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Abstract
Evolution of Knowledge Bases (KBs) consists of
incorporating new information in an existing KB.
Previous studies assume that the new information
should be fully trusted and thus completely incor-
porated in the old knowledge. We suggest a setting
where the new knowledge can be partially trusted
and develop model-based approaches (MBAs) to
KB evolution that rely on this assumption. Under
MBAs the result of evolution is a set of interpreta-
tions and thus two core problems for MBAs are clo-
sure, i.e., whether evolution result can be axioma-
tised with a KB, and approximation, i.e., whether
it can be (maximally) approximated with a KB. We
show that DL-Lite is not closed under a wide range
of trust-sensitive MBAs. We introduce a notion of
s-approximation that improves the previously pro-
posed approximations and show how to compute it
for various trust-sensitive MBAs.

1 Introduction
Recent years have witnessed a strong and increasing interest
in Description Logic (DL) knowledge bases (KBs) [Baader et
al., 2003] as a mechanism for representing structured knowl-
edge; in particular, DLs became the foundation for OWL 2,
the standard ontology language of the Semantic Web. A DL
KB K consists of a TBox T that models at the intensional
level the static and structural aspects of an application do-
main, and an ABoxA that models at the extensional level the
current state of affairs or data about individuals.

In many applications KBs are subject to changes, for
instance, when they are constructed from evolving Web
pages [Suchanek and Weikum, 2013] or databases [Furche et
al., 2012], or created collaboratively [Bollacker et al., 2008;
Stearns et al., 2001]. A typical scenario for such applications
is to incorporate in a given KB K an acquired KB N that ex-
presses new information. In the case where N interacts with
K in an undesirable way, e.g., by causing the KB or relevant
parts of it to become unsatisfiable,N cannot simply be added
to K. Different ways to address this problem are possible,
corresponding to different approaches for KB evolution.

Knowledge evolution in the context of DL KBs has re-
cently attracted a lot of attention from both practical and
foundational perspectives, see e.g. [Fridman Noy et al., 2004;
Haase and Stojanovic, 2005; Flouris et al., 2008; Konev et

al., 2008; Cuenca Grau et al., 2012; Wu and Lécué, 2014].
Among the foundational, the most common are model-based
approaches (MBAs) where the result of evolution is the set
of first-order interpretations M that are models of N and
that are minimally distant from the models of K. The latter
condition corresponds to a widely accepted principle of min-
imal change [Eiter and Gottlob, 1992]. Depending on how
minimality and distance are defined, one can obtain various
evolution semantics and a number of them have been intro-
duced and studied [Qi and Du, 2009; Calvanese et al., 2010;
Wang et al., 2010; Kharlamov and Zheleznyakov, 2011;
Liu et al., 2011; Kharlamov et al., 2013; Zhuang et al., 2014;
Qi et al., 2015; Wang et al., 2015; Zhuang et al., 2016].

To the best of our knowledge, all previous studies of KB
evolution assume that the new knowledge N should be fully
trusted and thus completely taken on board (see related work
in Section 6). However, this assumption does not hold in a
wide range of important applications [Suchanek and Weikum,
2013] where N comes from a partially trusted source, e.g.,
from the Web or from a source with a limited expertise.

In this work we address this issue for MBAs and study how
an external notion of trust could be used in order to deter-
mine how new knowledge should be integrated with exist-
ing knowledge. Following Hunter and Booth (2015), who
studied trust in the context of propositional belief revision,
we assume that the knowledge provider has expertise that is
restricted to a particular area and thus cannot distinguish be-
tween certain states of the application domain—first-order in-
terpretations in our case. We formalise such a notion of trust
as an equivalence relation on first-order interpretations and
introduce four natural classes of trust. Then we use trust as
an external mechanism to relativise arbitrary interpretations
(not necessarily models of N ) to models of N by consider-
ing equivalence classes of the latter’s models. This allows us
to define the result of evolution as a set of minimally distinct
interpretationsM selected from these equivalence classes in-
stead of just models of N as in classical MBAs. Our trust-
sensitive evolution is generic in the sense that it is applicable
to KBs of any DL, and is backwards-compatible with classi-
cal MBAs in the sense that it coincides with them whenever
the model of trust assumes that the knowledge provider is an
expert in everything.

Since evolution under MBAs is defined as a set of inter-
pretations M, in practice one would want to efficiently ax-
iomatise thisM as a KB or, whenever this is impossible, to
efficiently ‘closely’ approximate it with a KB. Thus, the two



core KB evolution problems for a given DL L and MBA se-
mantics are closure of L under the semantics, i.e., whether
and how for every K and N in L, the correspondingM un-
der the semantics can be axiomatised inL, and approximation
of the semantics in L whenever L is not closed.

We study the closure and approximation problems for
DL-Lite—a tractable DL behind the QL profile of OWL 2—
under trust-sensitive MBAs for various models of trust.
Firstly, we show that DL-Lite is not closed under any trust-
sensitive semantics. It was known that DL-Lite is not
closed under many classical MBAs [Calvanese et al., 2010;
Kharlamov et al., 2013; Qi et al., 2015] and our results in par-
ticular imply the non-closure of DL-Lite under those classi-
cal MBAs for which this problem remained open.

We next turn our attention to the approximation problem
for DL-Lite and an important practical setting of ABox evo-
lution where the TBox is static and only the ABox evolves.
A widely studied approach for this setting is sound approxi-
mation, where M is approximated with a KB whose set of
models contains M. For classical MBAs De Giacomo et
al. (2009), Kharlamov et al. (2013), and Qi et al. (2015)
proposed algorithms to compute maximal sound approxi-
mations for various semantics. Here we propose the no-
tion of s-approximation—a KB that may use special pred-
icates and constants—and show that in general it improves
sound approximations by better capturing M for both clas-
sical and trust-sensitive MBAs. Moreover, we show that s-
approximations are also better in preserving Boolean queries
satisfied byM and we determine an important class of such
queries. Finally, we develop polynomial time algorithms to
compute maximal sound s-approximations for several trust-
sensitive and classical evolution semantics.

2 Preliminaries
Description Logics. We assume standard definitions of
first-order logic signature, sentences, interpretations, satisfi-
ability, and entailment. We further assume a fixed signature
with disjoint countable sets of unary and binary predicates
and constants, and that all interpretations are over this sig-
nature and the same countable domain ∆. Let PW (Possible
Worlds) denote the class of all such interpretations. Whenever
convenient we treat interpretations as sets of atoms.

In DLs [Baader et al., 2003], the doman of interest is mod-
elled by means of concepts, that are formulae with one free
variable, denoting sets of objects, roles, that are formulae
with two free variables, denoting binary relations between
objects, and constants, denoting objects. In order to support
such modelling, DLs provide a specialised variable-free syn-
tax and operators for constructing concepts and roles from
unary predicates (called atomic concepts) and binary predi-
cates (called atomic roles). A DL KB K = (T ,A) consists
of a TBox T that is a finite set of sentences (called TBox as-
sertions) over concepts and roles, and an ABox A that is a fi-
nite set of sentences (called ABox or membership assertions)
of the form C(a) and R(a, b), where C is a concept, R is a
role and a, b are constants. A DL L is a recursive set of KBs
closed under renaming of constants and the subset relation.

All the logics of the DL-Lite family have the following
constructs for complex concepts and roles [Calvanese et al.,
2007]: (i) B ::= A | ∃R, (ii) C ::= B | ¬B, and (iii)
R ::= P | P−, where A and P are an atomic concept and

role, B and C are basic and general concepts, and R is a ba-
sic role. A DL-Litecore TBox consists of concept inclusions
assertionsB v C. DL-Lite extends DL-Litecore by allowing
in a TBox role inclusion assertions R1 v R2 and functional-
ity assertions (funct R) in a way that if R1 v R2 appears in
a TBox, then neither (funct R2) nor (funct R−2 ) appears in
the TBox.1 This syntactic restriction ensures the tractability
of the logic. ABoxes in DL-Litecore and DL-Lite consist of
membership assertions of the form C(a) and P (a, b).

The semantics for concepts and roles is defined in the
standard way under an assumption that aI = a for each
constant a. That is, AI ⊆ ∆, P I ⊆ ∆ × ∆, (P−)I =
{(b, a) | (a, b) ∈ P I}, (¬B)I = ∆ \BI , and (∃R)I = {a |
there exists b s.t (a, b) ∈ RI}. The semantics of assertions
is also defined in the standard way: I |= D1 v D2 if
DI1 ⊆ DI2 , I |= (funct R) if the relation RI is a function,
I |= C(a) if aI ∈ CI , and I |= P (a, b) if (aI , bI) ∈ P I .

For ξ a concept, role, (set of) assertions(s), or (set of) inter-
pretation(s), pred(ξ) denotes the set of atomic concepts and
roles in ξ. Mod(K) denotes the set of all interpretations I
that are models of K, i.e., I |= ϕ for each assertion ϕ in K.

Classical Model-Based Evolution. A classical evolution
setting consists of an old KB K and a new KB N . Under
classical MBAs, the evolution result is the subset of Mod(N )
that is minimally distant from Mod(K). We now formally
introduce classical MBAs [Calvanese et al., 2010].

Let I and J be interpretations. Recall that I 	 J de-
notes the symmetric difference (I \ J ) ∪ (J \ I). A dis-
tance function dist between I and J can be defined in one
of the following ways. Distances based on atoms are defined
as (i) a set I 	 J , denoted dista{}(I,J ), or (ii) a number
|I 	 J |, denoted dista#(I,J ). Distances based on predi-
cates are defined as (i) a set {α | α is a predicate and αI 6=
αJ }, denoted dist

p
{}(I,J ), or (ii) a number |dist

p
{}(I,J )|

denoted dist
p

#(I,J ). Distances returned by distx{}, where
x ∈ {a, p} are sets and thus can be compared via set in-
clusion: distx{}(I1,J1) ≤ distx{}(I2,J2) if distx{}(I1,J1) ⊆
distx{}(I2,J2). Distances returned by distx# are natural num-
bers and thus can be compared numerically.2

Let S and S ′ be sets of interpretations and dist a distance
function. The subset mindist,S(S ′) of S ′ that consists of in-
terpretations minimally distant from S is defined as follows:
{J ∈ S ′ | there is I ∈ S s.t. for each I ′ ∈ S, and

for each J ′ ∈ S ′ it holds dist(I ′,J ′) 6< dist(I,J )}.
We now define selectors that choose those interpretations

of S ′ that are minimally distant from S.

Definition 1. A selector, denoted S, is a function that maps
each pair (S,S ′) of sets of models into 2S

′
. We consider the

following selectors, where x ∈ {a, p}, and y ∈ {{}, #}:
• a global selector induced by distxy , denoted Gx

y , is de-
fined as mindistxy ,S(S ′);

1In [Calvanese et al., 2010] this DL is referred to as DL-LiteFR.
2Note that for infinite distx{}(I,J ), we assume that: for any

I′ and J ′ if distx{}(I′,J ′) is (i) finite, then distx{}(I′,J ′) <
distx{}(I,J ), or (ii) infinite, then distx{}(I′,J ′) = distx{}(I,J ).



• a local selector induced by distxy , denoted Lx
y , is defined

as ∪I∈Smindistxy ,{I}(S ′).

Finally, classical evolution semantics for K and N is de-
fined as S(Mod(K),Mod(N )). Note that, in terms of Kat-
suno and Mendelzon (1991), semantics based on local selec-
tors correspond to knowledge update, and semantics based on
global selectors correspond to knowledge revision.

3 Trust-Sensitive Model-Based Evolution
In this section we introduce four models of trust and define
how they can be incorporated in MBAs.

Models of Trust. Our models of trust reflect the assumption
that the knowledge provider has a restricted area of expertise,
and thus we do not trust facts that are outside this area. In
terms of interpretations this means that if two interpretations
disagree only on such facts, then the provider cannot distin-
guish between them.
Definition 2. A model of trust is an equivalence relation ≡
on models. We consider four classes of models of trust:
• total trust, denoted TT, consists of one equivalence rela-

tion ≡TT defined as I1 ≡TT I2 iff I1 = I2;
• total distrust, denoted TD, consists of one equivalence

relation ≡TD defined as I1 ≡TD I2 for each I1 and I2;
• assertion trust, denoted AT, consists of one equivalence

relation ≡Φ for each finite set of assertions Φ which is
defined as I1 ≡Φ I2 iff either I1 |= ϕ and I2 |= ϕ or
I1 6|= ϕ and I2 6|= ϕ for each ϕ ∈ Φ.
• predicate trust, denoted PT, consists of one equivalence

relation ≡P for each finite set of predicates P which is
defined as I1 ≡P I2 iff pI1 = pI2 for each p ∈ P .

Example 3. Consider a scenario about places where fa-
mous researchers Einstein (Ein) and Mendeleev (Men)
live (livesIn). Consider the two following mod-
els of trust: ≡Pex∈ PT and ≡Φex∈ AT, where
Φex = {livesIn(Ein, us),∃livesIn(Men)} and Pex =
{livesIn}. In ≡Pex we trust that the knowledge provider
is an expert in places of residence in general, while in
≡Φex

we trust that they can tell whether or not Einstein
lives in the USA and Mendeleev lives somewhere. Con-
sider two interpretations I1

ex = {livesIn(Ein, us)} and
I2

ex = {livesIn(Ein, us), livesIn(Ein, ru)}. It is easy
to see that I1

ex 6≡Pex
I2

ex, while I1
ex ≡Φex

I2
ex.

We will use models of trust to relativise interpretations to
a given one using the following extender function.
Definition 4. An extender, denoted E, is a function that maps
each pair (≡, I) where ≡ is a model of trust and I is an
interpretation, into 2PW in the following way:

E(≡, I) = {J ∈ PW | J ≡ I}.
For a set of interpretations S, E(≡,S) =

⋃
I∈S E(≡, I).

Clearly, for each S it holds that S ⊆ E(≡,S), while
E(≡,S) ⊆ S does not hold in general.

Example 5. E(≡Pex
, I1

ex) and E(≡Φex
, I1

ex) are, resp.:
{I ∈ PW | {(Ein, us)} = livesIn

I} and
{I ∈ PW | I |= livesIn(Ein, us), and I 6|= ∃livesIn(Men)}.

Trust-Sensitive Evolution Settings and Semantics. We
distinguish between KB and ABox evolution. In the former
case the whole KB changes, while in the latter case the TBox
is fixed and only the ABox evolves. The following definition
of evolution settings reflects this distinction.
Definition 6. Let L be a DL and C a class of models of trust.
• An (L, C)-setting E for KB evolution is a quadruple

(T ,A,N ,≡), where (T ,A) and N are satisfiable L-
KBs and ≡ is a model of trust in C.
• An (L, C)-setting E for ABox evolution is a quadru-

ple (T ,A,N ,≡), where N is an L-ABox, (T ,A) and
(T ,N ) are satisfiable L-KBs,≡ is a model of trust in C.

We will refer to E as just a C-setting (resp., setting) when
L is (resp., L and C are) clear or not important.
Example 7. Consider Eex = (Tex,Aex,Nex,≡Φex

), a
(DL-Lite, AT)-setting for ABox evolution, where the TBox is
Tex = ∅, ABox is Aex = {livesIn(Men, ru)}, and the new
ABox is Nex = {livesIn(Ein, us), livesIn(Men, us)}.

We are now ready to show how models of trust can pro-
vide an external mechanism to guide evolution semantics. In-
tuitively, trust models work like filters that are applied to the
(models of the) new knowledgeN before performing the evo-
lution. Recall that the classical MBAs ‘pick’ interpretations
J from Mod(N ) that comes from the knowledge provider.
In our case, however, we know that the knowledge provider
cannot distinguish between any two ≡-equivalent interpreta-
tions, i.e., any J ′ that is ≡-equivalent to J is as ‘good’ as
J , and therefore, trust-sensitive evolution ‘picks’ interpre-
tations from E(≡,Mod(N )) that extends Mod(N ) with all
such J ′s. This approach corresponds to how Hunter and
Booth (2015) introduced trust in the evolution of proposi-
tional theories.
Definition 8. Let S be a selector. Then a trust-sensitive evo-
lution semantics semS maps each setting E = (T ,A,N ,≡)
to a set of interpretations S

(
Mod(T ,A),E(≡,M′)

)
, where

M′ is equal to Mod(N ) if E is for KB evolution and to
Mod(T ,N ) if E is for ABox evolution.
Example 9. Consider two sets of interpretations: Mex =
Mod(Tex,Aex),M′ex = Mod(Tex,Nex). Then, the evolution
result semGa

{}
(Eex) = Ga

{}(Mex,E(≡Φex ,M′ex)) is equal to
{J ∈ PW | {livesIn(Ein, us), livesIn(Men, ru)} ⊆ J }.

For classical MBAs, the evolution result for Eex under Ga
{} is:

{J ∈ PW | {livesIn(Ein, us), livesIn(Men, ru),
livesIn(Men, us)} ⊆ J }.

In practice one would expect the result of evolution to
be a KB. Thus, a natural problem to study for MBAs is
how evolution results can be axiomatised. Observe that the
result of trust-sensitive evolution from Example 9 can be
axiomatised respectively as

(∅, {livesIn(Ein, us), livesIn(Men, ru)}),

while the evolution result from Example 9 under the classical
MBA Ga

{} can be axiomatised as
(∅, {livesIn(Ein, de), livesIn(Men, ru), livesIn(Men, us)}).

In the classical case, the resulting KB is the union of the old
Aex and the new knowledge Nex. In the trust-sensitive case,
the semantics rejects the new knowledge about Mendeleev
since there is no trust in the fact that he is a US born.



4 Closure of DL-Lite Under Evolution
We now turn our attention to DL-Lite and show that evolution
results in general cannot be axiomatised as DL-Lite KBs.We
start with a definition of the closure problem for DLs.
Definition 10. LetL be a DL, C a class of models of trust, and
sem a trust-sensitive evolution semantics. Then, L is closed
under sem for C if for every (L, C)-setting E there is an L-KB
K such that Mod(K) = sem(E).

Total Trust and Total Distrust. The main reason why we
introduce TT and TD is to verify on these extreme cases
whether trust-sensitive evolution semantics behave in an in-
tuitive way. In particular, we expect backward compatibility
of trust-sensitive MBAs with the classical ones, that is, semS
should coincide with the corresponding classical semantics S
in the case of TT. The following proposition confirms that
this is indeed the case.
Proposition 11. Let E=(T ,A,N ,≡TT) be a (L, TT)-setting
for some DL L. Then for any selector S, it holds that semS(E)
= S(Mod(T ,A),M′), whereM′ is equal to Mod(N ) if E is
for KB and Mod(T ,N ) if E is for ABox evolution.

The proposition implies that all non-closure results for
DL-Lite under classical MBAs are inherited by trust-
sensitive MBAs for TT. In particular, it is known that for
ABox evolution DL-Lite is not closed under six out of eight
MBAs: Calvanese et al. (2010) showed the non-closure un-
der La

{} and La
#, Kharlamov et al. (2013) under Lp

{} and Lp

#,
and finally Qi et al. (2015) under Ga

{} and Ga
#. For KB evo-

lution Calvanese et al. (2010) showed the non-closure under
all eight MBAs. Thus, the remaining open problem for trust-
sensitive MBAs for TT is the closure under Gp

{} and Gp

# for
ABox evolution. The following theorem closes this gap.
Theorem 12. For ABox evolution, DL-Lite is not closed un-
der semS for TT, where S ∈ {Gp

{},G
p

#}.

Proof (Sketch). Regarding Gp
{}, one can check that for the TT-

setting with A = {¬∃R−(a)}, N = {∃R−(a)}, and T =
{A v ∃R,∃R v A}, the set of interpretations obtained by
evolution satisfies ∀x.R(x, a)→ ∃y.(y 6= a ∧R(x, y)). One
can show that this set is not axiomatisable in DL-Lite. The
non-closure for the case of Gp

# can be shown similarly.

In the case of TD, regardless of the DL L, selector S, and
(L, TD)-setting E = (T ,A,N ,≡TD), it is easy to see that
semS(E) = Mod(T ,A) for both KB and ABox evolution.
Thus, semS satisfies our intuition: it rejects the new informa-
tion N as it is distrusted.

Assertion and Predicate Trust. We denote with S the
set of all semantics introduced in Section 3, i.e., S =⋃

x,y,Z{semZx
y
}, where x ∈ {a, p}, y ∈ {{}, #}, and Z ∈

{L,G}.
Observe that for each (L, TT)-setting ETT=(T ,A,N ,≡TT)

one can construct an (L, PT)-setting EPT = (T ,A,N ,≡P),
where P = pred(T ∪A∪N ), such that for each sem ∈ S we
have sem(ETT) = sem(EPT). Therefore, all the non-closure
results for TT are inherited by PT.

Finally, we turn our attention to AT and show the non-
closure of DL-Lite under various trust-sensitive semantics.

Theorem 13. For AT it holds that:
• For KB evolution and each sem ∈ S, DL-Lite is not

closed under sem; this holds already in the case when
the new information consists of one TBox assertion.
• For ABox evolution and each sem ∈ S DL-Lite is not

closed under sem.
In order to prove these results one can show that for each

semantics sem considered in the theorem, there is a setting E ,
such that sem(E) is a set of models that satisfies a so-called
genuine disjunction. That is, sem(E) satisfies ϕ∨ψ, for some
ABox assertions ϕ and ψ, but does not satisfy either ϕ or
ψ. By Lemma 1 from [Calvanese et al., 2010] such a set of
interpretations is not axiomatisable in DL-Lite.

5 Approximation of Evolution in DL-Lite
Since DL-Lite is not closed under the trust-sensitive MBAs,
we turn our attention to approximation of evolution results. In
this section we focus on ABox evolution and thus all settings
are for ABox evolution.

A sound approximation of sem(E) is a KB K such that
sem(E) ⊆ Mod(K), and it is maximal if no other sound ap-
proximation K′ exists s.t. Mod(K′) ⊂ Mod(K). Sound ap-
proximation of evolution in the context of DLs has been stud-
ied for classical MBAs by De Giacomo et al. (2009), Khar-
lamov et al. (2013), and Qi et al. (2015). We extend the no-
tion of sound approximation by considering s-approximations
which we introduce next. In order to define them we use the
following notation. Let Σ be a signature, then I|Σ is a sub-
interpretation of I consisting of all atoms of I whose pred-
icates are in Σ, and for a set of models S, we define S|Σ as
{I|Σ | I ∈ S}. Finally, S ⊆Σ S ′, if S|Σ ⊆ S ′|Σ.
Definition 14. Let S be a set of interpretations, and K a
knowledge base. Then, K is a sound s-approximation of S
if S ⊆pred(S) Mod(K). Moreover, K is a maximal sound s-
approximation of S if no other sound s-approximation K′ of
S exists such that Mod(K′) ⊂pred(S) Mod(K). Finally, K is
an s-axiomatisation of S if S = Mod(K)|pred(S).

Note that s-approximations coincide with sound approxi-
mations when pred(S) = pred(K).

5.1 Total Trust
In this section we will study semS evolution in case of TT
and S ∈ {Ga

{},Ga
#} and use the following notations: clT (A)

is the set of membership assertions ϕ s.t. A ∪ T |= ϕ and
cl(T ) is the set of TBox assertions ϕ s.t. T |= ϕ. It is
known [Calvanese et al., 2007] that in DL-Lite clT (A) and
cl(T ) are finite and can be computed in polynomial time.

Let E = (T ,A,N ,≡TT) be a TT-setting. Qi et al. (2015)
showed that the algorithm AtAlg, introduced by Kharlamov
and Zheleznyakov (2011), computes a maximal sound ap-
proximation K′ of S(Mod(T ,A),Mod(T ,N )), where S ∈
{Ga

{},Ga
#}. Given E , AtAlg returns an ABox N ∪A′, where

A′ is the maximal subset of clT (A) such that (T ,N ∪ A′)
is satisfiable. By Proposition 11, K′ is also a maximal sound
approximation of semS(E). However, K′ is not necessarily
their maximal sound s-approximation, as illustrated next.
Example 15. Consider a TT-setting E2

ex = (T 2
ex,A2

ex,
N 2

ex,≡TT) over the signature Σex = {livesIn, place},
where T 2

ex = {∃livesIn− v place}, A2
ex =



{∃livesIn(Men)}, and N 2
ex = {¬∃livesIn(Men)}. The

maximal sound approximation obtained with AtAlg is
(T 2

ex,N 2
ex). However, any model J from Mod(T 2

ex,N 2
ex) with

placeJ = ∅ is not in M = semGa
{}

(E2
ex). We can rule out

such models by introducing a fresh role P that would ‘en-
force’ the existence of an element from ∆ in the interpreta-
tion of place. Indeed, consider a KB Ks = (T s,As), where
T s = T 2

ex ∪ {∃P− v place} and As = {∃P (a∗)} with
P and a∗ a fresh role and constant, respectively. Note also
thatKs is a sound s-approximation ofM and Mod(Ks) ⊂Σex

Mod(K) holds as no modelJ ofKs is such that placeJ = ∅.
In contrast to AtAlg, for a given TT-setting E , Algorithm 1

(TT-SApprox) provides a maximal sound s-approximation for
semS(E), where S ∈ {Ga

{},Ga
#}. One can follow the steps of

the algorithm in Example 15. TT-SApprox first computes the
maximal sound approximation using AtAlg (Line 1). Then,
in the spirit of Example 15, the algorithm finds general con-
cepts C whose interpretations should not be empty in the re-
sulting set of models (Line 8) and ensures that this will not
happen via introducing new TBox and ABox assertions with
fresh roles and constants (Lines 6 and 9) as in the example.
Finally, if an interpretation ofC should contain at least n con-
stants, then the algorithm ensures that (Lines 10-11).

The following theorem shows that TT-SApprox efficiently
computes maximal sound s-approximations.
Theorem 16. Let E = (T ,A,N ,≡TT) be a
(DL-Litecore , TT)-setting. Then, TT-SApprox(E) is
a maximal sound s-approximation of semS, where
S ∈ {Ga

{},Ga
#}. Moreover, TT-SApprox runs in time

polynomial in |T ∪ A ∪N|.
A practical benefit of sound s-approximations is that they

preserve important queries that may be lost by sound approx-
imations. We will now introduce a class of such queries. An
example query from this class is:

Is it true that a university has at least five (distinct)
researchers r1, . . . , r5 such that r1, r2, r3 work on
the first project, r2, r3, r4 on the second one, and
r1, r5 on the third one?

Let Θ(x) be a formula recursively defined as follows:

Ψ(x) ::= A(x) | ∃x′R(x, x′) | ∃x′R(x′, x),

Θ(x) ::= Ψ(x) | ¬Ψ(x).

Then, Q is the class of queries of the following form:

∃x1, . . . , xn

(∧

i 6=j

(xi 6= xj) ∧
m∧

k=1

∧

i∈Xk

Xk⊆{1,...,n}

(Θk(xi))
)
.

Theorem 17. Let q ∈ Q and sem = semGa
y

be an evolution
semantics, where y ∈ {{}, #}. Then, there exists a TT-setting
Eq such that sem(Eq) |= q and TT-SApprox(Eq) |= q, but
AtAlg(Eq) 6|= q.

5.2 Predicate Trust
Let (T ,A) be a DL-Lite KB and ≡P∈ PT for some
P . A natural approach to this case would be to capture
E(≡P ,Mod(T ,A)) with some theory, thus reducing the

Algorithm 1: TT-SApprox
INPUT : a (DL-Litecore , TT)-setting E = (T , A, N ,⌘TT)
OUTPUT: a DL-Litecore KB (T 0, A0)

1 set T 0 = T and A0 = AtAlg(E)
2 introduce a fresh constant a⇤ not occurring in T , A, nor N
3 for each basic role R over pred(A, T ) do
4 introduce a fresh atomic role PR /2 pred(E)
5 if 9R(a) 2 clT (A) for some a then
6 set A0 = A0 [ {9PR(a⇤)}
7 for each 9R� v C 2 cl(T ) for some general concept C

do
8 if 9R(a) 2 clT (A) for some a and either

¬9R(a) /2 clT (N ) or there is no constant b s.t.
C(b) 2 clT (A) and ¬C(b) 2 clT (N ) then

9 set T 0 = T 0 [ {9P�
R v C}

10 for each pair of introduced roles PR and PS do
11 if 9R� v ¬9S� is in cl(T ) then set

T 0 = T 0 [ {9P�
R v ¬9P�

S }
12 return (T 0, A0 [ N )

5.1 Total Trust
In this section we will study semS evolution in case of TT
and S 2 {Ga

{}, Ga
#} and use the following notations: clT (A)

is the set of membership assertions ' s.t. A [ T |= ' and
cl(T ) is the set of TBox assertions ' s.t. T |= '. It is
known [Calvanese et al., 2007] that in DL-Lite clT (A) and
cl(T ) are finite and can be computed in polynomial time.

Let E = (T , A, N ,⌘TT) be a TT-setting. Qi et al. (2015)
showed that the algorithm AtAlg, introduced by Kharlamov
and Zheleznyakov (2011), computes a maximal sound ap-
proximation K0 of S(Mod(T , A), Mod(T , N )), where S 2
{Ga

{}, Ga
#}. When running AtAlg on E , it returns an ABox

N [ A0, where A0 is the maximal subset of clT (A) such
that (T , N [ A0) is satisfiable. Due to Proposition 11, K0 is
also a maximal sound approximation of semS(E). However,
K0 is not necessarily their maximal sound s-approximation,
as illustrated next.

Example 15. Consider a TT-setting (T 2
ex, A2

ex, N 2
ex,⌘TT)

over the signature ⌃ex = {livesIn, place}, where T 2
ex =

{9livesIn� v place}, A2
ex = {9livesIn(Men)}, and

N 2
ex = {¬9livesIn(Men)}. The maximal sound approxima-

tion obtained with AtAlg is K = (T 2
ex, N 2

ex). One can check
that any model J from Mod(T 2

ex, N 2
ex) such that placeJ = ;

is not in M = Ga
{}(Mod(T 2

ex, A2
ex). We can, however, rule

out such models J by introducing a fresh role P that would
‘enforce’ the existence of an element in� that is in the inter-
pretation of place. Indeed, consider a KB Ks = (T s, As),
where T s = T 2

ex [ {9P� v place} and As = {9P (a⇤)}
with P and a⇤ being a fresh role and constant, respectively.
Note also that Ks is a sound s-approximation of M and
Mod(Ks) ⇢⌃ex

Mod(K) holds as no model J s of Ks is such
that placeJ s

= ;.

In contrast, for a given TT-setting E , Algorithm 1 pro-
vides a maximal sound s-approximation for semS(E), where
S 2 {Ga

{}, Ga
#}. One can follow the steps of the algorithm

in Example 15. The algorithm first computes the maximal
sound approximation using AtAlg (Line 1). Then, in the

spirit of Example 15, the algorithm finds general concepts C
whose interpretations should not be empty in the resulting set
of models (Line 8) and ensures that this will not happen via
introducing new TBox and ABox assertions with fresh roles
and constants (Lines 6 and 9) in the fashion described in the
example. Finally, the algorithm guarantees the minimal num-
ber of constants in C is as required (Lines 10-11), that is, if
an interpretation of C should contain at least n constants, we
have to guarantee their existence.

The following theorem shows that TT-SApprox efficiently
computes maximal sound s-approximations.
Theorem 16. Let E = (T , A, N ,⌘TT) be a
(DL-Litecore , TT)-setting. Then, TT-SApprox(E) is
a maximal sound s-approximation of semS, where
S 2 {Ga

{}, Ga
#}. Moreover, TT-SApprox runs in time

polynomial in |T [ A [ N|.
A practical benefit of sound s-approximations is that they

preserve important queries that may be lost by sound approx-
imations. We will now introduce a class of such queries. An
example query from this class is:

Is it true that a university has at least five (distinct)
researchers r1, . . . , r5 such that r1, r2, r3 work on
the first project, r2, r3, r4 on the second one, and
r1, r5 on the third one?

Let ⇥(x) be a formula recursively defined as follows:
 (x) ::= A(x) | 9x0R(x, x0) | 9x0R(x0, x),

⇥(x) ::=  (x) | ¬ (x).

Then, Q is the class of queries of the following form:

9x1, . . . , xn

⇣^

i 6=j

(xi 6= xj) ^
m̂

k=1

^

i2Xk

Xk✓{1,...,n}

(⇥k(xi))
⌘
.

Theorem 17. Let q 2 Q and sem = semGa
y

be an evolution
semantics, where y 2 {{}, #}. Then, there exists a TT-setting
Eq such that sem(Eq) |= q and TT-SApprox(Eq) |= q, but
AtAlg(Eq) 6|= q.

5.2 Predicate Trust
Finally, we consider the case of predicate trust. Let (T , A)
be a DL-Lite KB and ⌘P2 PT for some P . Similarly to the
case of AT, we would like to capture E(⌘P , Mod(T , A)) with
some theory. However, the situation here is more complicated
then for AT. While in the case of AT we could just remove all
assertions from clT (A) that are not (positively or negatively)
in �, in the case of PT, removing assertions from clT (A)
that are over the ‘wrong’ signature, is not enough. However,
E(⌘P , Mod(K)) can still be captured using s-axiomatisation.
Example 18. Consider ⌘Pex

2 PT, where Pex = {person}
and (T 3

ex, A3
ex), where T 3

ex = {9livesIn� v ¬person},
A3

ex = {person(Men), 9livesIn(Men)}. Consider also
A0 = {person(Men)}, a subset of clT (A3

ex) consisting of
all the membership assertions over Pex. One can see that
I = {person(x) | x 2 �} is a model of (T 3

ex, A0), while
I /2 E(⌘Pex , Mod(T 3

ex, A3
ex)). However, we can still cap-

ture E(⌘Pex
, Mod(T 3

ex, A3
ex)) with (T s, As), where T s =

T 3
ex [ {9P� v ¬person} and As = A0 [ {9P (a⇤)} for

a fresh role P and constant a⇤. Indeed, one can check that
E(⌘Pex

, Mod(T 3
ex, A3

ex)) = Mod(T s, As)|pred(T 3
ex,A3

ex).

problem to the TT case. On the first glance, it would be suffi-
cient just to remove assertions that are over the ‘wrong’ sig-
nature from clT (A). This, however, is not enough as shown
in the following example.
Example 18. Consider ≡P3

ex
∈ PT, where P3

ex = {person}
and (T 3

ex,A3
ex), where T 3

ex = {∃livesIn− v ¬person},
A3

ex = {person(Men),∃livesIn(Men)}. Consider also
A′ = {person(Men)}, a subset of clT (A3

ex) consisting of
all the membership assertions over P3

ex. One can see that
I = {person(x) | x ∈ ∆} is a model of (T 3

ex,A′), while
I /∈ E(≡P3

ex
,Mod(T 3

ex,A3
ex)). However, we can still cap-

ture E(≡P3
ex
,Mod(T 3

ex,A3
ex)) with (T s,As), where T s =

T 3
ex ∪ {∃P− v ¬person} and As = A′ ∪ {∃P (a∗)} for

a fresh role P and constant a∗. Indeed, one can check that
E(≡P3

ex
,Mod(T 3

ex,A3
ex)) = Mod(T s,As)|pred(T 3

ex,A3
ex).

E(≡P ,Mod(K)) can still be captured using s-
axiomatisation. Consider Algorithm 2 (PT-ExtendSAx)
that, for a given (T ,A) and P , returns a maximal sound
s-approximation of E(≡P ,Mod(T ,A)). One can follow
the steps of the algorithm in Example 18: it finds concepts
C whose interpretation should not be empty in each I
of E(≡P ,Mod(T ,A)) (Line 10) and ensures their non-
emptiness (Lines 8 and 9). Finally, as in Algorithm 1,
PT-ExtendSAx guarantees that the minimal number of
constants in C is as required (Lines 11-12).
Theorem 19. Let (T ,A) be a DL-Litecore KB and
let ≡P ∈ PT for some finite set of predicates P .
Then PT-ExtendSAx(T ,A,P) is an s-axiomatisation of
E(≡P ,Mod(T ,A)). Moreover, PT-ExtendSAx runs in time
polynomial in |T ∪ A ∪ P|.

Finally, we will show that PT-ExtendSAx can be used to
compute maximal sound s-approximations of semS for S =
La

{}, that corresponds to a widely accepted Winslett’s evolu-
tion semantics [De Giacomo et al., 2006; Winslett, 1990].
Theorem 20. Let P be a finite set of predicates and
EP = (T ,A,N ,≡P) a (DL-Litecore , PT)-setting. Let
also (T ′,N ′) = PT-ExtendSAx((T ,N ),P) and ETT =



Algorithm 2: PT-ExtendSAx
INPUT : a DL-Litecore KB (T , A),

a finite set of predicates P
OUTPUT: a DL-Litecore KB (T 0, A0)

1 set T 0 = T and A0 = ;
2 introduce a fresh constant a⇤ not occurring in T nor A
3 for each ↵ 2 clT (A) do
4 if the predicate of ↵ is in P then set A0 = A0 [ {↵}
5 for each basic role R over pred(T , A) do
6 introduce a fresh atomic role PR /2 pred(T , A)
7 if 9R(a) 2 clT (A) for some constant a then
8 set A0 = A0 [ {9PR(a⇤)}
9 for each 9R� v C in cl(T ) with C 2 P do

10 set T 0 = T 0 [ {9P�
R v C}

11 for each pair of fresh atomic roles PR and PS do
12 if 9R� v ¬9S� is in cl(T ) then set

T 0 = T 0 [ {9P�
R v ¬9P�

S }
13 return (T 0, A0)

Consider Algorithm 2 (PT-ExtendSAx) that, for a given
(T , A) and P , returns a maximal sound s-approximation of
E(⌘P , Mod(T , A)). One can follow the steps of the algo-
rithm in Example 18: it finds concepts C whose interpreta-
tion should not be empty in each I of E(⌘P , Mod(T , A))
(Line 10) and ensures their non-emptiness (Lines 8 and 9). Fi-
nally, as in Algorithm 1, it guarantees that the minimal num-
ber of constants in C is as required (Lines 11-12).
Theorem 19. Let (T , A) be a DL-Litecore KB and
let ⌘P 2 PT for some finite set of predicates P .
Then PT-ExtendSAx(T , A, P) is an s-axiomatisation of
E(⌘P , Mod(T , A)). Moreover, PT-ExtendSAx runs in time
polynomial in |T [ A [ P|.

Finally, we will show that PT-ExtendSAx can compute
maximal sound s-approximations of semS for S = La

{}, that
corresponds to a widely accepted Winslett’s evolution seman-
tics [De Giacomo et al., 2006; Winslett, 1990].
Theorem 20. Let P be a finite set of predicates. Let
EP = (T , A, N ,⌘P) and ETT = (T 0, A, N 0,⌘TT) be
(DL-Litecore , PT) and (DL-Litecore , TT)-settings, respec-
tively, where (T 0, N 0) = PT-ExtendSAx((T , N ), P). If K is
a maximal sound s-approximation (resp., s-axiomatisation)
of semS(ETT), then K is a maximal sound s-approximation
(resp., s-axiomatisation) of semS(EP), where S = La

{}.

5.3 Assertion Trust
In this section we study assertion trust. Let (T , A) be a
DL-Lite KB and ⌘�2 AT for some finite set of member-
ship assertions �. Firstly, observe that the set of mod-
els E(⌘�, Mod(T , A)) can be axiomatised and Algorithm 3
(AT-ExtendAx), where ¬↵ = ¬B(a) if ↵ = B(a) and
¬↵ = B(a) if ↵ = ¬B(a) for some basic concept B, pro-
vides this axiomatisation. The algorithm keeps assertions of
clT (A) such that they or their negations are in �. The fol-
lowing theorem shows the correctness of the algorithm.
Theorem 21. Let (T , A) be a DL-Lite KB and ⌘�2 AT
for some finite set of membership assertions �. Then,
E(⌘�, Mod(T , A)) = Mod(AT-ExtendAx(T , A,�)), and
AT-ExtendAx runs in time polynomial in |T [ A [ �|.

Algorithm 3: AT-ExtendAx
INPUT : a DL-Lite KB K = (T , A),

a finite set of membership assertions �
OUTPUT: a DL-Lite KB (T , A0)

1 set A0 = ;
2 for each ↵ 2 clT (A) do
3 if either ↵ or ¬↵ is in � then set A0 = A0 [ {↵}
4 return (T , A0)

An immediate consequence of the theorem is that each AT-
setting E can be transformed into a TT setting ETT with the
same evolution result under semS with any selector S.
Corollary 22. Let S be a selector and � a finite set
of membership assertions. Let E� = (T , A, N ,⌘�

) and ETT = (T , A, NTT,⌘TT) be (DL-Lite, AT) and
(DL-Lite, TT)-settings, respectively, where (T , NTT) =
AT-ExtendAx(T , N ,�). Then semS(E�) = semS(ETT).

We conclude this section with open problems: we conjec-
ture that our results for total trust (Theorem 16) and assertion
trust (Theorem 19) hold for DL-Litecore extended with role
inclusion; it remains open wether they hold for DL-Litecore
extended with functionality assertions. Moreover, it is opened
whether Theorem 20 holds for selectors other than S = La

{}.

6 Related Work and Conclusion
Related Work. To the best of our knowledge, this is the
first work that combines trust and evolution in the context of
DLs. The closest research to ours is knowledge management
with preferences where either logical formulae or predicates
are ordered. This rather corresponds to defining levels of im-
portance than to the notion of trust. Bienvenu et al. (2014)
studied inconsistency-tolerant semantics for querying incon-
sistent KBs. They rely on repairs that select subsets of the
ABox that are consistent with the TBox and use various mod-
els of preferences to determine the most important repairs.
Also observe that their approach is formula-based and thus it
is closer to the formula-based evolution rather than to MBAs
that we study in this paper. Qi and Du (2009) studied evo-
lution under a modified version of Gp

# selector that relies on
predicate-based preferences in selecting models of Mod(N ).
The crucial difference from our work is that their evolution
result M is a subset of Mod(N ) that consists of the most im-
portant models, while in our case we construct M by first ex-
tending Mod(N ) according with the model of trust and then
choosing minimally distant elements from this extended set
regardless their importance. Note that our approach can be
combined with the selector of [Qi and Du, 2009] but this re-
quires further investigation.

Conclusion. We have formalised the notion of trust and
evolution semantics as operators E and S and have shown how
they can be composed to obtain trust-sensitive evolution se-
mantics. This approach can be generalised to any notions of
trust and evolution semantics that can be captured via opera-
tors. We have applied trust-sensitive MBAs to DL-Lite and
have shown that under all of them DL-Lite is not closed. This
is expected since DL-Lite has a limited expressive power,
and MBAs can return sets of models M whose axiomatisa-
tion requires syntactic constructs beyond DL-Lite, neverthe-

(T ′,A,N ′,≡TT) be (DL-Litecore , TT)-setting. Then, if K is
a maximal sound s-approximation (resp., s-axiomatisation) of
semLa

{}
(ETT), thenK is also a maximal sound s-approximation

(resp., s-axiomatisation) of semLa
{}

(EP).

5.3 Assertion Trust
Let (T ,A) be a DL-Lite KB and ≡Φ∈ AT for some finite
set of membership assertions Φ. Firstly, observe that the set
of models E(≡Φ,Mod(T ,A)) can be axiomatised and Algo-
rithm 3 (AT-ExtendAx), where ¬α = ¬B(a) if α = B(a)
and ¬α = B(a) if α = ¬B(a) for some basic concept B,
provides this axiomatisation. The algorithm keeps assertions
of clT (A) such that they or their negations are in Φ. The
following theorem shows the correctness of AT-ExtendAx.
Theorem 21. Let (T ,A) be a DL-Lite KB and ≡Φ∈ AT
for some finite set of membership assertions Φ. Then,
E(≡Φ,Mod(T ,A)) = Mod(AT-ExtendAx(T ,A,Φ)), and
AT-ExtendAx runs in time polynomial in |T ∪ A ∪ Φ|.

An immediate consequence of the theorem is that each AT-
setting E can be transformed into a TT setting ETT with the
same evolution result under semS with any selector S.
Corollary 22. Let S be a selector and Φ a finite set
of membership assertions. Let EΦ = (T ,A,N ,≡Φ)
and ETT = (T ,A,NTT,≡TT) be (DL-Lite, AT) and
(DL-Lite, TT)-settings, respectively, where (T ,NTT) =
AT-ExtendAx(T ,N ,Φ). Then semS(EΦ) = semS(ETT).

6 Related Work and Discussions
Related Work. To the best of our knowledge, this is the
first work that combines trust and evolution in the context
of DLs. The closest research to ours is knowledge manage-
ment with preferences where either logical formulae or pred-
icates are ordered since less preferred elements can be seen
as less-trusted. However, this rather corresponds to defin-
ing levels of importance than trust. Bienvenu et al. (2014)
studied inconsistency-tolerant semantics for querying incon-
sistent KBs. They rely on KB repairs which are subsets of the
ABox that are consistent with the TBox, and use various mod-
els of preferences to determine the most important repairs.
Since they do not select repairs that are of low importance,

Algorithm 2: PT-ExtendSAx
INPUT : a DL-Litecore KB (T , A),

a finite set of predicates P
OUTPUT: a DL-Litecore KB (T 0, A0)

1 set T 0 = T and A0 = ;
2 introduce a fresh constant a⇤ not occurring in T nor A
3 for each ↵ 2 clT (A) do
4 if the predicate of ↵ is in P then set A0 = A0 [ {↵}
5 for each basic role R over pred(T , A) do
6 introduce a fresh atomic role PR /2 pred(T , A)
7 if 9R(a) 2 clT (A) for some constant a then
8 set A0 = A0 [ {9PR(a⇤)}
9 for each 9R� v C in cl(T ) with C 2 P do

10 set T 0 = T 0 [ {9P�
R v C}

11 for each pair of fresh atomic roles PR and PS do
12 if 9R� v ¬9S� is in cl(T ) then set

T 0 = T 0 [ {9P�
R v ¬9P�

S }
13 return (T 0, A0)

Consider Algorithm ?? (PT-ExtendSAx) that, for a given
(T , A) and P , returns a maximal sound s-approximation of
E(⌘P , Mod(T , A)). One can follow the steps of the algo-
rithm in Example 18: it finds concepts C whose interpreta-
tion should not be empty in each I of E(⌘P , Mod(T , A))
(Line 10) and ensures their non-emptiness (Lines 8 and 9). Fi-
nally, as in Algorithm 1, it guarantees that the minimal num-
ber of constants in C is as required (Lines 11-12).
Theorem 19. Let (T , A) be a DL-Litecore KB and
let ⌘P 2 PT for some finite set of predicates P .
Then PT-ExtendSAx(T , A, P) is an s-axiomatisation of
E(⌘P , Mod(T , A)). Moreover, PT-ExtendSAx runs in time
polynomial in |T [ A [ P|.

Finally, we will show that PT-ExtendSAx can compute
maximal sound s-approximations of semS for S = La

{}, that
corresponds to a widely accepted Winslett’s evolution seman-
tics [De Giacomo et al., 2006; Winslett, 1990].
Theorem 20. Let P be a finite set of predicates. Let
EP = (T , A, N ,⌘P) and ETT = (T 0, A, N 0,⌘TT) be
(DL-Litecore , PT) and (DL-Litecore , TT)-settings, respec-
tively, where (T 0, N 0) = PT-ExtendSAx((T , N ), P). If K is
a maximal sound s-approximation (resp., s-axiomatisation)
of semS(ETT), then K is a maximal sound s-approximation
(resp., s-axiomatisation) of semS(EP), where S = La

{}.

5.3 Assertion Trust
In this section we study assertion trust. Let (T , A) be a
DL-Lite KB and ⌘�2 AT for some finite set of member-
ship assertions �. Firstly, observe that the set of mod-
els E(⌘�, Mod(T , A)) can be axiomatised and Algorithm 2
(AT-ExtendAx), where ¬↵ = ¬B(a) if ↵ = B(a) and
¬↵ = B(a) if ↵ = ¬B(a) for some basic concept B, pro-
vides this axiomatisation. The algorithm keeps assertions of
clT (A) such that they or their negations are in �. The fol-
lowing theorem shows the correctness of the algorithm.
Theorem 21. Let (T , A) be a DL-Lite KB and ⌘�2 AT
for some finite set of membership assertions �. Then,
E(⌘�, Mod(T , A)) = Mod(AT-ExtendAx(T , A,�)), and
AT-ExtendAx runs in time polynomial in |T [ A [ �|.

Algorithm 3: AT-ExtendAx
INPUT : a DL-Lite KB K = (T , A),

a finite set of membership assertions �
OUTPUT: a DL-Lite KB (T , A0)

1 set A0 = ;
2 for each ↵ 2 clT (A) do
3 if either ↵ or ¬↵ is in � then set A0 = A0 [ {↵}
4 return (T , A0)

An immediate consequence of the theorem is that each AT-
setting E can be transformed into a TT setting ETT with the
same evolution result under semS with any selector S.
Corollary 22. Let S be a selector and � a finite set
of membership assertions. Let E� = (T , A, N ,⌘�

) and ETT = (T , A, NTT,⌘TT) be (DL-Lite, AT) and
(DL-Lite, TT)-settings, respectively, where (T , NTT) =
AT-ExtendAx(T , N ,�). Then semS(E�) = semS(ETT).

We conclude this section with open problems: we conjec-
ture that our results for total trust (Theorem 16) and assertion
trust (Theorem 19) hold for DL-Litecore extended with role
inclusion; it remains open wether they hold for DL-Litecore
extended with functionality assertions. Moreover, it is opened
whether Theorem 20 holds for selectors other than S = La

{}.

6 Related Work and Conclusion
Related Work. To the best of our knowledge, this is the
first work that combines trust and evolution in the context of
DLs. The closest research to ours is knowledge management
with preferences where either logical formulae or predicates
are ordered. This rather corresponds to defining levels of im-
portance than to the notion of trust. Bienvenu et al. (2014)
studied inconsistency-tolerant semantics for querying incon-
sistent KBs. They rely on repairs that select subsets of the
ABox that are consistent with the TBox and use various mod-
els of preferences to determine the most important repairs.
Also observe that their approach is formula-based and thus it
is closer to the formula-based evolution rather than to MBAs
that we study in this paper. Qi and Du (2009) studied evo-
lution under a modified version of Gp

# selector that relies on
predicate-based preferences in selecting models of Mod(N ).
The crucial difference from our work is that their evolution
result M is a subset of Mod(N ) that consists of the most im-
portant models, while in our case we construct M by first ex-
tending Mod(N ) according with the model of trust and then
choosing minimally distant elements from this extended set
regardless their importance. Note that our approach can be
combined with the selector of [Qi and Du, 2009] but this re-
quires further investigation.

Conclusion. We have formalised the notion of trust and
evolution semantics as operators E and S and have shown how
they can be composed to obtain trust-sensitive evolution se-
mantics. This approach can be generalised to any notions of
trust and evolution semantics that can be captured via opera-
tors. We have applied trust-sensitive MBAs to DL-Lite and
have shown that under all of them DL-Lite is not closed. This
is expected since DL-Lite has a limited expressive power,
and MBAs can return sets of models M whose axiomatisa-
tion requires syntactic constructs beyond DL-Lite, neverthe-

this can be seen as a trust-based KB repairing. However, their
approach is based on formulae and thus closer to so-called
formula-based evolution [Eiter and Gottlob, 1992] rather than
to the model-based approach that we study in this paper.

Qi and Du (2009) studied evolution under a modified ver-
sion of Gp

# selector that relies on predicate-based preferences
in selecting models of Mod(N ). The crucial difference be-
tween their and our work is that their evolution result M
is a subset of Mod(N ) that consists of the most important
models, while in our case we constructM by first extending
Mod(N ) according with the model of trust and then choosing
minimally distant elements from this extended set regardless
their importance. Note that our approach can be combined
with the selector of [Qi and Du, 2009], but this requires fur-
ther investigation.
Conclusion. We have formalised the notion of trust and
evolution semantics as operators E and S and have shown
how they can be composed to obtain trust-sensitive evolu-
tion semantics. This approach can be generalised to any
notions of trust and evolution semantics that can be cap-
tured via operators. We have applied trust-sensitive MBAs
to DL-Lite and have shown that under all of them DL-Lite is
not closed. On the one hand, this is expected since DL-Lite
has a limited expressive power, and already in the case of
classical MBAs can return sets of modelsM whose axioma-
tisation requires syntactic constructs beyond DL-Lite. On
the other hand, this is not selfevident since trust-sensitive
MBAs in general return sets of models that are very differ-
ent from the ones of classical MBAs. Thus, for both clas-
sical and trust-sensitive MBAs the main challenge is to find
a ‘good’ notion of evolution approximation and to develop
(efficient) algorithms to compute ‘optimal’ approximations.
We have proposed a novel notion of sound s-approximation
that captures evolution results better than sound approxima-
tions previously considered in the evolution context, and that
preserve queries that may be lost by regular approximations.
We have provided polynomial-time algorithms that compute
maximal sound s-approximations for classical and several
trust-sensitive MBAs. Our algorithms work either directly
on trust-sensitive evolution settings or they can be utilised as
subroutines to reduce evolution from trust-sensitive to classi-
cal settings. We see these algorithms as a starting point for
developing efficient procedures for automated knowledge up-
date and revision. We also believe this work is a timely contri-
bution for the Semantic Web, where applications may depend
on third-party information that is only partly trusted.
Future Work. We plan to address the following prob-
lems. It is open whether our results for total trust (Theo-
rem 16) and assertion trust (Theorem 19) can be extended
from DL-Litecore to DL-Lite, while we conjecture that they
hold for DL-Lite without functionality assertions. It is also
open whether Theorem 20 holds for selectors other than La

{}.
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