 46, 48, and 49 jointly imply (35).

Cr[F]|ia − Cr[F]|i−1
a = Occ(F,Πs

r

q
(Is|o \Ds) ∪As

i
···As

i \As
i−1

y
) (35)

We now show that the following holds.

Occ(F,Πs
r

q
(Is|o \Ds) ∪As

i−1
···As

i−1 \Ds−1, Ds−1 \As
i−1

y
+ Occ(F,Πs

r

q
(Is|o \Ds) ∪As

i
···As

i \As
i−1

y
)

= Occ(F,Πs
r

q
(Is|o \Ds) ∪As

i
···As

i \Ds−1, Ds−1 \As
i

y
)

(36)

To this end, it is sufficient to show that for each r ∈ Πs
r , property (37) holds.

instr[(Is|o \Ds) ∪As
i−1
···As

i−1 \Ds−1, Ds−1 \As
i−1] ∪ instr[(Is|o \Ds) ∪As

i
···As

i \As
i−1]

= instr[(Is|o \Ds) ∪As
i
···As

i \Ds−1, Ds−1 \As
i]

(37)

(As
i−1 \ Ds−1) ∪ (As

i \ As
i−1) = As

i \ Ds−1 and Ds−1 \ As
i−1 = Ds−1 \ As

i ⊆ O<s ensure that the ⊆ direction of (37)
holds. To see that the ⊇ direction holds as well, consider arbitrary r′ ∈ instr[(Is|o \ Ds) ∪ As

i
···As

i \ Ds−1, Ds−1 \ As
i]. If

b+(r′) ∩ (As \ As−1) 6= ∅, then we clearly have r′ ∈ instr[(Is|o \ Ds) ∪ As
i
···As

i \ As
i−1]. If b+(r′) ∩ (As

i \ As
i−1) = ∅,

then definition (3) ensures that we have b+(r′) ⊆ ((Is|o \ Ds) ∪ As
i) \ (As

i \ As
i−1) = (Is|o \ Ds) ∪ As

i−1. There are two
possibilities here: if b+(r′) ∩ (As

i \ Ds−1) 6= ∅, then b+(r′) ∩ (As
i \ As

i−1) = ∅ implies b+(r′) ∩ (As
i−1 \ Ds−1) 6= ∅; if

b−(r′) ∩ (Ds−1 \ As
i) 6= ∅, then clearly b−(r′) ∩ (Ds−1 \ As

i−1) 6= ∅ holds as well; either way, we have F ∈ instr[(Is|o \
Ds) ∪ As

i−1
···As

i−1 \ Ds−1, Ds−1 \ As
i−1]. Therefore, the ⊇ direction of property (37) holds. But then, property (36) holds,

which together with (35) and the induction assumption for (34) ensures that (34) holds for i as well.

Claim 16. Property (20) holds.

Proof. F 6∈ Is|o implies Cr[F]|d = 0, so we have Cr[F]|a = Occ(F,Πs
r

q
(Is|o \Ds) ∪As ···As \Ds−1, Ds−1 \As−1

y
) in the

same way as in the proof for the previous claim. Moreover, F 6∈ Is|o ensures Occ(F,Πs
r

q
Is|o\(Ds\As−1), Is|o∪As−1

y
) = 0.

Therefore, by property (29) we have Cr[F]|a = Occ(F,Πs
r

q
(Is|o \Ds) ∪As

y
), as required.

