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ABSTRACT
Rule-based diagnostics of equipment is an important task in in-

dustry. In this paper we present how semantic technologies can

enhance diagnostics. In particular, we present our semantic rule lan-

guage sigRL that is inspired by the real diagnostic languages used

in Siemens. SigRL allows to write compact yet powerful diagnostic

programs by relying on a high level data independent vocabulary,

diagnostic ontologies, and queries over these ontologies. We study

computational complexity of SigRL: execution of diagnostic pro-

grams, provenance computation, as well as automatic veri�cation

of redundancy and inconsistency in diagnostic programs.

CCS CONCEPTS
• Information systems → Enterprise information systems;
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1 INTRODUCTION
Motivation. Diagnostic systems play an important role in indus-

try since they help to maximise equipment’s up-time and minimise

its maintenance and operating costs [19]. In the energy sector com-

panies like Siemens often rely on rule-based diagnostics to anal-

yse power generating equipment by, e.g., testing newly deployed

electricity generating gas turbines [15], or checking vibration in-

strumentation [17], performance degradation [18], and faults in

operating turbines. For this purpose diagnostic engineers create and

use complex diagnostic rule-sets to detect equipment abnormalities.

An important class of rules that are commonly used in Siemens

are signal processing rules (SPRs) that allow to (1) �lter, aggregate,
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combine, and compare signals1
coming from sensors installed in

equipment and (2) �re noti�cation messages when a certain pattern

in signals is detected. Authoring and maintaining SPR based rule-

sets is a challenging problem. We now give an example of SPRs,

discuss the challenges in mode details, and present our solutions.

Example 1.1. Consider the purging diagnostic task: Verify that
the purging2 is over in the main �ame component of the turbine T1.
Intuitively this task requires to check in the turbine T1 that: (i) the

main �ame was on for at least 10s and then stopped, and (ii) the

purging of rotors in the starting-component of T1 started, (iii) 20s

after this, the purging stopped. The fact that the purging of a rotor

started or ended can be detected by analysing its speed, that it, by

comparing the average speed of its speed sensors with purging

thresholds that are speci�c for individual rotors. Step (ii) can be

written using Siemens SPRs as follows:

$PurgStartRotor1 : truth(avg(‘S21R1T1’, ‘S22R1T1’, ‘S23R1T1’), > 1.300).

Here, the �rst rotor in the starting-component of T1 has three speed

sensors ‘S21R1T1’,‘S22R1T1’, and ‘S23R1T1’ and the rotation speed

of 1.300 indicates that the purging started. �

Challenges with Authoring SPRs. The main challenge for au-

thoring is that SPRs in most of existing diagnostic systems including

the ones used in Siemens are highly data dependent in the sense that

speci�c characteristic of individual sensors and pieces of equipment

are explicitly encoded in SPRs. As the result for a typical turbine

diagnostic task engineers have to write from dozens to hundreds of

SPRs that involve hundreds of sensor ids, component codes, sensor

and threshold values as well as equipment con�guration and design

data. For example, a typical Siemens gas turbine has about 2,000

sensors and the purging diagnostic task for it requires around 300

SPRs, most of which are similar in structure but di�erent equipment

speci�c data values. Thus, there is a need in industry, and in par-

ticular in Siemens for a higher level diagnostic rule language that

allows to express what the diagnostic task should do rather than

how it should do it for speci�c equipment. Such language should

be high level, data independent, while powerful enough to express

in a concise way most of typical diagnostic tasks in Siemens.

1
Signals are are time stamped sequences of measurement values.

2
Purging is the process of �ushing out liquid fuel nozzles or other parts which may

contain undesirable residues.

Short Paper CIKM’17, November 6-10, 2017, Singapore

2131



Challenges with Management of SPRs. Development of a di-

agnostic rule-set in Siemens is typically a collaborative and open-

ended process by a group of diagnostic engineers. Thus, the en-

gineers may introduce rules that either repeat what other rules

already express or contradict them, i.e., by stating that purging is

‘over’ while the other rules say that is it ‘in progress’. The former

problem of redundancy in diagnostic rule-sets a�ects the perfor-

mance of diagnostics and the latter of inconsistency among rules

makes diagnostic results counter-intuitive and unreliable. More-

over, the larger the rule-set gets, the harder it becomes to trace

the provenance of the messages it �res which again a�ects the re-

liability of diagnostic results. Thus, there is a need in Siemens for

semi-automatic rule management support that includes detection of

redundancy and inconsistency in rule sets, as well as computation

of provenance for diagnostic results.

Our Solution. We rely on semantic technologies to address the the

above mentioned challenges. In particular we rely on ontologies [2]

to de�ne a novel SPR language and on reasoning [5] over ontologies

to foster execution and maintenance of diagnostic tasks. In short,

an ontology is a formal conceptualisation of the domain of interest

that consists of a vocabulary, i.e., names of classes, attributes and

binary relations, and axioms over the terms from the vocabulary

that, e.g., assign attributes of classes, de�ne relationships between

classes, compose classes, class hierarchies, etc. Since ontologies are

speci�ed using a formal logical language such W3C standardised

ontology web language OWL 2, one can query ontologies and

check their properties using reasoning that typically corresponds

to logical entailment and implemented in many e�cient state-of-

the-art reasoning systems. We refer the reader to [2] for more details

on ontologies and reasoning and to [9, 10, 12–14] to our previous

studies of the semantic diagnostic problem.

In order to address the authoring challenge we propose:

• an SPR language sigRL that treats signals as �rst class

citizens and allows to process signals (�lter, aggregate,

combine, and compare signals) in a high level, declarative,

and data independent fashion;

• semantic diagnostic programs that combine sigRL rules

with diagnostic background knowledge captured using

ontologies and allow to express complex diagnostic tasks

in an abstract fashion by exploiting both ontological vo-

cabulary and queries over ontologies to identify relevant

information (such as sensor ids and threshold values) about

the equipment that should undergo the diagnostics.

In order to address the management challenge, we

• proposed how to execute diagnostic programs, verify re-

dundancy and inconsistency in diagnostic programs, and

to compute provenance that explains the reasons for diag-

nostic results.

Note that we designed sigRL in such a way that, on the one

hand, it captures the main signal processing features required by

Siemens turbine diagnostic engineers and, on the other hand allows

for e�cient execution and management of diagnostic programs.

Moreover, we believe that our approach is generic enough to �nd

its pathways in other diagnostic applications, e.g., for other type of

complex equipment of networking [11].

Related Work. Recent e�orts have been made to extend semanti-

cal languages with temporal concepts, e.g., [1, 3]. More prominently,

DatalogMTL which allows operations on time intervals and favor-

able computational properties, was presented in [4]. While such

language are very powerful in terms of modeling time-dependent

rules, the authors do not consider yet the integration of such rules

in analytical functions that are crucial for diagnostic analysis. Still

results from these work can help us in understanding the modeling

of the temporal dimension. Finally, there is a body of work on rule-

driven diagnostics of distributed systems, e.g. [6, 11]. Relation of

our work to this approaches requires further investigation.

2 SIGRL DIAGNOSTIC LANGUAGE
In order to capture diagnostic tasks we propose the sigRL language

that allows to specify diagnostic programs and message rules, and

combine them with ontological axioms.

Diagnostic Programs. In our language sigRL, a (diagnostic) pro-
grams Π = (D, Σ) consisting of two layers: data layer D and rule
layer Σ. Intuitively, the data layer keeps all the data of interest: sig-

nals and details of concrete equipment; the rule layer manipulates

the data layer using rules and ontological axioms that are generic

for turbines.

The data layer D = (S,A) consists of two components: basic
signals S which represent signal data and class assertions A which

de�ne, for instance, types of sensors and asserts types of turbine

components, e.g., as follows:

ClassAssertion(RotorSensor ‘S21R1T1’).

In our setting, a signal s is a �rst-class citizen and de�ned as a pair

(os , fs ) where os is sensor id and signal function fs de�ned on R
to R ∪ {⊥}, where ⊥ denotes the absence of a value. We assume

that we are given a �nite set S = {s1, . . . , sn } of basic signals that

are readings obtained from a single sensor (e.g., in a turbine) for

di�erent time points.

The rule layer Σ = (C,O) contains signal processing expressions

C and ontological axioms O. Signal expressions �lter and manip-

ulate basic signals and create new more complex signals. In our

language we group signals in basic (ontological) concepts and signal

expression are de�ned on the level of concepts. Formally, a signal
processing expression is recursively de�ned as follows:

C ← α ◦C1 | agg C1 |

C1 : filterValue(�,α ) | C1 : filterTime(�,α ) |

C1 : �lterAlign C2 | C1 : trending(direction).

whereC,C1,C2 are concepts, ◦ ∈ {+,−,×, /},α ∈ R, agg ∈ {min,max,
avg, sum}, � ∈ {<, >, ≤, ≥},�lterAlign ∈ {within, a�er[t], before[t]}
where t is a period and direction is either {up, down}.

The semantics of expressions is as follows. If C = α ◦C1 then C
contains one signal s ′ for each signal s in C1 with function de�ned

with fs ′ = α ◦ fs , or if C1 : filterValue(�,α ) then C contains one

signal s ′ for each signal s in C1 with fs ′ (t ) = α � fs (t ) if fs (t ) � α
at time point t ; otherwise fs ′ (t ) = ⊥. Due to the lack of space we

illustrate other constructs of expressions with an example.

Example 2.1. The following expression de�nes the start of a

purging process from the running example:

PurgingStart = avg mainSpeedSensor : filterValue(>, purgingSpeed) (1)

Intuitively, this rule computes a new signal from a given one s
in a bottom-up fashion. First, it computes avg mainSpeedSensor
by creating new auxiliary signal s ′′ with signal function fs ′′ (t ) =
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avgs ∈C1

fs (t ), i.e., the signal takes an average at each time point t .
Then, using �lter filterValue(>, purgingSpeed) it creates s ′ from s ′′

by taking only values greater than purgingSpeed. Formally, fs ′ (t ) =
fs ′′ (t ) if fs ′′ (t ) > purgingSpeed; otherwise fs ′ (t ) = ⊥. �

Ontological axioms O describe general characteristics of power

generating equipment which includes partonomy of its components,

characteristics and locations of its sensors, etc. As an example con-

sider the following ontological axioms that says that RotorSensor
is a kind of SpeedSensor:

SubClassOf (RotorSensor,MainSpeedSensor). (2)

In order to guarantee e�ciency of diagnostics with sigRL, we con-

sider a tractable ontology language OWL 2 QL [5] that is standard-

ised by W3C and allows to express subclass (resp. sub-property)

relationship between classes and projections of properties (resp.

between properties).

Message Rules. On top of diagnostic programs Π sigRL allows

to de�ne message rules that report the current status of a system.

Formally, they are de�ned as Boolean combinations of signal pro-

cessing expressions:

msg(m) ← D, where D := C | not D1 | D1 and D2.

Example 2.2. In order to complete our running example in sigRL
we now de�ne PurgingStop signal processing expression in (3) and

then a message rule in (1):

PurgingStop = avgmainSpeedSensor : filterValue(<, nonPurgSpeed) (3)

msg(“Purging over”) = FlameSensor : filterTime(>, 10s ) and

PurgingStart : after[20s] PurgingStop. (4)

Semantics of sigRL. We extend �rst-order interpretations that

are used to de�ne semantics of OWL 2 QL axioms. In sigRL, an in-
terpretation I is a pair (IFOL,IS ) where IFOL interprets objects and

their relationships (like in OWL 2 QL) and IS interprets signals. For

brevity, we immediately de�ne when an interpretation I is a model
of a program Π = ((S,A), (C,O)). First, we de�ne how I inter-

prets data layer. For the given set of signals S: SI = {sI
1
, . . . , sIn }

such that IFOL ‘returns’ the signal id, sIFOL = os and IS ‘returns’

the signal itself, sIS = s . For each object o inA we de�ne oIS as s if

o is the id of s from S; otherwise (o, f⊥) where f⊥ (t ) = {⊥}, for all

t ∈ R. Then we de�ne when I “models” the rule layer. In particular,

OI extends the notion of �rst-order logics interpretation as follows:

OIFOL is a �rst-order logics interpretation O consistent withAIFOL ,

i.e., IFOL |= (O,A); and OIS is de�ned for objects, concepts, roles

and attributes following SI and AI . For example, for a concept

A we de�ne AIS = {sIS | oIFOLs ∈ AIFOL }. Finally, I models C if it

satis�es all signal expressions; and this can be de�ned recursively in

a button-up fashion following the de�nition dependencies between

them. For example, if C = agg C1 then CIS = {(oagg,C1
, fagg,C1

)}

such that fagg,C1
(t ) = agg{ fs (t ) | s ∈ C

IS
1
}. And similarly, one can

de�ne satis�ability for the other expressions.

3 EXECUTION AND MAINTENANCE OF
DIAGNOSTIC PROGRAMS

In this section, we discuss the computational tasks of interests.

Assume we are given a program Π = (D, Σ). For brevity, for a

message head msg(m) we simply usem (the text of the message).

Firing amessage. Letm be a message ofmsg(m) ← D. A principal

reasoning task is to determine whether Π �res a messagem. We say

that Π �resm, written Π |=m, if for each model I of Π it holds that

DI = true. Here, DI evaluates as a Boolean expression starting

from the concepts: if D = C then DI = true i� CI , ∅; and I

extends over logical operators and and not naturally.

Our programs enjoy the canonical model property, i.e., each pro-

gram has a unique (Herbrand) interpretation [2] which is minimal

and can be constructed starting from a data layer and extending

over the rule layer. We now illustrate this on the running example.

Example 3.1. Consider our running program Π composed of

rules and axioms from the examples in the paper. Let Ican be its

canonical interpretation. (i) First, we form the dependency graph

among concepts and evaluate one by one starting from leaves. In our

case, we start by evaluating basic concept rotorSensor that collects

all rotor sensor ids. (ii) Then, we evaluate other ontological con-

cepts. In particular, we evaluate (2), and populate mainSpeedSensor
with sensors from rotorSensor. (iii) Once we �nish with onto-

logical evaluation, we start evaluation signal expression. In this

case, we evaluate the expression from Equation (1), again in a

bottom-up fashion. Imagine that rotorStartIcan contains sensor ids:

‘S21R1T1’, ‘S22R1T1’ and ‘S23R1T1’. At the same time, those sen-

sors have signal functions assigned from SIcan . Let us call them

f1, f2 and f3. Expression avg rotorStart computes a new signal, say

s4, by taking average of f1, f2 and f3 at each time point. After this,

filterValue(>, purgingSpeed) eliminates all values of s4 that are not

> purgingSpeed. Similarly, we compute signal transformations for

the expression from Equation (3). (iv) Finally, we use those two

expressions to evaluate the Boolean expression of Message (4). The

message is �red if: there exists at least one signal in FlameSensor
being active for >10 sec, and (3) starts within 20 sec after (1). �

Thus, one can check “DI” only on the canonical model. This

implies that one can interpret sigRL programs and messages in a

bottom-up fashion.

Redundancy of messages. One of the critical problems of the

rules maintenance is redundancy. To analyse this problem, the sim-

plest test is to understand whether one message is always �red

when another message is �red. In order to make sure that redun-

dancy check is data independent, that is, it holds in general and

not only for a given data set (which may change), we check re-

dundancy only on the rule layer of a program. Formally, given

messages m1 and m2 we say that m1 is implied by m2 over the rule

layer Σ, written Σ |=m1 ⇒m2, if for every data layer D we have

that if (D, Σ) |=m1 then (D, Σ) |=m2. This implication is closely

related to the problem of query containment with aggregates over

constraints studied in database theory. Already query containment

of SQL queries without aggregates is a very di�cult task (in fact it

is undecidable). Containment with aggregates has been partially

studied in a limited settings [7], without negation and nesting. For

this reasons, we simplify the de�nition of redundancy by assuming

that aggregates do not change the signal. This obviously eliminates

the problem of reasoning over aggregates and numeric functions

(e.g., of checking whether filterValue(>, 20) ⇒ filterValue(>, 10)
holds). Moreover, in order to avoid exponential generation of new

interval in signal rules (see, [4]), we assume that signal functions

are step functions over uniform size intervals and that signal ex-

pression are following this interval granularity when de�ning new
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Complexity Data Combined

Firing AC
0

PTime

Redundancy n.a. coNP-c

Consistency n.a. coNP-c

Provenance PTime PTime

Table 1: Computational complexity; ‘-c’ means ‘complete’.
signals. Under these assumptions, one can verify whether there is

a redundancy between two message rules by unfolding bodies of

these rules following the signal expressions, turning the resulting

expressions into propositional boolean formulae, and by checking

that they are jointly satis�able.

Consistency of messages. Another important task in rule main-

tenance is checking if two messages are behaving consistently with

their meaning. In particular, we check whether for a given rule

layer we do not have the case that two messages of an opposite

meaning are �red at the same. For instance, we want to ensure that

we composed rules such that our system is not �ring that “rotor

is overheating” and “rotor is not overheating.” Analogously to re-

dundancy, we do such check independently of data, that quantify

consistency for any data layer. Formally, given messages m1 and

m2, that should not �re simultaneously, we say thatm1 is consistent
with m2 over the rule layer Σ, written Σ |= consist(m1,m2) if for

every data layer D we have that if (D, Σ) |=m1 then (D, Σ) 6 |=m2

and vice versa. We observe that the consistency problem can be

reduced to redundancy and vice versa. Namely, let m2 ← D and

m¬
2
← not D, then Σ |= consist(m1,m2) i� Σ |= m1 ⇒ m¬

2
. Hence,

one can check consistency by adapting the procedure for checking

redundancy.

Provenance ofmessages. Finally, we consider another important

practical task: when a message is �red a diagnostic engineer would

like to know the reason for this. For example, which signals caused

the �ring. In this case, we are interested in �nding minimal (w.r.t.

set inclusion) sub-programs of Π that �re the message. Notice that

there may exist several such minimal sub-programs. One of these

can be computed by iteratively removing all super�uous axioms,

until only relevant ones remain [8].

ComputationalComplexity. Now we analyze the computational

complexity of each of the tasks above. We refer to these tasks

as: Firing, Redundant, Consistency and Provenance. For Firing and

Provenance, we distinguish between data and combined complexity.

Data complexity is the complexity of a problem when all parameters

are �xed except for the data layer.

The complexity results we obtained are summarized in Table 1.

In the following we provide intuitions for each of the tasks. The

bottom up approach for �ring messages gives that the problem of

�ring a message can be decided in PTime in combined complexity

for the following reasons. (i) For each concept classi�cation in OWL

2 QL can be computed in PTime [5], and each basic concepts has at

most polynomial many subconcepts in OWL 2 QL. (ii) Each �lter

and arithmetic operation in signal expressions can be computed

in PTime. Only the PTime complexity of alignFilter is not obvious

because it is operating on two concepts at the same time, however,

since it outputs only signal from the �rst concepts concatenating

such �lters is still in PTime. (iii) Finally, evaluating Boolean ex-

pressions is in also in PTime and thus it is �ring a message as well.

The problem of �ring is in AC
0

in data complexity since we can

create one (large) �rst-order logic query [5] by unfolding Boolean

expressions, signal expressions and ontology and then checking

�ring as query evaluation. Regarding redundancy and consistency,

the membership in coNP follows from veri�cation approach we

proposed, and the hardness from coNP-hardness of unsatis�ability

problem for Boolean formulas. For provenance, the PTime upper

bound for deciding �ring of rules implies that one minimal sub-

program that �res them is computable also in polynomial time.

However, computing all of them, or just those of minimal size is

known to be a harder problem [16].

4 CONCLUSIONS
In this work we presented an ongoing work that aims at both a

high level diagnostic language and a system that can support both

authoring and maintenance of diagnostic programs. We have al-

ready implemented some of our ideas [12, 13]. Our future work

includes: evaluation of our proposal both with users and for scal-

ability; extension of our results on redundancy to cover the case

of unrestricted programs; other important maintenance task for

diagnostic programs, e.g., automatic debugging.
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