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Abstract. Evaluating joins over RDF data stored in a shared-nothing server clus-
ter is key to processing truly large RDF datasets. To the best of our knowledge,
the existing approaches use a variant of the data exchange operator that is in-
serted into the query plan statically (i.e., at query compile time) to shuffle data
between servers. We argue that such approaches often miss opportunities for lo-
cal computation, and we present a novel solution to distributed query answering
that consists of two main components. First, we present a query answering algo-
rithm based on dynamic data exchange, which exploits data locality to maximise
the amount of computation on a single server. Second, we present a partition-
ing algorithm for RDF data based on graph partitioning whose aim is to increase
data locality. We have implemented our approach in the RDFox system, and our
performance evaluation suggests that our techniques outperform the state of the
art by up to an order of magnitude in terms of query evaluation times, network
communication, and memory use.

1 Introduction

RDF datasets used in practice are often too large to fit on a single server. For exam-
ple, in performance-critical applications, it is common to use an in-memory RDF store,
but the comparatively high cost of RAM limits the capacity of such systems. More-
over, linked data applications often require integrating several large datasets that cannot
be processed jointly even using disk-based systems. To attain scalability sufficient for
such applications, numerous approaches for storing and querying RDF data in a shared-
nothing server cluster have been developed [7, 8, 10, 12, 15, 17–19, 22, 21, 9].

Such approaches typically consist of a query answering algorithm and a data parti-
tioning strategy, both of which must address a specific set of challenges. First, triples
participating in a join may be stored on different servers, so network communication
during join evaluation should be minimised. Second, to ensure that servers can progress
independently of each other, one must minimise synchronisation between the servers.
Third, the intermediate results produced during join evaluation often grow with the
overall data size and so they may easily exceed the capacity of individual servers.

The Volcano [5] database system was one of the first to address these challenges by
introducing the data exchange operator that encapsulates the communication between
query execution processes.1 Data exchange operators are added into the query plan to

1 These processes may be threads within a single server or processes running on different
servers, and so intra- and inter-server communication is handled using the same abstraction.



move the data within the system in order to ensure that each operator in the query plan
receives all the relevant data. Data exchange can be avoided if the data partitioning strat-
egy guarantees that the triples participating in a join are colocated on the same sever.
For example, exchange is not needed for subject–subject joins if all triples with the
same subject are assigned to the same server. Data partitioning strategies often replicate
data across servers to increase the level of guarantees they offer. As we discuss in detail
in Section 3, all existing distributed RDF systems we are aware of can be seen as using
a variant of the data exchange operator, and they aim to balance the trade-off between
data replication and data exchange. Moreover, in all of the existing approaches, the de-
cision about when and how to exchange data is made statically—that is, at compile time
and independently from the data encountered during query evaluation. In Section 3 we
argue that this can incur a communication cost even when the data is stored in such a
way that no communication is needed in principle.

In this paper we present a new approach to query answering in distributed RDF
systems. We focus here on conjunctive SPARQL queries (i.e., basic graph patterns
extended with projection), but we believe that our approach can be extended to handle
all SPARQL constructs. As is common in the literature, our solution also consists of a
query answering algorithm and a data partitioning strategy.

In Section 4 we present a novel distributed query answering algorithm that employs
dynamic data exchange: the decision when and how to exchange data is made during
query processing, rather than statically at query compile time. In this way, each join
between triples stored on the same server is computed on that server. Unlike in the
existing solutions, local computation in our algorithm is independent of any guaran-
tees about data partitioning, and is determined solely by the actual placement of the
data. Our algorithm thus gives the data partitioning strategy more freedom regarding
data placement. Moreover, our algorithm uses asynchronous communication between
servers, ensuring that a server’s progress in query evaluation is largely independent of
that of other servers. Finally, our algorithm uses a novel technique that limits the amount
of memory each server needs to store intermediate results.

In Section 5 we present a novel RDF data partitioning method that aims to maximise
data locality by using graph partitioning [11]—the task of dividing the vertices of a
graph into sets while satisfying certain balancing constraints and simultaneously min-
imising the number of edges between the sets. Graph partitioning has already been used
for partitioning RDF data [10, 7], but these approaches duplicate data across servers to
increase the chance of local processing. In contrast, our approach does not duplicate any
data at all, and it uses a special pruning step to reduce the size of the graph being parti-
tioned. Finally, a balanced partition of vertices does not necessarily lead to a balanced
partition of triples so, to achieve the latter, we use weighted graph partitioning.

We have implemented our approach in the in-memory RDF management system
RDFox [13], and have compared its performance with that of TriAD [7]—a system that
was shown to outperform other state of the art distributed RDF systems on a mix of
data and query loads. In Section 6 we present the results of our evaluation using the
LUBM [6] and WatDiv [1] benchmarks. We show that our approach is competitive with
TriAD in terms of query evaluation times, network communication, and memory usage;
in fact, RDFox often outperforms TriAD by an order of magnitude.



2 Preliminaries

To make this paper self-contained, in this section we recapitulate certain definitions
and notation. For f a function, dom(f) is its domain; for D a set, f |D is the restric-
tion of f to D ∩ dom(f); and if f ′ is a function such that f(x) = f ′(x) for each
x ∈ dom(f) ∩ dom(f ′), then f ∪ f ′ is a function as well.

The vertices of RDF graphs are taken from a countable set of resources R that
consists of IRI references, blank nodes, and literals. A triple has the form 〈ts, tp, to〉,
where ts, tp, and to are resources. An RDF graph G is a finite set of triples. The vocab-
ulary voc(G) of G is the set of all resources that occur in G; moreover, for a position
β ∈ {s, p, o}, set vocβ(G) contains each resource r for which a triple 〈ts, tp, to〉 ∈ G
exists such that tβ = r. SPARQL is an expressive language for querying RDF graphs;
for example, the following SPARQL query retrieves all people that have a sister:

SELECT ?x WHERE { ?x rdf:type :Person . ?x :hasSister ?y }

SPARQL syntax is verbose, so we use a more compact notation. An (RDF) term is
a resource or a variable. An atom (aka triple pattern) A is an expression of the form
〈ts, tp, to〉, where ts, tp, and to are terms; thus, each triple is an atom. ForA an atom, let
vars(A) be the set of variables occurring inA; and for β ∈ {s, p, o}, let termβ(A) = tβ .
A conjunctive query (CQ) has the form Q(~x) = A1 ∧ · · · ∧An, where each Ai is an
atom. Our definition of CQs captures basic graph patterns with projection in SPARQL;
e.g., Q(x) = 〈x, rdf :type, :Person〉 ∧ 〈x, :hasSister , y〉 captures the above query. A
subject-join query is a query where the same term occurs in the subject position of all
query atoms; such queries are used very frequently in practice.

Evaluation of CQs on an RDF graph produces partial mappings of variables to re-
sources called (variable) assignments. For α a term or an atom and σ an assignment,
ασ is the result of replacing each variable x in α with σ(x). An assignment σ is an an-
swer to a CQQ(~x) = A1 ∧ · · · ∧An on an RDF graphG if an assignment ν exists such
that σ = ν|~x, dom(ν) = vars(A1) ∪ · · · ∪ vars(An), and {A1ν, . . . , Anν} ⊆ G holds.
SPARQL uses bag semantics, so ans(Q,G) is the multiset that contains each answer σ
to Q on G with multiplicity equal to the number of such assignments ν.

Finally, we formalise the computational problems we consider in this paper. Let
C be a finite set called a cluster; each element k ∈ C is called a server. A parti-
tion of an RDF graph G is a function G that assigns to each server k ∈ C an RDF
graph Gk, called a partition element, such that G =

⋃
k∈C Gk. Partition G is strict

if Gk ∩Gk′ = ∅ for all k, k′ ∈ C with k 6= k′. A (data) partitioning strategy takes an
RDF graphG and produces a partition G. Given a CQQ, a distributed query answering
algorithm computes ans(Q,G) on a cluster C where each server k ∈ C stores Gk. An
answer σ to Q on G is local if k ∈ C exists such that σ is an answer to Q on Gk.

3 Motivation and Related Work

We now illustrate the difficulties of distributed query answering and present an overview
of the existing approaches.



Fig. 1: Example RDF Data and Query Plans
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Q1(x, y, z) =
〈x, S, y〉 ∧ 〈y,R, z〉
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(c) Query Q3
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./
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Data Exchange Operator by Example. To make our discussion concrete, letG be the
RDF graph from Figure 1a partitioned to elements G1 and G2 by subject hashing; re-
source c is shown in grey because it occurs in both partition elements. Subject hashing is
one of the simplest data partitioning strategies that assigns triple 〈ts, tp, to〉 to partition
element (h(ts)mod 2) + 1 for a suitable hash function h. It was initially studied in the
YARS2 [9] system, but modern distributed RDF systems use more elaborate strategies.

To understand the main issue that distributed query processing must address, let
Q1(x, y, z) = 〈x, S, y〉 ∧ 〈y,R, z〉. Answer σ1 = {x 7→ b, y 7→ c, z 7→ e} spans parti-
tion elements so servers must exchange intermediate answers to compute σ1. The Vol-
cano system [5] proposed the solution in form of a data exchange operator that encap-
sulates all communication between servers in the query pipeline. In particular, variable
y occurs in the second atom of Q1 in the subject position so, for each triple 〈tx, S, ty〉
matching the first atom of Q1, subject hashing ensures that any join counterparts are
found on server (h(ty)mod 2) + 1. Thus, we can answer Q1 using the query plan
shown in Figure 1b, where ⊗ is a data exchange operator that (i) sends each variable
assignment σ from its input to server (h(σ(y))mod 2) + 1, and (ii) receives variable as-
signments sent from other servers and forwards them to the parent join operator. Thus,
the rest of the query plan is completely isolated from any data exchange issues.

Guarantees about data partitioning can be used to avoid data exchange in some
cases. For example, subject hashing ensures that all triples with the same subject are
colocated, so subject-join queries can be evaluated without any data exchange. Thus,
we can evaluate Q2(x, y, z) = 〈x,R, y〉 ∧ 〈x, S, z〉 independently over G1 and G2.

The decision when to introduce the data exchange operators is made statically (i.e.,
at query compile time), which can introduce unnecessary data exchange. For example,
letQ3(x, y, z, w) = 〈x,R, y〉 ∧ 〈x, S, z〉 ∧ 〈w, T, z〉. As inQ2, we can evaluate the first
two atoms locally. In contrast, join variable z occurs in Q3 only in the object position
so, given a value for z, subject hashing does not tell us where to find the relevant triples.
Consequently, we need a query plan from Figure 1c with two data exchange operators
that hash their inputs based on the value of z, which allows us to compute answers
σ2 = {x 7→ b, y 7→ a, z 7→ c, w 7→ d} and σ3 = {x 7→ b, y 7→ a, z 7→ c, w 7→ g}. Note
that data exchange is necessary for σ3; however, σ2 can be obtained by evaluating Q in
G1, but resource c is hashed to server 2 so σ2 is unnecessarily computed on server 2.



Data Exchange in Related Approaches. Static data exchange has been extensively
used in practice. For example, the map phase in MapReduce [3] assigns to each data
record a key that is used to redistribute data records in the shuffle phase; hence, dis-
tributed MapReduce-based RDF systems [17, 18, 15, 10] can be seen as using a variant
of static data exchange. Moreover, systems such as Sempala [19] implemented on top
of big data databases such as Impala and Spark, as well as custom-built systems such as
TriAD [7], SemStore [21], and SHAPE [12], use similar ideas. Trinity.RDF [22] uses
one master and a number of worker servers: the workers first to compute candidate
bindings for each variable using graph exploration, and they then send these bindings
to the master to compute the final join, which is a variant of static data exchange.

Some approaches provide stronger locality guarantees by data duplication. For ex-
ample, Huang et al. [10] distribute the ownership of the resources of G to partition
elements using graph partitioning, and they assign each triple to the element that owns
the triple’s subject. Moreover, they duplicate data using n-hop duplication: each server
containing a resource r is extended with all triples so that it contains all paths of length
n from r. Thus, each query with paths of length less than n can be answered locally,
and all other queries are answered using MapReduce. Duplication, however, is costly:
for example, queryQ3 needs 2-hop duplication, and Huang et al. [10] show that this can
increase the data in the system by a factor of 4.8; this factor is unlikely to scale linearly
with the total data size since RDF graphs typically have small diameters. Furthermore,
SemStore [21] partitions every rooted subgraph in the original graph. SHAPE [12] par-
titions subject, object or subject-object groups, extending each group with n-hop du-
plication and applying optimisations to reduce duplication. Trinity.RDF [22] hashes all
triples on subject and object. TriAD [7] first divides resources into groups using graph
partitioning, then it computes a summary of the input graph by merging all resources in
each group, and it assigns groups from the summary to servers by hashing on subject
and object. Hashing by subject and object at most doubles the data, and so it is more
likely to scale, and it also reduces data exchange: for Q3, we can use the query plan
from Figure 1c, but without the right-hand data exchange operator.

Our Contribution. In contrast to all of these approaches that use static data exchange,
in Section 4 we present a novel algorithm for distributed query answering that decides
when and how to exchange data independently from any locality guarantees provided
by data partitioning. On our example query Q3, our algorithm computes answer σ2 on
server 1 by discovering that all the data needed for σ2 is colocated on server 1, and it
exchanges only the data necessary for σ3. Similarly to TriAD, servers in our system
exchange messages asynchronously, without coordinating progress through the query
plan. This promotes concurrency, but it complicates detecting termination since an idle
server can always receive a message from other servers and become busy. We solve this
problem using a novel, fully decentralised termination condition. Finally, by processing
messages in a specific order we limit the amount of memory needed to store messages.

Although our query answering algorithm does not rely on locality guarantees, ensur-
ing that most answers to a query are local is critical to its efficiency. Thus, in Section 5
we present a novel data partitioning strategy based on graph partitioning. Our approach
uses no replication, and it produces partition elements that are more balanced in sizes
than those produced by related strategies based on graph partitioning [10, 7, 16].



4 Query Answering Algorithm

We now present our distributed query answering algorithm that uses dynamic data ex-
change. Throughout this section, we fix a cluster C of shared-nothing servers, a strict
partition G of an RDF graph G distributed over C, and a CQ Q. Our algorithm out-
puts ans(G,Q) as pairs 〈σ,m〉 of assignments and multiplicities; each σ can be output
several times, but the sum of all m for σ is equal to the multiplicity of σ in ans(G,Q).

4.1 Intuition

We evaluate Q over G using nested index loop joins: starting with an empty assign-
ment, we recursively extend the assignment by matching the atoms of Q; we call each
assignment that matches a prefix of the atoms of Q a partial answer. By letting all
servers evaluate Q in parallel over their respective partition element, we obtain all lo-
cal answers to Q without any network communication or synchronisation between the
servers. To also obtain answers that are not local, whenever some server k attempts to
extend a partial answer σ so that it matches some atomA ofQ, the server must take into
account that other servers in the cluster may contain facts matching A as well. To iden-
tify such situations, server k uses the key notion of occurrences that, for any resource r
in Gk, allow server k to identify all servers that contain r. Server k can thus use the oc-
currences of the resources in A and σ to identify the servers that can potentially extend
σ to a match for A, so server k forwards σ only to those servers; each server receiving
σ then continues matching the remaining atoms of Q. The occurrences are thus used
to avoid sending σ to servers that definitely cannot extend σ to an answer of Q on G,
which considerably reduces communication in the cluster.

Consider again our example queryQ3 from Figure 1c. Evaluating the first two atoms
of Q3 in G1 left-to-right produces a partial answer σ = {x 7→ b, y 7→ a, z 7→ c}, so we
must next evaluate 〈w, T, z〉σ = 〈w, T, c〉. By keeping the occurrences of the resources
from G1, server 1 determines that resource c occurs in both G1 and G2 so it branches
its execution: it continues evaluating the query locally and thus computes σ2, but it also
sends the partial answer σ and atom index 3 to server 2. Upon receiving this message,
server 2 continues evaluating the query starting from atom 3 and produces answer σ3.

Data exchange in our setting is thus dynamic (i.e., it is determined by the occur-
rences), which allows servers to always compute all local answers locally. Moreover,
messages are exchanged asynchronously, without predetermined synchronisation points
in the query plan: partial answers can be sent and processed as soon as they are pro-
duced, which promotes parallelisation. However, as we shall see, the asynchronous na-
ture of our algorithm makes detecting termination nontrivial.

Our notion of occurrences exhibits two important properties. First, we require each
server k to store only the occurrences for the resources that are present in Gk. As we
discuss in Section 4.3, this complicates determining where to forward partial answers;
however, this assumption is critical for scalability because it makes the size of the oc-
currences at server k proportional to the size of Gk, rather than to the size ofG. Second,
we track the occurrences of resources for subject, predicate, and object position inde-
pendently, which we use to further limit communication. For example, if an atom A
to be matched next contains a resource r in the subject position, then a partial answer



is sent to server k′ only if r occurs in Gk′ in the subject position. As a consequence
of this optimisation, if the data is partitioned such that all triples containing the same
resource in the subject are colocated, subject-join queries are answered without any
communication.

4.2 Setting

Before presenting our approach in detail, we discuss the assumptions we make on each
server in the cluster.

We assume that each server k ∈ C stores the partition element Gk. For A an atom
andX a set of variables, EVALUATE(A,Gk, X) evaluatesA in Gk and returns the mul-
tiset containing one occurrence of ρ|X for each assignment ρ with dom(ρ) = vars(A)
and Aρ ∈ Gk. For reasons we discuss in Section 4.3, this multiset must be represented
as a set of pairs 〈ρ|X , c〉 where c is the multiplicity of ρ|X .

In addition to Gk, for each β ∈ {s, p, o}, server k must also store the occurrences
mapping µk,β : vocβ(Gk)→ 2C that, for each resource r ∈ vocβ(Gk), returns the oc-
currences of r as µk,β(r) = {k′ ∈ C | r ∈ vocβ(Gk′)}.

Finally, we assume that each server can use SEND(L,msg) to send a message msg
to all servers listed in set L. Message delivery must be guaranteed: each sent message
must be eventually received and processed; however, we make no assumptions about
the order of message delivery, not even for messages sent from the same server. For
the moment, we assume that the call always succeeds—that is, each sent message is
delivered to all the servers in L in a finite amount of time. In Section 4.5, we show how
SEND(L,msg) can be realised so that it handles the case where each server can accept
only a bounded number of messages.

4.3 Computing Query Answers

The client can submit Q for processing to any sever kc in the cluster, and so server
kc becomes the coordinator for Q; the client will receive all answers from server kc.
Coordinator processes Q using Algorithm 1. In line 2, the coordinator determines an
efficient ordering of the query atoms; this can be done using any of the well-known
query planning techniques. In line 4 the coordinator sends the reordered query to all
servers; this is done synchronously so that no server starts sending partial answers to
servers that have not yet accepted Q. Finally, to start the processing of Q in the cluster,
in line 5 the coordinator sends to each server in the cluster the empty partial answer.

Each server k ∈ C (including the coordinator) accepts Q for processing using pro-
cedure START(kc, ~x,A1, . . . , An) from Algorithm 2. The procedure initialises certain
local variables, starts a number of message processing threads, and then terminates; all
further processing at server k is driven by the messages that the server receives. The
server processes messages in lines 15–21. The ANS messages represent partial answers
produced at other servers and we discuss them shortly; moreover, the FIN messages
are used to detect termination and we discuss them in Section 4.4. Each message is
associated with a stage integer i that satisfies 1 ≤ i ≤ n+ 1.

Message ANS[i, σ,m, λs, λp, λo] informs a server that σ is a partial answer with
multiplicity m. As we discuss later, the algorithm eagerly removes certain variables



from partial answers to save bandwidth; thus, although σ does not necessarily cover all
the variables of A1, . . . , Ai−1, for each σ there exists an assignment ν that coincides
with σ on dom(σ) and that satisfies {A1ν, . . . , Ai−1ν} ⊆ G. Finally, for β ∈ {s, p, o}
a position, λβ : R → 2C is a partial function that determines the location of certain re-
sources in σ; we discuss the role of λβ shortly. Such a message is forwarded in line 16
to the MATCHATOM procedure that implements index nested loop join. Line 23 deter-
mines the recursion base: if i = n+ 1, then σ is an answer to Q on G and it is output
to the client in line 24. Otherwise, in line 27 atom Aiσ is evaluated in Gk and, for each
match ρ, assignment σ is extended with ρ to σ′ in line 28 so that the remaining atoms
can be evaluated recursively. Due to data distribution, however, recursion may also need
to continue on other servers. The set L of relevant servers is identified in lines 29–35
using the following observations.

– If all atoms have been matched, then line 30 ensures that the answer σ′ is forwarded
to the coordinator so that it can be delivered to the client.

– Otherwise, atomAi+1σ
′ containing a resource r in position β cannot be matched at

a server ` ∈ C that does not contain r in position β; hence, lines 32–35 determine
the servers that contain all resources occurring inAi+1σ

′ at the respective positions.

After the set L of relevant servers has been computed, the computation branches to the
servers inL \ {k} by sending them an ANS message in line 36; and if k ∈ L, processing
also continues on server k via a recursive call in line 38.

The Role of λs, λp, and λo. As we have already explained, each server tracks the
occurrences only for the resources that it contains, which introduces a complication.
For example, consider evaluating query Q4 over the following partition:

Q4(x, y, z) = 〈x,R, y〉 ∧ 〈y, S, z〉 ∧ 〈x, T, z〉
G1 = {〈a,R, b〉, 〈a, T, c〉} G2 = {〈b, S, c〉} G3 = {〈e, T, f〉}

Now let σ′ = {x 7→ a, y 7→ b} be the partial answer obtained by matching the first two
atoms in G1 and G2, respectively, and consider processing in line 28. Then, we have
Ai+1σ

′ = 〈a, T, z〉, but resource a does not occur in G2, and so server 2 has no way of
knowing where to forward σ. To remedy this, our algorithm tracks the location of re-
sources matched thus far using partial mappings λs, λp, and λp. When Aiσ is matched
at server k, the server’s mappings µk,β contain information about each resource r oc-
curring inAiσ′; now if r also occurs inAjσ′ with j > i+ 1, then the information about
the location of r might be relevant when evaluating such Aj . Therefore, the algorithm
records the location of r in λ′β , which is sent along with partial answers.

Handling Projected Variables. To optimise variable projection, line 26 determines the
set X of variables that are needed after Ai. Variables not occurring in X are removed
from σ′ in line 28 in order to reduce message size. Furthermore, Aiσ is evaluated in
line 27 using EVALUATE by grouping the resulting assignments X , which can consid-
erably improve performance. For example, let Q5(x) = 〈x,R, y〉 ∧ 〈x, S, z〉, and let
Gk contain triples 〈a,R, bi〉 and 〈a, S, cj〉 for 1 ≤ i ≤ u and 1 ≤ j ≤ v. A naı̈ve eval-
uation of the index nested loop join requires u · v steps, producing the same number of
answer messages. In contrast, our algorithm uses u+ v steps: evaluating the first atom



Algorithm 1 Initiating the Query at Coordinator kc
1: procedure ANSWERQUERY(Q)
2: Reorder the query atoms as Q(~x) = A1 ∧ · · · ∧An to obtain an efficient plan
3: for k ∈ C do
4: Call START(kc, ~x,A1, . . . , An) on server k synchronously
5: SEND(C,ANS[1, ∅, 1, ∅, ∅, ∅])

returns the pair 〈ρ = {x 7→ a}, u〉 using u steps, and evaluating the second atom re-
turns the pair 〈ρ′ = ∅, v〉 using v steps. In addition, our algorithm sends just one answer
message in this case, which is particularly important in a distributed setting.

4.4 Detecting Termination

Termination is detected by tracking the per-server completion of each atom (stage) in
the query. In particular, server k can finish processing stage i if (i) it knows that all
servers in C have finished processing stages up to i− 1 by receiving the respective FIN
messages, and (ii) it has processed all received messages for this stage. At this point,
server k sends a FIN message to all other servers informing them that they will not
receive further messages from k for stage i. To this end, each server k keeps several
counters: Pi and Ri count the ANS messages for stage i that the server processed and
received, respectively; and Ni counts the FIN messages that servers have sent to inform
k that they have finished processing stage i. Thus, ifNi = |C| holds at server k, then all
other servers have finished sending all messages for all stages prior to i and so server k
will not get further partial answers to process for stages up to i. If in addition Pi = Ri,
then server k has finished stage i and it then sends his FIN message for i. Only one
thread must detect this condition line 40, which is ensured by SWAP(Fi, true): this
operation atomically reads Fi, stores true into Fi, and returns the previous value of
Fi. Hence, this operation returns false just once, in which case server k then informs
in line 47 all servers (or just the coordinator if i = n) of this by sending a message
FIN[i, Si,`], where Si,` is the number of ANS messages that server k sent to ` for stage
i. Server ` processes this message in line 19 by incrementing Ri and Ni, which can
cause further termination messages to be sent. Since each server sends |C| messages to
all other servers per stage, detecting termination requires Θ(n|C|2) messages in total.

4.5 Dealing with Finite Resources

Nested index loop joins require just one iterator per query atom, so a query with n atoms
can be answered using O(n) memory; this is particularly important when servers store
their data in RAM. The algorithm as presented thus far does not have this property:
partial answers produced in line 36 must be stored on the sending and/or the receiving
server before they are processed. In the worst case, queries can produce exponentially
many answers and so the number of messages sent in line 36 can be large; consequently,
the cumulative size of all messages sent to a server can exceed the server’s capacity. We
now describe how our query answering algorithm overcomes this drawback.



Algorithm 2 Processing at Server k
6: procedure START(kc, ~x,A1, . . . , An)
7: for 1 ≤ i ≤ n+ 1 do
8: for ` ∈ C do Si,` := 0 .# (partial) answers sent to server ` for stage i
9: Pi := 0 .# processed (partial) answers for stage i

10: Ri := (i = 1 ? 1 : 0) .# received (partial) answers for stage i
11: Ni := (i = 1 ? |C| : 0) .# servers finished sending messages for stage i
12: Fi := false . has this server finished stage i?
13: Start message processing threads that, until exit is called, repeatedly

extract an unprocessed message msg and call PROCESSMESSAGE(msg)

14: procedure PROCESSMESSAGE(msg)
15: if msg = ANS[i, σ,m, λs, λp, λo] then . Partial/query answer
16: MATCHATOM(i, σ,m, λs, λp, λo)
17: Pi := Pi + 1
18: CHECKTERMINATION(i)
19: else if msg = FIN[i,m] then . Atom/query termination
20: Ri := Ri +m, Ni := Ni + 1
21: CHECKTERMINATION(i)

22: procedure MATCHATOM(i, σ,m, λs, λp, λo)
23: if i = n+ 1 then
24: Output answer 〈σ,m〉 to the client
25: else
26: X := ~x ∪ vars(Ai+1) ∪ · · · ∪ vars(An)
27: for each 〈ρ, h〉 ∈ EVALUATE(Aiσ,Gk, X) do
28: σ′ := (σ ∪ ρ)|X , m′ := m · h
29: if i = n then
30: L := {kc}, λ′

s := λ′
p := λ′

o := ∅
31: else
32: L := C
33: for β ∈ {s, p, o} do
34: λ′

β := (λβ ∪ µk,β)|Y for Y = R∩ {termβ(Ajσ
′) | i+ 1 < j ≤ n}

35: if termβ(Ai+1σ
′) ∈ dom(λ′

β) then L := L ∩ λ′
β(termβ(Ai+1σ

′))

36: SEND(L \ {k},ANS[i+ 1, σ′,m′, λ′
s, λ

′
p, λ

′
o])

37: for ` ∈ L \ {k} do Si+1,` := Si+1,` + 1

38: if k ∈ L then MATCHATOM(i+ 1, σ′,m′, λ′
s, λ

′
p, λ

′
o)

39: procedure CHECKTERMINATION(i)
40: if Pi = Ri and Ni = |C| and SWAP(Fi, true) = false then
41: if i = n+ 1 then
42: Tell client that Q has been answered and exit
43: else if i = n then
44: SEND({kc},FIN[i+ 1, Si+1,kc ])
45: if k 6= kc then exit
46: else
47: for ` ∈ C do SEND({`},FIN[i+ 1, Si+1,`])



Algorithm 3 Message Sending for Resource-Constrained Servers
48: procedure SEND(L,msg)
49: i := the stage index that message msg is associated with
50: loop
51: for all ` ∈ L do
52: if PUTINTOQUEUE(`, i,msg) then L := L \ {`}
53: if L = ∅ then return
54: If an unprocessed message for stage j with j > i exists,

extract one such message msg and call PROCESSMESSAGE(msg)

To formulate our idea abstractly, we assume that each server in the cluster contains
n+ 1 finite queues. Moreover, function PUTINTOQUEUE(`, i,msg) instructs the mes-
sage passing infrastructure to insert messagemsg into queue i on server `. The function
returns true if the infrastructure can guarantee that msg will be placed into the appro-
priate queue eventually, otherwise it returns false . Note that the return value of true
does not imply that the message has actually been delivered; thus, message passing
can still be asynchronous. Queues can be implemented in many different ways using
common networking infrastructure. For example, TCP uses sliding window protocol
for congestion control, so one TCP connection could provide a pair of queues. Another
solution is to multiplex n+1 queues onto a single TCP connection. Yet another solution
is to use explicit signalling: when a server sees that it is running out of queue space, it
tells the sender not to send any more data until further notice.

To handle finite resources, our algorithm implements SEND(L,msg) in terms of
PUTINTOQUEUE as shown in Algorithm 3: as long as some queue for stage i is blocked,
server k keeps processing messages for stages larger than i. This ensures recursion
depth of at most n+ 1, so each server’s thread uses O(n2) memory. To see why Algo-
rithm 2 necessarily terminates, even with queues of bounded size, we make two obser-
vations. First, processing a message for stage i only calls PUTINTOQUEUE(`, j,msg)
for j > i, which fails only if queue j on server ` is full. Second, at any given point in
time the cluster contains at least one highest-indexed nonempty queue across the cluster.
As a result of these observations, messages from the highest-indexed nonempty queue
can always be processed. Thus, although individual servers in the cluster can become
blocked at different points in time, at least one server in the cluster makes progress at
any given point in time, which eventually ensures termination.

The following theorem captures the properties of our algorithm, and its proof is
given online at http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf.

Theorem 1. When Algorithm 1 is applied to a strict partition G of an RDF graph G
distributed over a cluster C of servers where each server has n + 1 finite message
queues, the following claims hold:

1. the coordinator for Q correctly outputs ans(Q,G),
2. each server sends Θ(n|C|2) FIN messages and then terminates, and
3. each server thread uses O(n2) memory.



5 Data Partitioning Algorithm

Ensuring that computation is not passed from server to server often is key to ensuring
efficiency of our approach. Therefore, in this section we present a new data partitioning
strategy based on weighted graph partitioning that (i) aims to maximise the number
of local answers on common queries, (ii) does not duplicate triples, and (iii) produces
partitions balanced in the number of triples. Throughout this section, let G be an RDF
graph that we wish to partition into |C| elements. Our algorithm proceeds in three steps.

First, we transform G into an undirected weighted graph (V,E,w) as follows: we
define the set of vertices as V = vocs(G)—that is, V is the set of resources occurring
in G in the subject position; we add to the set of edges E an undirected edge {s, o} for
each triple 〈s, p, o〉 ∈ G if p 6= rdf :type and o is not a literal (e.g., a string or an integer);
and we define the weightw(r) of each resource r ∈ V as the number of triples inG that
contain r in the subject position. Classes and literals often occur in RDF graphs in many
triples, and the presence of such hubs can easily confuse partitioners such as METIS, so
we prune such resources from (V,E,w). As we discuss shortly, this does not affect the
performance of distributed query answering for the queries commonly used in practice.

Second, we partition (V,E,w) by weighted graph partitioning [11]—that is, we
compute a function π : V → C such that (i) the number of edges spanning partitions is
minimised, while (ii) the sum of the weights of the vertices assigned to each partition is
approximately the same for all partitions.

Third, we compute each partition element by assigning triples based on subject—
that is, we assign each triple 〈s, p, o〉 ∈ G to partition element Gπ(s). Note that this
ensures no duplication between partition elements.

This data partitioning strategy is tailored to efficiently support common query loads.
By analysing more than 3 million real-world SPARQL queries, it was shown [4] that
approximately 60% of joins are subject–subject joins, 35% are subject–object joins,
and less than 5% are object–object joins. Now pruning classes and literals before graph
partitioning makes it more likely that such resources will end up in different partitions;
however, this can affect the performance only of object–object joins, which are the least
common in practice. In other words, pruning does not affect the performance of 95%
of the queries occurring in practice, but it increases the chance of obtaining a good
partition, as well as reduces the size of (V,E,w). Furthermore, by placing all triples
with the same subject on a single server in the third step, we can answer the most
common type of join without any communication; this includes subject-join queries,
which are particularly important in practice. Finally, the weight w(r) of each vertex r
in (V,E,w) determines exactly the number of triples are added to Gπ(r) as a conse-
quence of assigning r to partition π(r); since weighted graph partitioning balances the
sum of the weights of vertices in each partition, this ensures that the resulting partition
elements are balanced in terms of their size. As we experimentally show in Section 6,
our partitions are indeed much more balanced than the ones produced by the existing
approaches based on graph partitioning [10, 7, 16]. This is important because it ensures
that the servers in the cluster use roughly the same amount of memory for storing their
respective partition elements.



6 Evaluation

We implemented our query answering and data partitioning algorithms in our RDFox
system.2 The authors of TriAD [7] have already shown that their system outperforms
Trinity.RDF [22], SHARD [17], H-RDF-3X [10], 4store [8], RDF-3X [14], BitMat [2],
and MonetDB [20]; therefore, we have evaluated our approach by comparing it with
TriAD only. We have conducted our experiments using the m4.2xlarge servers of the
Amazon Elastic Compute Cloud.3 Each server had 32 GB of RAM and eight virtual
cores of 2.4GHz Intel Xeon E5-2676v3 CPUs.

We generated the WatDiv-10K dataset of the WatDiv [1] v0.6 benchmark, and used
the 20 basic testing queries, which are divided into four groups: complex (C), snowflake
(F), linear (L), and star (S) queries. We also generated the LUBM-10K dataset of the
widely used LUBM [6] benchmark. Many of the LUBM queries return no answers
if the dataset is not extended via reasoning, so we used the seven queries from [22]
that compensate for the lack of reasoning (Q1–Q7), and we manually generated three
additional complex queries (Q8–Q10). All queries that we used in the evaluation are
given online at http://www.cs.ox.ac.uk/people/anthony.potter/rdfox-tr.pdf.

6.1 Evaluating Query Answering

To evaluate the effectiveness of our distributed query answering algorithm, we com-
pared RDFox and TriAD using a cluster of ten servers. For RDFox, we partitioned the
data into ten partition elements as described in Section 5. For TriAD, one master server
partitioned the data across nine workers using TriAD’s summary mode. Both systems
produced the answers on one server, but without printing them. For each query, we
recorded the wall-clock query time, the total amount of data sent over the network, and
the maximum amount of memory used by a server for query processing.

WatDiv-10K results are summarised in Table 1. TriAD threw an exception on queries
F4 and S5, which is why the respective entries are empty. Both RDFox and TriAD offer
comparable performance for linear and star queries, which in both cases require little
network communication. On complex queries, RDFox was faster in two out of three
cases despite the fact that TriAD uses a summary graph optimisation [7] to aggressively
prune the search space on complex queries. RDFox could process queries F2, F3, and
F5 by up to two orders of magnitude quicker and with up to two orders of magnitude
less data sent over the network. Moreover, all queries apart from C3 do not return large
datasets, so the memory used for query processing was comparable.

LUBM-10K results are summarised in Table 2. RDFox was quicker than TriAD on all
queries apart from Q5 and Q8, on which the two systems were roughly comparable.
The difference was most pronounced on Q1, Q7, Q9, and Q10, on which TriAD used
significant amounts of memory. This is because TriAD evaluated queries using bushy
query plans consisting of hash joins; for example, on Q10 TriAD used over 6 GB—more
than half the amount needed to store the data. In contrast, RDFox uses index nested loop

2 http://www.cs.ox.ac.uk/isg/tools/RDFox/
3 http://aws.amazon.com/ec2/



joins that require very little memory: at most 147 MB were used in all cases, mainly to
store the messages passed between the servers. Furthermore, on most queries RDFox
sent less data over the network, leading us to believe that dynamic data exchange can
considerably reduce communication during query processing.

6.2 Effectiveness of Data Partitioning

To evaluate our data partitioning algorithm, we have partitioned our test data into ten
elements in four different ways: with both weighted partitioning and pruning as de-
scribed in Section 5, without pruning, without weighted partitioning, and by subject
hashing. For each partitioning obtained in this way, Table 3 shows the minimum and
maximum number of triples, the average number of resources per partition, and the av-
erage percentage of the resources that occur in more than one partition. In all cases,
subject hashing produces very balanced partitions, but the percentage of resources that
occur on more than one server is large. Weighted partitioning reduces this percentage
on LUBM dramatically to 0.3%. Our partitioning is not as effective on WatDiv, but it
still offers some improvement. Partitions are well balanced in all cases, apart from Wat-
Div with unweighted partitioning: WatDiv contains several hubs, so a balanced number
of resources in partitions does not ensure a balanced number of triples.

We also compared the idle memory use (excluding dictionaries) of RDFox and
TriAD’s workers, in order to indirectly compare the partitioning approaches used by
the two systems. Table 4 shows the minimal and maximal memory use per server af-
ter the data is loaded, as well as the standard deviation across all servers. As one can
see, RDFox uses about half of the memory of TriAD. We believe is due to the fact that
our partitioning strategy does not duplicate data, whereas TriAD hashes its groups by
subject and object. Furthermore, memory use per server is more balanced for RDFox,
which we believe is due to weighted graph partitioning.

7 Conclusion

We have presented a new technique for query answering in distributed RDF systems
based on dynamic data exchange, which ensures that all local answers to a query are
computed locally and thus reduces the amount of data transferred between servers.
Using index nested loops and message prioritisation, the algorithm is very memory-
efficient while still guaranteeing termination. Furthermore, we have presented an algo-
rithm for partitioning RDF data based on weighted graph partitioning. The results of
our performance evaluation show that our algorithms outperform the state of the art,
sometimes by orders of magnitude. In our future work, we shall focus on adapting the
known query planning techniques to the distributed setting. Moreover, we shall evaluate
our approach against modern big data systems such as Spark and Impala.

Acknowledgements. This work was funded by the EPSRC projects MaSI3, DBOnto,
and ED3, an EPSRC doctoral training grant, and a grant by Roke Manor Research Ltd.



Table 1: Query Answering Results on WatDiv-10K
RDFox TriAD

Query Answer
Count

Time
(ms)

Network
Use (KB)

Max Mem.
(MB)

Time
(ms)

Network
Use (KB)

Max Mem.
(MB)

C1 1,504 148 9,043 31 248 3,170 27
C2 288 493 32,866 2 343 45,520 97
C3 42,441,808 373 1,190 13 419 423 8
F1 324 62 4,013 1 15 265 1
F2 188 10 92 1 263 11,461 25
F3 865 15 199 1 208 337 29
F4 2,879 25 471 1 - - -
F5 65 5 61 1 348 29,900 76
L1 2 3 29 1 11 227 1
L2 16,132 41 259 1 15 1,106 1
L3 24 2 20 1 6 76 1
L4 5,782 14 92 1 5 299 1
L5 12,957 21 306 1 17 940 1
S1 12 5 79 1 41 142 1
S2 6,685 12 183 1 33 517 1
S3 0 25 35 1 8 91 1
S4 153 19 3,096 1 22 108 1
S5 0 10 37 1 - - -
S6 453 8 37 1 8 151 1
S7 0 2 29 1 3 58 1

Table 2: Query Answering Results on LUBM-10K
RDFox TriAD

Query Answer
Count

Time
(ms)

Network
Use (KB)

Max Mem.
(MB)

Time
(ms)

Network
Use (KB)

Max Mem.
(MB)

Q1 2,528 1,927 2,261 33 13,410 197,762 1,144
Q2 10,799,863 701 150,565 147 927 104,657 154
Q3 0 443 1,809 1 771 466 708
Q4 10 4 45 1 7 115 1
Q5 10 2 18 1 2 63 1
Q6 125 4 39 1 85 153 1
Q7 439,994 975 10,860 8 7,294 29,592 844
Q8 2,528 1,771 5,497 20 1,755 8,154 232
Q9 4,111,592 6,281 141,603 103 23,711 184,661 3,501
Q10 2,225,206 1,096 38,030 29 33,661 111,571 6,645

Table 3: Comparing the Partitioning Strategies of RDFox and TriAD
WatDiv LUBM

Partitioning Min Max Avg. Res. P Min Max Avg. Res. P

Weighted, pruning 103.1 M 113.0 M 20.9 M 72.1% 126.4 M 138.2 M 32.9 M 0.3%
Weighted, no pruning 102.1 M 113.0 M 21.6 M 72.3% 123.6 M 139.8 M 35.7 M 13.3%
Unweighted, no pruning 22.5 M 410.7 M 18.1 M 63.0% 123.7 M 142.3 M 36.0 M 14.5%
Subject hashing 109.0 M 109.3 M 24.2 M 79.2% 133.3 M 133.7 M 52.5 M 46.8%

Table 4: Comparing the Idle Memory Use of RDFox and TriAD
WatDiv LUBM

System Mean (GB) Max (GB) Sdev (GB) Mean (GB) Max (GB) Sdev (GB)

RDFox 4.39 5.42 0.54 5.49 5.61 0.15
TriAD 9.57 10.99 0.73 12.04 19.26 3.98
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