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Abstract. So called “Semantic Technologies” are rapidly becoming
mainstream technologies, with RDF and OWL now being deployed in
diverse application domains, and with major technology vendors start-
ing to augment their existing systems accordingly. This is, however, only
the first step for Semantic Web research; we need to demonstrate that
the Semantic Technologies we are developing can (be made to) exhibit
robust scalability if deployments in large scale applications are to be
successful. In this paper I will briefly review the evolution of Semantic
Technologies to date, examine the scalability challenges arising from de-
ployment in large scale applications, and discuss ongoing research aimed
at addressing them.

1 Introduction

The Web Ontology Language (OWL) [11, 18] has been developed and standard-
ised by the World Wide Web Consortium (W3C). It is one of the key technologies
underpinning the Semantic Web, but its success has now spread far beyond the
Web: it has become the ontology language of choice for applications in fields
as diverse as biology [23], medicine [7], geography [8], astronomy [6], agricul-
ture [25], and defence [14]. Moreover, ontologies are increasingly being used for
“semantic data management”, and DB technology vendors have already started
to augment their existing software with ontological reasoning. For example, Or-
acle Inc. has recently enhanced its well-known database management system
with modules that use ontologies to support ‘semantic data management’. Their
product brochure1 lists numerous application areas that can benefit from this
technology, including Enterprise Information Integration, Knowledge Mining,
Finance, Compliance Management and Life Science Research.

The standardisation of OWL has brought with it many benefits. In the first
place, OWL’s basis in description logic has made it possible to exploit the results
of more than twenty-five years of research and to directly transfer theoretical
results and technologies to OWL. As a consequence, algorithms for computing
OWL entailment are well known [17, 26, 10, 24], and the formal properties of
the problem are well understood: it is known to be decidable, but to have high
complexity (NExpTime-complete for OWL and 2NExpTime-complete for OWL
2 [19]).
1 http://www.oracle.com/technology/tech/semantic_technologies/pdf/oracle%
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Ontology SNOMED CT GALEN FMA GO

Logic EL EL EL EL
#classes 315,489 23,136 78,977 19,468
#properties 58 950 7 1
#axioms 430,844 36,547 121,712 28,897
#subsumptions > 1011 > 108 > 109 > 108

ELK (1 worker) 13.15 1.33 0.44 0.20
ELK (4 workers) 5.02 0.77 0.39 0.19

ontology : Plant Anat. SWEET-P NCI-2 DOLCE-P

Logic SHIF SHOIN ALCH SHOIN
#classes 19,145 1,728 70,576 118
#properties 82 145 189 264
#axioms 35,770 2,419 100,304 265
#subsumptions > 108 > 106 > 109 > 104

HermiT 11.2 11.2 — 105.1
Pellet 87.2 — 172.0 105.1
FaCT++ 22.9 0.2 60.7 —

Fig. 1. Performance of OWL reasoners on large ontologies.

Ontology Complete Classification
Year size reasoning time (s)

1995 3,000 No 105

1998 3,000 Yes 300
2005 30,000 Yes 30
2010 400,000 Yes 5

Fig. 2. Evolution of reasoner performance over time.

Entailment is a very general reasoning task to which many other kinds of
reasoning can be reduced. It is common to distinguish two general categories of
reasoning tasks: those that are concerned primarily with classes, and those that
are concerned primarily with individuals. Common tasks in the first category
include checking class (un-)satisfiability (a class C is unsatisfiable w.r.t. an on-
tology O iff O |= C ≡ ⊥), subsumption (a class C subsumes a class D w.r.t.
O iff O |= D v C), and classification (computing the subclass quasi-order for
all the class names occurring in an ontology O) [2]. The most common task in
the second category is query answering (given an ontology O and a query q,
compute the set of tuples of individuals {a | O |= q(a)}) [12].

2 OWL Reasoning

Notwithstanding the high worst case complexity of the underlying problem,
highly optimised reasoners for class reasoning in OWL, including, e.g., ELK
[13], FaCT++ [26], HermiT [17], Pellet [24] and Racer [9], are now extremely



effective in practice (see, Figure 1 and Figure 2). There has also been significant
progress on improving the performance of such systems w.r.t. query answering,
but inherent limitations of the underlying algorithmic approach and the typical
size of data sets means that many realistic problems that are still out of reach
for such systems.

A range of different algorithmic approaches have been developed in an effort
to address this issue, each with its own strengths and weaknesses. We will briefly
review the most prominent approaches.

Query Rewriting

In an effort to improve scalability, systems such as Mastro[4], Quonto2 and Re-
quiem3 employ a query rewriting approach in which the ontology is used to
rewrite the query into a union of conjunctive queries (UCQ) whose evaluation
can be delegated to a standard database system [3]. Unfortunately, the ontology
language must be quite restricted in order to guarantee that such a rewriting
exists [1], and such systems can support only the OWL 2 QL subset of OWL
[19]. Using OWL 2 QL it is possible, for example, to model class hierarchies
and (some) incomplete information, but not disjunctive information, relation-
ship cardinalities or property chaining. Moreover, even with very restricted on-
tology languages, query rewriting algorithms can in theory produce very large
rewritings, which cannot be (efficiently) evaluated by standard database systems
[21], although optimised systems have been shown to work well in practice for
OWL 2 QL ontologies [22].

Materialisation

RDF triple stores such as Sesame4, OWLim5, Minerva6, WebPIE7 and Oracle’s
Semantic Data Store8 use a materialisation approach in order to improve the
scalability of query answering. These systems are based on a relatively loose
integration of ontology and database technologies, with the ontology being used
in a preprocessing phase to materialise implied facts, after which queries are
evaluated over the augmented data and without further reference to the ontology.

Materialisation based systems are now in quite widespread use, and have
even been developed to run on mobile platforms such as the Samsung Galaxy
II smartphone [16]. However, although the materialisation technique allows for
efficient query evaluation, it also suffers from several drawbacks. Perhaps most
important of these is that it can fully support only the OWL 2 RL subset of

2 www.dis.uniroma1.it/~quonto
3 www.comlab.ox.ac.uk/projects/requiem
4 www.openrdf.org
5 www.ontotext.com/owlim
6 www.alphaworks.ibm.com/tech/semanticstk
7 www.few.vu.nl/~jui200/webpie.html
8 www.oracle.com/technology/tech/semantic_technologies



OWL [19]. Another drawback is that the augmented data set may be unfea-
sibly large, and even when it is of “reasonable” size, it can be very costly to
compute. For example, one test data set required 90 hours to load into Ora-
cle’s Semantic Data Store (see www.oracle.com/technology/tech/semantic_
technologies/pdf/semtech09.pdf), and although recent work on parallelisa-
tion has shown promising results, materialisation of large datasets can still take
several hours even on large clusters [27]. Finally, the approach is applicable only
if the information system fully controls and can modify the data, ruling it out
in many practical application settings.

Combined Techniques

More recently, combined techniques have been developed in order to deal with
ontology languages that are (slightly) more expressive than those used in pure
query rewriting techniques while still allowing query evaluation to be delegated
to a data repository [15]. Like triple stores, combined techniques use the ontology
in a preprocessing phase, but they add only the information that is necessary to
allow for subsequent query answering via query rewriting. However, the subset
of OWL that can be fully supported is still relatively weak (OWL 2 EL), and
excludes important features such as disjunctive information and relationship car-
dinalities. Moreover, the approach still suffers from some of the other drawbacks
of materialisation techniques: preprocessing may be costly, and the information
system must be able to modify the data.

3 Mitigating Incompleteness

As discussed above, existing materialisation based procedures can fully handle
only a relatively week subset of OWL, but they can still be used in a sound but
possibly incomplete way with an ontology that is outside the relevant subset. In
such cases the set of forward chaining inference rules can no longer guarantee to
materialise all implied facts, a problem that is inherent to this technique as the
materialisation needs to be both deterministic (it must generate a single data
set over which queries can subsequently be evaluated) and of bounded size (or it
will not terminate). This means that query answers can be incomplete when the
ontology contains, e.g., disjunction or existential quantification. In such cases
there is usually no way to know if the answer to a query is complete or not, and
if incomplete how incomplete.

In order to address this issue, techniques have recently been investigated for
measuring and potentially “repairing” causes of incompleteness. This work has
shown that for many ontologies and queries it is possible to identify all relevant
causes of incompleteness, and that in many realistic cases it is possible to prove
that answers to specific queries are complete even if the query answering system
being used is incomplete in general [5].

As far as ontology repair is concerned, one simple way to eliminate some
causes of incompleteness is to use a complete reasoner to add implicit subsump-
tions to the ontology, an idea that has already been used in the DLDB [20] and



PelletDB9 systems. This technique is, however, limited to adding simple atomic
subsumption axioms, and more sophisticated techniques might make it possible
to repair ontologies by adding more complex axioms [5].

4 Discussion

Reasoning tools are vital for ontology engineering and to support ontology based
systems and applications. In the former case, the focus is mainly on class reason-
ing, and highly effective reasoners are already available. In the latter case, the
focus is mainly on query answering, and although great progress has been made,
challenges still remain. This is a very active research area, with many differ-
ent techniques being developed and investigated. Given the size of this research
effort, and our ever deepening understanding of both theoretical and practical
issues, it is reasonable to expect that the future performance improvements in
query answering systems will be even more spectacular those achieved in the
past by class reasoning systems.
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