
Supporting Concurrent Ontology Development:
Framework, Algorithms and Tool

E. Jiménez Ruiza, B. Cuenca Graub, I. Horrocksb, R. Berlangaa

aLlenguatges i Sistemes Informatics, Universitat Jaume I, 12071, Castelĺon, Spain.
Phone: 0034 964 728367

bComputing Laboratory, University of Oxford, Wolfson Building, OX13QD, Oxford UK.
Phone: 0044 1865 283529

Abstract

We propose a novel approach to facilitate the concurrent development of on-
tologies by different groups of experts. Our approach adapts Concurrent Ver-
sioning, a successful paradigm in software development, toallow several de-
velopers to make changes concurrently to an ontology. Conflict detection and
resolution are based on novel techniques that take into account the structure and
semantics of the ontology versions to be reconciled by usingprecisely-defined
notions of structural and semantic differences between ontologies and by extend-
ing state-of-the-art ontology debugging and repair techniques. We also present
ContentCVS, a system that implements our approach, and a preliminary empir-
ical evaluation which suggests that our approach is both computationally feasible
and useful in practice.

Key words: Ontologies, Knowledge Representation, Knowledge Engineering,
OWL, Semantic Web

1. Introduction

The Web Ontology Language (OWL), and its revision OWL 2, are well-
known languages for ontology modeling in the Semantic Web [8, 26].

OWL ontologies are already being used in domains as diverse as bio-medicine,
geology, agriculture, and defence. In particular, OWL is extensively used in the

Email addresses:ejimenez@uji.es (E. Jiménez Ruiz),berg@comlab.ox.ac.uk
(B. Cuenca Grau),ian.horrocks@comlab.ox.ac.uk (I. Horrocks),
berlanga@uji.es (R. Berlanga)

Preprint submitted to Elsevier October 8, 2010

clinical sciences; prominent examples of OWL ontologies are the National Can-
cer Institute (NCI) Thesaurus [19], the Systematised Nomenclature of Medicine
and Clinical Terms (SNOMED CT) [52], the Gene Ontology (GO) [1], the Foun-
dational Model of Anatomy (FMA) [40], and GALEN [45].

These ontologies are large and complex; for example, SNOMEDCT cur-
rently describes more than 300,000 concepts whereas NCI andFMA describe
around 70,000 concepts. Furthermore, these ontologies arein continuous evo-
lution [20]. For example, the developers of NCI perform approximately 900
changes to the ontology each month.

Most realistic ontologies, including the ones just mentioned, are being devel-
oped by several groups, which can be geographically distributed and may con-
tribute in different ways and to different extents. For example, the NCI ontology
is being developed by 20 full time editors and one curator. Each editor works
on a separate copy of the ontology and, at the end of a two week editing cycle,
the curator uses a workflow management tool to review and approve the changes
made by each editor [9]. Similarly, the SNOMED CT development team consists
of a main team and four geographically distributed groups that are in charge of
the development of different parts of the ontology; every two weeks, the parts
developed by the different groups are integrated and the possible conflicts are
reconciled by the main team.

Therefore, designing and maintaining such large ontologies is a highly com-
plex process, which involves many complicated tasks:

1. to agree on a unified conceptual design and common modelingguidelines;

2. to assign different responsibilities and tasks to each group of developers;

3. to track and manage the frequent changes to the ontology made by different
developers from distributed locations;

4. to compare different versions of the ontology lexically (e.g., names of the
introduced ontology entities), structurally (e.g., shapeof the axioms), and
semantically (e.g., logical consequences);

5. to detect and reconcile conflicting views of the domain by merging differ-
ent ontology versions; and

6. to minimise the introduction of errors (e.g., to ensure that the ontology
does not have unintended logical consequences).

In recent years, there has been a growing interest in the development of tech-
niques and tools to support ontology developers in performing these tasks (see
for example [4, 53, 57, 11, 21, 51, 39, 13, 46, 49, 18]), and we refer the reader
to our Related Work section for a detailed discussion.

2

In this paper, we present a novel approach to facilitate theconcurrent devel-
opmentof ontologies. Our approach adapts Concurrent Versioning —a success-
ful paradigm in software development— to allow several developers to make
changes concurrently and remotely to the same ontology, track changes, and
manage ontology versions. Version comparison, conflict detection and conflict
resolution are based on a novel approach that takes into account the structure
and semantics of the versions to be reconciled. First, we propose precise no-
tions of structural and semantic difference between ontology versions to facil-
itate the detection of potential conflicts and errors; second, we propose vari-
ous improvements to state-of-the-art ontology debugging and repair techniques
[34, 47, 35, 33, 25, 23] in order to fix the identified errors in aconcurrent set-
ting. We then presentContentCVS, a system that implements our approach,
and a preliminary empirical evaluation which suggests thatour approach is both
computationally feasible and useful in practice.

Our contribution hence focuses on facilitating tracking and management of
concurrent changes, version comparison, conflict identification, (semi)automatic
conflict resolution, and version merging (tasks 3-6 above).We do not address in
this work other important aspects of collaborative ontology development, such as
conceptual design, distribution of responsibilities and tasks among developers,
specification of modeling guidelines, and so on. Furthermore, concerning con-
flict detection and resolution, we see our techniques ascomplementaryto other
conflict resolution techniques that are more focused on collaborative and social
aspects [17, 14, 13, 11] (e.g., on facilitating the discussion between groups of
developers, or on achieving consensus). For example, discussion threads and an-
notations could be used inContentCVS to inform other users of the reasons for
certain changes. Finally, we do not consider the automatic resolution of conflicts
that are merelylexical (e.g., two different developers adding the same concept
independently, but using different names), which is an important and difficult
issue especially in the development of inter-organisational ontologies [21]. Al-
though such conflicts would be detected byContentCVS and reported to the
relevant groups of users, their automatic resolution wouldrequire, for example,
the application of ontology matching techniques [3] or the use of a reference
thesaurus [32].

We believe that a complete, multi-user platform for ontology development
should providebothcollaborative and social features, as well as those presented
here and implemented inContentCVS. The design and implementation of such
an integrated platform is beyond the scope of this paper. We are planning, how-
ever, to progressively incorporate collaborative features intoContentCVS.

3

This paper extends the results of preliminary workshop publications on con-
current ontology development [28, 29], as well as a prior work on conflict reso-
lution in the context of ontology mapping [30].

2. Preliminaries

The formal underpinning of OWL DL and OWL 2 is provided by description
logics (DLs) [2]—knowledge representation formalisms with well-understood
formal properties. In this section, we very briefly summarise the basics of DLs,
and refer the interested reader to [2, 8, 26] for further information.

DLs allow ontology developers to describe a domain of interest in terms of
individuals, atomic concepts(usually calledclassesin OWL), and roles (also
calledproperties). DLs also allow forconcept descriptions(i.e., complex con-
cepts) to be composed of atomic concepts and roles by providing a set ofcon-
cept constructors. The DLs underlying OWL provide for intersection (⊓), union
(⊔) and complement (¬), as well as enumerated classes (calledoneOf in OWL)
and restricted forms of existential (∃), universal (∀) and cardinality restrictions
(≥,≤,=) involving an atomic roleR or its inverseR−. A DL ontologyO con-
sists of a set of axioms. In the DLs underlying OWL it is possible to assert that a
concept (or concept description)C is subsumed by (is a sub-concept of)D (writ-
tenC ⊑ D), or is exactly equivalent toD (writtenC ≡ D). It is also possible
to assert subsumption of and equivalence between roles as well as to establish
special constraints on roles (e.g., that a role should be interpreted as a transitive
or as a functional relation).

A (fragment of) a DL ontology about arthritis that we will useas a running
example is given in Table 1, whereRA stands for ‘Rheumatoid Arthritis’ and
RF for ‘Rheumatoid Factor’. For example, axiomα2 states that every systemic
disease is a disease that affects the whole body.

DLs are equipped with a formal semantics, which enables the development
of reasoning algorithms for answering complex queries about the domain. DLs,
in fact, can be seen as decidable subsets of first-order logic, with individuals
being equivalent to constants, concepts to unary predicates and roles to binary
predicates. As in the case of a first order knowledge base, an interpretationI is
a model of an ontologyO (written I |= O) if I satisfies all the axioms inO;
O entails an axiomα (respectively an ontologyO′), writtenO |= α (O |= O′),
if I |= α (respectivelyI |= O′) for every modelI of O. Finally O andO′ are
logically equivalent (writtenO ≡ O′) if O |= O′ andO′ |= O.

4

OntologyO0

α1 RA ⊑ Disease

α2 Systemic Disease ⊑ Disease ⊓ ∃affects.WholeBody

α3 Disease ⊓ ∃affects.WholeBody ⊑ Systemic Disease

α4 Disease ⊓ ∃suffered By.Child ⊑ Juvenile Disease

α5 Negative RF ⊓ Positive RF ⊑ ⊥

α6 AbnormalRA ⊑ RA ⊓ ∀hasRF.Negative RF

α7 MultiJoint Disease ⊑ Disease ⊓> 5 affects.Joint

Table 1: A fragment of an ontology about arthritis

3. Practical challenges

In this section, we introduce some of the challenges that ontology engineers
face when developing ontologies concurrently. To this end,we consider as an ex-
ample the development of an ontology about arthritis. This example is intended
only for illustration purposes and hence it is rather simplistic. The types of con-
flicting ontology changes illustrated in this section, however, are indeed realistic
as we will see later on in Section 7.1, where we analyse a sequence of versions
of a medical ontology used in a real scenario.

Suppose that two developers, John and Anna, are in charge of extending a
versionO0 of the ontology in Table 1 by describing types of systemic arthritis
and juvenile arthritis, respectively. To this end, both John and Anna define a kind
of arthritis called JRA (Juvenile Rheumatoid Arthritis), which is both systemic
and juvenile. Hence, even if largely distinct, the domains described by John and
Anna overlap, which may lead to conflicts. For simplicity, inwhat follows we
only consider John and Anna’s descriptions of JRA.

Suppose that John and Anna construct their respective versionsO1 andO2 by
adding toO0 the axioms(∆O)1 and(∆O)2 from Table 2 (i.e.,O1 = O0∪(∆O)1

andO2 = O0 ∪ (∆O)2). Some of the axioms added by John and Anna are the
same (e.g.,β1), or present only minor (and semantically irrelevant) differences
(e.g.,β2 andβ ′

2); however, other axioms are clearly different (e.g.,γ3 andδ3).
To compare John and Anna’s conceptualisations of the domain, the upper

part of Table 3 presents some axioms and their entailment status w.r.t.O1 and
O2. The table shows that John and Anna agree on some points; e.g., both think
that Polyarticular JRA is a kind of disease (entailmentσ3) and neither claimed
that every JRA is also a Systemic JRA (non-entailmentσ4). However, John’s and
Anna’s views also present significant differences; e.g., John defined the notion of

5

Ontology (∆O)1: Ontology (∆O)2:

β1 RA ⊑ ∃hasRF.⊤ RA ⊑ ∃hasRF.⊤

β2 JRA ⊑ ∃treatment.(Steroid ⊔ DMAR) β′

2 JRA ⊑ ∃treatment.(DMAR ⊔ Steroid)

γ1 JRA ⊑ RA ⊓ Systemic Disease δ1 JRA ⊑ RA ⊓ ∃suffered By.Child

γ2 RA ⊓ Systemic Disease ⊑ JRA δ2 JRA ⊓ ∃affects.WholeBody ⊑ SystemicJRA

γ3 Poly JRA ⊑ JRA ⊓MultiJoint Disease δ3 Poly JRA ⊑ JRA ⊓=3 affects.Joint

γ4 Poly JRA ⊑ AbnormalRA δ4 Poly JRA ⊑ ∀hasRF.Positive RF

γ5 Oly JRA ⊑ JRA ⊓ ¬Poly JRA δ5 SystemicJRA ⊑ JRA ⊓ ∃hasSymptom.Fever

Table 2: VersionsO1 = O0 ∪ (∆O)1 andO2 = O0 ∪ (∆O)2 of an ontologyO0

σ Axiom: O1 |=
?
σ, follows from: O2 |=

?
σ, follows from:

σ1 Oly JRA ⊑ Systemic Disease Yes γ1, γ5 No —

σ2 JRA ⊑ Juvenile Disease No — Yes α1, α4, δ1

σ3 Poly JRA ⊑ Disease Yes α1, γ1, γ3 Yes α1, δ1, δ3

σ4 JRA ⊑ SystemicJRA No — No —

σ Axiom: O3 |=
?
σ, O1 |=

?
σ, O2 |=

?
σ, follows from: Desirable?

σ4 JRA ⊑ SystemicJRA Yes No No γ1, α2, δ2 No

σ5 Poly JRA ⊑ ⊥ Yes No No γ4, β1, δ4, α5, α6 No

α7, γ3, δ3

σ6 Oly JRA ⊑ Juvenile Disease Yes No No γ5, α1, α4, δ1 Yes

Table 3: Example Subsumption Relations inO1, O2, andO3 = O1 ∪ O2

Olyarticular JRA , whereas Anna did not, and Anna’s conceptualisation implies
that JRA is a juvenile disease (entailmentσ2), whereas John’s does not.

John and Anna’s changes could be reconciled by building the union O3 =
O1 ∪ O2 of their ontologies. Due to complex interactions betweenO1 andO2,
however,O3 entails new consequences which did not follow from eitherO1 or
O2 alone; some of these are shown in the lower part of Table 3, together with an
indication as to whether the consequence is desirable. Although some of these
new consequences may be desirable (e.g.,σ6) others are clearly undesirable, and
indicate modelling errors in the merged ontology (e.g.,σ4 andσ5).

This example illustrates some of the challenges of concurrent ontology de-
velopment. The development of an ontology may be the responsibility of several
developers, each of whom typically makes small but relatively frequent mod-
ifications to the ontology. In this setting, developers needto regularly merge

6

and reconcile their modifications to ensure that the ontology captures a consis-
tent unified view of the domain. The changes performed by different users may,
however, interact and conflict in complex ways. Developmenttools should there-
fore provide means for:(i) keeping track of ontology versions and changes and
reverting, if necessary, to a previously agreed upon version, (ii) comparing po-
tentially conflicting versions and identifying conflictingparts,(iii) identifying
errors in the reconciled ontology constructed from the conflicting versions, and
(iv) suggesting possible ways to repair the identified errors with a minimal im-
pact on the ontology.

To address(i), we propose to adapt the Concurrent Versioning paradigm to
ontology development as described in Section 4. To address(ii) we propose a
notion of conflict between ontology versions and provide means for identify-
ing conflicting parts based on it, as described in Section 5. To address(iii) we
propose in Section 6 a framework for comparing the entailments that hold in
the compared versions and in the reconciled ontology, basedon the notion of
a deductive difference[36] and also describe techniques for helping users de-
cide which of the reported entailments are intended. Finally, to address(iv), we
propose in Section 6 several improvements to existing techniques for ontology
debugging and repair and adapt them to our new setting.

In Sections 4, 5, and 6, we describe both our general approachand algo-
rithmic techniques as well as their implementation in our tool ContentCVS,1 a
Protégé 4 plugin freely available for download.2

4. CVS-based concurrent development

In software engineering, a successful paradigm for collaboration in large
projects has been the Concurrent Versioning Paradigm. A Concurrent Versioning
System (CVS) uses a client-server architecture: a CVS server stores the current
version of a project and its change history; CVS clients connect to the server
to check outa copy of the project, allowing developers to work on their own
‘local’ copy, and then later tocommittheir changes to the server. This allows
several developers to make changes concurrently to a project. To keep the sys-
tem in a consistent state, the server only accepts changes tothe latest version of
any given project file. Developers should hence use the CVS client to regularly
commit their changes andupdatetheir local copy with changes made by others.
Manual intervention is only needed when aconflictarises between a committed

1A ConcurrentONTologyENgineeringTool.
2http://krono.act.uji.es/people/Ernesto/contentcvs

7

ExistsOL

Fail

OL

bak
,OL := OR

vL := vR

conflict := false

Yes

No

(a) Checkout

ExistsOR

Fail

OR,OL

bak
:= OL

vR, vL := 1

conflict := false

Yes

No

(b) Export

Figure 1: Semantics of the checkout and export operations inContentCVS

version in the server and a yet-uncommitted local version. Conflicts are reported
whenever the two compared versions of a file are notequivalentaccording to a
given notion of equivalence between versions of a file.

Our tool ContentCVS closely follows the CVS paradigm. The most re-
cent versionOR of the ontology, which represents the developers’ shared un-
derstanding of the domain, is kept in a server’s shared repository. Each devel-
oper with access to the repository maintains a local copyOL of the ontology,
which can be modified at will. This local copy can be either in conflict with OR

(conflict = true) or not in conflict (conflict = false). Furthermore, the system
maintains version numbersvR andvL for OR andOL respectively as well a local
‘backup’ copyOL

bak of the latest local version that was ‘written’ to the repository.
At any time, a developer can access the repository using one of the follow-

ing basic operations:export, check-out, updateandcommit. These operations
involve checking whether two ontology filesO andO′ are ‘equivalent’ under a
specific notion of equivalence between ontology files which will be introduced
in Section 5 (denotedO ∼ O′).

The checkoutoperation (Figure 1(a)) allows a developer to acquire a local
copyOL of OR, provided thatOL does not already exist. The ontology resulting
from a successful checkout is obviously in a non-conflicted state (i.e.,conflict =
false), and it inherits the version numbervR of OR.

Theexportoperation (Figure 1(b)) allows a developer to create a new repos-
itory, provided that none already exists. The local ontology is then ‘exported’ to
the repository and the version numbers ofOL andOR are initialised.

The updateoperation (Figure 2) allows developers to keep their local copy
OL up-to-date by accessing the repository and incorporating the changes made
by others. The update process starts by checking whetherOL has not changed
since it was last updated; in caseOL has changed, it next checks whether the
changes made by others are consistent with those made locally. In either case,

8

OL ∼ OL

bak OL ∼ OR conflict := true

vL := vR
OL := OR

OL

No No

Yes Yes

Figure 2: Semantics of the update operation inContentCVS

OL ∼ OL

bak
vL = vR conflict?

Do Nothing Update is Necessary Fail

OL

bak
:= OL

OR := OL

vL, vR := +1

OL

No Yes

false

Yes No true

Figure 3: Semantics of the commit operation inContentCVS

it is safe to replaceOL with the versionOR from the repository. Otherwise, a
conflict is reported.

Finally, thecommitoperation (Figure 3), allows ontology developers to write
(commit) their local changes to the repository. IfOL

bak ∽ OL then there are
no meaningful local changes and hence no action is required.Otherwise, the
commit process only succeeds ifOL is up-to-date (vL = vR) and not in conflict
(conflict = false). In case of success, the commit operation involves replacing
OR with OL and incrementing the version number.

Consider our running example and suppose that Anna has already commit-
ted her changes, soOR = O2; meanwhile, John modifies his local copy, so
OL = O1. If John then tries to commit his changes, the operation willfail be-
causevL 6= vR (the local copy is not up-to-date); if he tries to update his local
copy, the operation will fail because there have been local changes and they are
incompatible with those made by Anna, andOL ends up in a conflicted state.
Conflicts will need to be resolved before the commit operation can succeed.

5. Change and conflict detection

As mentioned in Section 4, change and conflict detection amounts to check-
ing whether two compared versions of a file are not ‘equivalent’ according to a
given notion of equivalence between versions of a file.

9

A typical CVS treats the files in a software project as ‘ordinary’ text files and
hence checking equivalence amounts to determining whetherthe two versions
are syntactically equal (i.e., they contain exactly the same characters in exactly
the same order). This notion of equivalence is, however, toostrict in the case
of ontologies, since OWL files have very specific structure and semantics. For
example, if two OWL files are identical except for the fact that two axioms ap-
pear in different order, the corresponding ontologies should be clearly treated
as ‘equivalent’: an ontology contains aset of axioms and hence their order is
irrelevant [8].

Another possibility is to use logical equivalence as definedin Section 2.
This notion of equivalence is, however, too permissive: even if O ≡ O′—the
strongest assumption from a semantic point of view—conflicts may still exist.
This might result from the presence of incompatible annotations (statements that
act as comments and do not carry logical meaning) [8], or a mismatch in mod-
elling styles; for example,O may be written in a simple language such as the
OWL 2 EL profile [8, 41] and containα := (A ⊑ B ⊓C), whileO′ may contain
β := (¬B ⊔ ¬C ⊑ ¬A). Even thoughα ≡ β, the explicit use of negation and
disjunction means thatO′ is outside the EL profile.

Therefore, the notion of a conflict should be based on a notionof ontol-
ogy equivalence ‘in-between’ syntactical equality and logical equivalence. We
propose to borrow the notion ofstructural equivalencefrom the OWL 2 specifi-
cation [42]. Intuitively, this notion of equivalence is based solely on comparing
structures by using the definition of the modeling constructs available in OWL
and OWL 2; for example, several modeling constructs are defined as sets of ob-
jects (e.g., ontologies are defined as sets of axioms, conjunction of concepts as
a set of conjuncts, and so on); hence changes in the order in which these set
elements appear in the ontology file should be seen as irrelevant.

In DL syntax, structural equivalence can be formalised as given next. For
the sake of simplicity, our definition here comprises only the description logic
SROIQ, which provides the logical underpinning for OWL 2. This definition
can be easily extended to cover also datatypes and extra-logical statements, such
as annotations. We refer the reader to [42] for a complete characterisation of
structural equivalence.

Definition 1. The structural equivalence relation∽ over a set of conceptsCon

is defined by induction. First,C ∽ C for eachC ∈ Con. For the induction step,
we have:

• C ∽ D implies(¬C) ∽ (¬D);

10

• C ∽ D implies♦R.C ∽ ♦R.D for ♦ ∈ {∃, ∀,≥ n,≤ n,= n}; and

• C1 ∽ C2 andD1 ∽ D2 implies(C1 ⊲⊳ D1) ∽ (C2 ⊲⊳ D2) ∽ (D2 ⊲⊳ C2),
for ⊲⊳ ∈ {⊓,⊔}.

The relation∽ is extended to axioms over a set of conceptsCon and rolesRol

as follows: α ∽ α for each concept or role axiomα and, if C1 ∽ C2 and
D1 ∽ D2, then(C1 ⊑ D1) ∽ (C2 ⊑ D2), for Ci, Di ∈ Con. Finally ∽ is
extended to ontologies as follows:O ∽ O′ if, for everyα ∈ O (respectively
α ∈ O′) there is aβ ∈ O′ (respectivelyβ ∈ O) such thatα ∽ β.

For example, the axiomsβ2 and β ′

2 in Table 2 are structurally equivalent
because they only differ in the order of the elements in a disjunction. IfO ∽ O′

we can safely assume that they are compatible and thus not in conflict.
The use of the notion of structural equivalence for detecting conflicts between

ontology versions presents a number of compelling advantages:

• It is a notion ‘in-between’ syntactical equality and logical equivalence:
on the one hand irrelevant syntactic differences are ruled out as conflicts
based solely on the structure of the OWL language; on the other hand,
structurally equivalent ontologies are also logically equivalent.

• It preserves species and profiles [41] of OWL and OWL 2 respectively;
for example ifO andO′ are structurally equivalent andO is in OWL Lite
(respectively in any of the profiles of OWL 2), thenO′ is also in OWL Lite
(respectively in the same OWL 2 profile asO).

• It takes into account extra-logical components, such as annotations.

• It is an agreed-upon notion, defined after extensive discussions within the
W3C OWL Working Group during the standardisation of OWL 2. Further-
more, it is not exclusive to OWL 2: it can be directly applied to OWL DL,
and a similar notion could be devised for most other ontologylanguages.

• It is supported by mainstream ontology development APIs, such as the
OWL API [22].

The identification of the conflicting parts inO andO′ using the notion of struc-
tural equivalence can be performed by computing theirstructural difference.

Definition 2. The structural difference betweenO1 andO2 is the setΛs of axioms
α ∈ Oi for which there is noβ ∈ Oj s.t.α ∽ β with i, j ∈ {1, 2} andi 6= j.

ContentCVS reuses the functionality available in the OWL API for deciding
structural equivalence and implements a straightforward algorithm for comput-
ing structural differences that follows directly from Definition 2.

11

6. Conflict resolution

Conflict resolution is the process of constructing a reconciled ontology from
two conflicting ontology versions. In a CVS, the conflict resolution functionality
is provided by the CVS client. Our approach is based on the principle that a CVS
client should allow users to resolve conflicts at two different levels:

• Structural, where only the structure of the compared ontology versionsis
taken into account to build the reconciled ontology (see Section 6.1).

• Structural and semantic, where both the structure and the logical conse-
quences of the compared ontology versions as well as of the reconciled
ontology are taken into consideration (see Sections 6.1—6.4).

In the former case, the overhead involved in using a reasonerand examining its
output is avoided; however, the reconciled ontology may contain errors (e.g.,
undesired logical consequences), which would remain undetected.

In the latter case, errors in the reconciliation process canbe detected, with the
assistance of a reasoner, by computing the logical consequences of the reconciled
ontology and comparing them to those of the relevant ontology versions. Errors
in the reconciled ontology could manifest themselves, however, not only as un-
satisfiable concepts or unintended (or missing) subsumptions between atomic
concepts, but also as unintended (or missing) entailments involving complex
concepts. We propose to use the notion ofdeductive differencefor error detection
(see Section 6.2), which ensures that errors associated with complex entailments
are also detected. However, considering complex entailments obviously comes
at a price, both in terms of computational cost and of complication of the GUI.
Thus, a CVS client should allow users to customise the types of relevant entail-
ments for error detection and guide them in the selection process (see Section
6.2). Finally, error repair is a complicated process for which tool support should
be provided, and our approach involves a number of techniques to achieve this
goal (see Sections 6.3 and 6.4).

Our approach is summarised in Table 4. The steps marked with atickmark
(X) are those that require human intervention. We next describein detail each
of the steps in Table 4.

6.1. Selection of axioms using structural difference

Conflict resolution in text files is usually performed by firstidentifying and
displaying the conflicting sections in the two files (e.g., a line, or a paragraph)
and then manually selecting the desired content. Analogously, our proposal for
structural conflict resolution involves computing and displaying the structural

12

Input: OL,OR: ontologies withOL 6∽ OR, conflict = true and structural differenceΛs

Output: OL: ontology; conflict: boolean value;

1: (X) SelectS ⊆ Λs

2: OL
temp := (OL \ Λs) ∪ S

3: (X) if OL
temp is satisfactoryreturn OL := OL

temp, conflict := false

4: (X) Select approximation functiondiff≈

5: Computediff≈(OL
temp,O

L), diff≈(OL
temp,O

R), diff≈(OL,OL
temp) anddiff≈(OR,OL

temp)

6: (X) Selectℑ+ ⊆ diff≈(OL
temp,O

L) ∪ diff≈(OL
temp,O

R)

7: (X) Selectℑ− ⊆ diff≈(OL,OL
temp) ∪ diff≈(OR,OL

temp)

8: Compute minimal plansP for OL
temp givenℑ+, ℑ−, O+ := Λs \ S, andO− := S

9: (X) if no satisfactory plan inP, return OL, conflict := true

10: (X) SelectP = 〈P+,P−〉 ∈ P

11: return OL := (OL
temp ∪ P+) \ P−, conflict := false

Table 4: Conflict Resolution Method.

differenceΛs (i.e., those axioms for which a structurally equivalent axiom does
not occur in both ontologies) and then manually selecting which of these axioms
should be included in a (provisional) versionOL

temp of OL (Step 1). The ontology
OL

temp is obtained from the non-conflicting part ofOL plus the selected axioms
S from the conflicting part (Step 2).

After constructingOL
temp, the user may declare the conflict resolved (Step3),

in which case conflict resolution remains a purely syntacticprocess, as in the
case of text files. Otherwise, ontology developers can use a reasoner to exam-
ine the semantic consequences of their choices and make surethatOL

temp meets
their requirements (typically, includes as much information as possible without
leading to inconsistencies or other undesired entailments).

ContentCVS implements a simple GUI to facilitate the selection of axioms
from the structural difference, which is shown in Figure 4 for our running exam-
ple. The left-hand-side (respectively the right-hand-side) of the figure shows the
axioms inΛs ∩ OL (respectively inΛs ∩ OR).

To facilitate the comparison, axioms are sorted and alignedaccording to
the entities they define. Axioms not aligned with others are shown last in a
distinguished position. The selected axioms are indicatedin the GUI using a
highlighted tickmark (X). Furthermore,ContentCVS provides additional func-
tionality for determining the origin of each axiom in the structural difference.
In particular,ContentCVS, indicates whether an axiom appears in the differ-
ence as a result of an addition or a deletion by comparingOL andOR to the
local ‘backup’ copyOL

bak of the latest local version that was ‘written’ to the
repository. For example, the axiom(Poly JRA ⊑ AbnormalRA) on the left-

13

Figure 4: GUI for Structural Differences inContentCVS

hand-side of Figure 4 was added toOL
bak in the local ontology (indicated by an

icon representing a user with a ‘+’), whereas the axiom(Systemic Disease ⊑
Disease ⊓ ∃affects.WholeBody) was deleted fromOL

bak in the repository (indi-
cated by an icon representing the Globe with a cross ‘×’).

6.2. Deductive differences

In contrast to text files, the selected parts fromOL andOR can interact in
unexpected ways, which may lead to errors that should be repaired. To help users
detect such errors, we propose to compare the entailments that hold inOL

temp with
those that hold inOL andOR by using the notion ofdeductive difference[36].

Definition 3. The deductive differencediff(O,O′) betweenO andO′ expressed
in a DL DL is the set ofDL-axiomsα s.t.O 6|= α andO′ |= α.

Intuitively, this difference is the set ofall (possibly complex) entailments
that hold in one ontology but not in the other. In our running example, for the
selection in Figure 4, there are entailments that(i) hold inOL

temp and not inOL,
such asτ1 := (SystemicJRA ⊑ ∃has Symptom.Fever); (ii) hold inOL

temp but not
in eitherOL or OR, such asσ5 from Table 3;(iii) hold inOL but not inOL

temp,
such asτ2 := (RA ⊓ ∃affects.WholeBody ⊑ JRA); and finally(iv) hold inOR

but not inOL
temp, such asσ2 in Table 3.

Therefore, we argue that the relevant deductive differences betweenOL
temp,

OL andOR capture all potential errors that may have been introduced in the
reconciliation process. However, the notion of deductive difference has several
drawbacks in practice. First, checking whetherdiff(O,O′) = ∅ is undecidable
in expressive DLs, such asSROIQ (OWL 2) andSHOIQ (OWL DL) [36].

14

Second, the number of entailments in the difference can be huge (even infinite),
and so likely to overwhelm users. These practical drawbacksmotivate the need
for approximations— subsets of the deductive difference (see Step 4 in Table 4).

Definition 4. A functiondiff≈(O,O′) is an approximation fordiff(O,O′) if for
each pairO,O′ ofDL-ontologies,diff≈(O,O′) ⊆ diff(O,O′).

A useful approximation should be easy to compute, yet still provide mean-
ingful information to the user. One possibility is to define an approximation by
considering only entailments of a certain form. Our toolContentCVS allows
users to customise approximations by selecting among the following kinds of
entailments, whereA,B are atomic concepts (including⊤, ⊥) andR, S atomic
roles or inverses of atomic roles: (i)A ⊑ B, (ii) A ⊑ ¬B, (iii) A ⊑ ∃R.B, (iv)
A ⊑ ∀R.B, and (v)R ⊑ S. The smallest implemented approximation considers
only axioms of the form (i), which amounts to comparing the classification hier-
archy of both ontologies, while the largest considers all types (i)—(v). Clearly,
the larger the class of entailments presented to the user, the more errors could be
detected. The corresponding differences, however, are harder to compute, harder
to present to the user, and may be harder for the user to understand.

Although these approximations can all be algorithmically computed, only
the entailments of the form (i) and (v) are typically provided by reasoners as
standard outputs of classification. Computing deductive differences based on
entailments (ii)-(iv) is potentially very expensive sinceit may involve performing
a large number of additional entailment tests. To reduce thenumber of tests,
ContentCVS uses the notion of alocality-based module[7, 6]. Locality-based
modules enjoy several useful properties: first, they can be computed efficiently;
second, if an ontologyO entails an axiom of the formA ⊑ C, for A atomic and
C a possibly complex concept, then the locality-based moduleOA for A in O
also entails the axiom. Finally, locality-based modules are typically very small
compared to the size of the original ontology.

To check for entailments of the form (ii)-(iv),ContentCVS first extracts the
locality-based module forA and looks for potential entailments only within the
module. For example, in the case of (iii)ContentCVS would only test entail-
ments where bothR andB are in the vocabulary of the moduleOA, which sig-
nificantly reduces the search space. Furthermore, the actual relevant entailments
can be checked w.r.t. the (small) module, and not with respect to the (potentially
large) original ontology. Our experiments in Section 7 suggest that the use of
locality-based modules makes the computation of approximations to the deduc-
tive difference based on all types (i)-(v) of entailments computationally feasible.

15

6.3. Selection of entailments

While some entailments in the computed differences are intended, others re-
veal errors inOL

temp, as illustrated by the following example.

Example 1. In our example (Table 3), the entailmentJRA ⊑ Juvenile Disease

(σ2) is intended. In contrast,Poly JRA ⊑ ⊥ (σ5) reveals an inconsistency in
OL

temp, and hence an obvious error.

Steps 6 and 7 thus involve selecting entailments that:(i) are intended and
should follow fromOL

temp (written ℑ+ in Table 4), and(ii) are unintended and
should not follow fromOL

temp (writtenℑ−).
The development of techniques to help users understand the relevant deduc-

tive differences and subsequently select the sets of intended and unintended en-
tailments is especially challenging. First, a tool should explain, on the one hand,
why the new entailments that hold inOL

temp do not hold inOL andOR alone
and, on the other hand, why the lost entailments that hold inOL andOR do not
hold inOL

temp. The notion of ajustificationhas proved very useful in ontology
debugging [47, 35]:

Definition 5. Let O |= α. A justification forα in O is an ontologyO′ ⊆ O
satisfying the following properties: (i)O′ |= α, and (ii) there is noO′′ ⊂ O′ s.t.
O′′ |= α. We denote byJust(α,O) the set of all justifications forα in O.

In order to explain an entailment,ContentCVS presents all its justifications.
Computing all justifications is expensive, soContentCVS uses the optimisations
from [33, 54], which have proved effective in practice. In particular, as described
in [54], our algorithm for extracting all the justificationsfor an entailment of the
form A ⊑ C, for A an atomic concept, is based on extracting first the locality-
based module forA in the ontology and then compute the justifications w.r.t. the
module instead of w.r.t. the whole ontology.

Even with explanations provided, the potentially large number of relevant
entailments may overwhelm users. These entailments shouldtherefore be pre-
sented in a way that makes them easier to understand and manage. To this end,
ContentCVS extends known ontology debugging techniques by identifying de-
pendencies between entailments. As an illustration, consider σ2 := (JRA ⊑
Juvenile Disease) from Table 3 andτ4 := (SystemicJRA ⊑ Juvenile Disease)
which hold inOL

temp but not inOL. The entailmentτ4 dependson σ2 since
wheneverσ2 is invalidated by removing axioms fromOL

temp, thenτ4 is also in-
validated. Similarly, the entailmentτ5 := (Oly JRA ⊑ ∃affects.WholeBody)
depends on the entailmentτ6 := (JRA ⊑ ∃affects.WholeBody): adding any set

16

of axioms fromOL orOR that causesτ6 to hold inOL
temp would also causeτ5 to

hold. We formalise these intuitions in our setting as follows:

Definition 6. LetO |= α, β. The axiomβ depends onα w.r.t. O, writtenα⊲β iff
for eachJβ ∈ Just(β,O) there isJα ∈ Just(α,O) such thatJα ⊆ Jβ. We say
thatα is a ⊲-minimum (respectively⊲-maximum) if there is noβ s.t. α depends
onβ (respectivelyβ depends onα).

The relation⊲ is consistent with our intuitions as shown in the following
proposition, which follows directly from Definitions 5 and 6:

Proposition 1. Let O |= α, β, O′ ⊂ O andα ⊲ β. Then: 1)O′ 6|= α implies
O′ 6|= β, and 2)O′ |= β impliesO′ |= α.

Proof. First we prove Condition 1. Letα ⊲ β andO′ 6|= α. SinceO |= α,
for eachJα ∈ Just(α,O) there is an axiomγ ∈ Jα s.t. γ 6∈ O′. Otherwise,
O′ would imply α. Let Jβ ∈ Just(β,O). By definition of⊲, there must be a
Jα ∈ Just(α,O) s.t.Jα ⊆ Jβ. SinceO′ does not include one axiom from each
Jα, then it also does not include one axiom from eachJβ and thereforeO′ 6|= β,
as required. We now prove Condition 2. Letα ⊲ β andO′ |= β. SinceO |= β,
there exists a justificationJβ ∈ Just(β,O) s.t. Jβ ⊆ O′. By definition of⊲
there must exist aJα ∈ Just(α,O) s.t. Jα ⊆ Jβ. ThereforeJα ⊆ O′ and
O′ |= α, as required.

Figure 5(a) shows theContentCVS GUI for selectingℑ−. A similar in-
terface is used to selectℑ+. The left-hand-side of the figure displays the(⊲)-
dependency tree, which can be expanded and contracted in theusual way; on
the right-hand side, the user can select an entailment to remove and show its jus-
tification(s). The justifications for the entailment highlighted in Figure 5(a) are
shown in Figure 5(b). The operation and GUI provided by Prot´egé 4 [24] was ex-
tended in order to indicate which axioms in these justifications were selected in
Step 2 of Table 4 fromOL andOR, marking them with ‘L’ and ‘R’ respectively.
The unmarked axioms occur in both ontologies.

6.4. Plan generation, selection and execution

Changing the set of entailments can only be achieved by modifying the on-
tology itself. In general, there may be zero or more possiblechoices of sets of
axioms to add and/or remove in order to satisfy a given set of requirements. We
call each of these possible choices arepair plan(or plan, for short).

17

(a) Selection of Entailments

(b) JustificationsPoly JRA ⊑ ⊥

Figure 5: GUI for Selection of Entailments inContentCVS

Definition 7. LetO, ℑ+, ℑ−, O+ andO− be finite sets of axioms s.t.O− ⊆ O,
O+ ∩ O = ∅, O |= ℑ−, O ∪ O+ |= ℑ+, andO 6|= α for eachα ∈ ℑ+. A
repair plan forO givenO+, O− ℑ+ andℑ− is a pairP = 〈P+,P−〉 such that
P+ ⊆ O+, P− ⊆ O− and the following conditions hold:

1. (O ∪ P+) \ P− |= α for eachα ∈ ℑ+, and
2. (O ∪ P+) \ P− 6|= β for eachβ ∈ ℑ−.

P is minimal if there is noP1 s.t.P+
1 ⊂ P+ andP−

1 ⊂ P−.

Definition 7 extends the notion of a plan proposed in the ontology repair liter-
ature (e.g., see [34]). In particular, the goal of a plan in [34] is always to remove
a set of axioms so that certain entailments do not hold anymore; hence, a plan
is always guaranteed to exist. In contrast, a plan as in Definition 7 also involves

18

adding axioms so that certain entailments hold; therefore,possibly conflicting
sets of constraints need to be satisfied. Furthermore, existing repair techniques
(e.g. [34]) are restricted to obvious inconsistencies (i.e., unsatisfiable concepts),
whereas our techniques apply to errors caused by arbitrary entailments.

Step 8 from Table 4 involves the computation of all minimal plans (denoted
P). The ontologyO to be ‘repaired’ isOL

temp from Step 3. The intended and
unintended entailments (ℑ+ andℑ−) are those selected in Steps 6 and 7. We
assume that a plan can add any subset of the axioms inΛs, which were not
selected in Step 2 (i.e.,O+ = Λs \ S), and it can remove any subset of the
selected axioms (i.e.,O− = S). Hence, we assume that a plan should not remove
axioms outsideΛs, since they are common to both versions of the ontology.

Example 2. Givenℑ+ = {σ2} andℑ− = {σ5} from Example 1, four minimal
plans can be identified:P1 = 〈{δ1}, {δ3, δ4}〉; P2 = 〈{δ1}, {δ3, γ4}〉; P3 =
〈{δ1}, {γ3, γ4}〉; P4 = 〈{δ1}, {γ3, δ4}〉.

In Step 9 users can select fromP a plan to be applied. If no plan matches their
intentions, the conflict resolution process ends as it started; that is, by returning
the old version ofOL in a conflicting state (Step 9). In contrast, if a planP is
selected, thenP is applied by returning the ontology(OL

temp ∪ P+) \ P− in a
non-conflicting state (Steps 10–11), which is then ready to be committed.

Definition 7 suggests a simple procedure for computing all plans: for each
possibleP+ ⊆ O+ andP− ⊆ O−, use a reasoner to check if〈P+,P−〉 satis-
fies Conditions 1 and 2 from Definition 7.ContentCVS, however, implements
an optimised version of Algorithm 1, which uses inverted indexes, reduces the
number of combinations and avoids potentially expensive entailment checks by
reusing the justifications already computed when obtainingthe dependency re-
lation (⊲) from Definition 6. The correctness of the algorithm is a direct conse-
quence of the following:(i) in order for an entailmentα ∈ ℑ+ to hold after the
execution of a plan〈P+,P−〉, (O ∪ P+) \ P− must contain at least one justi-
fication forα in O ∪ O+ (Lines 6–10);(ii) in order for an entailmentβ ∈ ℑ−

not to hold after the execution of a plan〈P+,P−〉, it is sufficient to show that no
justification forβ in O∪O+ is contained in(O∪P+) \ P− (Lines 11–15). The
set of all minimal plans can be straightforwardly computed once all the plans
have been obtained.

Proposition 2. Algorithm 1 returns all plans for the given input.

Proof. For anyP ∈ P, with P = 〈P+,P−〉, we show thatP is a plan forO
givenO+, O− ℑ+ andℑ−, as per Definition 7. The facts thatP+ ⊆ O+ and

19

Algorithm 1 Computing All Plans Using Justifications
Procedureall Plans(O,O+,O−,ℑ+,ℑ−)
Input: O, O+, O−, ℑ+, ℑ− as in Definition 7,Just(γ,O ∪O+) for eachγ ∈ ℑ+ ∪ ℑ−

Output: P: set of all plans

1: P := ∅
2: for eachP+ ⊆ O+ andeachP− ⊆ O− do
3: validPlan:= true

4: for eachα ∈ ℑ+ do
5: foundJust:= false

6: for eachJα ∈ Just(α,O ∪O+) do
7: if Jα ⊆ (O ∪ P+) \ P− foundJust:= true

8: end for
9: if foundJust =false then validPlan:= false

10: end for
11: for eachβ ∈ ℑ− do
12: for eachJβ ∈ Just(β,O ∪O+) do
13: if Jβ ⊆ (O ∪ P+) \ P− then validPlan:= false

14: end for
15: end for
16: if validPlan =true thenP := P ∪ {〈P+,P−〉}
17: end for
18: return P

P− ⊆ O− are clear from Line 2. For eachα ∈ ℑ+, Line 7 implies that there
is aJα ∈ Just(α,O ∪ O+) s.t.Jα ∈ (O ∪ P+) \ P−, and the definition of
justification immediately implies thatP satisfies Condition 1 from Definition 7.
For eachβ ∈ ℑ−, Lines 14 and 15 imply thatP− removes at least one axiom
from each justification forβ in O ∪ P+; henceP also satisfies Condition 2.

Let us assume that there exists a plan〈P+,P−〉 /∈ P for O givenO+, O−

ℑ+ andℑ−. This means that either there is anα ∈ ℑ+ s.t. no justification forα
in O∪O+ is contained in(O∪P+)\P−, or there is aβ ∈ ℑ− and a justification
Jβ for β in O ∪O+ s.t.Jβ ⊆ (O ∪ P+) \ P−. In the first case, there can be no
justification forα in (O ∪ P+) \ P−, because(O ∪ P+) \ P− ⊆ O ∪ O+, so
(O ∪ P+) \ P− 6|= α, contradicting our assumption that〈P+,P−〉 is a plan. In
the second case,Jβ ∈ (O∪P+) \ P−, which implies(O∪P+) \P− |= β, also
contradicting our assumption.

Figure 6 illustrates theContentCVS GUI for visualising plans. It shows two
of the minimal plans for our running example.ContentCVS provides additional
functionality to help the user select the most suitable minimal plan (see Step 10).
In particular, it identifies the axioms in the structural difference ofOL andOR

that are shared by all minimal plans (axioms marked with a ‘P’in Figure 6), and
20

Figure 6: GUI for Plan Selection inContentCVS

presents the remaining (i.e., non-shared) axioms in a separate frame, allowing
the user to select which ones among them a plan must either addor delete. The
tool then filters the set of minimal plans according to the user’s selections. For
example, if the axiomPoly JRA ⊑ Abnormal JRA in Figure 6 is selected, the
tool would discard any plan that does not involve adding or deleting this axiom.

7. Evaluation

Our evaluation tries to answer the following important questions:

1. Do conflicts of the kind described in Section 3 occur in practice?

2. Are the implemented algorithms computationally feasible in practice?

3. Do our techniques provide useful assistance to ontology engineers?

4. IsContentCVS easy and intuitive to use?

To address the first question we analyse in Section 7.1 a sequence of versions of
a realistic ontology and the respective change logs of each version. To address
the second question, we describe in Section 7.2 a set of synthetic experiments
using the same sequence of versions. Finally, to address thelast two questions,
we have conducted a pilot user study, which we describe in Section 7.3.

21

Change O2 O3 O4 O5 O6 O7 O8 O9 O10

Concepts added 8 3 10 38 24 1 27 11 23
Concepts deleted 2 0 1 1 0 0 1 3 1
Roles added 0 0 3 4 3 0 6 1 0
Roles deleted 0 0 1 0 0 0 0 1 0

Concept axioms added 31 6 18 53 51 5 47 26 52
Concept axioms deleted 8 0 10 9 0 3 5 14 17
Role axioms added 0 0 3 6 6 0 7 2 0
Role axioms deleted 0 0 3 0 0 0 2 0 0

Annotations added 10 5 32 19 30 2 43 26 38
Annotations deleted 2 2 9 2 0 0 2 6 6

Table 5: Summary of change logs.

Excerpt from version O4

α1 Document entity ⊓ Domain entity ⊑ ⊥

α2 Document content spec ⊑ Document entity

α3 Indicant ⊑ Domain entity

α4 Present absent indicant ⊑ Indicant

α5 Section content spec ⊑ Document content spec

α6 ∃includes sub doc.⊤ ⊑ Document content spec

α7 has sub doc ⊑ includes sub doc

Table 6: A relevant fragment of versionO4

7.1. Analysis of real changes

In this section, we study a sequence of10 versions of a medical ontology
developed at the University of Manchester and used in the context of the Clinergy
project.3 The sizes of the different versions vary from 71 concepts, 13roles and
195 axioms in the first version to 207 concepts, 38 roles and 620 axioms in the
last version; all the versions are expressed in the description logic SHIQ(D).
The ontology was developed during a short period of time: from July 21st 2008
until July 28th 2008. On average, the developers generated one or two versions
of the ontology each day. This situation, in which versions are generated very
frequently, is consistent with the scenario described in Section 3.

3http://www.opengalen.org/sources/software.html.

22

Changes over Domain Entities(∆O4)
1

γ1 Bruise to surface structure ⊑ Trauma to surface structure

γ2 Trauma to surface structure ⊑ Present absent indicant

γ3 Trauma to surface structure ⊑ ∀has locus.Surface Anatomical structure

γ4 Surface Anatomical structure ⊑ Anatomic structure

γ5 Anatomic structure ⊑ Domain entity

Changes over Document Entities(∆O4)
2

δ1 Bruise to surface structure ⊑ Section content spec

δ2 Surface trauma subsection spec ⊑ Section content spec

δ3 Bruise to surface structure ⊑ ∃has sub doc.First heart sound clin holder

δ4 Bruise to surface structure ⊑ ∃has sub doc.Second heart sound clin holder

δ5 Bruise to surface structure ⊑ ∃has sub doc.Heart murmur clin holder

Table 7: Excerpt of changes(∆O4)
1 and(∆O4)

2 performed over versionO4

Table 5 summarises the content of the change logs of each version4. For ex-
ample, the second column represents the changes performed from versionO1

to versionO2. The table clearly shows how the ontology grows as it is being
developed: most of the changes involve addition of entities, axioms and annota-
tions. Most of the added axioms are concept axioms (mostly inclusions, equiv-
alence and disjointness axioms), which is a typical situation when modelling
using OWL. Interestingly, there are also a significant number of deletions, which
reflects the fact that ontology developers are revising their modelling choices and
fixing errors. Extra-logical changes such as modifications in the annotations are
also fairly common, which suggests that they should be takeninto account when
identifying potential conflicts.

In order to verify that conflicts of the kind described in Section 3 are likely
to occur in practice, we have also performed a detailed analysis of the change
logs. Our findings suggest that changes leading to an error, such as the unsat-
isfiability of a concept, may involve the simultaneous modification of different
aspects of the domain. For example, consider the evolution from versionO4

to versionO5 and the two groups of changes(∆O4)
1 and(∆O4)

2 indicated in
Table 7, which together with the fragment ofO4 from Table 6 lead to the un-

4A document with an overview of the changes can be downloaded from:http://krono.
act.uji.es/people/Ernesto/contentcvs/synthetic-study

23

satisfiability of the conceptBruise to surface structure. The changes in(∆O4)
1

describe the conceptBruise to surface structure as an anatomical structure (and
hence as a ‘domain entity’), whereas the changes in(∆O4)

2 describe it as a doc-
ument concept (and hence as a ‘document entity’); and conceptsDomain entity

andDocument entity are disjoint according toO4 (see axiomα1 from Table 6).
Thus, under the assumption that changes in(∆O4)

1 and(∆O4)
2 have been

performed concurrently by different ontology engineers, the presence of incom-
patible changes leads precisely to the issues pointed out inSection 3. This as-
sumption is reasonable, as different aspects of the domain are likely to be devel-
oped by different experts.

7.2. Performance evaluation

In our experiments we have simulated the evolution of an ontology by using
the sequence of versions from Section 7.1. The experiments were performed on
a laptop computer with a 1.82 GHz processor and 3Gb of RAM. Theaverage
classification time of an ontology in the sequence is approximately one second
when using the Pellet reasoner [50].

For each pairOi,Oi+1, i ∈ {1, . . . , 9} of consecutive versions, and both
the smallest and largest approximations of the deductive difference implemented
in ContentCVS, we have performed the experiment in Table 8. The Roman
numbers in Table 8 refer to measurements that are stored during the experiment
and presented in Table 9. These experiments follow our approach for conflict
resolution in Table 4, with the assumption that versionOi is the local ontology,
versionOi+1 is the ontology in the repository, and the steps in Table 4 requiring
manual intervention are performed randomly.

Table 9 summarises our results.5 Most of the values in the table are either
average or maximum values for the 200 iterations in the loop from Table 8. Av-
erage values are indicated with the tag ‘avg’ in the header, and maximum values
with the tag ‘max’. Several conclusions can be drawn from these experiments.

First, from a computational point of view, the main bottleneck is the compu-
tation of all the justifications for the entailments of interest. Once the justifica-
tions have been computed, the time needed for computing the plans is relatively
low. In Table 9, we can see that the average time needed per justification can
reach5.9 seconds (seeV, O4&O5); if 300 justifications have to be computed in
total, then the total time may reach 30 minutes. Hence, it is important to inves-

5http://krono.act.uji.es/people/Ernesto/contentcvs/
synthetic-study

24

Input: O,O′: ontologies; approximation functiondiff≈

ComputeΛs and store its size (I) and computation time (II)
repeat

Randomly selectS ⊆ Λs, and computeOaux := O ∪ S
Computediff≈(Oaux,O) ∪ diff≈(Oaux,O

′) and store its size (III)
Computediff≈(O,Oaux) and store its size (IV)
Get all justifications for entailments indiff≈; store avg. time per justification (V)
Compute⊲, and store the number of⊲-minimums (VI)
Randomly selectℑ− from minimums of⊲ andℑ+ from maximums of⊲
ComputeP (min. plans); store number of plans(VII) and extraction time(VIII)

until 200 iterations have been performed

Table 8: Synthetic Experiments

Smallestdiff≈ approximation Largestdiff≈ approximation
I II III IV V VI VII VIII III IV V VI VII VIII

O & O′ avg avg avg avg avg/max avg avg avg avg avg avg/max avg

O1&O2 50 0.03 15 6 0.1 15 1 / 1 1.5 111 17 2.0 33 495 / 5508 10.3
O3&O4 82 0.02 13 4 0.26 13 3 / 18 1.7 128 90 0.9 30 46 / 896 3.6
O4&O5 93 0.02 31 14 0.1 29 3 / 32 1.2 267 48 5.9 49 2.7 / 6 30
O7&O8 110 0.03 19 15 0.02 18 1 / 4 0.07 216 78 1.2 47 488 / 3888 4
O8&O9 79 0.02 15 6 0.06 14 1 / 2 0.3 251 14 3.7 46 101 / 720 21.5
O9&O10 117 0.01 24 8 1.5 24 7 / 50 15.6 208 154 5.3 31 35 / 225 22.7

Table 9: Summary of Results. Roman numbers refer to Table 8. Time given in seconds

tigate optimisation techniques for computing all justifications; first steps in this
direction have been taken in [54, 25, 23].

Second, the amount of information presented to the user largely depends on
the selected approximation for the deductive difference (see Section 6.2). In the
case of the smallest approximation, the average number of axioms in the relevant
differences (seeIII and IV) is in the range4–31, and the average number of
minimal plans (seeVII) is in the range1–50. In contrast, in the case of the
largest approximation, these average numbers are in the ranges14–267, and6–
5508 respectively. The amount of information the user would needto consider
is thus much larger. Table 9 also shows that the use of the dependency relation
⊲ can lead to a significant reduction in the amount of information that is initially
presented to the user (VI). Note that for the largest approximation the number of
minimums for⊲ is comparable to the size of the relevant deductive differences
for the smallest approximation.

Overall, we believe that this experiment demonstrates thatthe algorithms

25

implemented inContentCVS exhibit reasonable performance, and that our ap-
proach is computationally feasible. The use of larger approximations of deduc-
tive difference may, however, require improved techniquesfor computing justi-
fications. The use of larger approximations may also risk overwhelming the user
with information, although presentation techniques such as the dependency one
implemented inContentCVS can help to ameliorate this problem.

7.3. User study

We have conducted a pilot user study to evaluate the usability of the GUI
implemented inContentCVS, as well as to provide empirical evidence of the
adequacy of our approach in practice. The details of the conducted study, in-
cluding the questionnaire and the test ontologies, are available online.6

7.3.1. Design of the study
The user study consists of three main parts, each of which involves the com-

pletion of a number of tasks, as we describe next.

Part 1: Local evolution of an ontology
The first part simulates a conventional ontology repair scenario where a (sin-

gle) developer performs a number of changes to his/her ontologyO0 and, as a
result, creates a new versionO1 of the ontology in which errors may have been
introduced. The main goal is to evaluate the repair techniques implemented in
ContentCVS, in particular the identification of errors using deductivediffer-
ences and error repair via the generation and selection of suitable plans.

The test ontology used in this part of the study describes thedomain of aca-
demic publications and bibliographic references, which the participants in the
study are expected to be relatively familiar with. The changes to the original
versionO0 involve the definition of three new concepts and the deletionof a
property domain restriction. Users were first asked to use a reasoner to classify
O1, examine the resulting entailments and try to understand the given justifica-
tions. Next, users were asked to identify and repair two kinds of errors, namely
the occurrence of unintended entailments inO1 that did not occur inO0, and the
lost of intended entailments that held inO0, but not inO1. Finally, users were
asked to repeat this process by taking into account not only simple subsumptions,
but also entailments of the formA ⊑ ¬B, A ⊑ ∃R.B andA ⊑ ∀R.B.

Part 2: Reconciliation of two independently-developed ontology versions

6http://krono.act.uji.es/people/Ernesto/contentcvs/user-study

26

This part of the study simulates the scenario where a (single) developer work-
ing with a local copyOL of an ontology performs a CVS-update and needs to
reconcile the local versionOL with the versionOR in the repository. The main
goal is twofold; first, to evaluate the functionality inContentCVS for directly
comparing ontology versions, both from a syntactic and froma semantic point
of view; second, to evaluate the means provided byContentCVS for building
an error-free reconciled version ready to be committed to the CVS repository.

Users were asked to reconcile two versions of an ontology describing types
of Juvenile Ideopathic Arthritis. To this end, they first examined the structural
difference between both versions and selected the axioms tobe included in a
temporary versionOL

temp of the reconciled ontology. Next, users classifiedOL
temp

and identified errors in the form of missing intended entailments or new unin-
tended ones. As in Part 1, users were then asked to repeat thislatter step by
considering additional types of entailments and to use the proposed dependency
relation between entailments to group them. Finally users were asked to repair
the identified errors by selecting a suitable plan. Note thatthe test ontology ver-
sions used in this part of the study closely reproduces our running example, and
the tasks involved follow the steps in Table 4 from Section 6.

Part 3: Concurrent development of an ontology
The final part of the study simulates the scenario where a number of users are

developing an ontology concurrently usingContentCVS. As in Part 1, we used
the familiar domain of publications and bibliographic references.

Each test involved three or four participants in the study. To produce a con-
trolled experiment, each participant was asked to extend aninitial version of
the ontology by performing a number of changes specified a-priori. The first
participant was in charge of performing changes concerningdifferent types of
academic staff members; the second one made changes concerning events such
as conferences; the third one made changes concerning academic organisations;
finally, the fourth one was asked to describe different kindsof resources and
publications. Each participant was asked to perform a CVS-commit either upon
completion of all the changes, or when explicitly indicatedin their task sheets.
In order to provide a more realistic environment, the exact point in time in which
users attempt to commit their changes was not a-priori fixed.If the commit
failed, the participant was asked to perform an update and reconcile the changes
using theirContentCVS client. Once the participants had agreed upon a rec-
onciled version of the ontology, they were asked to discuss it among themselves
and with the coordinator of the study.

27

7.3.2. Results and discussion
In total, eight people participated in Parts 1 and 2 of the study. In the case

of Part 3, we conducted three tests each of which involved either three or four
participants. The participants of the study are academic researchers, most of
them working in fields other than the Semantic Web. For example, some of the
participants work in a bio-genomics group, others in a robotics and cognitive
sciences group, and so on. Most users evaluated their experience in knowledge
representation as ‘intermediate’, in first order logic as either ‘intermediate’ or
‘low’ and in description logics and OWL also as either ‘intermediate’ or ‘low’.
All participants except for one had tried Protégé before and half of them had
used a reasoner before when developing an ontology. However, none of the
participants was familiar with justification-based explanations. The results can
be summarised as follows:

• Part 1: Most users were able to understand the justifications provided by
Protégé, although most of them found it ‘hard’ or ‘very hard’ to resolve
potential errors manually. All the participants could identify both new
unintended entailments and lost intended entailments whenusing Con-
tentCVS and described the functionality provided by our tool for identi-
fying these entailments as either ‘good’ or ‘very good’. Most participants
were satisfied with the smallest approximation of the deductive difference
implemented inContentCVS, and complained about excessive amounts
of displayed information when using the largest implemented approxima-
tion instead. None of them considered thatContentCVS should aim at
implementing richer approximations. Concerning the generation of plans,
most users declared this functionality as either ‘useful’ or ‘very useful’ and
found the capabilities ofContentCVS to recommend plans also useful.

• Part 2: Most users considered either ‘useful’ or ‘very useful’ thecom-
putation of structural differences between ontology versions. However,
many users found it difficult to detect potential errors simply by examin-
ing the structural difference. As in Part 1, users liked the functionality in
ContentCVS for detecting potential errors using approximations of the
deductive difference. Interestingly, by using the largestapproximation im-
plemented inContentCVS, users were able to detect errors other than
unsatisfiable concepts and atomic subsumptions, which theyfound useful.
All users considered that the use of a large approximation leads to an ex-
cessive amount of displayed information; however, all of them also found
the presentation technique based on the dependency relation (⊲) very use-
ful in alleviating this problem, but complained about the response time.

28

Finally, most users were either ‘very satisfied’ or ‘satisfied’ with the rec-
onciled ontology obtained after the execution of the selected repair plan.

• Part 3: Most participants had used a CVS system before for managingtext
files and described the CVS functionality implemented inContentCVS as
either ‘very useful’ or ‘useful’. Many participants emphasised the impor-
tance of some previous training for taking full advantage ofthe CVS func-
tionality in ContentCVS. As in parts 1 and 2, the use of a combination of
structural and deductive differences for detecting errorsplus the computa-
tion of plans for repairing them was evaluated very positively. Concerning
the ontology finally obtained, the participants were able toobtain an error-
free ontology and were satisfied with the result. Only in one case the final
discussion revealed an error in the final ontology; however the participants
acknowledged that this error was not due to a deficiency of thetool.

Finally, all users evaluated the tool very positively. Mostof them evaluated
the GUI as ‘good’ and the ontology development workflow implemented in the
tool as either ‘very good’ or ‘good’. Therefore, we considerthe feedback very
positive in general. The main points of criticism were the following:

• Excessive amounts of information displayed when using ‘large’ approxi-
mations of the deductive difference. Even if the identification of dependen-
cies between entailments helped in alleviating this problem, we consider it
important to investigate new ways of organising a potentially overwhelm-
ing number of entailments.

• Slow response of the tool when computing all justifications of certain en-
tailments and/or computing large approximations of the deductive differ-
ence. For large-scale ontology development, the further optimisation of
our algorithms will be necessary. To this end, we consider especially
promising the use ofincremental reasoningtechniques (see for example
first results in [5]), which aim at avoiding unnecessary re-computations
after performing a (small) number of changes to the ontology.

Addressing these deficiencies will be part of our future work.

8. Related work

In recent years, there have been several proposals for improving the support
for collaboration in ontology engineering tools.

Collaborative Protégé [17, 14, 57] allows developers to hold discussions,
chat, and annotate changes. Ontology versions are comparedusing the Prompt-
Diff algorithm [15, 16], which creates a ‘structural diff’ between them using a

29

number of heuristics. Changes can be annotated as instancesof an ontology [14].
Collaborative Protégé has been tested in different scenarios obtaining good re-
sults [48]; however users still asked for more sophisticated communication tech-
niques, as well as for a mechanism to prevent undesired logical consequences.

The authors of [44] have proposed a framework to manage and propagate
changes in collaborative workflows in which OWL 2 changes areformalised
using an ontology [43]. The authors of [46] have presented anontology change
management system in which the change history is stored on a server and the
system can identify differences in the change sets from different clients.

DOGMA-MESS [12, 11] is a methodology with tool support for community-
grounded ontology engineering. The methodology emphasises the importance
of developing common conceptual models, especially when the process of col-
laborative ontology engineering crosses the boundaries ofa single organisation.
Ontology developers extend a consensual upper ontology following some prede-
fined restrictions of the extension of upper knowledge (reuse policies [10]). If
a reuse policy is violated a conflict arises. [31] and [27] present similar frame-
works where reuse policies are based on the locality property of ontologies [7].

Several methodologies and tools focus on the definition of formal or semi-
formal argumentation models to achieve a consensus over changes. For exam-
ple, HCOME [38] and DILIGENT [56, 55, 51] are methodologies which follow
a formal argumentation model. DILIGENT exploits an argumentation ontology
to describe and store (as instances) the different discussion threads. Thus, the
revision of past decisions and conclusions can be easily retrieved and reviewed,
unlike traditional communications means like e-mail or chat. Cicero [13] imple-
ments and argumentation model based on the DILIGENT methodology, whereas
[37] presents a system based on HCOME.

We believe that the functionality and guidelines describedin [17, 14, 46, 11,
51, 37] and our techniques naturally complement each other.For example, dis-
cussion threads and annotations as well as formal argumentation models could
be used inContentCVS to assist users in selecting intended and unintended con-
sequences (i.e. in Steps 9 and 10 of Table 4), and for recording the rationale be-
hind their selections. Similarly, the guidelines providedby the DOGMA-MESS
methodology could be integrated in our framework to help developers from dif-
ferent organisations to reach consensus.

The authors of [49] propose a ‘locking’ mechanism that allows a user, for
example, to establish a lock over a concept, meaning that other users are not al-
lowed to make changes that ‘affect’ that concept until the lock has been released.
Although errors can still occur, the idea is that these lockswould mitigate them.

30

The precise guarantees provided by these locks are, however, not clear. Conflicts
are still likely to arise, and the approach in [49] does not provide any means for
detecting and resolving them if they do.

The OWLDiff tool 7 provides a GUI for computing the deductive differences
between pairs of OWL 2 EL ontologies. These differences are shown as a set
of highlighted concepts, which are the ones whose meaning differs between the
two ontologies. However, the tool does not provide means forexplaining these
differences to the user, for defining approximations, for building a reconciled
ontology or for resolving conflicts.

Finally, the techniques we propose for conflict resolution extend those used
for debugging and repairing inconsistencies based on justifications (e.g., [34, 47,
35, 33, 25, 23]). In Section 6 we have already pointed out the specific improve-
ments w.r.t. existing techniques implemented inContentCVS.

9. Conclusion

We have proposed a novel approach for facilitating concurrent ontology de-
velopment, described a tool that implements it and presented a preliminary eval-
uation of the tool. The main contributions of our research can be summarised as
follows:

• We have adapted the Concurrent Versioning paradigm to ontology engi-
neering, which allows developers to make changes concurrently and re-
motely to the same ontology, track changes, and manage versions.

• We have proposed notions of equivalence and difference between ontology
versions.

• We have proposed a collection of techniques for resolving conflicts be-
tween ontology versions both at the structural and at the semantic level.

• We have adapted state-of-the art ontology debugging and repair techniques
to our setting and proposed several improvements.

• We have developed and evaluated a prototypical tool and obtained promis-
ing preliminary results as well as encouraging feedback from users.

In future work, we plan to improve our tool in a number of ways.First, we
are working on improving the system’s performance and in particular the com-
putation of justifications. As pointed out in Section 7, the use of incremental
reasoning techniques is particularly interesting in this regard. Second, we are

7OWLDiff: http://sourceforge.net/projects/owldiff
31

enhancing the tool with new features. In particular, we planto support richer
approximations and the use ofunit tests—files containing a set of unintended
entailments that can be used to detect modelling errors. Furthermore, we aim to
integrate in our tool some of the functionality provided by state-of-the-art frame-
works, such as Collaborative Protégé, for holding discussions and annotating
changes. Another interesting direction for future research would be to provide
means for assigning responsibilities and duties to different ontology developers
and support for automatically checking whether changes made by developers are
consistent with their duties. Finally, the integration of areference thesaurus [32]
within the proposed framework might help reducing the lexical conflicts caused
by the use of different labels to refer to the same entity.

Acknowledgments

This research has been partially funded by the Spanish National Research
Program (TIN2008-01825/TIN). Ernesto Jimenez-Ruiz was supported by the
PhD Fellowship Program of theGeneralitat Valenciana(BFPI06/372). Bernardo
Cuenca Grau is supported by a Royal Society University Research Fellowship.
The authors also wish to acknowledge Alan Rector (Information Management
Group, University of Manchester) for providing us with a valuable ontology test
sequence. Finally, we are also very grateful to the researchers from the Univer-
sity Jaume I of Castellón who participated in our user study.

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, G. Sherlock, Gene
Ontology: tool for the unification of biology, Nature Genetics 25 (1) (2000) 25–29.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.Patel-Schneider (eds.), The
Description Logic Handbook: Theory, Implementation, and Applications, Cambridge Uni-
versity Press, 2003.

[3] N. Choi, I.-Y. Song, H. Han, A survey on ontology mapping,SIGMOD Rec. 35 (3) (2006)
34–41.

[4] Ó. Corcho, M. Fernández-López, A. Gómez-Pérez, Methodologies, tools and languages for
building ontologies: Where is their meeting point?, Data Knowl. Eng. 46 (1) (2003) 41–64.

[5] B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, History matters: Incremental ontol-
ogy reasoning using modules, in: Proc. of the 6th International Semantic Web Conference
(ISWC), vol. 4825 of LNCS, Springer, 2007, pp. 183–196.

[6] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Justthe right amount: extracting
modules from ontologies, in: Proc. of the 16th International Conference on World Wide
Web (WWW), 2007, pp. 717–726.

32

[7] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: Theory
and practice, Journal of Artificial Intelligence Research (JAIR) 31 (2008) 273–318.

[8] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2:
The next step for OWL, Journal of Web Semantics 6 (4) (2008) 309–322.

[9] S. de Coronado, L. W. Wright, G. Fragoso, M. W. Haber, E. A.Hahn-Dantona, F. W. Hartel,
S. L. Quan, T. Safran, N. Thomas, L. Whiteman, The NCI Thesaurus quality assurance life
cycle, Journal of Biomedical Informatics 42 (3) (2009) 530 –539.

[10] P. De Leenheer, A. de Moor, R. Meersman, Context dependency management in ontology
engineering: A formal approach, J. Data Semantics 8 (2007) 26–56.

[11] P. De Leenheer, C. Debruyne, DOGMA-MESS: A tool for fact-oriented collaborative on-
tology evolution, in: On the Move to Meaningful Internet Systems: OTM 2008 Workshops,
vol. 5333 of LNCS, Springer, 2008, pp. 797–806.

[12] A. de Moor, P. De Leenheer, R. Meersman, DOGMA-MESS: A meaning evolution support
system for interorganizational ontology engineering, in:14th International Conference on
Conceptual Structures, ICCS, vol. 4068 of Lecture Notes in Computer Science, Springer,
2006, pp. 189–202.

[13] K. Dellschaft, H. Engelbrecht, J. M. Barreto, S. Rutenbeck, S. Staab, Cicero: Tracking de-
sign rationale in collaborative ontology engineering, in:The Semantic Web: Research and
Applications, 5th European Semantic Web Conference (ESWC), LNCS, Springer, 2008,
pp. 782–786.

[14] N. Fridman Noy, A. Chugh, W. Liu, M. A. Musen, A frameworkfor ontology evolution
in collaborative environments, in: Proc. of the 5th International Semantic Web Conference
(ISWC), vol. 4273 of LNCS, Springer, 2006, pp. 544–558.

[15] N. Fridman Noy, S. Kunnatur, M. Klein, M. Musen, Tracking changes during ontology
evolution, in: Proc. of the Third International Semantic Web Conference (ISWC), vol.
3298 of LNCS, Springer, 2004, pp. 259–273.

[16] N. Fridman Noy, M. A. Musen, Ontology versioning in an ontology management frame-
work, IEEE Intelligent Systems 19 (4) (2004) 6–13.

[17] N. Fridman Noy, T. Tudorache, S. de Coronado, M. A. Musen, Developing biomedical
ontologies collaboratively, in: Proc. of AMIA Symposium, 2008.

[18] A. Gómez-Pérez, M. C. Suárez-Figueroa, Scenarios for building ontology networks within
the NeOn methodology, in: Proc. of the fifth international conference on Knowledge cap-
ture (K-CAP), ACM, New York, NY, USA, 2009, pp. 183–184.

[19] F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, J. Golbeck, Modeling a description
logic vocabulary for cancer research, Journal of Biomedical Informatics 38 (2).

[20] M. Hartung, T. Kirsten, E. Rahm, Analyzing the evolution of life science ontologies and
mappings., in: Proc. of the 5th international workshop on Data Integration in the Life
Sciences (DILS), vol. 5109 of LNCS, Springer, 2008, pp. 11–27.

[21] M. Hepp, P. De Leenheer, A. de Moor, Y. Sure (eds.), Ontology Management, Semantic
Web, Semantic Web Services, and Business Applications, vol. 7 of Semantic Web And
Beyond Computing for Human Experience, Springer, 2008.

[22] M. Horridge, S. Bechhofer, The OWL API: A Java API for working with OWL 2 ontolo-
gies, in: OWLED, vol. 529 of CEUR Workshop Proceedings, CEUR-WS.org, 2009.

[23] M. Horridge, B. Parsia, From justifications towards proofs for ontology engineering, in:
Proceedings of the Twelfth International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR, AAAI Press, 2010.

33

[24] M. Horridge, B. Parsia, U. Sattler, Explanation of OWL entailments in Protege 4, in: In-
ternational Semantic Web Conference (Posters & Demos), vol. 401 of CEUR Workshop
Proceedings, CEUR-WS.org, 2008.

[25] M. Horridge, B. Parsia, U. Sattler, Laconic and precisejustifications in OWL, in: The
Semantic Web - ISWC 2008, 7th International Semantic Web Conference, ISWC, vol. 5318
of Lecture Notes in Computer Science, Springer, 2008, pp. 323–338.

[26] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to OWL: the
making of a web ontology language, Journal of Web Semantics 1(1) (2003) 7–26.

[27] L. Iannone, I. Palmisano, A. L. Rector, R. Stevens, Assessing the safety of knowledge
patterns in owl ontologies, in: The Semantic Web: Research and Applications, 7th Ex-
tended Semantic Web Conference, ESWC, vol. 6088 of Lecture Notes in Computer Sci-
ence, Springer, 2010, pp. 137–151.

[28] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga, Building ontologies collabo-
ratively using ContentCVS, in: Proc. of the International Workshop on Description Logics
(DL), vol. 477 of CEUR Workshop Proceedings, 2009.

[29] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga, ContentCVS: A CVS-based
Collaborative ONTology ENgineering Tool (demo), in: Proceedings of the 2nd Interna-
tional Workshop on Semantic Web Applications and Tools for Life Sciences (SWAT4LS
2009), Amsterdam, The Netherlands, vol. 559 of CEUR Workshop Proceedings, 2009.

[30] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga, Ontology integration using
mappings: Towards getting the right logical consequences,in: Proc. of the European Se-
mantic Web Conference (ESWC), Springer LNCS, 2009, pp. 173–187.

[31] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider, R. Berlanga, Safe and economic
re-use of ontologies: A logic-based methodology and tool support, in: The Semantic Web:
Research and Applications, 5th European Semantic Web Conference, ESWC, vol. 5021 of
Lecture Notes in Computer Science, Springer, 2008, pp. 185–199.

[32] A. Jimeno-Yepes, E. Jiménez-Ruiz, R. Berlanga, D. Rebholz-Schuhmann, Reuse of termi-
nological resources for efficient ontological engineeringin life sciences, BMC Bioinfor-
matics 10 (Suppl 10).

[33] A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Findingall justifications of OWL DL en-
tailments, in: Proc. of the 6th International Semantic Web Conference (ISWC), vol. 4825
of LNCS, Springer, 2007, pp. 267–280.

[34] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, Repairing unsatisfiable concepts in
OWL ontologies, in: Proc. of the 2nd European Semantic Web Conference (ESWC), vol.
4011 of LNCS, Springer, 2006, pp. 170–184.

[35] A. Kalyanpur, B. Parsia, E. Sirin, J. A. Hendler, Debugging unsatisfiable classes in OWL
ontologies, Journal of Web Semantics 3 (4) (2005) 268–293.

[36] B. Konev, D. Walther, F. Wolter, The logical differenceproblem for description logic ter-
minologies, in: Proc. of the 4th International Joint Conference on Automated Reasoning
(IJCAR), vol. 5195 of LNCS, Springer, 2008, pp. 259–274.

[37] K. Kotis, On supporting HCOME-3O ontology argumentation using semantic wiki tech-
nology, in: On the Move to Meaningful Internet Systems: OTM 2008 Workshops, 2008,
pp. 193–199.

[38] K. Kotis, G. A. Vouros, Human-centered ontology engineering: The HCOME methodol-
ogy, Knowl. Inf. Syst. 10 (1) (2006) 109–131.

[39] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz,An infrastructure for searching,

34

reusing and evolving distributed ontologies, in: Proc. of the International World Wide Web
Conference (WWW), 2003, pp. 439–448.

[40] J. L. V. Mejino Jr., C. Rosse, Symbolic modeling of structural relationships in the Founda-
tional Model of Anatomy, in: Proc. of First International Workshop on Formal Biomedical
Knowledge Representation (KR-MED), 2004, pp. 48–62.

[41] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 Web Ontology
Language: Profiles, W3C Recommendation (2009).

[42] B. Motik, P. Patel-Schneider, B. Parsia, OWL 2 web ontology language structural specifi-
cation and functional-style syntax, W3C Recommendation (2009).

[43] R. Palma, P. Haase, O. Corcho, A. Gómez-Pérez, Changerepresentation for OWL 2 on-
tologies, in: The Sixth OWLED Workshop on OWL: Experiences and Directions, 2009.

[44] R. Palma, P. Haase, Q. Ji, D1.3.2. Change management to support collaborative workflows,
NeOn Deliverable available at: http://www.neon-project.org/ (December, 2008).

[45] A. L. Rector, J. Rogers, Ontological and practical issues in using a description logic to
represent medical concept systems: Experience from GALEN,in: Proc. of Reasoning Web,
2006, pp. 197–231.

[46] T. Redmond, M. Smith, N. Drummond, T. Tudorache., Managing change: An ontology
version control system, in: Proc. of OWL: Experiences and Directions, OWLED, 2008.

[47] S. Schlobach, Z. Huang, R. Cornet, F. van Harmelen, Debugging incoherent terminologies,
Journal of Automated Reasoning 39 (3) (2007) 317–349.

[48] D. Schober, J. Malone, R. Stevens, Observations in collaborative ontology editing using
Collaborative Protégé, in: Proceedings of the Workshop on Collaborative Construction,
Management and Linking of Structured Knowledge (CK2009), 2009.

[49] J. Seidenberg, A. L. Rector, A methodology for asynchronous multi-user editing of seman-
tic web ontologies, in: Proc. of the 4th International Conference on Knowledge Capture
(K-CAP), ACM, 2007, pp. 127–134.

[50] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL
reasoner, J. Web Sem. 5 (2) (2007) 51–53.

[51] H. Sofia Pinto, C. Tempich, S. Staab, Ontology engineering and evolution in a distributed
world using DILIGENT, in: Handbook on Ontologies, Springer, 2009, pp. 153–176.

[52] K. Spackman, SNOMED RT and SNOMED CT. Promise of an international clinical on-
tology, M.D. Computing 17.

[53] H. Stuckenschmidt, M. Klein, Reasoning and change management in modular ontologies,
Data Knowl. Eng. 63 (2) (2007) 200–223.

[54] B. Suntisrivaraporn, G. Qi, Q. Ji, P. Haase, A modularization-based approach to finding all
justifications for OWL DL entailments, in: Proc. of the 3rd Asian Semantic Web Confer-
ence (ASWC), vol. 5367 of LNCS, Springer, 2008, pp. 1–15.

[55] C. Tempich, E. Simperl, M. Luczak, R. Studer, H. S. Pinto, Argumentation-based ontology
engineering, IEEE Intelligent Systems 22 (6) (2007) 52–59.

[56] C. Tempich, H. Sofia Pinto, Y. Sure, S. Staab, An Argumentation Ontology for DIstributed,
Loosely-controlled and evolvInG Engineering processes ofoNTologies (DILIGENT), in:
The Semantic Web: Research and Applications, Second European Semantic Web Confer-
ence (ESWC), 2005, pp. 241–256.

[57] T. Tudorache, N. Fridman Noy, S. W. Tu, M. A. Musen, Supporting collaborative ontol-
ogy development in Protégé, in: International Semantic Web Conference (ISWC), LNCS,
Springer, 2008, pp. 17–32.

35

