
Small Datalog Query Rewritings for EL

Giorgio Stefanoni, Boris Motik, and Ian Horrocks

Department of Computer Science, Univerty of Oxford

1 Introduction

Description Logics are a key technology in data management scenarios such as
Ontology-Based Data Access (OBDA), a paradigm in which a DL ontology is
used to provide a conceptual view of the data [1]. An OBDA system transforms
a conjunctive query over the ontology into a query over the data sources [2]. This
transformation is independent of the data, so the OBDA approach can thus be
used in settings where the data sources provide read-only access to the data, and
where the data changes frequently.

Most existing OBDA systems are based on the DL-Lite family of lightweight
Description Logics [3], which is also the basis for the QL profile of the OWL 2
ontology language. Logics in this family have been designed to allow a conjunc-
tive query posed over the ontology to be rewritten as a first order query over
the data sources—that is, queries are first-order rewritable. The query rewriting
procedure is independent of the data, and the resulting queries can be evaluated
using highly scalable relational database technology. To achieve this, however,
the expressive power of DL-Lite is very restrictive. This prevents the OBDA
approach from being applied in the life science domain, where many ontologies
use DLs from the EL family [4, 5]. This family provides the basis for the EL
profile of OWL2, and many prominent ontologies, such as SNOMED-CT, were
developed using this language.

The problem of answering conjunctive queries in EL has already been studied
in the literature, and two orthogonal approaches have been proposed. First,
Rosati proposed a pure query rewriting technique which transforms an EL TBox
T and a conjunctive query q into a Datalog program PT ,q [6]. Second, Lutz
et al. introduced a “combined” approach [7, 8]. This technique first materializes
certain facts entailed by the ontology in a precomputation step. Then, each user
query is rewritten into a polynomial first-order query that, when evaluated over
the materialized facts, computes the answers to the user’s query.

Unfortunately, these two approaches exhibit several shortcoming when ap-
plied in the context of OBDA. In particular, Rosati’s rewriting technique com-
putes for each user query a fresh Datalog program whose size depends on both
the query and the terminology, which could be very inefficient when dealing with
large scale ontologies. The approach by Lutz et al. produces smaller first order
rewritings, but the use of materialization means that the technique is only appli-
cable when the data sources provide read/write access to the data; furthermore,
materialization can be inefficient if the data changes frequently.

In this paper, we present a pure query rewriting technique to conjunctive
query answering in EL. Our approach reinterprets the combined approach pro-
posed by Lutz and colleagues in terms of Datalog. Our rewriting procedure
consists of two distinct steps. The first step rewrites a TBox T into a Datalog
program PT , whose size depends linearly on the size of T . Then, at query time,
the conjunctive query q is rewritten into a Datalog query 〈QP , QC〉, whose
size depends polynomially on q. The two rewriting steps are such that, given an
ABox A, deciding whether QP (a1, . . . , ak) follows from PT ∪QC ∪ A is equiva-
lent to deciding whether 〈a1, . . . , ak〉 is a certain answer to q over a knowledge
base 〈T ,A〉. At last, we summarize our main contributions as follows. First, our
rewriting approach, unlike Rosati’s, separates the rewriting of the TBox and the
query into two distinct steps, thus reducing inefficiency when dealing with large
ontologies. Second, our technique does not require the materialization of entailed
facts, hence our solution is in the spirit of OBDA and it avoids the problems
associated with the materialization of large models. Finally, we set the stage for
assessing the utility and the applicability to PT ∪QC ∪A of optimized Datalog
evaluation techniques, such as magic sets and SLG resolution [9, 10]. Indeed,
heuristic-based evaluation strategies significantly reduce the number of facts to
be computed to answer a query, thus potentially improving the performance of
our rewriting approach.

2 Preliminaries

Description Logic EL

Let NC , NR, NI be pairwise disjoint infinite sets of atomic concepts, atomic
roles, and individuals. Together, the sets NC , NR, and NI form the signature of
an EL language. Whenever the distinction between atomic concepts and atomic
roles is immaterial, we call an element of NC ∪ NR a predicate. The set of EL
concept expressions is inductively defined starting from atomic concepts A ∈ NC
and atomic roles R ∈ NR as follows.

C → A | C1 u C2 | ∃R.C | >

An EL TBox T is a finite set of concept inclusions of the form C v D; an EL
ABox A is a finite set of assertions of the form A(a) or R(a, b) with a and b
individuals; and an EL knowledge base (KB) is a tuple K = 〈T ,A〉, where T
is an EL TBox and A is an EL ABox. We denote with Ind(A) the set of all
individuals occurring in the ABox A. Furthermore, for E either a TBox or an
ABox, Pred(E) is the set of all predicates occurring in E .

Semantics is given as usual in terms of first-order interpretations I = 〈∆I , ·I〉,
where ∆I is a nonempty domain and ·I is an interpretation function; please re-
fer to [4] for details. In the following, we will extensively use the notion of an
unraveling of an interpretation w.r.t. an ABox. Consider an interpretation I and
an ABox A over an arbitrary EL signature. A path p in I w.r.t. A is a nonempty
finite sequence c1 ·R2 · c2 · · · cn−1 ·Rn · cn such that c1 ∈ {aI | a ∈ Ind(A)} and

for all 1 ≤ i ≤ n − 1 we have that 〈ci, ci+1〉 ∈ RIi+1 for Ri+1 ∈ NR. We say
that a path p has depth n and we write depth(p) = n; furthermore, tail(p) is the
last domain element cn in p. Let pathsA(I) denote the set of all paths w.r.t. A
occurring in I. The unraveling J of I w.r.t. A is the following interpretation.

∆J = pathsA(I)
aJ = aI

AJ = {p ∈ pathsA(I) | tail(p) ∈ AI}
RJ = {〈aJ , bJ 〉 | R(a, b) ∈ A} ∪ {〈p, p ·R · c〉 | {p, p ·R · c} ⊆ pathsA(I)}

In this paper, we deal only with normalized EL TBoxes. Let A1, A, and B
be arbitrary concepts from NC ∪ {>}. We say that an EL TBox T is in normal
form if each axiom in T is in one of the following forms: A v B,A u A1 v B,
A v ∃R.B, or ∃R.A v B. Given an arbitrary EL TBox T , we can compute a
normalized TBox Tnorm of T in linear time [4].

Querying EL KBs

LetNV be an infinite set of variables disjoint fromNI . Together,NV andNI form
the set NT of terms. A first-order query q is a first-order formula constructed
from the terms in NT and the predicates from NC ∪ NR [9]. In general, we
write q = ψ(~x) to express that q is the FO formula ψ whose answer variables are
~x = {x1, . . . , xk}. A query with k answer variables is a k-ary query. A conjunctive
query (CQ) is a FO query of the form q = ∃~y.ψ(~x, ~y), where ψ is a conjunction
of unary atoms A(s) and binary atoms R(s, t) with s and t terms. The variables
~y are the quantified variables of q. In the following, avar(q) is the set of answer
variables of q, and qvar(q) is the set of quantified variables. Finally, NV (q) is the
set of all variables occurring in q, and NT (q) is the set of all terms occurring
in q. Let q = ψ(~x) be a k-ary FO query with ~x = 〈x1, . . . , xk〉 and let I be an
interpretation. We say that a k-ary tuple of individuals 〈a1, . . . , ak〉 is an answer
to q in I, written I |= q[a1, . . . , ak], if I satisfies q under the mapping π which
sets π(xi) = ai for all 1 ≤ i ≤ k. We call π a match for q in I witnessing
〈a1, . . . , ak〉, written I |=π q. We say that 〈a1, . . . , ak〉 is a certain answer to
q over K if I |= q[a1, . . . , ak], for all models I of K. We denote the set of all
certain answers to q over K with cert(q,K). Rosati in [6] showed that deciding
whether a tuple of individuals is a certain answer to q over K is Ptime-complete
w.r.t. data-complexity (i.e., w.r.t. the size of the ABox); Ptime-complete w.r.t.
KB complexity (i.e., w.r.t. the size of K); and, NP-complete w.r.t. combined
complexity (i.e., w.r.t. the size of both K and q).

Datalog

Let NB be a nonempty set of built-in predicates [11]. Then, a Datalog rule r
is an expression of the form

S(~u)← S1(~u1), . . . , Sn(~un), Bn+1(~un+1) . . . , Bm(~um),

where n,m ≥ 0, {S, S1, . . . , Sn} ⊆ NC ∪NR, {Bn+1, . . . , Bm} ⊆ NB , and ~u and
~ui are tuples of terms of suitable length. A rule is safe if each variable occurring
in ~u ∪ ~un+1 ∪ . . . ∪ ~um also occurs in ~u1 ∪ . . . ∪ ~un. Atom S(~u) is the head of the
rule, and atoms S1(~u1), . . . , Bm(~um) constitute the body of the rule. Whenever
the body of a rule r is empty, we call r a fact, and we write the rule as S(~u). A
Datalog program P is a set of safe Datalog rules. Finally, sch(P) is the set
of predicates occurring in P .

Next, we define the semantics of a Datalog program P using Herbrand
interpretations [9]. The Herbrand Universe of P is the set of all individuals
occurring in P . The Herbrand Base of P is the set of all facts that can be
constructed from the predicates in NC ∪NR and the individuals in the universe
of P . A Herbrand interpretation I of P is a subset of the Herbrand Base of
P . Note that I does not interpret built-in predicates. As usual, we assume that
built-in predicates are evaluated over a predetermined, possibly infinite Herbrand
interpretation B [12]. Then I is a model of P w.r.t. B if, for all the rules r in P ,
we have that

I ∪ B |= ∀~x(Bm(~un) ∧ . . . ∧Bn+1(~un+1) ∧ Sn(~un) ∧ . . . ∧ S1(~u1)→ S(~u)),

where ~x is a tuple consisting of all variables occurring in the rule. The semantics
of a Datalog program P is defined as the minimal Herbrand interpretation I
satisfying P w.r.t. B, written MB(P). Whenever the program does not contain
built-in predicates, we do not consider the interpretation B and we simply write
M(P). The semantics of Datalog programs can be defined also by means of a
fixpoint construction. Then, TP is the immediate consequence operator that maps
instances I over sch(P) to instances over sch(P) as follows. For each rule r in P ,
if there exists a match π for S1(~u1)∧ . . .∧ Sn(~un)∧Bn+1(~un+1)∧ . . .∧Bm(~um)
in I∪B, then S(a1, . . . , ak) is contained in TP (I) with ai = π(ui) for each ui ∈ ~u.
One can prove that TP has a minimum fixpoint TωP such that TωP = MB(P) [9].

Finally, a Datalog query is a tuple 〈QP , QC〉 whereQP is a predicate symbol
and QC is a Datalog program. A tuple of individuals 〈a1, . . . , ak〉 is an answer
to 〈QP , QC〉 over Datalog program P if P ∪QC |= QP (a1, . . . , ak).

3 Datalog Rewriting for EL TBoxes

In this section, we show how to transform an EL TBox T into a Datalog
program PT whose size depends linearly on T . The transformation is such that,
for an arbitrary EL ABox A, we can use the unraveling of M(PT ∪A) to compute
the answers to conjunctive queries over 〈T ,A〉. Let T be a TBox over an arbitrary
EL signature. Intuitively, for each axiom α occurring in T , the program PT
contains a set of Datalog rules which encode the constraint imposed by α. To
achieve this, we have to overcome two issues.

First, EL concept inclusions of the form A v ∃R.B require the use of either
existential quantifications or Skolem terms in rule heads; however, Datalog
does not allow neither of the two. In order to solve this issue, we use a technique
that has been introduced for representing canonical models of EL knowledge

bases [4]. That is, for each atomic concept B occurring in T we introduce a fresh
auxiliary individual oB , which represents the class of existentially quantified
individuals of type B. Then, for each axiom of the above form, the program PT
contains the following two rules:

R(X, oB)← A(X); B(oB)← A(X).

Second, EL allows for > to occur in concept expressions. Hence, we need to
define in PT a unary predicate >, whose extension—given an ABox A—coincides
with the Herbrand universe of PT ∪ A. To achieve this, we restrict our study
to a subset of all EL ABoxes. In particular, we consider only those ABoxes A
such that Pred(A) ⊆ Pred(T). That is, each predicate occurring in the ABox A
must occur also in the TBox T . Then, in our Datalog program, for each atomic
concept A and for each atomic role R occurring in T , we add the following rules:

>(X)← A(X); >(X)← R(X,Y); >(Y)← R(X,Y).

This is only one of the several ways in which we can encode such a predicate.
In fact, another possibility would be—as suggested by Rosati in [6]—to assume
that each ABox A contains an assertion >(a) for each individual a ∈ Ind(A). We
believe that in the context of OBDA—where the focus is to provide access to
arbitrary data sources—it is important to make as few assumptions as possible
on the physical realization of the ABox. For this reason, we prefer the option
presented above.

Next, we formalize the transformation of a TBox T into a Datalog program
PT . Let Aux = {oA | A ∈ NC} ∪ {o>} be a set of auxiliary individuals distinct
from NI . Then, the program PT is constructed from terms in NT ∪ Aux and
predicates in NC ∪ NR ∪ {>} as follows. The transformation uses the function
Θ, shown in Figure 1, to transform each axiom in the (normalized) TBox T into
a set of Datalog rules. The Datalog program PT is then defined as follows.

PT =
⋃
α∈T Θ(α)⋃
A∈Pred(T)∩NC >(X)← A(X)⋃
R∈Pred(T)∩NR >(X)← R(X,Y), >(Y)← R(X,Y)

The following result readily follows from the definition of the program.

Proposition 1. For an arbitrary EL TBox T , Datalog program PT can be
computed in time linear in the size of T .

Consider an arbitrary EL ABox A. Next, we prove that the unraveling U
w.r.t. A of M(PT ∪A) can be used to answer conjunctive queries over K = 〈T ,A〉.
We do so in two distinct steps. First, we introduce the notion of chase of an EL
knowledge base K. Second, we show that the chase of K is isomorphic to U .

The chase of an EL knowledge base K = 〈T ,A〉, written chase(K), is a
possibly infinite Herbrand interpretation defined inductively by starting from A
and then applying axioms occurring in the TBox to assertions occurring in the

Axiom α Set of rules Θ(α)

A v B B(X)← A(X)

A1 uA2 v B B(X)← A1(X), A2(X)

∃R.A v B B(X)← R(X,Y), A(Y)

A v ∃R.B
R(X, oB)← A(X)

B(oB)← A(X)

Fig. 1. Transformation of EL Axioms into Rules

ABox. In our definition of the chase, we use function terms to denote existentially
quantified individuals. Hence, the definition of ABox assertion is extended in a
natural way to accommodate for assertions over function terms as well as over
individuals. We denote with u and w terms that can be either individuals or
function terms. Next, we define an operator ΓT that chases an ABox by applying
the axioms occurring in the TBox T . In the definition, we use assertions of the
form >(u) to assert that u is a member of the EL concept expression >. For S
an arbitrary ABox, ΓT (S) is the smallest ABox containing S and closed under
the following chasing rules.

(cr1) If {A(u)} ⊆ S and A v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr2) If {A1(u), A2(u)} ⊆ S and A1 uA2 v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr3) If {R(u,w), A(w)} ⊆ S and ∃R.A v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr4) If {A(u)} ⊆ S and A v ∃R.B ∈ T , then

{R(u, f(u,R,B)), B(f(u,R,B))} ⊆ ΓT (S).

(cr5) If u occurs in S, then {>(u)} ⊆ ΓT (S).

We now define an infinite sequence of finite ABoxes Ai for i ∈ N.

A0 = A
Ai+1 = ΓT (Ai)

Finally, the chase of K is the infinite union of all such ABoxes Ai.

chase(K) =
⋃
i∈N
Ai

It is clear that our construction of the chase of K is fair. In fact, for each i ∈ N we
have that Ai+1 is the result of exhaustively applying—to all possible assertions
occurring in Ai—all applicable axioms in T . At last, we want to point out that
chase(K) can be used to compute the certain answers to a CQ q over K.

Proposition 2 ([6]). Let K be an EL knowledge base. Further, let q be a k-ary
conjunctive query. Then, for each k-ary tuple of individuals 〈a1, . . . , ak〉, we have

〈a1, . . . , ak〉 ∈ cert(q,K) if and only if chase(K) |= q[a1, . . . , ak].

So, by proving that the unraveling U of M(PT ∪A) is isomorphic to chase(K),
we establish that U can be used to answer conjunctive queries over K. To prove
the structural equivalence of U and chase(K), we define a function h mapping
paths occurring in U to terms in chase(K). We define h by induction on the
depth of paths occurring in U as follows.

Base Case. Consider an arbitrary path p occurring in U with depth(p) = 1.
Then, we set h(p) := p.

Inductive Step. Let p = t1 · R2 · t2 · · · tn−1 · Rn · tn be a path occurring
in U such that h(p) has not been defined yet, but h(t1 · · ·Rn−1 · tn−1) = u. We
distinguish between two cases depending on the type of the individual tn.
1. If tn occurs in the ABox, we set h(p) := tn.
2. If tn is of the form oB , we set h(p) := f(u,Rn, B).

Theorem 1 shows that h is an isomorphism between the two structures. In-
tuitively, for the only-if direction, we show that h is an injective homomorphism
from U to chase(K) by induction on the depth of paths occurring in U ; further-
more, for the if-direction, by induction on the construction of chase(K) we prove
that h is a surjective function and that it is a homomorphism from chase(K) to
U . A detailed proof of this claim is given in the appendix.

Theorem 1. Function h is an isomorphism from U to chase(K).

Since the unraveling of M(PT ∪A) is generally infinite, this result alone does
not provide us with an algorithm for answering queries in EL. In the next section,
we show how to rewrite a user query q into a Datalog query 〈QP , QC〉 such
that PT ∪ A ∪QC |= QP (a1, . . . , ak) if and only if 〈a1, . . . , ak〉 ∈ cert(q,K) and
thus solve the problem.

4 Polynomial Query Rewriting in Datalog

In the previous section, we have seen that for an arbitrary EL KB K = 〈T ,A〉
evaluating a conjunctive query q over the unraveling of the Herbrand model
of PT ∪ A is equivalent to computing the certain answers to q over K. In this
section, we develop a query rewriting procedure that reduces the computation of
cert(q,K) to the problem of evaluating a suitably constructed Datalog query
over PT ∪ A. We achieve this in two steps. First, we present an interesting
property of a certain class of interpretations. Second, we show how this result
can be used to develop a query rewriting procedure in our Datalog setting.

We use the notions of A-connected and split interpretations from [7, 13]. Let
I be an interpretation and let A be an ABox over an arbitrary EL signature.
We say that I is A-connected if, for each domain element c ∈ ∆I , there exists a
path p ∈ pathsA(I) such that tail(p) = c. Furthermore, I is a split interpretation
if, for all domain elements c, c′ ∈ ∆I , we have that c 6∈ {aI | a ∈ Ind(A)}
and 〈c, c′〉 ∈ RI imply c′ 6∈ {aI | a ∈ Ind(A)}. Intuitively, in an A-connected
interpretation I, for each domain element cn it is always possible to find a path
aI ·R2 · c2 · · ·Rn · cn such that a ∈ Ind(A). Furthermore, if I is split, then each

domain element that is not the image of an individual can be related by a role
only with elements that themselves do not interpret individuals.

Then, let J be the unraveling w.r.t. A of a split and A-connected interpre-
tation I and let q be a conjunctive query. Lutz et al. in [7, 13] showed that it is
possible to reduce the problem of answering q in J to evaluating a first-order
query rewriting q∗ of q over I. Roughly speaking, the query rewriting q∗ rules
out some spurious answers for q in I that cannot be reproduced in J . More
specifically, we have to ensure that the answer variables of q, the variables of
q mapped to cyclic portions of I, and the variables of q mapped to nontree
portions of I are all matched only to the domain elements in {aI | a ∈ Ind(A)}.

We now briefly outline how we can construct such an FO rewriting q∗ for
q [7]. Let ∼q be the smallest equivalence relation over NT (q) that is closed under
the following rule: if R(s, t) and R(s′, t′) occur in q and t ∼q t′, then s ∼q s′.
Then, for each equivalence class ζ of ∼q, we let tζ ∈ ζ be an arbitrary, but fixed,
representative of the class. Also, for each such equivalence class ζ and for each
atomic role R occurring in q, we let Pred(ζ,R) be the following set.

Pred(ζ,R) = {t ∈ NT (q) | R(t, t′) occurs in q with t′ ∈ ζ}

Next, we define the following three sets of terms that correspond to the previously
mentioned cases.
– Fork= is the set of all pairs 〈Pred(ζ,R), tζ〉 such that ζ is an equivalence class

of ∼q and |Pred(ζ,R)| > 1.
– Fork6= is the set of all quantified variables v ∈ qvar(q) for which atoms R(s, v)

and S(s′, t) exist in q such that R 6= S and v ∼q t.
– Cyc is the set of all variables v ∈ qvar(q) for which atoms

R0(t0, t′0), . . . , Rm(tm, t′m), . . . , Rn(tn, t′n)

exist in q such that m,n ≥ 0; for some i ≤ n we have that ti ∼q v; for each
j < n we have that t′j ∼q tj+1; and t′n ∼q tm.

We are now ready to formally specify the FO query rewriting q∗. In the definition,
we assume that Aux is a fresh predicate not occurring in q and K and that every
interpretation I interprets Aux as ∆I \{aI | a ∈ Ind(A)}. Then, formulae q1 and
q2 are defined as follows.

q1 =
∧

v∈avar(q)∪Fork6=∪Cyc

¬Aux(v)

q2 =
∧

〈Pred(ζ,R),tζ〉∈Fork=

¬Aux(tζ) ∨
∧

t,t′∈Pred(ζ,R)

(t = t′)

Finally, we set q∗ = q∧q1∧q2. It turns out that q∗ can be computed in polynomial
time w.r.t. q [7]. In the same paper, Lutz et al. prove the following result.

Proposition 3. Let A be an arbitrary EL ABox, let I be a split and A-connected
interpretation, and let J be the unraveling of I w.r.t. A. Then, for every k-tuple
of individuals 〈a1, . . . , ak〉, we have that

I |= q∗[a1 . . . , ak] if and only if J |= q[a1 . . . , ak].

This result applies to our Datalog rewriting of EL TBoxes. Indeed, for
an arbitrary EL KB K = 〈T ,A〉, we have that M(PT ∪ A) is a split and A-
connected interpretation. The detailed proof of this statement can be found in
the appendix; here we provide an intuition behind the argument. We show that
M(PT ∪ A) is split by noticing that rules encoded in PT do not allow for the
derivation of facts of the form R(oB , a) for a ∈ Ind(A) and oB ∈ Aux. To see
that M(PT ∪A) is A-connected, we just recall that M(PT ∪A) is minimal and,
hence, all the derived facts must be “grounded” w.r.t. the facts in A.

Theorem 2. Let K = 〈T ,A〉 be an EL knowledge base. Then, M(PT ∪ A) is a
split and A-connected interpretation.

By Theorem 1, Proposition 3, and Theorem 2, we have that, for an arbitrary
k-ary CQ q and for each k-tuple of individuals 〈a1, . . . , ak〉, the following holds:

M(PT ∪ A) |= q∗[a1 . . . , ak] if and only if 〈a1, . . . , ak〉 ∈ cert(q,K). (*)

Note that q∗ is a first-order query, and we are unaware of systems capable of
evaluating first-order queries over Datalog programs. Therefore, we next show
how to transform q∗ into a Datalog query 〈QP , QC〉 such that 〈a1, . . . , ak〉 ∈
cert(q,K) if and only if PT ∪A∪QC |= QP (a1 . . . , ak). By (*), constructing such
a query 〈QP , QC〉 amounts to transforming the query rewriting q∗ of q into a
Datalog query. We construct 〈QP , QC〉 by applying to q∗ a simplified version
of the Lloyd-Topor transformation [14, 15].

Definition 1 (Datalog Rewriting). Let q(~x) be a k-ary CQ whose quanti-
fied variables are among ~y; let Cyc, Fork6=, and Fork= be as specified above; let
〈Pred(ζ1, R1), t1ζ〉, . . ., 〈Pred(ζn, Rn), tnζ 〉 be an arbitrary enumeration of Fork=;
let p0, p1, . . . , pn be fresh predicates; and let Named be a built-in with a prede-
termined, possibly infinite Herbrand interpretation N = {Named(a) | a ∈ NI}.
Query QC then contains the following safe Datalog rules:

p0(~x, ~y)← q,
∧

v∈avar(q)∪Fork6=∪Cyc

Named(v) (1)

pi(~x, ~y)← pi−1(~x, ~y),Named(tiζ) for 1 ≤ i ≤ n (2)

pi(~x, ~y)← pi−1(~x, ~y),
∧

t,t′∈Pred(ζi,Ri)

t = t′ for 1 ≤ i ≤ n (3)

QP (~x)← pn(~x, ~y) (4)

One may think that the recursive definition of predicates pi for 1 ≤ i ≤ n could
be simplified by writing QP (~x)← p0(~x, ~y) . . . pn(~x, ~y) and by defining each pi as:

pi(~x, ~y)← Named(tiζ) pi(~x, ~y)←
∧
t,t′∈Pred(ζi,Ri) t = t′

Unfortunately, these rules are not safe. Safe rules, on the one hand, provide
us with a clear and unambiguous semantics. On the other hand, unsafe rules

are also computationally more expensive for bottom-up computation, since each
variable in the head may be bound to an arbitrary individual in the universe
of the program. For this reason, we prefer our, slightly more involved, solution.
The following result follows from the definition of the Datalog query.

Proposition 4. For an arbitrary k-ary conjunctive query q, query 〈QP , QC〉
can be computed in polynomial time w.r.t. the size of q.

Proof. We note that ∼q can be computed in polynomial time w.r.t. the size of
q [7] and, therefore, also the sets Cyc, Fork 6=, and Fork= can be computed in poly-
nomial time w.r.t. q. Furthermore, the size of the body of rule p0(~x, ~y) depends
linearly on the size of q, Cyc, and Fork 6=. Also, for each pair 〈Pred(ζ,R), tζ〉 in
Fork=, the program QC contains exactly two rules. The size of these two rules
depends linearly on the size of 〈Pred(ζ,R), tζ〉. Thus, we conclude that 〈QP , QC〉
can be computed in polynomial time with respect to the size of q. ut

In the appendix, we prove that the rewriting procedure is correct—that is,
that answering 〈QP , QC〉 over PT ∪ A is equivalent to computing the certain
answers to q over 〈T ,A〉. This follows directly from (*) and the fact that our
Datalog query is the result of transforming the query rewriting q∗ along the
lines of the Lloyd-Topor transformation.

Theorem 3. Let K be an EL knowledge base and let q be a k-ary CQ over K.
Then, for every k-tuple of individuals 〈a1, . . . , ak〉, we have that

〈a1, . . . , ak〉 ∈ cert(q,K) if and only if PT ∪ A ∪QC |= QP (a1, . . . , ak).

Finally, we investigate the complexity of our rewriting procedure.

Theorem 4. Let K = 〈T ,A〉 be an EL KB, let q be a k-ary CQ, and let
〈a1, . . . , ak〉 be a tuple of individuals. We can decide PT ∪A∪QC |= QP (a1, . . . , ak)
in polynomial time w.r.t. the size of K and in non-deterministic polynomial time
with respect to the size of both K and q.

Proof. We have already argued that the size of Datalog program PT depends
linearly on the size of the TBox T and that the Datalog rewriting 〈QP , QC〉
can be computed in Ptime w.r.t. q. Also, we note that the arity of predicates
and the number of variables occurring in PT ∪ A ∪ QC do not depend on K.
Finally, from an implementation point-of-view (as suggested in [12]), the built-in
predicate Named can be considered as an assertion in the ABoxA with a different
physical realization: it is not directly stored in the ABox but it is implemented
as a procedure which is evaluated during the execution of the program. Clearly,
such a procedure can be implemented to run in time polynomial in K. It follows
that we can compute the minimal Herbrand model of PT ∪ A ∪ QC in time
polynomial in the size of K [9]. The membership in NP follows directly from
the considerations above and from the fact that we can guess and check in
nondeterministic polynomial time a match π for QP in M(PT ∪ A ∪QC). ut

5 Conclusions

In this paper, we introduce a new query rewriting approach to conjunctive query
answering in EL. In our approach, the process of computing the certain answers
to a conjunctive query q over an EL knowledge base K = 〈T ,A〉 is divided
into two distinct steps. A first preprocessing step in which the terminological
component T is transformed into a Datalog program PT , whose size is linear in
T . Then, at query time, the query q is independently rewritten into a Datalog
query 〈QP , QC〉, whose size is polynomial in q. Finally, computing cert(q,K)
amounts to evaluating the Datalog query 〈QP , QC〉 over PT ∪ A.

In future, we plan to extend our query rewriting approach to deal with
ELHdr⊥ . Lutz and colleagues have already proposed a combined approach to
query answering in this logic [13]. However, differently from their solution, we
would like the Datalog rewriting 〈QP , QC〉 to be independent from the role
inclusions contained in the TBox. Additionally, we plan to extend our work to
cover nominals, which raises the interesting question on how to efficiently handle
equality in Datalog [2].

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodŕıguez-
Muro, M., Rosati, R.: Ontologies and Databases: The DL-Lite Approach. In
Tessaris, S., Franconi, E., eds.: Semantic Technologies for Informations Systems –
5th Int. Reasoning Web Summer School (RW 2009). Volume 5689. (2009) 255–356

2. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable Query Answering and Rewrit-
ing under Description Logic Constraints. J. Applied Logic 8(2) (2010) 186–209

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable Description Logics for Ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005). (2005) 602–607

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In Kaelbling, L.P.,
Saffiotti, A., eds.: IJCAI, Professional Book Center (2005) 364–369

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In Clark, K.,
Patel-Schneider, P.F., eds.: In Proceedings of the OWLED 2008 DC Workshop on
OWL: Experiences and Directions. (2008)

6. Rosati, R.: On Conjunctive Query Answering in EL. In Calvanese, D., Franconi, E.,
Haarslev, V., Lembo, D., Motik, B., Turhan, A.Y., Tessaris, S., eds.: Description
Logics. Volume 250 of CEUR Workshop Proceedings., CEUR-WS.org (2007)

7. Lutz, C., Toman, D., Wolter, F.: Conjunctive Query Answering in EL using a
Database System. In: Proceedings of the OWLED 2008 Workshop on OWL: Ex-
periences and Directions. (2008)

8. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The Com-
bined Approach to Ontology-Based Data Access. In: IJCAI, AAAI Press (2011)

9. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

10. Chen, W., Warren, D.S.: Query evaluation under the well-founded semantics.
In: Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. PODS ’93, New York, NY, USA, ACM (1993)
168–179

11. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Vol. I. Com-
puter Science Press, Inc., New York, NY, USA (1988)

12. Ceri, S., Gottlob, G., Tanca, L.: What you Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Trans. Knowl. Data Eng. 1(1) (1989) 146–166

13. Lutz, C., Toman, D., Wolter, F.: Conjunctive Query Answering in the Description
Logic EL Using a Relational Database System. In Boutilier, C., ed.: IJCAI. (2009)
2070–2075

14. Lloyd, J., Topor, R.: Making Prolog More Expressive. The Journal of Logic
Programming 1(3) (1984) 225 – 240

15. Decker, S.: Semantic Web Methods for Knowledge Managmement. PhD thesis,
University of Karlsruhe (2002)

A Missing Proofs

Proof of Theorem 1

First, we characterize formally when two interpretations are said to be isomor-
phic.

Definition 2. Let I and J be two interpretations over an arbitrary FO signa-
ture. I and J are said to be isomorphic if there exists a function h : ∆I 7→ ∆J

for which the following three conditions hold.

(A) For each atomic concept A ∈ NC and for each domain element c ∈ ∆I ,
c ∈ AI iff h(c) ∈ AJ .

(B) For each atomic role R and for each tuple 〈c, c′〉 ∈ ∆I × ∆I , 〈c, c′〉 ∈ RI
iff 〈h(c), h(c′)〉 ∈ RJ .

(C) The function h is a bijection.

Next, we show that the function h defined in Section 3 satisfies two auxiliary
properties that will be useful for proving that h is indeed an isomorphism between
U and chase(K).

Lemma 1. h satisfies the following two conditions.

1. For each atomic concept A ∈ NC and for each path p occurring in U , we
have that A(tail(p)) ∈ M(PT ∪ A) implies A(h(p)) ∈ chase(K).

2. For each atomic role R ∈ NR and for all paths p′ and p occurring in U ,
such that either {p′, p} ⊆ Ind(A) or there exists an individual c occurring in
M(PT ∪A) such that p = p′ ·R·c, we have that R(tail(p′), tail(p)) ∈ M(PT ∪A)
implies R(h(p′), h(p)) ∈ chase(K).

Proof. We prove the statements by induction on the fixpoint construction of
M(PT ∪ A).

(Base Case). Consider T 0
PT ∪A.

We first focus on property 1. Consider an arbitrary atomic concept A and
an arbitrary path p occurring in U . Suppose that A(tail(p)) ∈ T 0

PT ∪A. It follows
that A(tail(p)) is an assertion occurring in A. By the definition of h, we have
that h(p) = tail(p). We conclude that A(h(p)) ∈ chase(K).

Let us now focus on property 2. Consider an arbitrary atomic role R and
two arbitrary paths p′ and p occurring in U such that either {p′, p} ⊆ Ind(A) or
p = p′ · R · c for some individual c occurring in T 0

PT ∪A. Further, suppose that
R(tail(p′), tail(p)) ∈ T 0

PT ∪A. Again, we have that R(tail(p′), tail(p)) occurs in the
ABox A and, therefore, h(p′) = tail(p′) and h(p) = tail(p). From this we derive
that R(h(p′), h(p)) ∈ chase(K).

(Inductive Step). Consider an arbitrary n ∈ N and suppose that properties
1 and 2 hold for TnPT ∪A. By considering the application of the different rules
occurring in PT , we show that the same holds for the freshly introduced facts in
Tn+1
PT ∪A.

- B(X) ← A(X). Consider an arbitrary path p occurring in U . Suppose that
A(tail(p)) ∈ TnPT ∪A. By definition of immediate consequence, we have that
B(tail(p)) ∈ Tn+1

PT ∪A. By the inductive hypothesis, we also know that A(h(p)) ∈
chase(K). Also, by the definition of PT , we know that A v B occurs in the
TBox T . Since chase(K) is closed with respect to chase rule (cr1), it follows
that B(h(p)) ∈ chase(K).

- B(X) ← A1(X), A2(X). Consider an arbitrary path p occurring in U . Sup-
pose that {A1(tail(p)), A2(tail(p))} ⊆ TnPT ∪A. By definition of immediate con-
sequence, we have that B(tail(p)) ∈ Tn+1

PT ∪A. By the inductive hypothesis, we
also conclude that {A1(h(p)), A2(h(p))} ⊆ chase(K). Also, by the definition of
PT , we know that A1uA2 v B occurs in the TBox T . Since chase(K) is closed
with respect to chase rule (cr2), it follows that B(h(p)) ∈ chase(K).

- B(X)← R(X,Y), A(Y). Consider two arbitrary paths p′ and p occurring in U
such that either {p′, p} ⊆ Ind(A) or p = p′ ·R ·c for some individual c in TnPT ∪A.
Suppose that {R(tail(p′), tail(p)), A(tail(p))} ⊆ TnPT ∪A. By definition of imme-
diate consequence, we have that B(tail(p)) ∈ Tn+1

PT ∪A. By the inductive hypoth-
esis, we also have that {R(h(p′), h(p)), A(h(p))} ⊆ chase(K). Since chase(K) is
closed with respect to chase rule (cr3), it follows that B(h(p′)) ∈ chase(K).

- B(oB) ← A(X) and R(X, oB) ← A(X). Consider an arbitrary path p oc-
curring in U and suppose that A(tail(p)) ∈ TnPT ∪A. Clearly, it follows that
{R(tail(p), oB), B(oB)} ⊆ Tn+1

PT ∪A. By the inductive hypothesis, we have that
A(h(p)) ∈ chase(K). By construction of PT , it follows that there exists an ax-
iom of the form A v ∃R.B in the TBox T . Since chase(K) is closed with respect
to chase rule (cr4), it follows that R(h(p), f(h(p), R,B)) and B(f(h(p), R,B)
occur in chase(K). By construction of h, we have h(p ·R · oB) = f(h(p), R,B).

- >(X)← A(X). Consider an arbitrary path p occurring in U and suppose that
A(tail(p)) ∈ TnPT ∪A. Clearly, it follows that >(tail(p)) ∈ Tn+1

PT ∪A. By the in-
ductive hypothesis, we have that A(h(p)) ∈ chase(K). Since chase(K) is closed
with respect to chase rule (cr5), it follows that >(tail(p)) ∈ chase(K).

- >(X)← R(X,Y) and >(X)← R(X,Y). Consider two arbitrary paths p1 and
p2 occurring in U and suppose that R(tail(p1), tail(p2)) ∈ TnPT ∪A. Clearly, it
follows that {>(tail(p1)),>(tail(p2))} ⊆ Tn+1

PT ∪A. By the inductive hypothesis,
we have that R(h(p1), h(p2)) ∈ chase(K). Since chase(K) is closed with respect
to chase rule (cr5), it follows that {>(tail(p1)),>(tail(p2))} ⊆ chase(K).

ut

Now, we have all the elements in order to prove that h is an isomorphism
between the two structures.

Theorem 1. Function h satisfies properties (A), (B), and (C) of isomorphic
interpretations.

Proof. (⇒). We show that h satisfies the only-if direction of properties (A), (B),
and (C). We do so by induction on the depth of the paths occurring in U .

(Base Case). We consider paths of depth 1.
For (A), consider an arbitrary path p in U with depth(p) = 1 and let A

be an arbitrary atomic concept. Suppose that p ∈ AU . By the definition of

unraveling, we have that A(tail(p)) ∈ M(PT ∪ A). By Lemma 1, we conclude
that A(h(p)) ∈ chase(K).

For (B), consider two arbitrary paths p′ and p of depth 1 occurring in U and
let R be an arbitrary atomic role. Suppose that 〈p′, p〉 ∈ RU . By the definition
of unraveling, it follows that {p′, p} ⊆ Ind(A). Therefore, by applying Lemma 1,
we get that R(h(p′), h(p)) ∈ chase(K).

For (C), we are left to show that h is an injective function on paths of depth
1. But this simply follows from the fact that we define h as the identity mapping
on ABox individuals.

(Inductive Step). Consider an arbitrary n ∈ N. We suppose that for each
path p occurring in U with depth(p) < n we have that h satisfies the only-
if direction of properties (A), (B), and (C). We show that the same holds for
arbitrary paths of depth n.

For (A), consider an arbitrary path p with depth(p) = n and let A be an
arbitrary atomic concept. Suppose that p ∈ AU . By definition of unraveling, we
have that A(tail(p)) ∈ M(PT ∪ A). By Lemma 1, we conclude that A(h(p)) ∈
chase(K).

For (B), consider two arbitrary paths p′ and p occurring in U and let R be an
arbitrary atomic role. Suppose that 〈p′, p〉 ∈ RU . By the definition of unraveling,
we have that either {p′, p} ⊆ Ind(A) or p = p′ ·R·c for some individual c occurring
in M(PT ∪A). For the former case, we note that p and p′ have depth equal 1. For
the latter case, by the definition of unraveling, we have that R(tail(p′), tail(p)) ∈
M(PT ∪ A). By Lemma 1, we conclude that R(h(p′), h(p)) ∈ chase(K).

At last, for (C), we show that h maps paths of depth n injectively. Consider
two arbitrary distinct paths p1 = c1 · · ·Rn · cn and p2 = d1 · · ·Pn · dn occurring
in U of depth n. We distinguish between three cases depending on the type of
individuals involved in p1 and p2.

1. {tail(p1), tail(p2)} ⊆ Ind(A). By the definition we have that h is the identity
mapping on ABox individuals. It follows that h(p1) 6= h(p2).

2. tail(p1) ∈ Ind(A) and tail(p2) = oB . By the definition of h, we have that p1 is
mapped by h to an ABox individual, while p2 is mapped by h to a function
term. Clearly, we have that h(p1) 6= h(p2).

3. tail(p1) = oA and tail(p2) = oB . Let p′1 = c1 · · ·Rn−1 · cn−1 and p′2 =
d1 · · ·Pn−1 ·dn−1. By the definition of h we have that h(p1) = f(h(p′1), Rn, A)
and h(p2) = f(h(p′2), Pn, B). By inductive hypothesis, we have that h(p′1) 6=
h(p′2). It follows that h(p1) 6= h(p2).

(⇐) Now, we show that h satisfies the if direction of properties (A), (B), and
(C). We do so by induction on i ∈ N, for chase(K) =

⋃
iAi.

(Base Case). Consider A0.
For (C), we argue that h is onto Ind(A0). We note that A0 = A, h is the

identity mapping on ABox individuals, and every individual in Ind(A) occurs in
the domain of U . It follows that h is a function onto Ind(A0).

For(A), let A be an arbitrary atomic concept and let p be an arbitrary path
occurring in U . Then if A(h(p)) ∈ A0 we have that A(h(p)) is an ABox assertion.
It follows that p ∈ AU , since A ⊆ M(PT ∪ A).

Similarly, for (B), for each atomic role R and for each path p′ and p occurring
in U , if R(h(p′), h(p)) ∈ A0 we have that 〈p′, p〉 ∈ RU , since R(h(p′), h(p)) ∈ A.

(Inductive Step). Consider an arbitrary i ∈ N and suppose that for Ai
we have that h satisfies properties (A), (B), and (C). We need to show that
the same holds for Ai+1. We consider the different applications of chasing rules
generating fresh assertions in Ai+1.

(cr1). Consider an arbitrary path p occurring in U . Suppose that A(h(p)) ∈
Ai and suppose that there exists an axiom of the form A v B in T . It readily
follows that B(h(p)) ∈ Ai+1. By inductive hypothesis, we also have that p ∈
AU . By the definition of unraveling, we have that A(tail(p)) ∈ M(PT ∪ A).
Additionally, we know that PT contains a rule of the form B(X) ← A(X).
Therefore, we conclude that B(tail(p)) ∈ M(PT ∪ A) and again, by definition of
unraveling, p ∈ BU .

(cr2). Consider an arbitrary path p occurring in U . Suppose that A1(h(p))
and A2(h(p)) are assertions in Ai and suppose that there exists an axiom of the
form A1 u A2 v B in T . It readily follows that B(h(p)) ∈ Ai+1. By inductive
hypothesis, we have that p ∈ AU1 ∩AU2 . By the definition of unraveling, we have
that {A1(tail(p)), A2(tail(p))} ⊆ M(PT ∪ A). Additionally, we know that PT
contains a rule of the form B(X)← A1(X), A2(X). Therefore, we conclude that
B(tail(p)) ∈ M(PT ∪ A) and again, by definition of unraveling, p ∈ BU .

(cr3). Consider arbitrary paths p′ and p occurring in U . Further, suppose that
R(h(p′), h(p)) and A(h(p)) occur in Ai and suppose that there exists an axiom
of the form ∃R.A v B in T . By the definition of chase, we have that B(h(p′)) ∈
Ai+1. By inductive hypothesis, we conclude that 〈p′, p〉 ∈ RU and p ∈ AU . By
the definition of unraveling, it follows that both R(tail(p′), tail(p)) and A(tail(p))
occur in M(PT ∪A). Additionally, we know that PT contains a rule of the form
B(X) ← R(X,Y), A(Y). Therefore, we conclude that B(tail(p′)) ∈ M(PT ∪ A)
and, by the definition of unraveling, we derive p′ ∈ BU .

(cr4). Consider an arbitrary path p in U . Suppose that A(h(p)) is an ar-
bitrary assertion in Ai and suppose that there exists an axiom of the form
A v ∃R.B in T . By the definition of the chase, we readily have that assertions
R(h(p), f(h(p), R,B)) and B(f(h(p), R,B)) are contained in Ai+1. By inductive
hypothesis, we have that p ∈ AU . By the definition of unraveling, we conclude
that A(tail(p)) ∈ M(PT ∪A). Additionally, we know that PT contains two rules
of the form R(X, oB) ← A(X) and B(oB) ← A(X). Therefore, we have that
{R(tail(p), oB), B(oB)} ⊆ M(PT ∪A). By the definition of unraveling, we derive
that 〈p, p ·R · oB〉 ∈ RU and p ·R · oB ∈ BU . By construction of h, we know that
h(p ·R ·oB) = f(h(p), R,B). Since by inductive hypothesis h is onto Ind(Ai) and
this is the only chasing rule introducing terms not occurring in Ai, it follows that
for each term u in Ai+1 there exists a path p occurring in U such that h(p) = u.

(cr5). Consider an arbitrary path p occurring in U . Suppose that A(h(p)) is
an arbitrary assertion in Ai. By the definition of the chase, we readily have that
>(h(p)) ∈ Ai+1. By inductive hypothesis, we have that p ∈ AU . By the definition
of unraveling, we conclude that A(tail(p)) ∈ M(PT ∪ A). Additionally, we know
that PT contains a rule of the form >(X)← A(X). Therefore, we conclude that

>(p) ∈ M(PT ∪A) and, by the definition of unraveling, we derive p ∈ >U . Next,
consider two arbitrary paths p′ and p occurring in U . Suppose that R(h(p′), h(p))
is an arbitrary assertion inAi. By the definition of the chase, we readily have that
{>(h(p′)),>(h(p))} ⊆ Ai+1. By inductive hypothesis, we have that 〈p′, p〉 ∈ RU .
By the definition of unraveling, we conclude that R(tail(p′), tail(p)) ∈ M(PT ∪A).
Additionally, we know that PT contains two rules of the form >(X)← R(X,Y)
and >(Y) ← R(X,Y). Therefore, we conclude that {>(tail(p′)),>(tail(p))} ⊆
M(PT ∪ A) and, by the definition of unraveling, we derive {p′, p} ⊆ >U .

Therefore, we conclude that h satisfies properties (A), (B) and (C) and, thus,
U and chase(K) are isomorphic interpretations. ut

Proof of Theorem 2

Theorem 2. Let K = 〈T ,A〉 be an EL knowledge base. Then, M(PT ∪ A) is a
split and A-connected interpretation.

Proof. We first show that M(PT ∪ A) is split. Let a and b be two arbitrary
individuals in Ind(A), and let oA and oB be two arbitrary auxiliary individuals
occurring in PT . By considering the structure of the rules contained in PT ∪A, we
note that the only binary facts that can be derived from PT ∪A are of the form
R(a, b), R(a, oB), and R(oA, oB). Therefore, M(PT ∪A) does not contain a fact
of the form R(oB , a). Next, we show by induction on the fixpoint construction
of M(PT ∪ A) that M(PT ∪ A) is A-connected. For the base case, we note that
T 0
PT ∪A consists exactly of the assertions contained in A. For the inductive step,

consider an arbitrary n and assume that all individuals contained in TnPT ∪A are
A-connected. We have to show that the same holds for Tn+1

PT ∪A. We note that
the only rules in the program that introduce individuals that possibly do not
occur in TnPT ∪A are of the form {R(X, oB) ← A(X), B(oB) ← A(X)}. Clearly,
if A(a) ∈ TnPT ∪A then R(a, oB) ∈ Tn+1

PT ∪A and oB is A-connected by inductive
hypothesis. ut

Proof of Theorem 3

Theorem 3. Let K be an EL knowledge base and let q be a k-ary CQ over K.
Then, for every k-tuple of individuals 〈a1, . . . , ak〉, we have that

〈a1, . . . , ak〉 ∈ cert(q,K) iff PT ∪ A ∪QC |= QP (a1, . . . , ak).

Proof. By Corollary *, this is equivalent to show the following.

M(PT ∪ A) |= q∗[a1, . . . , ak] iff PT ∪ A ∪QC |= QP (a1, . . . , ak)

(⇒) For the only-if direction, assume that M(PT ∪A) |= q∗[a1, . . . , ak]. That
is, there exists a match π for q∗ in M(PT ∪A) witnessing 〈a1, . . . , ak〉. We need
to show that QP (a1, . . . , ak) ∈ MN(PT ∪ A ∪QC).

Let us start by pointing out that M(PT ∪A) ⊆ MN(PT ∪A ∪QC). Thus,we
have that MN(PT ∪ A ∪ QC) |=π p0(~x, ~y). The reason is that π is a match

for q, which satisfies the conditions imposed by q1 in q∗. Hence, each variable
v ∈ avar(q) ∪ Fork 6= ∪ Cyc is mapped to a named individual that occurs in N.
Now, suppose that MN(PT ∪ A ∪ QC) |=π pi−1(~x, ~y), we need to show that the
same holds for pi(~x, ~y). Consider the i-th pair 〈Pred(ζ,R), tζ〉 in the enumeration
f of Fork=. Since π is a match for q∗ in M(PT ∪ A), it follows that either π(tζ)
is a named individual, or, all the terms in Pred(ζ,R) are identified by π. We
conclude that MN(PT ∪ A ∪ QC) |=π pi(~x, ~y). By an inductive argument, we
have that MN(PT ∪ A ∪ QC) |= pi(~x, ~y) for each i ∈ {0, . . . , n}. It follows that
MN(PT ∪A∪QC) |=π QP (a1, . . . , ak). Therefore, PT ∪A∪QC |= QP (a1, . . . , ak)

(⇐) The proof for the if direction is similar. Suppose that PT ∪ A ∪ QC |=
QP (a1, . . . , ak). Then, we have that QP (a1, . . . , ak) ∈ MN(PT ∪ A ∪QC). Since
MN(PT ∪ A ∪ QC) is a minimal model, it follows that there exists a match
π that witnesses pn(a1, . . . , ak, ~y) in MN(PT ∪ A ∪ QC). Such a match π for
pn(a1, . . . , ak, ~y) in MN(PT ∪ A ∪QC) satisfies two conditions. First, it satisfies
each pi(a1, . . . , ak, ~y) occurring in QC for 1 ≤ i ≤ n. That is, for each pair
〈Pred(ζ,R), tζ〉 in Fork=, we have that either π(tζ) is a named individual occur-
ring in N or all terms in Pred(ζ,R) are identified by π. Therefore, π satisfies
the conditions imposed by q2 in q∗. Additionally, π satisfies p0(a1, . . . , ak, ~y) in
MN(PT ∪A∪QC). From this it follows that each variable v ∈ avar(q)∪Fork 6=∪Cyc
is mapped to an individual occurring in N. Finally, we note that π is a match for
q as well. Since q uses only predicates occurring in PT ∪A and π satisfies q1 and
q2, we conclude that M(PT ∪A) |=π q∗. Therefore, M(PT ∪A) |= q∗[a1, . . . , ak].

ut

