
SemFacet: Making Hard Faceted Search Easier
Evgeny Kharlamov
University of Oxford

evgeny.kharlamov@cs.ox.ac.uk

Luca Giacomelli
Sapienza University of Rome
giacomelli.1543147@studenti.

uniroma1.it

Evgeny Sherkhonov
University of Oxford

evgeny.sherkhonov@cs.ox.ac.uk

Bernardo Cuenca Grau
University of Oxford

bernardo.cuenca.grau@cs.ox.ac.uk

Egor V. Kostylev
University of Oxford

egor.kostylev@cs.ox.ac.uk

Ian Horrocks
University of Oxford

ian.horrocks@cs.ox.ac.uk

ABSTRACT
Faceted search is a prominent search paradigm that became the stan-
dard in many Web applications and has also been recently proposed
as a suitable paradigm for exploring and querying RDF graphs. One
of the main challenges that hampers usability of faceted search
systems especially in the RDF context is information overload, that
is, when the size of faceted interfaces becomes comparable to the
size of the data over which the search is performed. In this demo we
present (an extension of) our faceted search system SemFacet and
focus on features that address the information overload: ranking,
aggregation, and reachability. The demo attendees will be able to
try our system on an RDF graph that models online shopping over
a catalogs with up to millions of products.

CCS CONCEPTS
• Information systems → Enterprise information systems;

KEYWORDS
Faceted Search, Aggregation, Recursion, Ranking

1 INTRODUCTION
Faceted search is a prominent search paradigm that became the
standard in many Web applications including online shopping and
real-estate portals1, where users can progressively narrow down the
search results by applying �lters, called facets [22] which are organ-
ised in faceted interfaces. Faceted search has also been proposed in
the Semantic Web context as a suitable paradigm for exploring and
querying RDF graphs and a number of RDF-based faceted search
systems have been developed [4, 6, 11, 13–18, 20].

One of the main challenges that hampers usability of faceted
search systems is information overload [22]: when the size of the
faceted interface becomes comparable to the size of data over which
the search is performed. The overload is already a challenge in the
case of the classical faceted search. Consider in Figure 1, left, a
screenshot from Amazon.co.uk with a fragment of the faceted in-
terface that one gets using the keyword ‘Samsung’. The complete

1E.g., amazon.com, booking.com, rightmove.co.uk and immobilescout24.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17, November 6–10, 2017, Singapore.
© 2017 ACM. ISBN 978-1-4503-4918-5/17/11. . . $15.00
DOI: https://doi.org/10.1145/3132847.3133192

Fa
ce

t

Figure 1: Faceted interface of Amazon.

faceted interface contains dozens of facets, including Price and
Seller, some of which have up to thousands of values. E.g., the facet
Seller has pages of values that Amazon organises alphabetically as
shown in Figure 1, right. There are many ways in which the infor-
mation overload can be addressed for classical faceted interfaces
including ranking of facets and their values and various compact
data representations such as value ranges, groups, sliders.

The information overload becomes even stronger when faceted
search is applied to RDF data. Indeed, observe that in both classical
and RDF settings the search is over annotated entities, at the same
time, in the latter case the number of annotations and possible
values is typically much larger: any predicate occurring in an RDF
data set can give a facet during a search, and any entity or value
that it points to in the RDF data can become a value in this facet.
At the same time, in the classical case the list of possible facets is
typically prede�ned and controlled.

Moreover, di�erently from the classical case, in the RDF settings
entities are also interconnected. Thus, in an RDF driven faceted
interface one has to nest facets in order to re�ect this interconnec-
tions. In Figure 2, left, one can see a possible way to nest facets
which is implemented in our SemFacet system. This not only raises
a non-trivial problem of how to arrange nested facets within an
interface in an intuitive and user oriented way, but also leads to an
unavoidable overload of the interface with various paths of nested
facets. Thus, faceted navigation over RDF requires from users to be
experts in the structure of the underlying RDF graph in order to be
able to �nd the required facet which can be deeply nested.

Amazon.co.uk
amazon.com
booking.com
rightmove.co.uk
immobilescout24.de

ANY

Processor

Laptop
SmartPhone

Searchphone

type

hasPart

keywords

facet predicate

Samsung Galaxy S8
Galaxy S8 is a phone that offers an exceptional
experience for any user. The large screen is a real
turning point in flagship phone design and should usher
in the end of large bezels, and the camera and slick
performance work brilliantly under the finger.

answer
withHQ

producedBy
ANY

ANY

facet values

price

inCountry

ANY

inContinent

ANY

North America
Asia

1.600500 900

Search Task:
Find smartphones
▪ whose processor
▪ is manufactured by a

company
▪ with headquarters in Asia
▪ and whose price is within

£500-£900
0

ANY

Processor

Laptop
SmartPhone

Searchphone

San Diego
Suwon

type

hasPart

withHQ

producedBy

Reachable facets

refocussed answer

maxprice

0 1.600

aggregate facets

refocusing

enter facet

ANY

Exycon 8 Processor
Galaxy S8 is built around the new Exynos 8895,
featuring new custom CPU cores, new Mali GPU, and
with the whole thing fabricated via a cutting-edge 10nm
process intended to maximize performance and power
efficiency.

ANY

500 900

(8.270)

(5.850)

(2.490)

(1.800)

(630)

(8)

(5)

Search Task:
Show me processors of smartphones
▪ whose processor
▪ is manufactured by a company
▪ with headquarters in Asia
▪ and whose max price among

providers is £500-£900

inContinent
Asia
N. America

(1)

(3)

Figure 2: Left: SemFacetwith deep nesting over RDF data; Right: SemFacet enhancedwith ranking, aggregation, and reachability

In order to see why it might be hard to �nd a required nested
facet, consider in Figure 3 an example RDF data. Assume that one is
looking for a smartphone with the price within £500–£900 and the
processor that is manufactured by a company with headquarters in
Asia. One can see in Figure 3 that Samsung S8 is such a smartphone.
At the same time, �nding this smartphone via a faceted interface
requires one to traverse the data via 4 nested facets (Figure 2, left).

In our RDF-based faceted search system SemFacet we propose
to address the information overload by

• ranking facets and their values and thus o�ering to users
top-k most prominent facets and values;

• minimising the number of values within a facet by �rst
grouping them according to the corresponding entities
and then aggregating them with the standard aggregate
functions max, min, count, sum, avg;

• shortcutting paths of nested facets with the help of a reach-
ability operator.

Observe in Figure 2, right, the SemFacet interface where all
these three features are incorporated. The facets and values are
now ranked and only the top 10 of them are displayed. The users can
choose whether to look for a maximal price of entities by activating
aggregate functions within facets with numerical values. In the
screenshot the user selected max and thus the system is searching
for smartphones whose maximal price across providers is within the
range £500–£900. Finally, the users can enter the name of a desired
predicate instead of choosing a facet value in order to ask the system
to �nd a shortcut (a reachable facet). In the screenshot the user
entered inContinent instead of selecting SanDiego or Suwon.

Demo Overview. The goal of the demonstration is to show the
attendees how our novel features, that is, ranking, aggregation, and
shortcutting, make hard faceted search—over RDF datasets that are
highly interconnected and with many data values—easier. In order
to experience the impact of these features the attendees will be able
to explore the demo dataset using two versions of our SemFacet
systems: with and without the features.

Delta from Previous Demos. Earlier versions of SemFacet were
presented at [3, 5, 7–9, 12]. The current demo focuses on the novel
features (ranking, aggregation, reachability) and their bene�ts.

2 SEMFACET SYSTEM
We �rst give an overview of SemFacet with the focus on its novel
components and then present technical details behind ranking,
aggregation, and shortcuts.

System Overview. SemFacet is implemented in Java and available
under an academic license [1]. In Figure 4 there is the architecture
of SemFacet where the arrows denote the data �ow between the
systems’ components.

On the client side, SemFacet has an HTML 5 based GUI con-
sisting of three main parts: a free text search box for keywords, a
hierarchically organised faceted interface, and a scrollable panel
containing snippet-shaped answers. User keywords are sent by
the client to the server, evaluated and this gives the initial faceted
interface. User selections in the faceted interface are compiled into
a SPARQL query using the SPARQL query constructor and then sent
to the server for evaluation. The snippet composer and facet com-
poser receive information about facets and answers that should be
displayed to the user and update the currently displayed interface
and query answers. The system updates the faceted interface incre-
mentally: only the parts of the interface that are a�ected by users’
actions are updated, which allows for a signi�cantly faster response
time. The user is able to do refocusing. This feature of SemFacet can
be observed in Figure 2, right, where the user can click on a box in
the hasPart facet to change the answers from phones to their parts,
that is, from Samsung S8 to its processor Exycon 8.

On the server side, the system relies on an in-memory triple
store RDFox [21]2 to store the inverted index, input RDF data,
query answers, and all necessary auxiliary information such as
materialisation rules which we discuss later in this section. One of
the server components is an inverted index based full-text search
engine; in order to ensure a better integration between full-text and
faceted search and thus achieve good e�ciency of SemFacet we
implemented our own search engine. Another backend component
is snippet composer that for given answer entities retrieves their
textual descriptions, images, and links. The next component is facet

2RDFox is an in-memory RDF triple store that supports shared memory parallel Datalog
reasoning. It is written in C++ and comes with a Java wrapper allowing for a seamless
integration with Java-based applications.

:SamsungS8

800 900

:Exynos

290 270

:Samsung :Suwon :S.Korea

:AsiaSmartphone Processor Company

:HP Elite X3

730

:Snapdragon

300280

:�alcomm :SanDiego :USA

:NorthAmerica

type

type

type

type

type

type

price price

hasPart producedBy withHQ inCountry

inContinent

price price

price

hasPart producedBy

priceprice

withHQ inCountry

inContinent

Figure 3: Example RDF graph about products

generator that constructs faceted interfaces in response to user
actions. This component is backed by four handlers: aggregation,
shortcuts, ranking, and ranges. The range handler computes and
stores left and right bounds for the range sliders for numerical facet
values, like the price-slider in Figure 2, that correspond to the lower
and upper bounds of possible values for this property name in the
underlying RDF data.

Ranking facets. Whenever SemFacet updates the interface it
should decide in which order to present relevant facets. This is
done in two steps. First, we compute the set S of all relevant facets
that should be displayed in the same level of nesting. Assume that
S has n facets. Then, for each of n! possible orderings of S we
�nd the optimal order using the following scoring function f and
SemFacet displays the facets from S (or some of them) according
to this order. Let O = [F1, . . . , Fn] be a possible ordering of S . Our
function f computes the score of O by combining the following
three characteristics of O :

(1) selectivity of facets in O ,
(2) diversity of facets in O , and
(3) nesting depth of facets in O .

In particular, for (1) we prefer those facets that are more selective,
i.e., ticking values in the facet narrow down the search result more
rapidly than doing so in other facets. For (2), we prefer those facets
that lead to results which are not covered by selecting other facets.
Finally, for (3), we prefer facets that allow deeper nesting thus
allowing explore the graph structure of the underlying data. We
now de�ne the functions corresponding each of (1)-(3) and then
combine them into the �nal scoring function f .

Let F denote a facet,A the set of current answers, r (F) ⊆ A the
set of answers obtained by selecting any value in F , and d > 0 a
prede�ned threshold parameter for nesting depth. To account for
(1), we compute the selectivity score of F given A as follows:

sel(F ,A) = 1 − log |A | |r (F) |.

In particular, the less search results is obtained by applying F , the
higher the selectivity score of F is. To account for (2), we consider
a variation of the Set-Cover ranking [10] to compute the overlap
score of Fi ∈ O w.r.t. O as follows:

overlap(Fi ,O) =
1

n × |r (Fi) |

n∑
j=1
| r (Fi) \

j⋃
m=1,m,i

r (Fm) |

In particular, a high overlap score of facet Fi means that selecting
values in it leads to results that are not present in the �rst highly

RDF Data, Rules

Client

ServerSnippet
Generator

Search
Engine

Aggregation
Handler

Ranking
Handler

Range
Handler

Shortcuts
Handler

Facet Generator

SPARQL Q.
Constructor

Facet
Composer

RDFox: Storage and Query Execution

Processor

Laptop
SmartPhone

type

hasPart

(8.270)

(5.850)

(2.490)

Exycon 8 Processor
Galaxy S8 is built around the new Exynos 8895,
featuring new custom CPU cores, new Mali GPU, and
with the whole thing fabricated via a cutting-edge 10nm
process intended to maximize performance and power
efficiency.

Snippet
Composer

phonephone

Figure 4: Architecture of SemFacet

ranked facets. Thus, highly positioned facets (according to the
overlap score) provide more diverse results. To account for (3), we
compute the depth score depth(F ,d) of F given d as the minimum
between d and the maximal length of nesting starting with F . Thus,
the depth score prioritises those facets that are more interesting
from the graph navigation point of view. Finally, we obtain f :

f (O,k,A,d) =
k∑
i=1

sel(Fi ,A) × overlap(Fi ,O) ×
depth(Fi ,d)

i
.

Note that SemFacet does not compute f for each possible order
of S since going through n! orderings is impractical, instead we
developed an approximation algorithm that computes a nearly
optimal ordering.

Ranking facet values. Besides ranking of facets, it is important
to rank facet values as well. We adopt the count-based ranking (see
also [19, 23]): facet values that lead to a larger number of results are
ranked higher. Although the computation of counts is conceptually
trivial, the main challenge is in their update. Indeed, the integers
associated to each facet value in the interface must be updated every
time the user interacts with the faceted interface without a�ecting
the performance of the system. Additional challenges come from
(i) graph structure of the data and (ii) interplay of conjunctive
and disjunctive interpretation of facet values. In our experience,
implementing the straightforward approach to updating counts
leads to a signi�cant increase of the user interface response time.
To mitigate this problem, we adopted a multi-threading solution:
each thread receives a set of facet values for which counts need to be
updated and, additionally, the load among the threads is balanced.
For instance, we avoid the situation when one thread is busy with
updating counts for values with a high number of results only,
while another gets away with updating counts for values with a
low number of results. This approach led to a signi�cant response
time decrease.

Aggregation. Recall that every interface update performed by the
user (i.e., refocusing, selection of a facet or a facet value) results in
formulating a corresponding SPARQL query on the �y that is then
issued to RDFox. Then the interface is updated (i.e., with search
results and available facets at this point) depending on the result of
this query. When aggregate facets are considered, it is possible to
follow the same approach and formulate aggregate SPARQL queries.
However, we decided to do materialisation of aggregate informa-
tion at loading time instead since (1) RDFox, our back-end system,

supports e�cient materialisation of aggregate information and,
more importantly, (2) non-aggregate SPARQL queries are usually
faster to answer which is essential for responsive user interface
updates.

RDFox performs materialisation via the use of aggregate Datalog
rules. We give an example how the max aggregate facet is created
for the facet price from Figure 2, right. Suppose that input RDF
graph contains facts about the property price. Then at data loading
time, RDFox �res the following aggregate Datalog rule

price_max(?X, ?N) : − price(?X, ?Z),
AGGREGATE(price(?X, ?Y) ON ?X BIND MAX(?Y) as ?N),

which means it materialises aggregate property price_max, i.e., it
adds to the store facts of the form price_max(?X, ?N) where for
each node ?X in the graph we store the numeric literal ?N that is
the maximum among all numeric literals price-related to ?X. Then
the materialised aggregate property is treated as a regular property.
In particular, since such aggregate properties are numeric, they are
presented as value ranges as discussed earlier.

Reachability. SemFacet provides the shortcut functionality de-
scribed in Section 1. In the user interface, SemFacet o�ers a search
box within each facet that allows users to search for reachable
facets. As the user has typed in a facet name F in the box, the sys-
tem checks if such a facet is reachable from the current facet. For
this we perform breadth-�rst search to �nd all reachable nodes with
an outgoing property F and we store corresponding witnessing
paths. These paths are important in constructing the correspond-
ing SPARQL query for fetching possible facet values for F and
for further facet navigation. For a faster response time, we pre-
de�ne a parameter B and check facet reachability up to length B
instead. In our example, in Figure 2 (right) the user can search for
the inContinent facet, which in this case is reachable within 2 steps,
and then select ‘Asia’, thus selecting processors produced by an
asian company.

3 DEMONSTRATION SCENARIOS
We now describe the demo dataset and scenarios.

Dataset. The bene�ts of our ranking, aggregation, and reacha-
bility components can be best witnessed on RDF datasets that are
highly interconnected and with many data values. We prepared
such RDF dataset that describes a product catalog of an online
shop and contains geographical locations, designers, companies
that produce and companies that manufacture products, as well as
the actual products of 1.000 types described with 200 data proper-
ties, and interconnected with 100 object properties. In the data the
average path (without repetitions) from each product is of length 10.
Such paths intuitively represent compatibility between products,
their relations to manufacturers, and the locations where they can
be purchased or collected. In data preparation we used the data
generator of WatDiv [2].

Scenario 1: Shopping. We have prepared 10 search scenarios that
re�ect typical online shopping. They are analogous to the search
tasks in Figure 2. In these taks the attendees will have to �nd the
right keywords to initialise the faceted search, the right facets from
which to explore reachable facets, and also the right refocussing of
answers.

Scenario 2: Market Analyses. For this scenario we prepared 10
tasks that mimic the search which is typically done by market-
ing companies that explore and aggregate data at the same time.
Consider examples of three such tasks:

(T1) �nd smartphones with the minimal price in the UK at most
£300 and with the maximal delivery time of 5 days;

(T2) �nd companies producing at least ten di�erent models of
smartphones with high resolution cameras;

(T3) �nd the most popular batteris of Korean smartphones that
were manufactured from 2008 to 2015.

In this and in previous scenarios the attendees will see the impact
of our ranking, aggregation, and shortcutting by using SemFacet
with and without these features.

Acknowledgement. This work was supported by the Royal Soci-
ety under a University Research Fellowship and the EPSRC under
an IAA award and the projects DBOnto, MaSI3, ED3, and VADA.

REFERENCES
[1] SemFacet Project Page. http://www.cs.ox.ac.uk/isg/tools/SemFacet/, 2017.
[2] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversi�ed

stress testing of RDF data management systems. In ISWC, pages 197–212, 2014.
[3] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,

and Dmitriy Zheleznyakov. Towards Semantic Faceted Search. In Proc. of WWW
(Companion Volume), pages 219–220, 2014.

[4] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
and Dmitriy Zheleznyakov. Faceted search over RDF-based knowledge graphs.
J. Web Semantics, 37:55–74, 2016.

[5] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
and Dmitriy Zheleznyakov. Enabling Faceted Search over OWL 2 with SemFacet.
In Proc. of OWLED, pages 121–132, 2014.

[6] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
and Dmitriy Zheleznyakov. Faceted Search over Ontology-Enhanced RDF Data.
In CIKM, pages 939–948, 2014.

[7] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
Dmitriy Zheleznyakov, and Ernesto Jiménez-Ruiz. SemFacet: Semantic Faceted
Search over Yago. In Proc. of WWW (Companion Volume), pages 123–126, 2014.

[8] Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška, Dmitriy
Zheleznyakov, and Yujiao Zhou. Querying Life Science Ontologies with SemFacet.
In Proc. of SWAT4LS, 2014.

[9] Bernardo Cuenca Grau, Evgeny Kharlamov, Dmitriy Zheleznyakov, Marcelo
Arenas, and Šarūnas Marciuška. On Faceted Search over Knowledge Bases. In
Proc. of DL, pages 153–156, 2014.

[10] Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. Automatic con-
struction of multifaceted browsing interfaces. In CIKM, pages 768–775, 2005.

[11] Pavlos Fafalios and Yannis Tzitzikas. X-ENS: Semantic Enrichment of Web Search
Results at Real-Time. In Proc. of SIGIR, pages 1089–1090, 2013.

[12] Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska, Dmitriy
Zheleznyakov, and Marcelo Arenas. Semfacet: Faceted search over ontology
enhanced knowledge graphs. In ISWC Posters & Demos, 2016.

[13] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott
Robinson, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. Faceted
Wikipedia Search. In Proc. of BIS, pages 1–11, 2010.

[14] Philipp Heim, Jürgen Ziegler, and Ste�en Lohmann. gFacet: A Browser for the
Web of Data. In Proc. of IMC-SSW, pages 49–58, 2008.

[15] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. /facet: A
Browser for Heterogeneous Semantic Web Repositories. In ISWC, 2006.

[16] David Huynh, Stefano Mazzocchi, and David R. Karger. Piggy Bank: Experience
the Semantic Web Inside Your Web Browser. J. Web Sem., 5(1):16–27, 2007.

[17] E. Hyvönen, E. Saarela, and K. Viljanen. Ontogator: Combining View- and
Ontology-Based Search with Semantic Browsing. In Proc. of XML Finland, 2003.

[18] G. Kobilarov and I. Dickinson. Humboldt: Exploring Linked Data. In LDOW, 08.
[19] Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted search.

In WWW, pages 477–486, 2008.
[20] m.c. schraefel, Daniel Alexander Smith, Alisdair Owens, Alistair Russell, Craig

Harris, and Max L. Wilson. The Evolving mSpace Platform: Leveraging the
Semantic Web on the Trail of the Memex. In Proc. of Hypertext, 2005.

[21] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel
Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems.
In Proc. of AAAI, pages 129–137, 2014.

[22] Daniel Tunkelang. Faceted Search. Synthesis Lectures on Information Concepts,
Retrieval, and Services. Morgan & Claypool Publishers, 2009.

[23] Andreas Josef Wagner. Faceted semantic search. Technical report.

http://www.cs.ox.ac.uk/isg/tools/SemFacet/

	Abstract
	1 Introduction
	2 SemFacet System
	3 Demonstration Scenarios
	References

