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Abstract We consider extensions of the lightweight description logic (DL) ££ with
numerical datatypes such as naturals, integers, rationals and reals equipped with
relations such as equality and inequalities. It is well-known that the main reasoning
problems for such DLs are decidable in polynomial time provided that the datatypes
enjoy the so-called convexity property. Unfortunately many combinations of the
numerical relations violate convexity, which makes the usage of these datatypes
rather limited in practice. In this paper, we make a more fine-grained complexity
analysis of these DLs by considering restrictions not only on the kinds of relations
that can be used in ontologies but also on their occurrences, such as allowing
certain relations to appear only on the left-hand side of the axioms. To this end,
we introduce a notion of safety for a numerical datatype with restrictions (NDR)
which guarantees tractability, extend the £L reasoning algorithm to these cases,
and provide a complete classification of safe NDRs for natural numbers, integers,
rationals and reals.

Keywords Description logic - Computational complexity - Datatypes

1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL! and OWL 2 [2]. ££%7 [3] is a lightweight DL for which
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reasoning is tractable (i.e., can be performed in time that is polynomial w.r.t. the
size of the input), and that offers sufficient expressivity for a number of life-sciences
ontologies, such as SNOMED CT [4] or the Gene Ontology [5]. Additionally,
ELT underpins the EL Profile of OWL 2 [6], which is a sublanguage of OWL 2,
particularly useful in applications involving large ontologies with many classes and/or
properties. Among other constructors, ££** supports limited usage of datatypes. In
DL, datatypes (also called concrete domains) can be used to define new concepts by
referring to particular values, such as strings or integers. For example, the concept
Human r JhasAge.(<, 18) m 3hasName.(=,“Alice”) describes humans whose age is
less than 18 and whose name is “Alice”. Datatypes are characterised first by the
domain their values can come from and also by the relations that can be used to
constrain possible values. In our example, (<, 18) refers to the domain of natural
numbers and uses the relation “<” to constrain possible values to those less than
18, while (=, “Alice”) refers to the domain of strings and uses the relation “=" to
constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, ££7" allows only for
datatypes which satisfy a condition called p-admissibility [3]. In a nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved in
polynomial time, and that concept disjunction cannot be expressed using datatype
concepts. For example, if we were to allow both < and > for integers, then we could
express A C B U C by formulating the axioms A E JR.(<,5), IR.(<,2) T B and
AR.(>,2) C C for some fresh symbol R. Thus, allowing both < and > has the same
effect as extending ££" with disjunction, which is well known to cause intractability
[3]. Similarly, we can show that p-admissibility prevents from having both < and =
or both > and = in the language. For this reason, the EL Profile of OWL 2, which is
based on ££1, admits only equality (=) in datatype expressions.

In this paper, we demonstrate how these restrictions can be significantly relaxed
without loosing tractability. As a motivating example, consider the following axioms
which might be used, e.g., in a pharmacy-related ontology:

Panadol C Jcontains.(Paracetamol n 3mgPerTablet.(=, 500)) (1)

Patient m 3hasAge.(<, 6) 1 @)

JhasPrescription.3contains.(Paracetamol m AmgPerTablet.(>, 250)) C L

Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per tablet,
while axiom (2) states that a drug that contains more than 250 mg of paracetamol per
tablet must not be prescribed to a patient younger than 6 years old. The ontology
could be used, for example, to support clinical staff who want to check whether
Panadol can be prescribed to a 3-year-old patient. This can easily be achieved by
checking whether the following concept is satisfiable w.r.t. the ontology:

Patient m 3hasAge. (=, 3) n FhasPrescription.Panadol 3)
Unfortunately, this is not possible using ££", because axioms (1) and (2) involve
both equality (=) and inequalities (<, >), and this violates the p-admissibility

restriction. In this paper we demonstrate that it is, however, possible to express
axioms (1) and (2) and concept (3) in a tractable extension of ££. A polynomial
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classification procedure can then be used to determine the satisfiability of (3) w.r.t.
the ontology by checking if adding an axiom

X C Patient n 3hasAge.(=, 3) n 3hasPrescription.Panadol

for some new concept name X would entail X C L.

Our idea is based on the intuition that equality in (1) and (3) serves a different
purpose than inequalities do in (2). Equality in (1) and (3) is used to state a fact
(the content of a drug and the age of a patient) whereas inequalities in (2) are
used to trigger a rule (what happens if a certain quantity of drug is prescribed to
a patient of a certain age). In other words, equality is used positively and inequalities
are used negatively. It seems reasonable to assume that positive usages of datatypes
will typically involve equality since a fact can usually be precisely stated. On the
other hand, it seems reasonable to assume that negative occurrences of datatypes
can involve equality as well as inequalities since a rule usually applies to a range
of situations. In this paper, we make a fine-grained study of datatypes in ££ by
considering restrictions not only on the kinds of relations included in a datatype,
but also on whether the relations can be used positively or negatively.

The main contributions of this paper can be summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR) that
specifies the domain of the datatype, the datatype relations that can be used
positively and the datatype relations that can be used negatively.

2. We extend the £L reasoning algorithm [3] to provide a polynomial reasoning
procedure for an extension of ££ with NDRs, and we prove that this procedure
is sound for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of ££ with a
safe NDR is tractable, and prove that our reasoning procedure is complete for
any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that the
numerical datatype restrictions can be significantly relaxed by allowing arbitrary
numerical relations to occur negatively—not only equality as currently specified
in the OWL 2 EL Profile. As argued earlier, this combination is of particular
interest to ontology engineering, and is thus a strong candidate for the next
extension of the EL Profile in OWL 2.

This work is an extended version of a conference paper [7], and provides the full
proofs for all obtained results. The paper is organized as follows. After providing
the necessary technical background in Section 2, in Section 3 we formally define the
extensions of £L with NDRs, characterise when such extensions are tractable using
the notion of “safety”, which is closely related to the notion of convexity [3], and
describe a polynomial and sound classification procedure that is complete for safe
NDRs. The remainder of the paper is concerned with identifying all safe NDRs for
the domains of natural numbers (Section 4), integers (Section 5), rationals, and reals
(Section 6). In Section 7 we discuss the related work. In Section 8 we summarise our
results and outline the directions for future research.

@ Springer



430 D. Magka et al.

2 Preliminaries

In this section we introduce an extension of ££* [3] with numerical datatypes which
we denote by ££(D). In the DL literature datatypes are best known under the
name “concrete domains” [8]; in this paper we use the term “datatypes” to be more
consistent with the terminology of OWL and OWL 2 [2]. The syntax of ££*(D) uses
a set of concept names N¢, a set of role names Ng and a set of feature names Np.
ELYD) is parametrised with a numerical domain D, such that D C R, where R is
the set of real numbers. N¢, Ng and N are countably infinite sets and, additionally,
pairwise disjoint.

Definition 1 (D-Datatype Restriction) We call (s,y), where yeD and
se{<,<,>,>,=}, a D-datatype restriction (or simply a datatype restriction if
the domain D is clear from the context). Given a domain D, a D-datatype restriction
r=(s,y) and an x € D, we say that x satisfies » and we write r(x) iff (x,y) €s,
where s is interpreted in the usual way as the corresponding binary relation on real
numbers.

Intuitively, datatype restrictions specify subsets of elements from the numerical
domain using the (in)equality relations. For example, the restriction (<, 5) over
D = N corresponds to the set {1, 2, 3,4} € N. In DLs datatype restrictions are used
to define concepts by referring to elements in such subsets of numerical domains
using the features from Np. The set of concepts is recursively defined using the
constructors listed in the middle column of Table 1, where C and D are concepts,
R € Ng, F € Np and r is a D-datatype restriction. We typically use the capital letters
A, B to refer to concept names and the capital letters C, D or E to refer to concepts.
We also set the abbreviations Ng = NcU{T}and Ng’L = NcU{T, L}.

An axiom o« in EL(D) or simply an axiom « is an expression of the form C C D,
where C and D are concepts. An EL*(D)-ontology O or simply an ontology O is a
set of axioms. We say that a concept E occurs in a concept C iff E is used in the
construction of C. E occurs positively (negatively) in an axiom C C D iff it occurs
in the concept D (respectively C); alternatively we say that the axiom C T D has
positive (negative) occurrence of E.

An interpretation of ELYD)isa pair Z = (AZ, Ty, where AT is a non-empty set
which we call the domain of the interpretation and -2 is the interpretation function.
The interpretation function maps each concept name A to a subset AZ of AZ, each
role name R € Ng to a relation RT € AT x AZ and each feature name F € Nf to
a relation FZ € A7 x D. Note that we do not require the interpretation of features

Table 1 Concept descriptions in £ (D)

Name Syntax Semantics

Concept name C ct

Top T N

Bottom L [

Conjunction cnD ctnD?

Existential restriction 3R.C (xeAl|3yeal: x,y) e R”ZAyeCh)
Datatype restriction 3F.r (xeAL | eD: (x,v) € FL Ar(v)}
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Table 2 Normal form of axioms and normalization rules for ££(D)

Normal forms Normalization rules

NF1 A CH CnHC E —{HC Ay,Cn Ay C E}
NF2 ANAC B IR.GC D —-{GC Ar,3AR. Ay E D}
NF3 AC3IR.B GC H - {GC Ay, Ay C H}
NF4 JR.BC A CC 3R H —{CC3R.Ay, Ay C H)
NF5 AC3Fr BCCnD —{BC C,BC D}

NF6 JFrc A LccC — 0

to be functional or serial. In this respect, they correspond to the data properties in
OWL 2 [2]. The constructors of ££*(D) are interpreted as indicated in the right
column of Table 1. For an axiom «, where « = C E D, we write 7 = « and we say
that an interpretation T satisfies an axiom «, iff C* € DT. If T |= « for every a € O,
then 7 is a model of O and we write Z = O. Additionally, if every model Z of O
satisfies the axiom « then we say that O entails « and we write O = o. We define the
signature of an ontology O as the set sig(O) of concept, role and feature names that
occur in O. We say that a concept, role or feature name X is fresh w.r.t. an ontology
O iff X ¢ sig(O).

One of the most common reasoning tasks w.r.t. an ontology O is the classification
of an ontology O, that is computing all axioms of the form A C B, where A, B €
Ng’J‘ and O = A C B. The (transitively reduced) set of these subsumption relations
is called the taxonomy of the ontology O.

We say that an axiom in ££*(D) is in normal form if it has one of the forms NF1-
NF6 in the left part of Table 2, where A’ € N., B' € N, Ay, B € Nc, R € Ng,
F € Np, and r is a D-datatype restriction. It holds that for each & o (D)-ontology,
if the normalization rules of the right part of Table 2 are applied, we obtain an
ontology which contains only axioms in normal form [3]. For the rules of Table 2,
we have that B € N¢, G, H ¢ N¢c, Re Ng, C, D, E, G and H are concepts and
Ay is a fresh concept name w.r.t. the so far transformed ontology. For example,
by successively applying the fourth and the fifth rule of Table 2 to the axiom (1),
we replace (1) by the normalised axioms Panadol C 3contains.Y, Y C Paracetamol
and Y C IdmgPerTablet.(=, 500), where Y is a fresh concept. It can be shown that
normalisation of an ontology O can be performed in polynomial time and that the
size of the produced ontology is linear in the size of the input ontology.

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restrictions
(NDR) which specifies which datatype relations can be used positively and negatively
in ontologies. We then present a polynomial consequence-based classification proce-
dure for ££* extended with NDRs and prove its soundness. Finally we prove that the
procedure is complete provided that the NDR satisfies special safety requirements.

Definition 2 (Numerical Datatype with Restrictions) A numerical datatype with
restrictions (NDR) is a triple (D, O4, O_), where D C R is a numerical domain, and
O,, O_ C {<, <, >, >, =} are the sets of positive and, respectively, negative relations.
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An EL*(D)-axiom is an EL(D, O, O_)-axiom if for every positive (negative)
occurrence of a concept 3F.(s, y) in the axiom, s € O, (respectively s € O_). An
ELH(D, O, O_)-ontology is a set of EL(D, O, O_)-axioms.

For example, 3F.(<,5) C 3R.3F.(=,3)isan ELYN, (=), {<, <, >, >, =})-axiom,
whereas the axioms A C 3F.(<, 3) and 3F.(>, 1.5) E B are not.

3.1 The Classification Procedure and Soundness
The classification procedure for ££(D, O,, O_) that we are going to describe is
closely related to the procedure for ££7" [3]. In order to formulate inference rules

for datatypes we introduce notation for satisfiability of a datatype restriction and
implication between datatype restrictions.

Table 3 Decidingry —p Landry —pr_forD=N,Z, R

ry ->p L when holds

(<,n) »>p L n=0D=N
(=,n) —»p L never

(=,n) —»>p L never

(=,n) —>p L never

(>,n) >p L never

ry >pr— when holds

(<,n) »p (<, m) n<m

(<,n) —»p (5, m) n<m+1,D=N,Z orn<m, D=R
(<,n) —»p (= m) n=0,D=Norn=1, m=0,D=N
(<,n) —>p (=, m) n=0,D=N
(<,n) =>p (>, m) n=0D=N
(=,n) —>p (<, m) n<m

(=,n) —»p (5, m) n<m

(=,n) =p (=,m) n=m=0,D=N
(=,n) —>p (=, m) never

(2,n) —>p (>, m) never

(=,n) »>p (<, m) n<m

(=,n) —p (5,m) n<m

(=,n) »>p (=,m) n=m

(=,n) —>p (=, m) n>m

(=,n) =>p (>, m) n>m

(=,n) —>p (<, m) never

(=,n) >p (<, m) never

(=,n) —>p (=,m) never

(=.n) —»p (=, m) n>m

(=,n) >p (>, m) n>m

(>,n) ->p (<, m) never

(>,n) —>p (=, m) never

(>,n) »>p (=,m) never

(>,n) »p (=,m) n>m—-1,D=N,Z, orn>m, D=R
(>,n) »>p (>, m) n>m

@ Springer



Tractable Extensions of ££ with Numerical Datatypes 433

Definition 3 Let r, and r_ be D-datatype restrictions. We write ry —p L if there is
no x € D such that r; (x) holds. Otherwise, we write r. -p L. We write r, —p r_ if
r(x) implies r_(x), for every x € D. Otherwise, we write r,. —-p r_.

For example, (<,0) —»y L and (<, 5) —n (<, 4), but (<, 5) »r (<, 4). Note that
r. —p L implies that r. —p r_ for every restriction r_. We assume that given r
and r_, it is possible to decide in polynomial time whether r, —p L andr, —p r_.
Table 3 shows that this is the case for D = N, Z and R.

The classification procedure for ELY(D) takes as input an £ LL(D)—ontology O
whose axioms are in normal form and applies the inference rules in Table 4 to derive
new axioms of the form NF1, NF3 and NF5 in Table 2. The rules are applied to
already derived axioms and use axioms in O and the propertiesr, —p Landry —p
r_ as side-conditions. E.g., if A C 3F.(<, 5) has been derived by previous application
of the rules and 3F.(<,4) C B is in the input ontology, using cb1 we can derive A C
B, since (<, 5) —n (<, 4).

The procedure terminates when no new axiom can be derived. It is easy to see
that the procedure runs in polynomial time because no new datatype restrictions are
created, and there are only polynomially many axioms of the form NF1, NF3 and
NF5 possible over the symbols in O. It can be easily shown that the procedure is
sound because the rules derive logical consequences of the axioms:

Theorem 1 (Soundness) Let O be an EL(D)-ontology consisting of axioms in
normal form and O’ be the set of all axioms that are derivable using the rules of Table 4
for O. Then every model I of O is a model of O’ as well.

Proof For every axiom « € O, we prove that Z = « by induction on the length of
the derivation of «.

Induction base 1If o is obtained using rules IR1 and IR2 then clearly Z E . If o =

A C L is obtained using rule Ip1, then A E 3F.r, € O.Since T = 0, AT c 3F.ry)~.
Since r. —p L, @F.r.)% = ¢. Therefore, AZ CJandsoZ = AC L.

Table 4 Reasoning rules in E£1(D)

ACB
IR1 IR2 =
AC A ACT CR1 AcC BCC €O
ACB ACC ACB
CR2 - BnCc DeO CR3 = BC3RCeO
ACD nt=>re AC3RC = €
AC3IRB BCC AC3IRB BC L
CR4 _ FJRCEDeO CR5 —
ACD - AC L
ID1 AC L AC3AFr, €O, ry —»p L
C 3F.
CD1 % AFr_C BeO,ry »>pr-
CD2 AL B BC3F @]
AC3Fr, =0T €

where A, B,C, D € Ng, C' e Ng'l, R € Ng, F € Np for all rules
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Induction step  For the cases when axiom « is obtained using rules IR1—CRs (that do
not involve datatypes) the proof is the same as for E£" [3]. Ifa = A C Bis obtained
using cp1 from A = 3F.r,, then by induction hypothesis, AZ € (3F.r;)%. Since
IO, 3Fr_)r € BT and by r, —p r_, we have that AT € BZ. So, 7T = AC B.
If « = A E 3F.r; is obtained using cp2 from A C B, then, by induction hypothesis,
AT € BT . Since T = O, BT € 3F.r.)% and, so, AT € (3F.r;)*.S0,Z = AE 3F.r,.

]

3.2 Completeness and Safe NDRs

The completeness proof of the procedure presented in the current section is based
on the canonical model construction similarly as for ££7 [3]. In order to deal with
datatypes in the canonical model we introduce a notion of a datatype constraint.

Definition 4 (Constraint) A constraint over (D, O, O_) is defined as a pair of sets
(S4, S-),such that S = {(sL, y), ..., (s, y»)},n > 0,withs’, € O;,y; e D(1 <i <
n); S ={Gs",z1), ..., (5", zm)},m >0, withs’ € O_, z;€ D (0 < j<m). (S}, S-)
is trivial iff there exists an r+ € S, such that r* —p L, or there exist r™ € S, and
r~ e S_,such thatrt —p r.

Intuitively, a constraint specifies which datatype restrictions should hold in a
model and which should not. Trivial constrains specify restrictions that are trivially
unsatisfiable. For example, ({(<, 2)}, {(<, 5), (>, 3)}) is a trivial constraint over (N, {<
1. {<, >}) because (<,2) —n (<, 5).

Definition 5 (Solution) A solution for (S, S_) is a set V C D such that (i) for every
ry € Sy there exists x € V such that r,(x) holds, and (ii) for every r_ € S_ and
every x € V, r_(x) does not hold. A constraint (S, S_) is satisfiable if there exists a
solution for (S, S_).

For example ({(<, 5)}, {(=, 3)}) has a solution (e.g. {4}) and, hence, it is satisfiable.
Note that the empty constraint ({}, {}) is also satisfiable and non-trivial. It is easy
to see that every trivial constraint is not satisfiable: if 7© —p L, then condition (i)
of Definition 5 is violated; if r* —p r~ then (i) and (ii) cannot hold together. If
a constraint is non-trivial, it does not yet mean that it is satisfiable. For example
the constraint ({(<, 2)}, {(=,0), (=, 1)}) over (N, {<}, {=}) is non-trivial because
(<,2) »n L, (<,2) »y (=,0) and (<, 2) »n (=, 1), but it has no solution V C N.
We are particularly interested in “safe” NDRs for which this never happens, that is,
all non-trivial constraints are satisfiable. We will demonstrate that our classification
procedure is complete for such NDRs and therefore, extensions of ££ with safe
NDRs are tractable.

Definition 6 (NDR Safety) Let (D, O, O_) be an NDR. (D, O, O_) is safe iff
every non-trivial constraint over (D, O, O_) is satisfiable.

Our goal now is to give classification of all (of finitely many) NDRs over D =
N, Z, Q, R that are safe. In the following we establish a link between the NDR safety
property and the convexity property as defined by Baader et al. [3], which will be
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later used for proving safety. A datatype D is convex, if whenever a conjunction of D-
datatype restrictions implies a disjunction of such restrictions, then the conjunction
also implies some of its disjuncts [3]. We will refer to this property as a strong
convexity property, and demonstrate that the notion of safety for NDRs corresponds
to a weaker version of it.

Definition 7 (Strong and Weak Convexity) The NDR (D, O, O_) is strongly con-
vex if whenever (A, r\) —p VL 1), for some ro= (s, i), o= (s, z), 8, €
O, sl e O_,and y;, z; € D (1 <i <n, 1< j<m), then there exists j (1 < j < m)
such that (A}, ri) —p /. The NDR (D, O, O-) is weakly convex if this property
holds for n = 1.

For example the NDR (Z, {<, >}, {=}) is weakly convex since the implications
(<,y) >z (\/;.”:1(:, zp) and (>,y) —7z (\/’;’:1(:, zj)) never hold. But it is not
strongly convex since, e.g., (>, 2) A (<,5) =z (=,3) V (=, 4),but (>,2) A (<,5) =72
(=,3)and (>,2) A (<, 5) »7 (=, 4).

Lemma 1 (D, O,, O_) is safe iff it is weakly convex.

Proof Suppose that (D, O, O_) is not weakly convex. We prove that it is not safe.

]

Since it is not weakly convex, there exists some r, —p \/;.”: , L such that ry —=p

r! for all jwith 1 < j<m. In order to prove non-safety, it is sufficient to define a
non-trivial constraint (S,, S_) over (D, O,, O_) that is not satisfiable. Let (S, S_)
be such that S, = {r,}and S_ = {ri}Tzl. (84, §_) is non-trivial because r; —p r
and r, +»p L (otherwise, e.g., 7, —p rl, which exists since m > 1). (S, S_) is not
satisfiable because, otherwise, there exists an x € V such that r, (x) and - (x) for
all jwith 1 < j < m, and so, the implication r, —p (\/';7:1 r ) cannot hold.
Conversely, we prove that if (D, O, O_) is not safe, then it is not weakly convex.
Since it is not safe, there exists a non-trivial constraint (S, , S_) that is not satisfiable,
where S, = {ri}i] and S_ = {r{};”zl. First note that S_ # ¢, since, otherwise V =
D is a solution for (S, S_) = (84, ) since r’_'F -»p L (I <i<n).Similarly, S, # @
since, otherwise, V = @ is a solution for (S, S_) = (4, S_). Since (S, S_) is non-
trivial, i, —p r foralliwith 1 <i < nand all jwith 1 < j < m. We claim that there
exists some i with 1 < i < n such that r’;F —D (\/;”: 1 ri). Indeed, otherwise for every
i (1 <i < n)there exists ¢; € D such that rﬂr(ei) and —r’ (e;) hold for all jwith1 < j <
m,andso V = {¢;}’, is a solution for (Sy, S_). Since r', —p (\/;.":l ') but r.—+#p rl
(1< j<m), (D, 0,4, O_)isnot weakly convex. O

We will now prove that safety for NDRs is a sufficient condition for completeness
for the classification algorithm based on the rules in Table 4.

Theorem 2 (Completeness) Let (D, Oy, O_) be a safe NDR, O an ontology consist-
ing of ELX(D, O, O_)-axioms in normal form, and O' the axioms derivable under
the rules of Table 4 using O. Then for every A € N/- and B € Ng’l, A, B €5ig(0), if
OEACBthenAC BeO orAC L €0
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Proof The proof is analogous to the completeness proof of the subsumption algo-
rithm for ££7 [3]: we will build a (canonical) model Z for O using O’ and show that
forall A, Bf AC BgO' and AC 1 €O, thenZ [£ AC B. W.lo.g. there exists
at least one A, such that A C | ¢ O since otherwise this claim is trivial.

For every A € N¢, F € Np, define the constraint (S+(A, F), S_(A, F)) over
(D, 04, 0_), as follows:

@ ifAC 1L eO,
S (A, F)= {{r+ | AC 3F.r, € O} otherwise. @
S (A, F)={r_|3Fr_C BcO,AC B¢ O} ®)

First, we show that (S, (A, F), S_(A, F)) is anon-trivial constraint. Indeed, ifr. —p
1 for some r; € S;(A, F), then by (4) we have AC 1L ¢ 0" and AC 3Fr, . € O,
which is not possible since (' is closed under the rule Ip1. Similarly, there exists no
r. € S;(A, F)andr_ € S_(A, F) such that r; —p r_ holds because, otherwise by
(4)and (5) AC3IFr, € O,3Fr_-C Be O,and A C B ¢ O, which is not possible
since O is closed under the rule cp1. Since (S, (A, F), S_(A, F)) is a non-trivial
constraint over the safe NDR (D, O,, O_), by Definition 4, it is satisfiable. Let us
denote by V(A, F) some fixed solution for (S; (A, F), S_(A, F)).

Now, if for every A € (Ng Nsig(O)) we have A C L € (0, then the theorem holds
trivially. Otherwise, define the following interpretation Z = (A%, -7):

AT =fea| A e (NLNsig0), AC L ¢O) (6)
BY ={esleac AT, AT Be O} (7)
RY ={(ea.ep) | ACIR.Be O, e4,e5 € AT} (8)
F' = {(ea,v) |v e V(A, F)) )

Intuitively, the domain of the interpretation contains a distinguished element e 4 for
every concept name A, such that A © 1 ¢ (0. Note that the domain A is not empty
since we have assumed that there exists at least one A such that A C | ¢ (0'. Hence,
T = (A%, T) is defined correctly. We prove that Z is a model of O by considering all
types of axioms « € O according to Table 2:

NF1 o= A C B': Take any x € A”>. We need to prove that x € BZ. By (6),
x = ec for some C ¢ (Ng N sig(O)) such that C T L ¢ O'. We first prove that
CC A’ € O'. Indeed, if A’ € N¢, by (7), since x=ece AT, CC A € O.
Otherwise, A’ = T and by IR2, we have that CC T = CC A’ € O’. Now, since
A'C B'e O and O is closed under cr1, CC B’ € O'.Since CC 1 ¢ O, we
have either B'= T, and so x € AT = BZ, or B € Nc and by (7), x=ec €
BZ.

NF2 a=A nA,C B:Takeanyx € (A N A)T. We need to prove that x BZ.
By (6) x = ¢4 for some A € (Ng N sig(0)), and by (7), since x =e4 € (A N
AT =ATN AL and A;, Ay e Ne, AC A; € O and AC A, € O'. Since
A1 A, C B e O and O is closed under cr2, A C B € . Since B € N¢, by
(7) x € B,

NF3 o = A C 3R.B: Take any x € AZ. We will prove that x € 3R.B)~. By (6),
x = ec for some C € (N[ Nsig(O)) with CC L ¢ O'. Since A € N/ and x =
ec € AL, by (7), CC A€ O'. Since AC3IR.B € O and ' is closed under
cR3, CCIR.Be O'.Since CC 1L ¢ O and (O is closed under crs, BC | ¢
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O'. Since additionally B € (N[ Nsig(O)), by (6), there exists e € AZ. By (8),
(ec,ep) € RT.Since (' is closed under IR1, B C B e (0, therefore, by (7),ep €
BZ.Thus, x = ec € (AR.B)~.

NF4 o =3R.BLC A: Take any x € (3R.B)%. We need to prove that x € AZ. By
definition of the interpretation, there exists y € A% such that (x, y) € R and
y € BZ. Since (x,y) € R%, by (8) x =ec and y = ep such that CC 3R.D €
(', and since y =ep € BT and B € N¢, by (7), DE B e . Since 3R.BC
AeO,CCIR.DeO,DC Be @,and O isclosedundercrs, CC A € O'.
Hence, by (7), x = ec € AL.

NF5 « = A C 3F.r,: Take any x € AZ. We will prove that x € (3F.r,)Z. By (6),
x = ec for some C € (Ng N sig(O)) such that CC 1L ¢ O'. By (6), since x =
ece AT, CEAe . Since AC3Fr, €O and O is closed under cp2,
CC 3Fry € O.Let(S+(C, F), S_(C, F)) be the constraint defined according
to (4) and (5) and V(C, F) its solution. Since CC 3F.r, e O’andCC 1 ¢ O,
by (4), ry € S+(C, F). Then there exists v € V(C, F) such that v satisfies r,.
By (9), we have (ec, v) € FZ, hence x = ec € (3F.r,)* by the definition of the
interpretation.

NF6 o =3F.r_C B: Take any x € 3F.r_)Z. We need to prove that x € BL.
By (6), x =¢c for some C e (N/ Nsig(O)) such that CC L ¢ O'. Let
(84+(C, F), S_(C, F)) be the constraint defined according to (4) and (5) and
V(C, F) its solution. Since x € AF.r_)%, by the definition of the interpretation,
there exists v € D such that (x, v) € FZ and v satisfies r_. By (9), v € V(C, F).
Since V(C, F) is a solution for (S, (C, F), S_(C, F)) and v satisfies r_, we have
r_ ¢ S_(C, F). Hence, by (5) and since 3F.r_C Be O, CC B € O'. Since
B e N¢,by (7),x =ec € B,

To conclude the proof of the theorem, suppose to the contrary that there exist
A€ N/ and Be NE’L, A, B € sig(O), such that O = AC B,but AC B ¢ O and
ALC 1 ¢ Q. LetZ be the model defined by (6)—(9). As shown above, Z = O. Since
A e (Nl Nsig(©O)) and AT L ¢ O, by (6), eq € AT. Since A € (N/. Nsig(O)) and
O’ is closed under IR1, A C A € (0. Therefore, by (7), e4 € AZ. Since T = O and
Ok AC B,es € BL.Since A € (Ng Nsig(0)) and O’ is closed under IR2, AC T €
(', Therefore, since AC B¢ O, B+ T. Also, since e4 € BL, B# 1. Hence B ¢
N¢ and by (7), since e4 € BY, AC B e . This contradicts our assumption that
A C B ¢ (. Thus, the proof by contradiction implies the statement of the theorem.

0

Corollary 1 The classification of EL(D, Oy, O_)-ontologies for safe NDRs
(D, O4, O-) can be computed in polynomial time in the size of the ontology.

Proof Given an EL(D, O,, O_)-ontology O, let Oy be the result of applying the
normalisation rules from Table 2 to O, and O’ be the axioms derivable by rules
in Table 4 using Oy. As has been pointed out, both of these computations can be
performed in polynomial time. By Theorems 1 and 2, the result of classification can
be computed by taking all A C B for A, B € (Ng’L N sig(0)), where either A = 1,
orACBeOQorAC L e®. O
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4 Maximal Safe NDRs for N

In this section we present a full classification of safe NDRs for natural numbers;
within this section we assume that every constraint is over the domain D = N. The
main result of this section is presented in Table 5, which lists all maximal safe NDRs
for N. We prove that: (i) every NDR in Table 5 is safe, (ii) extending any of these
NDRs with a new relation leads to non-safety and (iii) every safe NDR for N is
contained in some NDR in Table 5.

In order to prove that the NDRs in Table 5 are safe, by Definition 6 we need to
demonstrate that every non-trivial constraint over each of these NDRs is satisfiable.
In the next lemma we show that w.l.o.g. we can focus our attention only on
constraints of a reduced form.

Lemma 2 Let (S, S_) be a non-trivial constraint over an NDR from Table 5. Then
there exists a non-trivial constraint (S'_, S"_) over the same NDR such that (S, S_) is
satisfiable iff (S, S") is satisfiable and:

SC{. g {(Sv y())s (:7 }’1), ey (:’ )’n), (Zv }’n+l)}7 (10)
ST C{(=,20), (= 20)s -5 (=, Zm)s (Z, Zma 1)} 11)

Proof Given a non-trivial constraint (S, S_) let us apply the following transforma-
tion rules to (S, S_):

StUl(<,nh S0 = (S U=,y DL SO, ify>1 (12)
S+ U= nh S0 = (S Uiz y+ D)L So) (13)
(S+, S-U{(<,00}) = (S4+. S-) (14)
(S+. S-Ufl(<. D) = (54, S-Uf{(s,z— D}, ifz > 1 (15)
S+, S-U{(>, ) = S+, S-U{(=,z+ D} (16)
(S+ U=y, (£, 921 S2) = (84 U{(=, min{yy, 2D}, S-) 17)
S+ U=y, (=, ¥y} S2) = (84 U (=, max{yy, y2D}, S-) (18)
(84, S-U{(=, 20, (5, 22))) = (84, S- U{(<, max{zy, 22D)}) (19)
S+, S-U{(=, z1), (=, 22)D) = (84, S- U {(=, min{z1, 2o} (20)

It is easy to see that that rules (12)—(20) can be applied only finitely many times.
Indeed, every transformation either reduces the number of restrictions with relations
< and > by rules (12)—(16), or leaves this number the same and reduces the number

Table 5 Maximal safe NDRs for N: NDRiN = (Oi, O’;), 1<i<4

NDR] o o
NDRY' (= {<.<.>. ==}
NDRY (<, <, >, > =} (<, <}

NDRy {<.<,>.2,=) {>, >}

NDRj {>.>.=} {<.<.=}
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of restrictions with relations <, > by rules (17)—(20). Let (5., §") be obtained from
(S4, S_) after exhaustively applying the transformations (12)—(20). It is easy to see
that (8’ , S’ ) remains a non-trivial constraint over the same NDR from Table 5 as
(S, S_)and (5., ) issatisfiable iff (S, S_) is satisfiable. Moreover, since (S, S_)
is non-trivial, (<,0) ¢ S, and therefore (5, S" ) does not contain restrictions of
the form (<, x) and (>, x), because all of them are eliminated by rules (12)—(16).
Similarly, each set §’, and S’ contains at most one restriction of the form (<, x) and
at most one restriction of the form (>, x) as a consequence of the transformation
rules (17)-(20). Therefore (10) and (11) hold. ]

Lemma 3 Every NDR in Table 5 is safe.

Proof According to Definition 6, in order to prove safety for an NDR we need to
find a solution for every non-trivial constraint over the NDR. Recall that a solution
V for a constraint (S, S_) over an NDR is aset V € D = Nsuch thateveryr, € S;
is satisfied by at least one value v € V butnor_ € S_ is satisfied by any value v € V.
By Lemma 2, w.l.o.g. we can assume that S, and S_ are of the form (10) and (11),
respectively. We construct the solution V by performing the following case analysis
over the content of S, and S_:

Casel S, ={(=,y1),....(=,yn)}, n > 0. Define V :={yy, ..., y,}. Clearly, every
restriction in S is satisfied by some y; € V, but no restriction in S_ is satisfied by
V:if y;, with 1 <i < n, satisfies some restriction r_ € S_, then (=, y;) — r—, which
contradicts the non-triviality of (S, S_).

Case2 S N{(<, y0), (=, yn+1)} # @. We further distinguish cases according to the
content of S_. Note that we do not examine the case where {(<, z0), (=, Zm+1)} € S-,
because this is not possible for NDRs in Table 5.

Case2.1 S_={(=,21),...,(=,zm)}, m > 0. Define V:= N\ {zy,..., z,}. It is easy
to see that V satisfies all restrictions except for those in S_. Since (S, S_) is non-
trivial, and thus §; N S_ =@, V is a solution for (S, S_).

Case 2.2 S_ = {(<, z9)}. Define V :={v € N | v > z¢}. It is easy to see that V sat-
isfies all restrictions except for restrictions of the form (<, y) and (=, y) with y < z,.
Since such restrictions imply (<, z¢) and (S4, S_) is non-trivial, S, cannot contain
them. Therefore, V is a solution for (S, S_).

Case 2.3 S_ = {(>, z;ns1)}- Define V :={v € N | v < z,,41}. It is easy to see that V
satisfies all restrictions except for restrictions of the form (>, y) and (=, y) with y >
Zm+1- Since such restrictions imply (>, z,,+1) and (S;, S_) is non-trivial, S, cannot
contain them. Therefore, V is a solution for (S, S_).

Case24 S_ ={(<.z20), (= 21)s..., (=, z2m)}, m>1. Define V:={veN]|v>z\
{z1,..., Zm}}. From Table 5 one can see that S, cannot contain restrictions of the
form (<, y). It is easy to see that from the remaining restrictions, V satisfies all
restrictions except for those of the form (=, y) with y < zpor y=2z; (1 < j<m).
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Since such restrictions imply restrictions in S_, S} cannot contain them. Therefore,
V is a solution for (S, S_). O

We are now in a position to prove that the NDRs in Table 5 are maximal safe, that
is, they contain all safe NDRs over D = N. In order to prove this property, we first
list several cases of non-safe NDRs for N, and then, show that by extending NDRs
listed in Table 5, we fall into one of these cases.

Lemmad4 Let (N, O,, O_) be an NDR. Then:

(@) If Oin{<,<,>,>}#0, O_N{<,<}#0 and O_N{>,>}#0, then
N, O4, O_) is non-safe.

(b) IfOL N{>,>}#£0, O_N{>,>}#0and {=} C O_, then (N, O, O_) is non-
safe.

(c) IfOLN{<,<}#Wand{=} C O_, then (N, O, O_) is non-safe.

Proof In order to prove that (N, O,, O_) is non-safe, by Lemma 1 it suffices
to prove that it is not weakly convex. Recall that by Definition 7, (N, Oy, O_)
is weakly convex iff for every ry = (s;, y) and r = (s', z;), such that s, € O,
si €O_and y, z;e N (1 <i<n),if rp >n VL, r, then there exists an i with
1 <i<nsuch that r, —y r_. For each of the cases (a), (b) and (c) of the lemma,
we provide counterexamples that violate the weak convexity condition, namely a
triple of restrictions (s, y), (s', z;) and (s2, z»), such that s, € O,s',s> € O_, y,
21,22 €N, (54, y) = (51, 20) V (52, 22), (54, y) N (5L, z0) and (51, y) »n (57, 22).
The counterexamples are listed in Table 6: the first four lines correspond to case (a),
the next four lines to case (b) and the final two lines to case (c). ]

Lemma 5 Every NDR in Table 5 is maximal safe, that is if any new relation is added
to O, or O_, the NDR becomes non-safe.
Proof We examine all cases of adding a new relation to NDRs in Table 5:

NDR}' By Lemma 4(a), if any of <, <, >, > is added to O, then NDR}' becomes
non-safe.

Table 6 Examples of non-safe NDRs for N where (54, y) =~ (L, z1) V (52, 22), (54, ¥) =N (51, 21)
and (54, y) = (52, 22)

.52}

{s4+} {s y Z1 22
{<h{=} {<,z2) {5, >}, {=, =) 3 1 1
{<}{=}) {<.>} 3 2 1
{>}{=} {<.2h{=<.>){= =) 1 3 3
>}, {=} {<.>} 1 3 2
{>} {= =} 1 2 3
{>} {=.>} 1 2 2
{=} {= 2} 1 1 2
(=} {=>} 1 1 1
{<} =} 3 1 2
(=) {=} 2 1 2
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NDR) By Lemma 4(a), if > or > is added to O_, then NDR}' becomes non-safe. By
Lemma 4(c), when = is added to O_, NDRY} becomes non-safe.

NDRSN By Lemma 4(a), if < or <is added to O_, then NDR§ becomes non-safe. By
Lemma 4(c), when = is added to O_, NDR}' becomes non-safe.

NDR} By Lemma 4(b), if > or > is added to O_, then NDRY}' is non-safe. By
Lemma 4(c), when < or < is added to O, NDR} becomes non-safe. O

It remains to prove that the list of safe NDRs in Table 5 subsumes every safe NDR
forD=N.

Lemma 6 If (N, O, O_) is a safe NDR, then O € O'_ and O_ C O for some
NDR! = (N, O'., 0" ) in Table 5, (1 < i < 4).

Proof The proof is by case analysis of possible relations in O, and O_.
Casel O N{<,<,>,>}=0.Inthiscase, O, € O} and O_ € O!.

Case2 O, N{<,<,>,>}#@. By Lemma 4(a) and since the NDR is safe, O_ N
{<,<}=0 or O_N{>,>}=40. Therefore, we examine two cases: either O_ C
{>,>,=lorO_ C{<, =,=}.

Case 2.1 O_ C {>, >, =}. We further distinguish whether O_ C {>,>} or O_ N
(=) #0.

Case 2.1.1 O_ C {>,>}. In this case, {>, >} = O ,s0 O_ € O%;also O, € O3.

Case2.12 O N {=}#¢¥. By Lemma 4(c) and since the NDR is safe,
O, C {>,>,=halsosince O% = {>, >, =}, O, € O*%.By Lemma 4(b) and since the
NDR is safe, O_ N {>, >} = @. Therefore, O_ = {=} and since {=} € O*, O_ € O*.

Case22 O_ C{<,<,=}. We distinguish whether O, C{>,>,=} or
O, N{<, <} #40.

Case2.2.1 O, C{>,>,=}.If O, C {>,>,=}, thenby {>, >, =} = 0%, O, € O1.
Also since O* = {<, <,=}, O_ C O*.

Case 2.2.2 O, N{<, <} # . By Lemma 4(c) and since the NDR is safe, {=} N O_ =
¢. Therefore, O_ C {<, <}. Since {<, <} = 02, O_ C O*;also O, C O°. u]

5 Maximal Safe NDRs for Z

In this section, we identify the maximal safe NDRs for the domain of integers (Z).
Table 7 lists all maximal safe NDRs for Z. Compared to the Table 5, we have two
new maximal safe NDRs, namely NDRZ and NDRZ. This is because integers do not
have a minimal element as in the case of naturals. In particular positive occurrences
of < or < together with negative occurrence of = are no longer dangerous: e.g.,
(D —>nE=DV(E0),but(s, 1) »z (= DV(=0).
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Table 7 Maximal safe NDRs for Z: NDRZ = (O, 01),1<i <6

NDR? o' o
NDR? (=) (<, <,> 2=
NDRZ (<,<, >, >, = (=)

NDRJ {<.<.>.2.=} {<. =)

NDR} {<.<.>, 2=} {>.>)

NDRZ (> ==} (<. .=}
NDRg {<.<.=) (> >, =)

Lemma 7 Let (S, S_) be a non-trivial constraint over an NDR from Table 7. Then
there exists a non-trivial constraint (S',, S"_) over the same NDR such that (S,, S_) is
satisfiable if f (S',, S") is satisfiable and:
S/+ g {(Sv yO)a (=7 )’1)7 I (=7 yn)! (Zv }’n+1)}’ (21)
ST C{(=.20. (=200, (= Zm), (20 Zm )} (22)

Proof The proof of this lemma is analogous to the proof of Lemma 2. The constraint
(S, §" ) can be obtained using the following transformation rules:

S+ U<, »h S2) = S+ U{(=s,y— DL So) (23)
S+ U{nhS) = (S U{z.y+ DL So) (24)
S+, S-U{(<, ) = (S, S-U{(z,z— D} (25)
(84, 8- U{(> 2D = (S+, S-U{(=,z+ D) (26)
Sy U=y, (S, 92}, 80) = (84 U{(, min{yy, y2})}, S-) (27)
S+ U{(=. 1), (=, )}, §2) = (S U{(<, max{yr, 2D}, S-) (28)
(84, S-U{(=, 20, (5, 220D = (S, S- U{(=, max{zy, 22D))) (29)
S+, S-U{(=,z1), (=, 22)}) = (84, S- U{(=, min{z, 22})}) (30)

Note that rule (14) is now omitted because integer numbers do not have a lower
bound. ]

Lemma 8 Every NDR in Table 7 is safe.

Proof Let (5S4, S_) be a non-trivial constraint over an NDR in Table 7. By Lemma 7,
w.l.o.g. we can assume that S, and S_ are of the form (21) and (22), respectively. We
construct a solution V for (S, S_) by performing the following case analysis over
the content of S and S_:

Casel S, ={(=,y1),...,(=,yn)}, n > 0. Define V :={yy, ..., y,}. Clearly, every
restriction in S, is satisfied by some value in V. On the other hand, no restriction
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in S_ is satisfied by V:if y;, with 1 <i < n, satisfies some restriction r_ € S_, then
(=, ¥i) =N r—, which contradicts the non-triviality of (S, S_).

Case2 S N{(<, yo), (=, yny1)} # V. We further distinguish cases according to the
content of S_. Note that we do not examine the case where {(<, zo), (=, Zms+1)} € S_,
because this is not possible for NDRs in Table 7.

Case2.1 S_={(=,21),..., (=, zm)},m = 0. Define V:=Z\ {2, ..., zn}. It is easy
to see that V satisfies all restrictions except for those in S_. Since (S, S_) is non-
trivial, and thus S N S_ =@, V is a solution for (S, S_).

Case 2.2 S_ = {(<, z9)}. Define V :={v € Z | v > zo}. Itis easy to see that V satisfies
all restrictions except for restrictions of the form (<, y) and (=, y) with y < zy. Since
such restrictions imply (<, zo) and (S, S_) is non-trivial, §; cannot contain them.
Therefore, V is a solution for (S, S_).

Case 2.3 S_ = {(>, z»)}. This case is symmetrical to Case 2.2.

Case24 S_={(<,20), (= 21),.... (= zZa)}, m>1. Define solution
Vi={veZ]|v>z}\{z1,...,2n}. In this case, S, cannot contain restrictions
of the form (<, y) as it can be seen from Table 7. It is also easy to see that from the
remaining restrictions, V satisfies all restrictions except for restrictions of the form
(=,y) withy < zgor y = z; (1 < j < m). Since such restrictions imply restrictions in
S_, S cannot contain them. Therefore, V is a solution for (5., S_).

Case 25 S_={(=,21),...,(=,2Zm), (=, Zm+1)}, m > 1. This case is symmetrical to
Case 2.4 O

Lemma9 Let (Z, O, O_) be an NDR. Then:

(@) If O:n{<,<,>,>2}#0, O_-N{<,<}#0 and O_N{>,>}#0, then
(Z, Oy, O_) is non-safe.

b)) IfoiN{>>}#0, O_N{>,>}#Wand {=} C O_, then (Z, O, O_) is non-
safe.

() IfOLN{<,<}#0, O_N{<,<}#W@and {=} < O_, then (Z, Oy, O_) is non-
safe.

Proof Inorder to prove that (Z, O, O_) is non-safe, by Lemma 1 it suffices to prove
that it is not weakly convex. For each of the cases (a), (b) and (c) of the lemma, we
provide counterexamples that violate the weak convexity condition, namely a triple
of restrictions (s, y), (s., z1) and (s?, z,), such that s, € Oy, s', s> € O_, y, z1,
22 € L, (54, y) =N (5L, 21) V (s, 22), but (54, y) 7 (sL, z1) and (s, y) »n (52, 22).
The counterexamples are listed in Table 8: the first four lines correspond to case (a),
the next four lines to case (b) and the final four lines to case (c). ]

Lemma 10 Every NDR in Table 7 is maximal safe, that is if any new relation is added
to O4 or O_, the NDR becomes non-safe.
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Table 8 Examples of non-safe NDRs for Z where (s1, y) =7 (s', 21) V (52, 22), (54, y) =7 (s, z1)
and (s+, y) »z (Sz,, 22)

&
|-
&
s
—

{s+} {8 Yy 21 22
{<} (=} {<.z} (=, >} =) 3 1 1
(<) (=} {<,>} 3 2 1
{>} {=} {<.z}) {=,>), (==} 1 3 3
(>}, {=} {<, >} 1 3 2
{>} {= >} 1 2 3
{>} (=, >} 1 2 2
{=} {= >} 1 1 2
(=} {=>} 1 1 1
{<} (=<} 3 2 1
{<} {=, <} 3 2 2
(=} {= <} 2 2 1
= (=, <} 2 2 2

Proof We examine all cases of adding a new relation to NDRs in Table 7:

NDRZ
NDRZ
NDRZ
NDR?
NDRZ

NDRZ

By Lemma 9(a), if any of <, <, >, > is added to O, then NDR? becomes
non-safe.

By Lemma 9(b), if > or > is added to O_, then NDRZ becomes non-safe. By
Lemma 9(c), when < or < is added to O_, then NDR% becomes non-safe.
By Lemma 9(a), if > or > is added to O_, then NDR% becomes non-safe. By
Lemma 9(c), when = is added to O_, then NDR% becomes non-safe.

By Lemma 9(a), if < or < is added to O_, then NDR% becomes non-safe. By
Lemma 9(b), if = is added to O_, then NDR% becomes non-safe.

By Lemma 9(a), if > or > is added to O_, then NDRZ becomes non-safe. By
Lemma 9(c), when < or < is added to O, then NDRZ becomes non-safe.
By Lemma 9(a), if < or < is added to O_, then NDRZ becomes non-safe. By
Lemma 9(b), if > or > is added to O, then NDRZ becomes non-safe. ]

Lemma 11 If (Z, O, O_) is a safe NDR, then O, C O, and O_ € O" for some

NDR? =

(Z, 0, O")in TableT, (1 <i<6).

Proof The proof is by case analysis of possible relations in O, and O_.

Casel O, N{<, <,>,>} =0 Inthiscase, O, € O} and O_ € O!.

Case2 O, N{<,<,>,>}#@. By Lemma 9(a) and since the NDR is safe, O_ N

{<7 E} =

# or O_N{>, >} =0. Therefore, we distinguish two cases: either O_ C

{>, > =}orO_C{<,<,=}

Case 2.1 O_ C {>, >, =}. We further distinguish on whether O_ C {>,>} or O_ N

(= #9.

@ Springer



Tractable Extensions of ££ with Numerical Datatypes 445

Case 2.1.1 O_ C {>,>}.Then O_ € O* and O, C O%.

Case 2.1.2 O_N{=}# 0. If O_ ={=}, then O_ € O* and O, C O%. Otherwise,
O_N{>, >} # ¥. By Lemma 9(b) and since the NDR is safe, O, N {>, >} = @. Thus,
O, Ci{<,g,=}= Oi and O_ C {>,>,=}= 0°.

Case 2.2 O_ C {<, <, =}. We further distinguish on whether O_ C {<, <} or O_nN
(=) #0.

Case 2.2.1 O_ C {<,<}.Then O_ € O? and O, C O3.

Case2.22 O_N{=}# 0. If O_ ={=}, then O_ € O% and O, € O%. Otherwise,
O_N{<, <} # ¥. By Lemma 9(c) and since the NDR is safe, O, N {<, <} = @. Thus,
0, C{>>=}=0,and 0_C{<,<,=}= 0. o

6 Maximal Safe NDRs for R and Q

We continue with the domain of real numbers (R) and rational numbers (Q). Table 9
lists all maximal safe NDRs for these domains. Reals and rationals are examples
of dense domains: between every two different numbers there is always a third
one. This property results in new safe NDRs. Specifically, either < or > can be
added to O_ of NDRZ from Table 7 because they do not violate the weak convexity
property: e.g., (<,5) =z (=,5) vV (<,4),but (£,5) »r (=,5) V (<, 4). For the same
reason, O, of NDRZ and NDR% from Table 7 can be extended with < and >: e.g.,
(<,5) =z (=4 V(5,3),but (<,5) »r (=4 V(5,3).
Below we provide only proofs for R. The proofs for QQ are identical.

Lemma 12 Let (S, S-) be a non-trivial constraint over an NDR from Table 9. Then
there exists a non-trivial constraint (S'_, S"_) over the same NDR such that (S, S_) is
satisfiable if f (S',, S") is satisfiable and:

S;_ g {(<7 yé)s (Sv yo)s (:7 yl)a ) (:’ yll)a (Za yn+1)v (>7 y§l+l)}7 (31)

SL S {(<29), (220, (=020 ooy (F02m)s (20 Zma1)s (5, Ty D) (32)

Table 9 Maximal safe NDRs: NDR” = (0%, 0"),1 <i<7,forD=Rand D =Q

NDR? NDRF O O

NDRY NDRE {=} (<.=>.2=
NDRy NDRE {<.<.>. 2= {<.=}

NDR% NDR} (<,2>,2,= {=.=}

NDR; NDR} (<.5,>,2,=) {<. =}

NDRZ NDRZ {<.5,>2= >zl

NDR% NDRZ {<,> ==} {<.=.=}
NDR3 NDRE <. < >=} > ==
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Proof The proof is similar to the proof of Lemma 2 for the case of natural numbers.
Since, we are no longer able to eliminate strict inequalities (real numbers is a dense
domain) we only apply the rules that eliminate duplicate occurrences of inequalities:

(S+ Uf(<, y), (<, y2)}, S2) = (84 U{(<, min{y1, y21)}, S-) (33)
S+ U{(=, y), (>, y2)}, S-) = (84 U{(>, max{y1, y2D)}, S-) (34)
S+ U{(=, y1), (£, ¥ S2) = (84 U{(S, min{y1, y2D)}, S-) (35)
S+ U{(=,y1), (=, y2)} S-) = (54 U{(<, max{yr, y2D)}, S-) (36)
(4. 8- U{(<,21), (<, 22)}) = (S4, S— U{(<, max{z1, 22})}) (37)
(84, S—-U{(>, z1), (>, 22)}) = (84, S— U{(>, min{z, 22})}) (38)
(84, S- U{(=, 20, (£, 22D = (84, S- U{(S, max{zi, 22D)}) (39)
(S4, 8- U{(=,z1), (=, 220)}) = (84, S_ U {(=, min{z,, 22))}) (40)

o

Lemma 13 Every NDR in Table 9 is safe.

Proof Let (S4, S_) be a non-trivial constraint over an NDR in Table 9. By Lemma
12, w.l.o.g. we can assume that S, and S_ are of the form (31) and (32), respectively.
We construct a solution V for (S4, S_) by performing the following case analysis over
the content of S and S_:

Casel S, ={(=,y1),..., (=, yn)}. Then the solution V := {yy, ..., y,}.

Case2 S, N{(<,yp). (5, ¥0), (=, Yus1), (>, yy1)} # 9. We further distinguish cases
according the content of S_:

Case21 S_ ={(=,z21),...,(= zn)},m>0.Then V:=R\ {zy,..., z2m}

Case2.2 S_ ={(<,20), (= 21),...., (= 2z}, m > 0. Then the solution
Vi=veR|v>zo}\{z1,.-., Zm}-

Case23 S_={(=21),..., (= 2Zm), (=, Zm+1)}, m=>0. Then the solution
Vi=veR|v<zmual\{z1,..., Zm}-

Case24 S_={(<,2),(=21),...,(=2zw)}, m=0. Then the solution
Vi=fveR|v=z\{z1,..., 2}

Case25 S_={(=,21),....(= 2m), >, 2,,.1)), m=0. Then the solution
Vi=veR|v=z, t\{z1,..., Zn}.

Case 2.6 S_ ={(<,2)), (5,20),(=,21),...,(=,2m)}, m=>0. Then the solution
Vi=veR|v=ziAv> 20l \ {21, ., Zm)-
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Case2.7 §_ ={(=21),.... (= zm), (=, Zm11), (>, 25, 1)}, m > 0. Then the solution
Vi=lveR|v<zpaAv =z, 3\ {21, ..., Zm) O

Lemma 14 Let (R, O, O_) be an NDR. Then:

(@) If OyN{<,<,>,>1#0, O_N{<,<}#0 and O_N{>,>}#0, then
R, Oy, O-) is non-safe.

(b) If{=}e€ Oy and O_N{>,=} # W, then (R, O, O_) is non-safe.

() If{<} e Opand O_nN{<,=} # @, then (R, O, O_) is non-safe.

Proof Inorder to prove that (R, O, O_) is non-safe, by Lemma 1 it suffices to prove
that it is not weakly convex. For each of the cases (a), (b) and (c) of the lemma,
we provide counterexamples that violate the weak convexity condition, namely a
triple of restrictions (s, y), (s', z;) and (s?, z2), such that s, € O,s',s> € O_, y,
21,22 € R, (54, y) =r (51, 21) V (52, 22), (54, ) =R (s, z1) and (s, y) »r (2, 22).
The counterexamples are listed in Table 10: the first four lines correspond to case
(a), the penultimate line to case (b) and the last line to case (c). O

Lemma 15 Every NDR in Table 9 is maximal safe, that is if any new relation is added
to O or O_, the NDR becomes non-safe.

Proof We examine all cases of adding a new relation to NDRs in Table 9:

NDR} By Lemma 14(a), if any of <, <, >, > is added to O, then NDR} becomes
non-safe.

NDRY By Lemma 14(a), if > is added to O_, then NDR% becomes non-safe. By
Lemma 14(b), when > is added to O_, NDR} becomes non-safe. Finally, by
Lemma 14(c), if < is added to O_, then NDR} becomes non-safe.

NDR; By Lemma 14(a), if < is added to O_, then NDRY becomes non-safe. By
Lemma 14(b), when > is added to O _, NDR]§ becomes non-safe. Finally, by
Lemma 14(c), if < is added to O_, then NDRj becomes non-safe.

NDRY By Lemma 14(a), if > or > is added to O_, then NDR} becomes non-safe.
By Lemma 14(c), if = is added to O_, then NDRY becomes non-safe.

NDRE By Lemma 14(a), if < or < is added to O_, then NDRE becomes non-safe.
By Lemma 14(b), when = is added to O_, NDRZ becomes non-safe.

NDR§ By Lemma 14(a), if > or > is added to O_, then NDR§ becomes non-safe.
By Lemma 14(c), if < is added to O, then NDRH§ becomes non-safe.

Table 10 Examples of non-safe NDRs for R where (s+, y) > g (sL,zD) Vv (2, 20), (54, y) =g (sL,
z1) and (54, y) »r (52, 22)

{54} fsL,s2)

y 71 22
(<} (=} (<. 2} {25 (= 2) 3 1 1
(<} (=) {<.>} 3 2 1
>} {=} (<. 2}, {=.>) (=.2) 1 3 3
(>}, =} {<.>} 1 3 2
=} {= >} 1 1 1
(<} =, <} 1 1 1
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NDRY By Lemma 14(a), if < or < is added to O_, then NDRY becomes non-safe.
Similarly, by Lemma 14(b), if > is added to O, then NDR¥ becomes non-
safe. ]

Lemma 16 If (R, O4, O_) is a safe NDR, then O, C O’;F and O_ C O" for some
NDR} = (R, O'., O )in Table 9 (1 <i < 7).

Proof The proof is by case analysis of possible relations in O, and O_.

Casel O, N{<,<,>,>}=0.Inthiscase, O, € O} and O_ € O!.

Case2 O, N{<,<,>,>}# @ By Lemma 14(a) and since the NDR is safe, O_ N
{<,<}=0 or O_N{>,>}=40. Therefore, we examine two cases: either O_ C
{>,2,=lor O_ C{<, <, =}

Case 2.1 O_ C {>, >, =}. We further examine whether O_ C {>,>}or{=} C O_.

Case 2.1.1 O_ C {>,>}.Then O_ € 0% and O, C O’.

Case 2.1.2 {=} € O_. We distinguish two cases: either O_ C {>,=} or
O_N{>,=}#0.

Case 2.1.2.1 O_ C {>,=}. Inthiscase O, € O and O_ € O°.

Case 2.1.2.2 O_N{>,=} # . By Lemma 14(b) and since the NDR is safe O N
{z}=0.%50,0, C{<,<,>=}=0and O_ C {>,>,=}=0".

Case 2.2 O_ C {<, <, =}. We further examine whether O_ C {<, <} or{=} C O_.
Case 2.2.1 O_ C {<,<}.Then O_ € O* and O, C O}.

Case 2.2.2 {=} € O_. We distinguish two cases: either O_ C{<,=} or
O_Ni{<,=}#40.

Case 2.2.2.1 O_ C {<,=}. Inthiscase O, € O% and O_ C O~.

Case 2.2.2.2 O_N{<,=} # . By Lemma 14(c) and since the NDR is safe, O N
{(£}=0.80,0, C{<,>,>,=}=0%and O_ C {<,<,=} = O°. ]

7 Related Work

Datatypes have been extensively studied in the context of DLs [3, 8, 9]. Extensions
of expressive DLs with datatypes have been examined in depth [8] with the main
focus on decidability. Baader et al. [3] formulated tractable extensions of ££ with
datatypes using a p-admissibility restriction for datatypes. A datatype D is p-
admissible if (i) satisfiability and implication of conjunctions of datatype restrictions
can be decided in polynomial time, and (ii) D is convex: if a conjunction of datatype
restrictions implies a disjunction of datatype restrictions, then it also implies one of
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its disjuncts [3]. In our work instead of condition (i) we require that implication and
satisfiability of just datatype restrictions (not conjunctions since we do not consider
functional features) is decidable in polynomial time. Condition (ii) is replaced with
the requirement of safety for NDRs, where, in addition, we take into account the
polarity for occurrences of datatype restrictions. The refined restrictions give more
possibilities for the use of datatypes in tractable languages, as demonstrated by the
example given in the introduction. Furthermore, Baader et al. did not provide a
classification of p-admissible datatypes; in our case we provide such a classification
for natural numbers, integers, rationals and reals. The EL Profile of OWL 2 [2] is
inspired by ££* and restricts all OWL 2 datatypes to satisfy p-admissibility. In
particular, only equality can be used in datatype restrictions. Our result can allow
for a significant extension of datatypes in the OWL 2 EL Profile, where, in addition,
inequalities can be used negatively. We believe that this result can be extended
to many more datatype restrictions outside of OWL 2, such as intervals, or user-
definable restrictions, such as predicates expressing that an integer is odd or prime.

Our work is not the only one where the convexity property for extensions of £L is
relaxed without losing tractability. It has been shown [9] that the convexity require-
ment is not necessary provided that (i) the ontology contains only concept definitions
of the form A = C, where A is a concept name, and (ii) every concept name occurs
at most once in the left-hand side of the definition. While this requirement seems
natural since concepts in ontologies are typically defined only once, it disallows the
usage of general concept inclusion axioms (GCIs), such as the axiom (2) given in the
introduction, which do not cause any problem in our case.

Another related polynomial extension of ££ has been considered by Viorica
Sofronie-Stokkermans [10], where in addition to the standard concept construc-
tors in £L£, one can use concept of the form |m, tn, and [m; n], interpreted as
(semi-)intervals over a partially ordered set (P, <). The difference with the results
discussed before, is that the domain P and therefore the values of the end-point
parameters m and »n are not fixed but can be chosen arbitrarily for every interpre-
tation.” This property guarantees that the extension is polynomial: in contrast to
intervals over concrete datatypes such as integers or reals, intervals over abstract
partially ordered sets have the convexity property. For example, the property [n; n] C
Jm U tm holds for real numbers since {xe R|x <m}U{xeR|x>m} =R for
every m € R, but does not hold for partially ordered sets in general, where elements
can be incomparable.

8 Conclusions and Future Work

In this work we made a fine-grained analysis of extensions of ££ with numerical
datatypes, by distinguishing not only the types of relations but also the polarities
of their occurrences in axioms. We made a full classification of cases where these
restrictions result in a tractable extension for natural numbers, integers, rationals and
reals. One practically relevant case for these datatypes is when positive occurrences
of datatype expressions can only use equality and negative occurrences can use any

2Personal communication with Viorica Sofronie-Stokkermans.
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of the numerical relations considered. This case was motivated by an example of a
pharmacy-related ontology and can be proposed as a candidate for a successor of the
OWL 2 EL Profile [6]. For the cases where the extension is tractable, we provided a
polynomial sound and complete consequence-based reasoning procedure, which can
be seen as an extension of the completion-based procedure for £L [3]. We think that
the procedure can be extended to accommodate other constructors in ££%* such
as (complex) role inclusions, nominals, domain and range restrictions and assertions
since these constructors do not interact with datatypes [11].

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to merge our procedure
with the consequence-based procedure for Horn SHZQ [12]. For example, to
extend the procedure with functional features, we probably need a notion of “func-
tional safety” for an NDR that corresponds to the strong convexity property (see
Definition 7). It might be possible to achieve even higher expressivity by combining
different NDRs for features and datatypes that do not interact in the ontology.
Currently, using two safe NDRs in a single ontology may result in intractability.
For example, allowing the usage of both NDR% and NDRZ in Table 7 is equivalent
to not having any restrictions at all. One possible solution to this problem is to
specify explicitly which features can be used with which NDRs in order to separate
their usage in ontologies. As we mentioned in the previous section, it will be also
interesting to look into more expressive datatype restrictions, such as intervals
or user-definable predicates, and restrictions containing unknown parameters or
variables.
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