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Abstract. In this paper we present the ontology matching system
LogMap 2, a much improved version of its predecessor LogMap.
LogMap 2 supports user interaction during the matching process,
which is essential for use cases requiring very accurate mappings.
Interactivity, however, imposes very strict scalability requirements;
we are able to satisfy these requirements by providing real-time user
response even for large-scale ontologies. Finally, LogMap 2 imple-
ments scalable reasoning and diagnosis algorithms, which minimise
any logical inconsistencies introduced by the matching process.

1 MOTIVATION
Ontologies are extensively used in domains such as biomedicine.
The most widely used ontology modelling language is the Web On-
tology Language (OWL) and its revision OWL 2 [7]. Effective on-
tology reuse and integration techniques are often needed when de-
veloping OWL-based biomedical applications. In particular, reuse
of reference biomedical ontologies, such as SNOMED CT, the Na-
tional Cancer Institute Thesaurus (NCI) and the Foundational Model
of Anatomy (FMA), facilitates interoperability between applications,
and is known to significantly reduce ontology development costs.
Furthermore, applications sometimes rely on different reference on-
tologies, so integrating the relevant reference ontologies is a prereq-
uisite for these applications to interoperate.

A first step in the reuse and integration of independently devel-
oped ontologies is to establish suitable mappings between their vo-
cabularies. Although the problem of ontology matching has received
significant attention in the last few years [8, 25], applications are still
faced with many important practical challenges.

To make the discussion concrete, we next focus on two use cases
as running examples, but the core technical problems are shared with
many commercial and academic biomedical applications.
The LUCA use case. The Systems Engineering Group at Oxford
University is developing LUCA—a medium-sized OWL ontology
that describes the domain of Lung Cancer according to the speci-
fications of the National Health Service (NHS) [24]. To facilitate in-
teroperability with other applications within the NHS, LUCA needs
to be integrated with SNOMED CT, which is the reference ontology
of choice across NHS’s information systems. To this end, LUCA’s
developers would like to (i) identify the concepts in SNOMED CT

related to those in LUCA and establish suitable mappings between
them; and (ii) import a small fragment of SNOMED CT (i.e., a mod-
ule) that captures the meaning of such relevant concepts.

SNOMED CT, however, is a complex ontology describing more
than 300,000 concepts, and computing mappings with LUCA is un-
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feasible without suitable tool support. To perform task (i) automati-
cally, one could use an ontology matching system; however, although
existing systems can deal with small ontologies, large-scale ontolo-
gies such as SNOMED CT are often beyond their reach. For exam-
ple, the ontologies in the largest test case of the OAEI 2011 ontology
matching initiative contain only 2,000–3,000 concepts, yet only 6 out
of 16 systems succeeded in matching them [8]. Most importantly,
even if LUCA and SNOMED CT could be matched “offline” (e.g.,
by running a system overnight on a high performance server), map-
ping computation heavily relies on heuristics such as string similar-
ity measures, and is thus inevitably error prone; as a result, ontology
developers still need to undertake an expensive a-posteriori manual
curation of the mappings. Many mapping errors could be avoided if
the user is interactively involved in the matching process [9]; how-
ever, most systems are fully automated, and do not allow the user to
intervene. Finally, to perform task (ii), one could use logic-based on-
tology modularisation techniques [6, 17]; however, these techniques
require the relevant vocabulary to be given as input, and hence de-
pend on the successful completion of task (i).
The UMLS-META use case. UMLS Metathesaurus (UMLS-META)
contains more than one hundred ontologies and thesauri together
with mappings between them [4]. UMLS-META is used in a wide
range of applications such as PubMed (a search engine for biomed-
ical articles) and ClinicalTrials.gov (a worldwide registry of clinical
trials). The integration of new ontologies in UMLS-META is a com-
plex process that heavily relies on expert assessment and sophisti-
cated auditing protocols. Such curation and auditing processes, how-
ever, are not only extremely costly, but also error-prone. For example,
the ontology obtained from the union of FMA, SNOMED CT and the
UMLS-META mappings between them contains over 6,000 unsatis-
fiable concepts [15]. Although several tools can assist the user in
mapping curation [14, 19], they do not scale to large ontologies and
mapping sets. Thus, as UMLS-META grows in both size and com-
plexity, it becomes imperative to minimise manual curation, while at
the same time reducing the number of errors.

To meet the requirements of these use cases, the availability of
ontology matching tools with the following features seems essential.

1. Interactivity. Most systems rely on heuristics to prune candidate
mappings. These heuristics, however, often lead to wrong choices,
which can have a “cascade effect” and lead to further errors. Thus,
expensive a-posteriori curation of the output mappings is often
unavoidable. User intervention during the matching process be-
comes essential for use cases requiring very accurate mappings,
such as LUCA and UMLS-META [9]. Indeed, allowing domain ex-
perts to interactively contribute to the matching process when crit-
ical choices need to be made could significantly improve matching
results while keeping user intervention to a minimum.



2. Scalability. Ontology matching is seen by many as an offline pro-
cess, and systems are often not designed with scalability in mind.
Most systems run out of memory with input ontologies containing
a few thousand concepts, and hence they cannot deal with our use
cases. Furthermore, interactivity imposes very strict scalability re-
quirements, as users will expect reasonable response times.

3. Reasoning-based error diagnosis. OWL ontologies have well-
defined semantics [7], and mappings are commonly represented as
OWL axioms [14]. Many systems, however, disregard the seman-
tics of the input ontologies, and are thus unable to detect and repair
inconsistencies that follow from the union of the input ontologies
and the mappings. Although there is a growing interest in reason-
ing techniques for ontology matching [11, 22, 10, 14, 15, 12, 18],
reasoning is known to exacerbate the scalability problem [13].

The problem of ontology matching has been extensively studied in
the last ten years (see [8, 25]). To the best of our knowledge, however,
there is no system with all the above mentioned features.

• Very few systems support user interaction [9]. Examples include
COGZ (a visual plugin for PROMPT [21]), COMA++ [2], and
Muse [1]. These systems, however, do not scale to ontologies con-
taining thousands of concepts, and they do not provide reasoning-
based diagnosis features. Although several tools (e.g. [14, 19])
support interactive mapping diagnosis, they can only be used for
a-posteriori mapping curation (i.e., not during the matching pro-
cess), and they do not scale to large ontologies and mapping sets.

• The systems ASMOV [11], KOSIMap [22], CODI [10], and
LogMap [12] implement reasoning-based diagnosis techniques.
Among these, however, only LogMap can process large-scale on-
tologies, and none of them supports user interaction.

• Very few systems could process the largest test cases in the
OAEI 2011 competition, and only GOMMA [16] and LogMap
have shown to successfully scale to larger ontologies. None of
these systems, however, supports user interaction. Furthermore,
GOMMA is based on lexical matching techniques and does not
support reasoning-based diagnosis.

To bridge this gap, we present LogMap 2—a new system that
can meet the interactivity, scalability, and diagnosis requirements im-
posed by biomedical applications such as LUCA and UMLS-META.

2 The Design of a Scalable, Logic-based and
Interactive Ontology Matching System

LogMap [12] has partly addressed the problem of efficiently match-
ing large-scale ontologies while performing “on the fly” reasoning-
based diagnosis. LogMap, however, provides no support for user in-
teraction, and the underlying algorithm cannot be easily extended
with interactive features. Furthermore, despite being highly opti-
mised, LogMap’s performance on large-scale ontologies is unsat-
isfactory for user interaction, where real time response is required.
Thus, although certain elements in LogMap can be used, a re-
design of the matching algorithm was needed. Section 2.1 discusses
our initial design choices; in particular, we discuss which specific
techniques implemented in LogMap 2 have been borrowed from
LogMap. Section 2.2 discusses the new architecture of LogMap 2
and the novel techniques that we have developed.

2.1 The Starting Point
The keys to LogMap’s favourable scalability behaviour can be sum-
marised as given next. LogMap 2 borrows from these ideas and im-

Input: O1, O2: input ontologies; Interact: Boolean value
Output:M: mappings.

1: 〈LI1, LI2〉 := LexicalIndexes(O1,O2)
2: M? := CandidateMappings(LI1, LI2)

3: 〈O
′
1,O

′
2〉 := Module(O1,O2,M?) . End of Stage 1

4: M := ReliableMappings(M?)
5: M? :=M? \M
6: 〈P ′1,P ′2〉 := PropEncoding(O′1,O′2)
7: M := Diagnosis(P ′1,P ′2,M, ∅)
8: SI := SemanticIndex(P ′1,P ′2,M)
9: M? :=M? \ Discarded(LI1, LI2, SI,M?)

10: if (Interact = true) then
11: Muser := InteractiveProcess(SI,M?) . See Figure 3
12: M := Diagnosis(P ′1,P ′2,M∪Muser,Muser)
13: else
14: M := Diagnosis(P ′1,P ′2,M∪M?,M)
15: end if
16: returnM

Figure 1: High level description of LogMap 2

proves on each of them.

• Lexical indexation. An inverted index is used to store information
from entity annotations. This allows for efficient computation of
an initial set of mappings that are almost “lexically exact”.

• Hierarchy indexation. The concept hierarchy and the “told” dis-
jointness relationships between concepts in each input ontology
are efficiently stored using an interval labelling schema —an opti-
mised data structure for storing directed acyclic graphs that signif-
icantly reduces the cost of answering typical taxonomic queries.

• Propositional reasoning and “greedy” diagnosis. Input ontolo-
giesO1 andO2 are encoded in Horn propositional representations
P1 and P2. Even if incomplete, such encoding allows LogMap
to detect and repair unsatisfiable concepts both soundly and ef-
ficiently. Furthermore, incompleteness levels have been shown
to be very low in practice. Satisfiability of concept C (seen as
a propositional variable) is determined by checking satisfiabil-
ity of P1 ∪ P2 ∪ M ∪ {true → C}, with M the mappings
computed thus far (seen as propositional implications). Diagno-
sis is the task of computing a maximal subsetM′ ofM such that
P1∪P2∪M′∪{true→ C} is satisfiable for eachC inO1∪O2.
LogMap implements a greedy algorithm that deletes as few map-
pings as possible fromM.

2.2 The Architecture of LogMap 2

LogMap 2 accepts as input OWL 2 ontologies O1 and O2, and re-
turns a setM of mappings of the form A1 v A2, with A1 and A2

atomic concepts in O1 and O2, respectively.
LogMap 2 can work in two modes: interactive mode, where the

user will be asked a (hopefully small) number of questions to assist
LogMap 2 in “critical” decisions, and automatic mode, where the
whole matching process is completed automatically. In both modes,
LogMap 2’s algorithm can be divided in two main stages:

1. Computation of candidate mappings. To be both efficient and
comprehensive, LogMap 2 computes a (typically large) setM? of
candidate mappings using lexical techniques only. The goal is to
maximise recall; that is, to efficiently compute an initial set of can-
didates containing as many valid mappings as possible. No further
mappings are computed after this stage; thus, the recall obtained
withM? is an upper-bound on the recall for the final outputM.



Table 1: Inverted Indexes for FMA and NCI

Inverted Index for FMA Ids for FMA concept URIs
Index entry Concept ids Concept id Concept URI (namespace omitted)
{ acinus } 6953,7661,8171 6953 Mixed acinus
{ common,branch,artery } 1170,7842 7661 Serous acinus

8171 Hepatic acinus
1170 Branch of common cochlear artery
7842 Branch of common interosseous artery

Inverted Index for NCI Ids for NCI concept URIs
Index entry Concept ids Concept id Concept URI (namespace omitted)
{ acinus } 18081 18081 Liver acinus
{ common,branch,artery } 1204,8087,27727 1204 Common carotid artery branch

8087 Common iliac artery branch
27727 Common femoral artery branch

Logic-based module extraction techniques [6] are used to com-
pute ontology fragments O′1 ⊆ O1 and O′2 ⊆ O2 that “capture
the meaning” in each input ontology of the concepts mapped by
M?; these fragments will be used instead of the input ontologies
when performing reasoning-based diagnosis tasks.

2. Assessment of candidate mappings. The goal of this stage is to
maximise precision without harming recall. This is achieved by
progressively discarding mappings that are “very likely” to be in-
correct, as well as by identifying those that are “very likely” to
be correct. Lexical, structural and reasoning-based techniques are
all used in this process. In the interactive mode, cases that are not
“clear-cut” are referred to the user; in the automatic mode, such
unclear cases are resolved heuristically.

We next discuss each of the main steps performed by LogMap 2,
which are schematically represented in Figure 1.

2.2.1 Maximising recall: computing candidate mappings

Lexical Indexation. Concept labels and URIs in each input ontol-
ogy are stored using an inverted lexical index. Table 1 illustrates
the structure of the index for FMA and NCI. An entry is a set of
words occurring together in the label or URI of a concept; the in-
dex maps each entry with integer ids, each of which uniquely cor-
responds to a concept URI. For example, entry {common, branch,
artery} is mapped to the internal id 1170, which corresponds to the
URI FMA:Branch of common cochlear artery; thus, this concept
contains all three words in the index entry in either its URI, or in
one of its labels (e.g., synonyms). To consider lexical variations, ad-
ditional index entries are included using stemming techniques.

As already mentioned, LogMap 2 largely borrows its indexation
scheme from LogMap. However, the index in LogMap 2 is much
larger than the one in its predecessor, as it serves a different purpose.
Computing candidate mappings. The set M? of candidate map-
pings is computed from the inverted indexes LI1 and LI2 ofO1 and
O2 (Step 2 in Figure 1). LogMap 2 considers all entries e1 inLI1 and
e2 in LI2 such that e1=e2 and creates mappings A1vA2 and A2v
A1 for each concept A1 corresponding to e1 and A2 corresponding
to e2. For example, the entry {acinus} occurs in both indexes from
Table 1; this entry corresponds to concepts FMA:Mixed acinus,
FMA:Serous acinus, and FMA:Hepatic acinus in FMA’s index and
to concept NCI:Liver acinus in NCI’s index. Thus, our tool considers
as candidate mappings all axioms of the form NCI:Liver acinus v X
and X v NCI:Liver acinus, for X = FMA:Mixed acinus, or
X = FMA:Serous acinus, or X = FMA:Hepatic acinus.

Most candidate mappings will turn out to be incorrect (e.g., pre-
cision for FMA-NCI at this stage is 0.14); the goal, however, is to
maximise recall (e.g., 0.93 recall for FMA-NCI), while keeping the
number of candidates manageable (e.g., 19,151 for FMA-NCI, which
contain 78,989 and 66,724 concepts respectively).

Logic-based module extraction. LogMap 2 implements sound algo-
rithms for detecting unsatisfiable concepts, and for fixing the source
of unsatisfiability. The practical feasibility of these techniques, how-
ever, critically depends on the size of the input ontologies. LogMap
2 exploits ontology modularisation techniques. More precisely, given
O1, O2, andM?, it computes fragments O′1 ⊆ O1 and O′2 ⊆ O2

(Step 3 in Figure 1) with the following properties:

• If O1 ∪O2 ∪M? |= A v B with A and B atomic, >, or ⊥, and
eitherA orB occurs inM?, then {A,B} ⊆ sig(O′1∪O′2∪M?).

• If O1 ∪ O2 ∪ M? |= α with α an arbitrary OWL axiom, and
sig(α) ⊆ sig(O′1 ∪ O′2 ∪M?), then O′1 ∪ O′2 ∪M? |= α.

The first condition ensures that O′1 ∪ O′2 ∪M? contains in its sig-
nature all super-concepts of a concept in a candidate mapping; the
second one ensures that the moduleO′1∪O′2∪M? is logically indis-
tinguishable fromO1∪O2∪M? w.r.t. its own signature. Such mod-
ules can be efficiently computed [6], and are typically much smaller
than the original ontologies (e.g., the module computed for FMA-NCI

contains 37% of the concepts in FMA, and 38% of those in NCI).

2.2.2 Maximising precision: assessing candidate mappings

Reliable mappings are those candidate mappings that LogMap 2
considers very likely to be correct; these mappings are provisionally
taken as part of the final output (see Step 4 in Figure 1). In order for
a mapping to be seen as “reliable”, it must satisfy two requirements.

• High similarity value. Our tool assigns a similarity value to each
candidate mapping using an off-the-shelf string matching tool.
The threshold required to reliable mappings is very high; hence,
reliable mappings involve concepts that are almost lexically iden-
tical (e.g., the mapping FMA:CarpalBone v NCI:Carpal Bone).

• Matching contexts. Not all mappings with high similarity are cor-
rect. For example, in FMA:Trapezoid v NCI:Trapezoid, concept
FMA:Trapezoid refers to a bone, whereas NCI:Trapezoid refers
to a polygon. When parsing, LogMap 2 keeps basic information
about the neighbours of each concept in the asserted hierarchy of
O1 and O2. A mapping between A and B is considered reliable
only if there is also a candidate mapping relating a neighbour of
A to a neighbour of B.

Reasoning-based diagnosis. Reliable mappings typically have a
high precision w.r.t. the Gold Standard (e.g. 2,281 reliable mappings
for FMA-NCI with a precision of 0.9). Even if all atomic concepts
in the union of the input ontologies and the Gold Standard mappings
are satisfiable, a few incorrect reliable mappings can cause many con-
cepts to become unsatisfiable. For example, the union of FMA, NCI

and the set of reliable mappings computed by LogMap 2 (which have
a precision of 0.9) entails more than 600 unsatisfiable concepts.
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Figure 2: Semantic index for NCI-LUCA. Each node in the index
is labelled with one or more intervals. Each interval characterises
a subgraph with its respective minimum and maximum preorder
numbers. Disjointness between intervals is also stored. MO = Med-
ical occupation, OC = Occupation, BC1 = Bronchoscopist, CA =
Clinical activity, PR1 and PR2 = Procedure, BC2 and BC3 = Bron-
choscopy, CP = Clinical procedure, LP = Laboratory procedure.

LogMap 2 exploits the propositional encoding and reasoning al-
gorithms already used by its predecessor to detect and repair these
unsatisfiable concepts (Steps 6 and 7 in Figure 1). As a result, a small
number of mappings are discarded and a “clean” set of reliable map-
pings is efficiently computed. In the diagnosis process, P ′1, P ′2, and
a subset of the mappings (see last parameter of the Diagnosis pro-
cedure) are considered to be “fixed” (i.e., they cannot be discarded
during diagnosis). In contrast to LogMap, modules are used instead
of the input ontologies, which improves reasoning performance.

Semantic indexation. The entailments of P ′1∪P ′2∪M, withM the
reliable mappings after diagnosis, are efficiently encoded in a seman-
tic index (Step 8 in Figure 1) using an interval labelling schema [5].
This index reduces the cost of computing “semantic” queries over
P ′1 ∪ P ′2 ∪ M; an example is given in Figure 2. The interval en-
coding of propositional variables allows us to efficiently reduce to
integer operations complex queries such as “Is NCI:Bronchoscopist
disjoint with LUCA:Procedure w.r.t. P ′1 ∪ P ′2 ∪ M?”. Similar in-
terval encodings were used in LogMap for indexing the concept hi-
erarchy of each input ontology; in contrast to the indexing scheme
in LogMap, however, the semantic index in LogMap 2 allows us to
efficiently answer entailment queries over the integration of the input
ontologies and the mappings computed thus far.

Discarding candidate mappings. LogMap 2 exploits the lexical and
semantic indexes to discard most of the remaining “non-reliable”
mappings (Step 9 in Figure 1). The process consists of two stages:

1. Conflicts with the semantic index. LogMap 2 discards the map-
pings inM? that, when added toM, make a concept unsatisfiable
(e.g., the equivalence mapping m≡3 in Figure 2); this information
is obtained from the semantic index; e.g., NCI:Bronchoscopist
and LUCA:Bronchoscopy are disjoint w.r.t. P ′1 ∪ P ′2 ∪M:

• NCI:Bronchoscopist is subsumed by NCI:Occupation ([4, 4]
contained in [2, 4]); LUCA:Bronchoscopy is subsumed by
NCI:Clinical activity ([9, 9] contained in [5, 10]); and

• NCI:Occupation is disjoint with NCI:Clinical activity.

Our tool also discards mappings such as m≡1 in Figure 2, which,
given a reliable m≡r (NCI:Procedure ≡ LUCA:Procedure), map
an ancestor of a concept in m≡r (NCI:Clinical activity) to a de-
scendant of the other one (LUCA:Clinical procedure).

Procedure InteractiveProcess
Input: SI: semantic index;M?: mappings to revise;
Output:Muser: user-selected mappings;

1: (X) FilterAmb := Filter by Ambiguity?
2: while Interact = true andM? 6= ∅ do
3: M? := ComputePartialOrder(M?)
4: (X) 〈m,action〉 := AssessMappingFromList(M?)
5: M? :=M? \ {m}
6: if (FilterAmb = true) then
7: Aux := Ambiguous(m,M?) andM? :=M? \ Aux
8: end if
9: if (action = addition) then

10: Muser :=Muser ∪ {m}
11: M? :=M? \ Conflict(SI ∪ {m},M?)
12: else if (FilterAmb = true) then
13: Muser :=Muser ∪ Aux
14: end if
15: (X) Interact := Stop interaction?
16: end while
17: ifM? 6= ∅ then Muser :=Muser ∪ applyHeuristics(M?)
18: returnMuser

Figure 3: LogMap 2 user interaction

2. Revision of similarity values. LogMap 2 uses the lexical and se-
mantic indexes to revise the similarity values assigned to can-
didate mappings (Step 4 in Figure 1). The value for a mapping
A ≡ B is refined by taking into account the following:

• Word co-occurrence in the lexical entries for A and B; e.g., if
A is Hepatic acinus in FMA and B is Liver acinus in NCI,
a string matcher computes a low similarity; however, “Liver”
and “Hepatic” frequently co-occur in FMA and NCI concepts
(e.g., Hepatic stem cell and Liver stem cell are synonyms in
FMA); based on such analysis, similarity betweenA andB can
be increased. Co-occurrence has been successfully used in in-
formation retrieval, as well as for ontology matching (e.g. [23]).

• Mappings involving superconcepts and subconcepts of A and
B; this information can be drawn from the semantic index.

User interaction Many candidate mappings are discarded automat-
ically in the previous step (more than 16,000 for FMA-NCI). The
remaining ones, however, are not “clear cut” cases and user feedback
would be highly beneficial. The number of such mappings can still
be significant (852 such mappings for FMA-NCI); hence, it is crucial
to reduce the number of questions to the human expert, on the one
hand, and the delay between successive questions, on the other hand.

As discussed in the evaluation section, automatic decisions based
on users’ feedback can significantly reduce the number of questions
in practice. This idea has also been successfully applied to knowl-
edge base revision in ontology engineering (e.g. [3, 20]).

The interaction between LogMap 2 and an expert user is specified
in Figure 3, where a (X) indicates the steps where user intervention
is possible. Mappings in M? are arranged in a partial order using
their (revised) similarity value (Step 3). Questions are asked to users
following this partial order, and users can choose to accept or reject
the given mapping (Step 4). Users can decide to stop the process
(Step 15) so that remaining cases are decided heuristically (Step 17).

Automatic decisions based on a particular user decision to accept
or reject a mapping are made according to the following criteria:

• Ambiguity. m = (A ≡ B) is ambiguous with m′ = (C ≡ D) if
C = A or D = B (e.g., FMA:Ethmoid ≡ NCI:Ethmoid bone is
ambiguous with FMA:Ethmoid ≡ NCI:Ethmoid artery). Ambi-
guity is a major source of errors in ontology matching [15]; e.g.,



Ethmoid is either a bone or an artery, but not both. If the user ac-
cepts m, and there is only one candidate mapping m′ inM? that
is ambiguous with m, then m′ is automatically rejected (Step 7);
in contrast, if the user rejects m, then m′ is accepted (Step 13).
Users have the choice not to use ambiguity criteria for automatic
decisions (Step 1), as it may have a negative impact on recall.

• Conflicts with semantic index. If a user decides to accept m, then
those mappings that are in conflict with the semantic index up-
dated with m (as described in Point 1 in the preceding section)
can be safely rejected automatically (Step 11).

Final diagnosis A final reasoning and diagnosis step is performed
before returning the output (Steps 12 and 14 in Figure 1). When
working in interactive mode, priority is given to human decisions;
thus, the mappings Muser selected by the human expert are con-
sidered to be fixed, which can result in the deletion of some auto-
matically computed reliable mappings. In contrast, when working in
non-interactive mode, reliable mappings are considered to be fixed,
and thus take precedence over the remaining candidate mappings.

3 EVALUATION

LogMap 2 has been evaluated in both automatic mode and interactive
mode on a laptop with 4Gb of RAM. Since LogMap 2 does not yet
provide a graphical user interface, we have “simulated” the human
expert using Gold Standard mappings to return the correct answer
with a given probability. The system is available for download and
can also be used directly through a Web interface.2

For each operation mode, we have conducted experiments corre-
sponding to the LUCA and UMLS-META use cases. First, we matched
LUCA to SNOMED CT (Jan. 2009) and NCI (v. 08.05d). These on-
tologies contain 395, 306,591 and 66,724 concepts respectively. Pre-
cision and recall were evaluated using a curated Gold Standard. We
then matched SNOMED-NCI, FMA-SNOMED, and FMA-NCI, where
FMA refers to its 2.0 version (78,989 concepts). A clean version of
UMLS-META (v. 2009 AA) was used as a Gold Standard [12].

3.1 Automatic Mode

Computation times are summarised in Table 2. LUCA can be
matched to NCI and SNOMED CT in one and four minutes, respec-
tively, with parsing (using OWL API) being the most expensive step.
SNOMED-NCI was the most challenging case (about 39 minutes) due
to the number of unsatisfiable concepts, which made diagnosis ex-
pensive; since memory usage was the main issue, we repeated the
experiment on a 10Gb machine and obtained the output in 15 min.

As already mentioned, only LogMap and GOMMA have also
shown to scale with large ontologies. LogMap reports times in line
with (but slower than LogMap 2) for FMA-NCI and SNOMED-NCI.3

Times for FMA-SNOMED are not comparable since LogMap com-
putes a much smaller set of mappings, and thus diagnosis is less ex-
pensive. Finally, GOMMA is able to match FMA-NCI in 48 minutes,
however it fails to cope with FMA-SNOMED and SNOMED-NCI.

Precision and recall Table 3 summarises our results. In the table,
|MGS | is the number of mappings in the Gold Standard. Precision
(P), recall (R) and F-score (F) are given for intermediate steps.

In Step 2, LogMap 2 computes all candidate mappings using the
lexical index. As expected, recall values are high, but precision is

2 http://www.cs.ox.ac.uk/isg/tools/LogMap/
3 Note that times in [12] do not include loading and preprocessing

Figure 4: Synthetic experiments for FMA and modules of NCI. Bars
represent average number of questions; colored lines represent F-
score values for simulated users with variable error rates.

low. In Step 7, LogMap 2 has computed a clean set of reliable map-
pings. Precision is high, but recall is now low. LogMap 2 returns in
Step 14; precision has decreased slightly in comparison to Step 7, but
recall has significantly increased and thus also the F-score.

Finally, the last column of Table 3 indicates the number of unsatis-
fiable concepts when classifyingO′1∪O′2∪M using a DL reasoner,
whereM is the output mappings computed by LogMap 2. Although
the reasoning algorithms in LogMap 2 are incomplete, LogMap 2 is
able to produce a “clean” set of output mappings in many cases. Note
that no OWL 2 DL reasoner could cope with SNOMED-NCI [13].

When compared with LogMap, LogMap 2 obtains a better pre-
cision and F-score in all cases. Furthermore, recall is dramatically
improved for FMA-SNOMED. GOMMA could only be compared for
FMA-NCI, where it produces a good F-score (0.81), however, after
the integration, more than 5,000 concepts became unsatisfiable.4

3.2 Interactive Mode
Results are summarised in Table 4 and organised according to
whether ambiguity criteria are used to reduce the number of ques-
tions. We have simulated users with variable error rate, and observed
that results in the non-interactive mode are similar to those obtained
with 30% user error rate. Thus, interaction seems to be beneficial if
the human expert answers correctly more than 70% of questions.
The LUCA use case The number of questions was surprisingly low
for the LUCA use case, which is a most common scenario in prac-
tice. Waiting time between questions is negligible, thus making the
the interactive process real time. These results suggest the practical
feasibility of our approach for many scenarios.

To obtain further empirical evidence, we have also matched more
than 1,100 medium-sized modules of NCI to (the whole of) FMA

and analysed the number of user questions and the average F-score.
Results are given in Figure 4. The number of questions is manageable
even for modules with over 1,000 concepts. F-score values obtained
in interactive mode for simulated users with up to 30% error rate are
better than those obtained in non-interactive mode.
The UMLS-META use case Although the number of questions in this
use case was larger (e.g., 2,310 for SNOMED-NCI), it is still rather
low given the huge number of candidate mappings (e.g., 102,512 for

4 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/



Table 2: LogMap 2 computation times
````````̀Ontologies

Time (s) Candidate Computation Candidate Assessment TotalParsing Lex. Index Modules Sem. Index Conf. Values Diagnosis
LUCA-NCI 22.0 20.8 4.9 8.6 6.1 7.9 70.3
LUCA-SNOMED CT 80.6 42.0 19.2 28.2 17.8 60.2 248.0
FMA-NCI 24.5 45.4 8.4 12.1 41.5 114.6 246.5
FMA-SNOMED CT 83.8 96.9 18.9 78.7 409.0 466.5 1155.8
SNOMED CT-NCI 94.4 100.0 17.4 276.5 548.0 1300.7 2338.0

Table 3: Precision and recall w.r.t. Gold Standard (MGS). Steps refer to Figure 1.

Ontologies |MGS |
M? (Step 2) M (Step 7) Output M (Step 14)

|M?| P R F |M| P R F |M| P R F Unsat.
LUCA-NCI 89 563 0.14 1.00 0.25 63 0.87 0.62 0.72 77 0.82 0.71 0.76 0
LUCA-SNOMED CT 337 783 0.34 0.79 0.47 159 0.98 0.46 0.63 275 0.89 0.72 0.78 0
FMA-NCI 2,898 19,151 0.14 0.93 0.24 2,256 0.91 0.71 0.79 2,658 0.87 0.80 0.83 2
FMA-SNOMED CT 8,111 67,592 0.09 0.74 0.16 4,929 0.84 0.51 0.64 6,313 0.80 0.62 0.70 0
SNOMED CT-NCI 18,322 102,514 0.13 0.75 0.22 10,598 0.86 0.50 0.63 12,978 0.81 0.58 0.67 *

Table 4: Results for interactive mode. “Ask” denotes the total number of questions asked to user, and t denotes the average waiting time between
questions (in seconds). Users are simulated at different error rates, with “Perfect” the error-free user.

Ontologies
FilterAmb = true FilterAmb = false

Perfect Perfect Error 10% Error 20% Error 30%
Ask t P R F Ask P R F P R F P R F P R F

LUCA-NCI 20 0.1 0.86 0.71 0.78 35 0.89 0.75 0.82 0.89 0.75 0.82 0.88 0.74 0.80 0.86 0.71 0.78
LUCA-SNOMED CT 103 0.2 0.96 0.72 0.82 126 0.99 0.74 0.84 0.98 0.71 0.82 0.97 0.69 0.81 0.96 0.66 0.78
FMA-NCI 585 <0.1 0.91 0.83 0.86 852 0.92 0.84 0.88 0.90 0.83 0.86 0.87 0.81 0.85 0.88 0.80 0.84
FMA-SNOMED CT 946 0.4 0.85 0.59 0.70 1,595 0.87 0.63 0.73 0.86 0.61 0.72 0.84 0.60 0.70 0.83 0.59 0.69
SNOMED CT-NCI 2,310 0.9 0.87 0.57 0.69 3,306 0.88 0.58 0.70 0.87 0.58 0.69 0.85 0.57 0.68 0.84 0.56 0.67

SNOMED-NCI). Furthermore, waiting time between questions was
also negligible. F-score values in the automatic mode are in line to
those obtained in the interactive mode for users with 30% error rate;
improvements are observed especially in precision.

4 CONCLUSION
We have presented a matching system with unique interactivity, scal-
ability and reasoning-based diagnosis features. Empirical results on
large-scale ontologies for two typical application scenarios suggest
the practical feasibility of our approach. The main challenge remains
the design of suitable interfaces to support user interaction and their
evaluation via a pilot user study.
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