Supporting Concurrent Ontology Development:
Framework, Algorithms and Tool

E. Jiménez Ruiz B. Cuenca Gray |. Horrock®, R. Berlanga

aLlenguatges i Sistemes Informatics, Universitat Jaum&0,/1, Castebn, Spain.
Phone: 0034 964 728367
bComputing Laboratory, University of Oxford, Wolfson Birilg, OX13QD, Oxford UK.
Phone: 0044 1865 283529

Abstract

We propose a novel approach to facilitate the concurren¢ldpment of on-
tologies by different groups of experts. Our approach al@uincurrent Ver-
sioning, a successful paradigm in software developmend)ltov several de-
velopers to make changes concurrently to an ontology. @bmfétection and
resolution are based on novel techniques that take intaiattbe structure and
semantics of the ontology versions to be reconciled by ugmegisely-defined
notions of structural and semantic differences betweeologies and by extend-
ing state-of-the-art ontology debugging and repair teghes. We also present
ContentCVS, a system that implements our approach, and a preliminapyrem
ical evaluation which suggests that our approach is bottpcoationally feasible
and useful in practice.

Key words: Ontologies, Knowledge Representation, Knowledge Engingge
OWL, Semantic Web

1. Introduction

The Web Ontology Language (OWL), and its revision OWL 2, asdlw
known languages for ontology modeling in the Semantic WeR 3.

OWL ontologies are already being used in domains as diversmamedicine,
geology, agriculture, and defence. In particular, OWL iteasively used in the

Email addressesej i nenez@j i . es (E. Jiménez Ruizher g@omnl ab. ox. ac. uk
(B. Cuenca Grau),an. horr ocks@oni ab. ox. ac. uk (I. Horrocks),
ber| anga@j i . es (R. Berlanga)

Preprint submitted to Elsevier October 8, 2010

clinical sciences; prominent examples of OWL ontologiesthe National Can-
cer Institute (NCI) Thesaurus [19], the Systematised Nartagare of Medicine
and Clinical Terms (SNOMED CT) [52], the Gene Ontology (GO) {he Foun-
dational Model of Anatomy (FMA) [40], and GALEN [45].

These ontologies are large and complex; for example, SNONHEDCur-
rently describes more than 300,000 concepts whereas NCFi#ddescribe
around 70,000 concepts. Furthermore, these ontologieis @atinuous evo-
lution [20]. For example, the developers of NCI perform apgmately 900
changes to the ontology each month.

Most realistic ontologies, including the ones just mergidrare being devel-
oped by several groups, which can be geographically diggtband may con-
tribute in different ways and to different extents. For exéanthe NCI ontology
is being developed by 20 full time editors and one curatorchEeditor works
on a separate copy of the ontology and, at the end of a two waigkgcycle,
the curator uses a workflow management tool to review ancbapphe changes
made by each editor [9]. Similarly, the SNOMED CT developtteam consists
of a main team and four geographically distributed groups &ne in charge of
the development of different parts of the ontology; everg tmeeks, the parts
developed by the different groups are integrated and thsilplesconflicts are
reconciled by the main team.

Therefore, designing and maintaining such large ontokigia highly com-
plex process, which involves many complicated tasks:

1. to agree on a unified conceptual design and common modglidglines;
2. to assign different responsibilities and tasks to eaohgof developers;

3. totrack and manage the frequent changes to the ontolodg yedifferent
developers from distributed locations;

4. to compare different versions of the ontology lexica#yg(, names of the
introduced ontology entities), structurally (e.g., shapthe axioms), and
semantically (e.g., logical consequences);

5. to detect and reconcile conflicting views of the domain leygmg differ-
ent ontology versions; and

6. to minimise the introduction of errors (e.g., to ensurat tine ontology
does not have unintended logical consequences).

In recent years, there has been a growing interest in thdajswent of tech-
niques and tools to support ontology developers in perfogntihese tasks (see
for example [4, 53, 57, 11, 21, 51, 39, 13, 46, 49, 18]), andeferrthe reader

to our Related Work section for a detailed discussion.
2

In this paper, we present a novel approach to facilitatetdmeurrent devel-
opmentof ontologies. Our approach adapts Concurrent Versionimgsdecess-
ful paradigm in software development— to allow several tgvers to make
changes concurrently and remotely to the same ontologgk thanges, and
manage ontology versions. Version comparison, conflictatn and conflict
resolution are based on a novel approach that takes intauactoe structure
and semantics of the versions to be reconciled. First, wpqa® precise no-
tions of structural and semantic difference between ogiolersions to facil-
itate the detection of potential conflicts and errors; sdcame propose vari-
ous improvements to state-of-the-art ontology debuggiyrapair techniques
[34, 47, 35, 33, 25, 23] in order to fix the identified errors inancurrent set-
ting. We then presentontentCVS, a system that implements our approach,
and a preliminary empirical evaluation which suggests ¢thiatapproach is both
computationally feasible and useful in practice.

Our contribution hence focuses on facilitating trackingl amanagement of
concurrent changes, version comparison, conflict ideatiba, (semi)automatic
conflict resolution, and version merging (tasks 3-6 abows.do not address in
this work other important aspects of collaborative ontgldgvelopment, such as
conceptual design, distribution of responsibilities aasks among developers,
specification of modeling guidelines, and so on. Furtheenooncerning con-
flict detection and resolution, we see our techniquesoasplementaryo other
conflict resolution techniques that are more focused orabolative and social
aspects [17, 14, 13, 11] (e.g., on facilitating the discausfietween groups of
developers, or on achieving consensus). For example,s$isputhreads and an-
notations could be used @ontentCVS to inform other users of the reasons for
certain changes. Finally, we do not consider the automesialution of conflicts
that are merelyexical (e.g., two different developers adding the same concept
independently, but using different names), which is an irngra and difficult
issue especially in the development of inter-organisafiontologies [21]. Al-
though such conflicts would be detected ®gntentCVS and reported to the
relevant groups of users, their automatic resolution woedglire, for example,
the application of ontology matching techniques [3] or tlse of a reference
thesaurus [32].

We believe that a complete, multi-user platform for ontglagvelopment
should providebothcollaborative and social features, as well as those predent
here and implemented @ontentCVS. The design and implementation of such
an integrated platform is beyond the scope of this paper. id/@lanning, how-
ever, to progressively incorporate collaborative featunéo ContentCVS.

3

This paper extends the results of preliminary workshopipabbns on con-
current ontology development [28, 29], as well as a priorknar conflict reso-
lution in the context of ontology mapping [30].

2. Preliminaries

The formal underpinning of OWL DL and OWL 2 is provided by déstion
logics (DLs) [2]—knowledge representation formalismshmtell-understood
formal properties. In this section, we very briefly summatise basics of DLs,
and refer the interested reader to [2, 8, 26] for furthernmifation.

DLs allow ontology developers to describe a domain of irdene terms of
individuals atomic conceptgusually calledclassesn OWL), androles (also
calledpropertieg. DLs also allow forconcept descriptiong.e., complex con-
cepts) to be composed of atomic concepts and roles by prayvaliset ofcon-
cept constructorsThe DLs underlying OWL provide for intersection); union
(L) and complement), as well as enumerated classes (catledOfin OWL)
and restricted forms of existential)(universal {) and cardinality restrictions
(>, <, =) involving an atomic roleR or its inverseR~. A DL ontology O con-
sists of a set of axioms. In the DLs underlying OWL it is posstb assert that a
concept (or concept descriptiof)is subsumed by (is a sub-concept bfwrit-
tenC C D), oris exactly equivalent t& (written C' = D). It is also possible
to assert subsumption of and equivalence between roleslaasm® establish
special constraints on roles (e.g., that a role should leepreted as a transitive
or as a functional relation).

A (fragment of) a DL ontology about arthritis that we will uae a running
example is given in Table 1, wheRA stands for ‘Rheumatoid Arthritis’ and
RF for ‘Rheumatoid Factor’. For example, axiom states that every systemic
disease is a disease that affects the whole body.

DLs are equipped with a formal semantics, which enables ¢veldpment
of reasoning algorithms for answering complex queries atf@idomain. DLs,
in fact, can be seen as decidable subsets of first-order, lagiils individuals
being equivalent to constants, concepts to unary predicatd roles to binary
predicates. As in the case of a first order knowledge basetarpretationy is
a model of an ontology (written I = O) if I satisfies all the axioms i®;
O entails an axiomu (respectively an ontologg’), written O = « (O E O'),
if I = « (respectivelyl = ') for every modell of O. Finally O and®’ are
logically equivalent (writter® = @) if O = O’ andO’ = O.

Ontology O°

aq RA C Disease

a2 Systemic_Disease C Disease N Jaffects.WholeBody
Qs Disease ' Jaffects.WholeBody T Systemic_Disease
oy Disease M dsuffered_By.Child = Juvenile_Disease
as Negative_RF M Positive.RF C L

oG AbnormalRA C RA M VhasRF.Negative_RF

ag MultiJoint_Disease T Disease Il > 5 affects.Joint

Table 1: A fragment of an ontology about arthritis

3. Practical challenges

In this section, we introduce some of the challenges thatlogy engineers
face when developing ontologies concurrently. To this aredgconsider as an ex-
ample the development of an ontology about arthritis. Theawple is intended
only for illustration purposes and hence it is rather sistpdi The types of con-
flicting ontology changes illustrated in this section, heerare indeed realistic
as we will see later on in Section 7.1, where we analyse a sequi versions
of a medical ontology used in a real scenario.

Suppose that two developers, John and Anna, are in chargaesfdeng a
version®° of the ontology in Table 1 by describing types of systemibrdit
and juvenile arthritis, respectively. To this end, bothrdJahd Anna define a kind
of arthritis called JRA (Juvenile Rheumatoid Arthritis)hieh is both systemic
and juvenile. Hence, even if largely distinct, the domaiesalibed by John and
Anna overlap, which may lead to conflicts. For simplicitywhat follows we
only consider John and Anna’s descriptions of JRA.

Suppose that John and Anna construct their respectiveons@tt andO? by
adding to®" the axiomg AO)! and(A0)? from Table 2 (i.e.0! = O°U(AO)!
and0? = 0° U (A0)?). Some of the axioms added by John and Anna are the
same (e.g.j1), or present only minor (and semantically irrelevant) efiénces
(e.g.,5, andpl); however, other axioms are clearly different (exg.andds).

To compare John and Anna’s conceptualisations of the dqntt@enupper
part of Table 3 presents some axioms and their entailmettsstar.t. O and
O%. The table shows that John and Anna agree on some pointshetly.think
that Polyarticular JRA is a kind of disease (entailmef)tand neither claimed
that every JRA is also a Systemic JRA (non-entailnaght However, John’s and
Anna’s views also present significant differences; e.dindtefined the notion of

5

Ontology (AO)*: Ontology (AO)?:

B1 RA C JhasRF.T RA C JhasRF. T

B2 JRA C 3Streatment.(Steroid LI DMAR) 35 JRA C IJtreatment.(DMAR Ul Steroid)

v1 JRA C RA M Systemic_Disease 01 JRA C RA M dsuffered_By.Child

~v2 RAT Systemic_Disease = JRA 02 JRA M daffects.WholeBody C SystemicJRA
v3 Poly_-JRA T JRA M MultiJoint_Disease d3 Poly_JRA T JRATM = 3 affects.Joint

v4 Poly_JRA C AbnormalRA 04 Poly_JRA C VhasRF.Positive_RF

~v5 Oly_JRA C JRA M —Poly_JRA 05 SystemicJRA C JRA M JhasSymptom.Fever

Table 2: Version®! = O° U (AO)! and0? = O° U (AO)? of an ontology?°

o Axiom: O Eo, follows from: O2 E-g, follows from:

o1 Oly_JRA C Systemic_Disease Yes V1,75 No —

oo JRA C Juvenile_Disease No — Yes a1, 0y, 01

o3 Poly_JRA C Disease Yes a1,71,73 Yes oy, 01,03

o4 JRA C SystemicJRA No — No —
o Axiom: 0% Eo, O' 0, 02 Eo, follows from: Desirable?
o4 JRA C SystemicJRA Yes No No Y1, 2, b2 No
o5 Poly JRALC L Yes No No Y4, B1, 04, a5, g NO

az,vs, 03

o¢ Oly_JRA C Juvenile_Disease Yes No No Y5, i1, Qiq, 01 Yes

Table 3: Example Subsumption Relationgh, 0%, and©? = O' U ©?

Olyarticular JRA , whereas Anna did not, and Anna’s concaigation implies
that JRA is a juvenile disease (entailmen}, whereas John’s does not.

John and Anna’s changes could be reconciled by building thenu®? =
O' U O? of their ontologies. Due to complex interactions betwéEnand ©?,
however,0? entails new consequences which did not follow from eitf¥éror
0? alone; some of these are shown in the lower part of Table &theg with an
indication as to whether the consequence is desirable.oddth some of these
new consequences may be desirable (e .others are clearly undesirable, and
indicate modelling errors in the merged ontology (exg.andos).

This example illustrates some of the challenges of conntioetology de-
velopment. The development of an ontology may be the redpibtysof several
developers, each of whom typically makes small but reltiieequent mod-
ifications to the ontology. In this setting, developers needegularly merge

6

and reconcile their modifications to ensure that the ontot@ptures a consis-
tent unified view of the domain. The changes performed bydfit users may,
however, interact and conflict in complex ways. Developnewis should there-
fore provide means for(i) keeping track of ontology versions and changes and
reverting, if necessary, to a previously agreed upon vey¢igp comparing po-
tentially conflicting versions and identifying conflictirngarts, (iii) identifying
errors in the reconciled ontology constructed from the ¢ctivig versions, and
(iv) suggesting possible ways to repair the identified errorl @iminimal im-
pact on the ontology.

To addresgi), we propose to adapt the Concurrent Versioning paradigm to
ontology development as described in Section 4. To addiig¢sse propose a
notion of conflict between ontology versions and provide means for identify-
ing conflicting parts based on it, as described in Sectiondbaddresgiii) we
propose in Section 6 a framework for comparing the entaitsiémat hold in
the compared versions and in the reconciled ontology, bagseitie notion of
a deductive differencg36] and also describe techniques for helping users de-
cide which of the reported entailments are intended. Rintdladdressiv), we
propose in Section 6 several improvements to existing igales for ontology
debugging and repair and adapt them to our new setting.

In Sections 4, 5, and 6, we describe both our general appraadhalgo-
rithmic techniques as well as their implementation in ol BontentCVS,! a
Protégeé 4 plugin freely available for downlo&d.

4. CVS-based concurrent development

In software engineering, a successful paradigm for cotaan in large
projects has been the Concurrent Versioning Paradigm. A@oent Versioning
System (CVS) uses a client-server architecture: a CVS sstoees the current
version of a project and its change history; CVS clients eahro the server
to check outa copy of the project, allowing developers to work on theimow
‘local’ copy, and then later tcommittheir changes to the server. This allows
several developers to make changes concurrently to a prdjekeep the sys-
tem in a consistent state, the server only accepts changies katest version of
any given project file. Developers should hence use the Cl8tdb regularly
commit their changes angbdatetheir local copy with changes made by others.
Manual intervention is only needed whewr@nflictarises between a committed

1A ConcurrentONTology ENgineeringT ool.
2http://krono. act. uji.es/ peopl e/ Ernest o/ cont ent cvs

Fail Fail
Yes Yes
conflict := false conflict := false
ObL oL .= oR — OR, 0L .= 0L
ak? ’ ~bak
No vV, = UR No vR,vr =1
(a) Checkout (b) Export

Figure 1: Semantics of the checkout and export operatio@®imtentCVS

version in the server and a yet-uncommitted local versianflitts are reported
whenever the two compared versions of a file areatptivalentaccording to a
given notion of equivalence between versions of a file.

Our tool ContentCVS closely follows the CVS paradigm. The most re-
cent versionO% of the ontology, which represents the developers’ shared un
derstanding of the domain, is kept in a server’s shared repgs Each devel-
oper with access to the repository maintains a local a@pyof the ontology,
which can be modified at will. This local copy can be eitheronftict with O
(conflict = true) or not in conflict €onflict = false). Furthermore, the system
maintains version numbers; andv;, for Of andO* respectively as well a local
‘backup’ copyOL,, of the latest local version that was ‘written’ to the reposjt

At any time, a developer can access the repository using btie dollow-
ing basic operationsexport check-out updateandcommit These operations
involve checking whether two ontology fil€3 and O’ are ‘equivalent’ under a
specific notion of equivalence between ontology files whidl lve introduced
in Section 5 (denote® ~ O').

The checkoutoperation (Figure 1(a)) allows a developer to acquire alloca
copy OF of OF, provided that)” does not already exist. The ontology resulting
from a successful checkout is obviously in a non-conflictates(i.e. conflict =
false), and it inherits the version numbeg of OF.

Theexportoperation (Figure 1(b)) allows a developer to create a npase
itory, provided that none already exists. The local ontglsghen ‘exported’ to
the repository and the version numbersdf andO* are initialised.

The updateoperation (Figure 2) allows developers to keep their locglyc
OF up-to-date by accessing the repository and incorporatiaghanges made
by others. The update process starts by checking whéheras not changed
since it was last updated; in caé¥ has changed, it next checks whether the

changes made by others are consistent with those madeylobakither case,
8

oL .= ok
VL = UR

Yes Yes
OL
conflict := true
No No

Figure 2: Semantics of the update operatio€ontentCVS

Do Nothing Update is Necessary Fail

Figure 3: Semantics of the commit operatiordantentCVS

it is safe to replace’ with the versionO’ from the repository. Otherwise, a
conflict is reported.

Finally, thecommitoperation (Figure 3), allows ontology developers to write
(commit) their local changes to the repository. Of,, —~ O then there are
no meaningful local changes and hence no action is requitdterwise, the
commit process only succeedsif is up-to-date; = v) and not in conflict
(conflict = false). In case of success, the commit operation involves remigaci
OF with O and incrementing the version number.

Consider our running example and suppose that Anna hasiglossnmit-
ted her changes, sO® = (0% meanwhile, John modifies his local copy, so
OF = O If John then tries to commit his changes, the operationfaillbe-
causev;, # vg (the local copy is not up-to-date); if he tries to update b=l
copy, the operation will fail because there have been ldtahges and they are
incompatible with those made by Anna, aét ends up in a conflicted state.
Conflicts will need to be resolved before the commit operatian succeed.

5. Change and conflict detection

As mentioned in Section 4, change and conflict detection atsdo check-
ing whether two compared versions of a file are not ‘equivakrcording to a

given notion of equivalence between versions of a file.
9

A typical CVS treats the files in a software project as ‘ordyngext files and
hence checking equivalence amounts to determining whétleetwo versions
are syntactically equal (i.e., they contain exactly the es@hmaracters in exactly
the same order). This notion of equivalence is, howeverstadot in the case
of ontologies, since OWL files have very specific structureé s@mantics. For
example, if two OWL files are identical except for the facttttveo axioms ap-
pear in different order, the corresponding ontologies khbe clearly treated
as ‘equivalent’: an ontology containssatof axioms and hence their order is
irrelevant [8].

Another possibility is to use logical equivalence as defime&ection 2.
This notion of equivalence is, however, too permissive:neve) = O'—the
strongest assumption from a semantic point of view—coufinty still exist.
This might result from the presence of incompatible anmaat(statements that
act as comments and do not carry logical meaning) [8], or anaish in mod-
elling styles; for example? may be written in a simple language such as the
OWL 2 EL profile [8, 41] and contain := (A C B1C'), while O may contain
g = (-BU-C C —-A). Even thoughv = 3, the explicit use of negation and
disjunction means tha?’ is outside the EL profile.

Therefore, the notion of a conflict should be based on a naifoontol-
ogy equivalence ‘in-between’ syntactical equality anddagequivalence. We
propose to borrow the notion sfructural equivalencéom the OWL 2 specifi-
cation [42]. Intuitively, this notion of equivalence is lealssolely on comparing
structures by using the definition of the modeling consgasailable in OWL
and OWL 2; for example, several modeling constructs are eléfas sets of ob-
jects (e.g., ontologies are defined as sets of axioms, coijunof concepts as
a set of conjuncts, and so on); hence changes in the orderichlinese set
elements appear in the ontology file should be seen as iariev

In DL syntax, structural equivalence can be formalised asrghext. For
the sake of simplicity, our definition here comprises onlg trescription logic
SROIQ, which provides the logical underpinning for OWL 2. This défon
can be easily extended to cover also datatypes and exiicalstatements, such
as annotations. We refer the reader to [42] for a completeacherisation of
structural equivalence.

Definition 1. The structural equivalence relation over a set of conceptSon
is defined by induction. First; «~ C for eachC' € Con. For the induction step,
we have:

e C ~ Dimplies(=C) « (=D);
10

e C « DimpliesOR.C ~ OR.D for ¢ € {3,V,> n,<n,=n}; and

o () v () anle Dy ImpIIeS(C’l > Dl) “ (CQ > Dg) A (D2 > CQ),
for>a e {11, U}.

The relation— is extended to axioms over a set of conc€pis: and rolesRol

as follows: o «~ « for each concept or role axiom and, if C; «~ C; and

Dy «~ D, then(Cy C Dy) « (Cy £ Dy), for C;, D; € Con. Finally - is

extended to ontologies as follow& —~ O’ if, for everya € O (respectively
a € O) thereis as € O’ (respectivelys € O) such thain - .

For example, the axioms, and 3} in Table 2 are structurally equivalent
because they only differ in the order of the elements in aidigjon. If O «~ O’
we can safely assume that they are compatible and thus nonfhat.

The use of the notion of structural equivalence for detgatonflicts between
ontology versions presents a number of compelling advastag

e It is a notion ‘in-between’ syntactical equality and lodiemuivalence:
on the one hand irrelevant syntactic differences are rulecs conflicts
based solely on the structure of the OWL language; on ther dthied,
structurally equivalent ontologies are also logically igglent.

e It preserves species and profiles [41] of OWL and OWL 2 respelgt
for example ifO and O’ are structurally equivalent ar@ is in OWL Lite
(respectively in any of the profiles of OWL 2), thélis also in OWL Lite
(respectively in the same OWL 2 profile &j.

e It takes into account extra-logical components, such aetations.

e Itis an agreed-upon notion, defined after extensive disoassvithin the
W3C OWL Working Group during the standardisation of OWL 2rtRar-
more, it is not exclusive to OWL 2: it can be directly appliedQWL DL,
and a similar notion could be devised for most other ontolagguages.

e It is supported by mainstream ontology development APIshsas the
OWL API [22].

The identification of the conflicting parts @ and©’ using the notion of struc-
tural equivalence can be performed by computing teeurctural difference

Definition 2. The structural difference betweéh and(, is the set\, of axioms
a € O, for which there is n@ € O, s.t.a «~ S withi, j € {1,2} andi # j.

ContentCVS reuses the functionality available in the OWL API for denigli
structural equivalence and implements a straightforwégdraghm for comput-

ing structural differences that follows directly from Defion 2.
11

6. Conflict resolution

Conflict resolution is the process of constructing a rededayntology from
two conflicting ontology versions. In a CVS, the conflict regimn functionality
is provided by the CVS client. Our approach is based on theplie that a CVS
client should allow users to resolve conflicts at two diffeérdevels:

e Structural where only the structure of the compared ontology versi®ns
taken into account to build the reconciled ontology (sedi&e6.1).

e Structural and semantjavhere both the structure and the logical conse-
guences of the compared ontology versions as well as of twncded
ontology are taken into consideration (see Sections 6.4)—6.

In the former case, the overhead involved in using a reasamkexamining its
output is avoided; however, the reconciled ontology maytaanrerrors (e.g.,
undesired logical consequences), which would remain ectkd.

In the latter case, errors in the reconciliation procesdeatetected, with the
assistance of a reasoner, by computing the logical consega®f the reconciled
ontology and comparing them to those of the relevant ongol@gsions. Errors
in the reconciled ontology could manifest themselves, hvaweot only as un-
satisfiable concepts or unintended (or missing) subsumpti@tween atomic
concepts, but also as unintended (or missing) entailmentsving complex
concepts. We propose to use the notiodeductive differenci®r error detection
(see Section 6.2), which ensures that errors associatbatanplex entailments
are also detected. However, considering complex entateraviously comes
at a price, both in terms of computational cost and of comagibm of the GUI.
Thus, a CVS client should allow users to customise the typesli@evant entail-
ments for error detection and guide them in the selectiocge® (see Section
6.2). Finally, error repair is a complicated process forakiibol support should
be provided, and our approach involves a number of techaeitpuachieve this
goal (see Sections 6.3 and 6.4).

Our approach is summarised in Table 4. The steps marked wvtithkraark
(v) are those that require human intervention. We next desaribetail each
of the steps in Table 4.

6.1. Selection of axioms using structural difference

Conflict resolution in text files is usually performed by fildéentifying and
displaying the conflicting sections in the two files (e.g.ine) or a paragraph)
and then manually selecting the desired content. Analdgomsr proposal for
structural conflict resolution involveszcomputing and thgpng the structural

Input: OF, O ontologies withO™ A O, conflict = true and structural differencé,
Output: (’)L ontology; conflict: boolean value;

1: (V') SelectS C A,

2: (’)tLemp (OF\ Ay)

3 (V)if Ok, is satisfactoryeturn Ol .= Ok, conflict := false

4: (V') Select approximation functiodiff,

5: Computediff (0%, OF), diff< (0L, OF), diff~(OF, 0L,) anddiff~ (07, O,)
6: (v) Select3™ C diff<(OL,,, OF) Udiffx(OL,,, OF)

7. (v') Selecty— C diff+(OF, OtLemp) U diff< (0%, 0L,)

8: Compute minimal plang for 0%, given3™, 3, OF := A, \ S, andO0~ := S
9: (v) if no satisfactory plan i, return OL conflict := true

10: (v) SelectP = (PT,P~) e P

11: return O% := (O,,, UPT) \ P, conflict := false

Table 4: Conflict Resolution Method.

differenceA; (i.e., those axioms for which a structurally equivalentoaxidoes
not occur in both ontologies) and then manually selectingiwbf these axioms
should be included in a (provisional) versiﬁkfgmp of O (Step 1). The ontology
(’)t{;mp is obtained from the non-conflicting part 6f* plus the selected axioms
S from the conflicting part (Step 2).

After constructinthLemp, the user may declare the conflict resolved (Skep
in which case conflict resolution remains a purely syntagtimcess, as in the
case of text files. Otherwise, ontology developers can ugasoner to exam-
ine the semantic consequences of their choices and makénsti@);, , meets
their requirements (typically, includes as much informatas possible without
leading to inconsistencies or other undesired entailments

ContentCVS implements a simple GUI to facilitate the selection of axsom
from the structural difference, which is shown in Figure ddar running exam-
ple. The left-hand-side (respectively the right-handesif the figure shows the
axioms inA, N OF (respectively ilA, N OF).

To facilitate the comparison, axioms are sorted and aligasabrding to
the entities they define. Axioms not aligned with others drews last in a
distinguished position. The selected axioms are indicatatie GUI using a
highlighted tickmark {'). FurthermoreContentCVS provides additional func-
tionality for determining the origin of each axiom in theuwsttural difference.

In particular,ContentCVS, indicates whether an axiom appears in the differ-
ence as a result of an addition or a deletion by compatgand OF to the
local ‘backup’ copyOL,, of the latest local version that was ‘written’ to the
repository. For example, the axioffoly_ JRA T AbnormalRA) on the left-

13

Local Axioms Repository Axioms

) select Al © Deselect Al) select Al © Deselect A

General Class Axioms General Glass Axioms
SRA and Systemic_Disease subClassOf JRA @ |@IRA and (affects some Whole_Body) subClassOf Systemic_JRA (V]
Ra JRa

@:JRA subClassOf RA and Systemic_Disease @ |@IRA subClassOf RA and (suffered_By some Child)

Poly_IRA
@Poly_JRA subClassOf hasRF only Positive_RF (/]
@Poly_JRA subClassOf JRA and (affects exactly 3 Joint)

Paly_JRA
EaPaIy_JRA subClassOf AbnormalRA
E:Poly_JRA subClassOf JRA and Multi_Joint_Dis

(<<

AbnormalRA AbnomalRA
&AbnormalRA subClassOf RA fkAbnormalRA subClassOf RA and (hasRF only Negative_RF) (/]
@Systemic_Disease subClassOf Disease and (affects some @ |@systemic_Disease subClassOf Disease
Whole_Body)
stemic_IRA
R @Systemic_JRA subClassOf JRA and (has_Symptom some Fever) (V]
R:0ly_JRA subClassOf JRA and (not Poly_JRA) (/]

Figure 4: GUI for Structural Differences i@ontentCVS

hand-side of Figure 4 was added®., in the local ontology (indicated by an
icon representing a user with a ‘+’), whereas the axi@ystemic_Disease T
Disease I Jaffects.WholeBody) was deleted fron®%,, in the repository (indi-
cated by an icon representing the Globe with a crosk °

6.2. Deductive differences

In contrast to text files, the selected parts fréth and O can interact in
unexpected ways, which may lead to errors that should bé®pd0o help users
detect such errors, we propose to compare the entailmettsdtt inOZ , With

tem

those that hold if©X and O by using the notion ofleductive differencgs6].

Definition 3. The deductive differencff (O, O’) betweerO and O’ expressed
ina DL DL is the set oD L-axiomsa s.t. O = aand O’ = a.

Intuitively, this difference is the set dll (possibly complex) entailments
that hold in one ontology but not in the other. In our runnizgraple, for the
selection in Figure 4, there are entailments (ijahold in O% » and not inO~,

tem
such as := (SystemicJRA C Jhas_Symptom.Fever); (i) hold inO/, but not
in eitherO" or O*, such asr; from Table 3;(iii) hold in O* but not inO%, .,

such asr, := (RA 1 Jaffects.WholeBody T JRA); and finally(iv) hold in OF
but not inO% | such asr, in Table 3.

temp?
Therefore,pwe argue that the relevant deductive differetetweerO/
OF and OF capture all potential errors that may have been introdunettie
reconciliation process. However, the notion of deductifieience has several
drawbacks in practice. First, checking whetd#f(O, O’) = () is undecidable
in expressive DLs, such &ROZQ (OWL 2) andSHOZQ (OWL DL) [36].

14

Second, the number of entailments in the difference can ge [aven infinite),
and so likely to overwhelm users. These practical drawbaukis/ate the need
for approximations— subsets of the deductive difference (see Step 4 in Table 4).

Definition 4. A functiondiff+ (O, O') is an approximation fodiff (O, O') if for
each pairO, O’ of DL-ontologiesdiff. (O, O") C diff(O, O’).

A useful approximation should be easy to compute, yet still/jgle mean-
ingful information to the user. One possibility is to defimeapproximation by
considering only entailments of a certain form. Our tG@aintentCVS allows
users to customise approximations by selecting among tleviag kinds of
entailments, wherel, B are atomic concepts (including, 1) andR, S atomic
roles or inverses of atomic roles: () C B, (ii) A C =B, (iii) A C dR.B, (iv)
ALCVR.B,and (V)R C S. The smallest implemented approximation considers
only axioms of the form (i), which amounts to comparing thessification hier-
archy of both ontologies, while the largest considers glesy/(i)—(v). Clearly,
the larger the class of entailments presented to the ugemaine errors could be
detected. The corresponding differences, however, adehty compute, harder
to present to the user, and may be harder for the user to duadérs

Although these approximations can all be algorithmicatynputed, only
the entailments of the form (i) and (v) are typically prowidey reasoners as
standard outputs of classification. Computing deductivierdinces based on
entailments (ii)-(iv) is potentially very expensive sintmay involve performing
a large number of additional entailment tests. To reducenthmber of tests,
ContentCVS uses the notion of bbcality-based modul§7, 6]. Locality-based
modules enjoy several useful properties: first, they cardpepaited efficiently;
second, if an ontology) entails an axiom of the form C C', for A atomic and
C' a possibly complex concept, then the locality-based mo@ugor A in O
also entails the axiom. Finally, locality-based modulestgpically very small
compared to the size of the original ontology.

To check for entailments of the form (ii)-(iviontentCVS first extracts the
locality-based module foA and looks for potential entailments only within the
module. For example, in the case of (iontentCVS would only test entail-
ments where botlk and B are in the vocabulary of the modut2,, which sig-
nificantly reduces the search space. Furthermore, thel aetegant entailments
can be checked w.r.t. the (small) module, and not with radpdbe (potentially
large) original ontology. Our experiments in Section 7 sgjghat the use of
locality-based modules makes the computation of appraxamsto the deduc-
tive difference based on all types (i)-(v) of entailmentepaitationally feasible.

15

6.3. Selection of entailments

While some entailments in the computed differences aredee, others re-
veal errors in0OL | as illustrated by the following example.

temp?

Example 1. In our example (Table 3), the entailmeiRA C Juvenile_Disease
(02) is intended. In contrastPoly JRA C | (o5) reveals an inconsistency in
OL__, and hence an obvious error.

temp?

Steps 6 and 7 thus involve selecting entailments tfiqtare intended and
should follow from(?t{;~mp (written S in Table 4), andii) are unintended and
should not follow fromOf, . (written 37).

The development of techniques to help users understanelient deduc-
tive differences and subsequently select the sets of isteadd unintended en-
tailments is especially challenging. First, a tool showplain, on the one hand,
why the new entailments that hold @, do not hold inO* and O* alone
and, on the other hand, why the lost entailments that hot@4rand OF do not
hold in OL__. The notion of gustificationhas proved very useful in ontology

temp*

debugging [47, 35]:

Definition 5. Let O = «. A justification fora in O is an ontology®’ C O
satisfying the following properties: () = «, and (ii) there is na@0” C O’ s.t.
O" = a. We denote byust(a, O) the set of all justifications fas in O.

In order to explain an entailmer@ontentCVS presents all its justifications.
Computing all justifications is expensive,8ontentCVS uses the optimisations
from [33, 54], which have proved effective in practice. Imtpaular, as described
in [54], our algorithm for extracting all the justificatiofisr an entailment of the
form A C C, for A an atomic concept, is based on extracting first the locality-
based module foA in the ontology and then compute the justifications w.rg. th
module instead of w.r.t. the whole ontology.

Even with explanations provided, the potentially large bemof relevant
entailments may overwhelm users. These entailments shioetdfore be pre-
sented in a way that makes them easier to understand and enaf@mthis end,
ContentCVS extends known ontology debugging techniques by identfyie-
pendencies between entailments. As an illustration, dens, := (JRA C
Juvenile_Disease) from Table 3 andry := (SystemicJRA T Juvenile_Disease)
which hold in O%__ but not inO*. The entailment, dependson o, since

temp

whenever, is invalidated by removing axioms fro@%__, thenr, is also in-

temp?

validated. Similarly, the entailment := (Oly_JRA C Haffects.WholeBody)
depends on the entailment := (JRA C Haffects.WholeBody): adding any set
16

of axioms fromO* or OF that causes; to hold inOZ__ would also cause; to

temp

hold. We formalise these intuitions in our setting as fokow

Definition 6. LetO | «, 5. The axiom3 depends o w.r.t. O, writtena> 5 iff
for eachJs € Just(3, O) there is7, € Just(«, O) such that7, C J3. We say
that o is ar--minimum (respectively-maximum) if there is n@ s.t. « depends
on j (respectivelys depends o).

The relation> is consistent with our intuitions as shown in the following
proposition, which follows directly from Definitions 5 and 6

Proposition 1. Let O | «,5, O’ € O anda > 5. Then: 1)O’ £~ « implies
O' = 8, and 2)O' |= impliesO’ = a.

Proof. First we prove Condition 1. Let > 5 andO’ [~ «. SinceO E «,
for eachJ, € Just(a, O) there is an axiomy € 7, s.t. v ¢ O'. Otherwise,
O’ would imply a.. Let Js € Just(3, ©). By definition of >, there must be a
Ja € Just(a, 0) s.t. 7, C Js. SinceO’ does not include one axiom from each
Ja, then it also does not include one axiom from egGhand therefore’ |~ g,

as required. We now prove Condition 2. Lket> 5 andO’ = 5. SinceQO 3,
there exists a justificatioys € Just(5,0) s.t. J3 C O'. By definition of >
there must exist &, € Just(o, O) s.t. J, € Js. ThereforeJ, € O’ and
O’ E a, as required. O

Figure 5(a) shows th€ontentCVS GUI for selecting3~. A similar in-
terface is used to sele€t™. The left-hand-side of the figure displays the-
dependency tree, which can be expanded and contracted irstia¢ way; on
the right-hand side, the user can select an entailment towessind show its jus-
tification(s). The justifications for the entailment higjtiied in Figure 5(a) are
shown in Figure 5(b). The operation and GUI provided by &yét4 [24] was ex-
tended in order to indicate which axioms in these justifaaiwere selected in
Step 2 of Table 4 fron®* andO%, marking them with ‘L’ and ‘R’ respectively.
The unmarked axioms occur in both ontologies.

6.4. Plan generation, selection and execution

Changing the set of entailments can only be achieved by yiadithe on-
tology itself. In general, there may be zero or more possiht@ces of sets of
axioms to add and/or remove in order to satisfy a given setaqiirements. We
call each of these possible choicepair plan(or plan, for short).

17

NEW ENTAILMENTS IN RECONCILED ONTOLOGY WRT LOCAL ONTOLOGY
Entailments Dependency Tree Remaove | Justifications

b Poly_JRA equivalentTeo MNothing ®

y JEA subClassOf Juvenile_Disease

Systemic_JRA subClassOf Juvenile_Disease
Oly_JRA subClassOf Systemic_JRA
y Systemic_JRA subClassOf RA

Systemic_JRA subClassOf Juvenile_Disease

ooooogo

v Systemic_JRA subClassOf Systemic_Disease

e e e e e e e

B JRA equivalentTo Systemic_JRA

[

(a) Selection of Entailments

Justifications of Entailments g\
Justifieation 1

Poly_TRA subClassOf MNothing

Poly_JRA subClassOf hasRF only Positive_RF (<]

Negative_RF disjointwith Positive_RF

AbnormalRA subClassOf RA and hasRF only NegativeRF

RA subClassOf hasRF some Thing

Poly_JRA subClassOf AbnormalRA (L]

Justification 2

Poly_TRA subClassOf MNothing
Multi_Joint_Dis subClassOf Disease and affects min 5 Joint

Poly_JRA subClassOf JRA and Multi_Joint_Dis o
Poly_JRA subClassOf JRA and affects exactly 3 Joint (<]

(b) Justification®oly_ JRA C L

Figure 5: GUI for Selection of Entailments @ontentCVS

Definition 7. Let O, ST, 3, O and O~ be finite sets of axioms s@~ C O,

OtNO =0,0 3,000 S, andO £ «for eacha € 3. A

repair plan forO givenO*, O~ 3 andS~ is a pair P = (P*,P~) such that
P+ C OF, P~ C O and the following conditions hold:

1. (OUPH)\ P~ E «aforeacha € ST, and
2. (OUPT)\ P~ [~ pforeachs € 3.

P is minimal if there is ndP; s.t. P;- € P+ andP; C P~.

Definition 7 extends the notion of a plan proposed in the aggptepair liter-
ature (e.g., see [34]). In particular, the goal of a plan #] |8 always to remove
a set of axioms so that certain entailments do not hold angn@nce, a plan
is always guaranteed to exist. In contrast, a plan as in Diefnr also involves

18

adding axioms so that certain entailments hold; therefpossibly conflicting
sets of constraints need to be satisfied. Furthermore jrexistpair techniques
(e.g. [34]) are restricted to obvious inconsistencies, (upsatisfiable concepts),
whereas our techniques apply to errors caused by arbitraayiments.

Step 8 from Table 4 involves the computation of all minimalrs (denoted
P). The ontologyO to be ‘repaired’ isO/,,, from Step 3. The intended and
unintended entailment$3(and3~) are those selected in Steps 6 and 7. We
assume that a plan can add any subset of the axiomts,invhich were not
selected in Step 2 (i.,eQ™ = A, \ S), and it can remove any subset of the
selected axioms (i.e)— = S). Hence, we assume that a plan should not remove
axioms outsidé\;, since they are common to both versions of the ontology.

Example 2. Given3t = {02} and3~ = {05} from Example 1, four minimal
plans can be identifiedP; = ({d:},{d3,04}); P2 = ({01}, {93, 14}); Ps =
<{51}7 {737 74})1 Py = <{51}7 {737 54}>

In Step 9 users can select frdiva plan to be applied. If no plan matches their
intentions, the conflict resolution process ends as itedfathat is, by returning
the old version ofD* in a conflicting state (Step 9). In contrast, if a p&nis
selected, thefP is applied by returning the ontology)l ., U P*) \ P~ in a
non-conflicting state (Steps 10-11), which is then readyetodmmitted.

Definition 7 suggests a simple procedure for computing ahgl for each
possibleP™ C Ot andP~ C O, use a reasoner to check(iP*,P~) satis-
fies Conditions 1 and 2 from Definition TontentCVS, however, implements
an optimised version of Algorithm 1, which uses invertedexekl, reduces the
number of combinations and avoids potentially expensivailnent checks by
reusing the justifications already computed when obtaitiiegdependency re-
lation (>) from Definition 6. The correctness of the algorithm is a dimse-
guence of the following(i) in order for an entailment € 3 to hold after the
execution of a plafP*,P~), (O UPT) \ P~ must contain at least one justi-
fication fora in O U O (Lines 6-10);(ii) in order for an entailment € S~
not to hold after the execution of a plaR*, P~), it is sufficient to show that no
justification for3 in O U O™ is contained ifO UP*) \ P~ (Lines 11-15). The
set of all minimal plans can be straightforwardly computedeall the plans
have been obtained.

Proposition 2. Algorithm 1 returns all plans for the given input.

Proof. For anyP € P, with P = (P*,P~), we show thatP is a plan forO
given O™, O~ 3+ andS ™, as per Definition 7. The facts th@™ € O* and
19

Algorithm 1 Computing All Plans Using Justifications

Procedureall_Plans(O, 0T, 0,3, 37)

Input: O, O, 0=, 3T, $™ as in Definition 7 Just(y, O U OF) for eachy € ST U S~
Output: P: set of all plans

1. P:=0

2: for eachP*™ C O* andeachP~ C O~ do

3 validPlan:= true
4 for eacha € 3 do
5: foundJust= false
6: for each 7, € Just(o, OU OT) do
7 if 7o € (OUPT)\ P~ foundJust= true
8 end for
9: if foundJust false then validPlan:= false
10: end for
11: for each € 3~ do
12: for each 73 € Just(8,0 U O™) do
13: if 75 C (OUPT)\ P~ thenvalidPlan:= false
14. end for
15: end for
16: if validPlan =truethen P := P U {{PT,P~)}
17: end for
18: return P

P~ C O are clear from Line 2. For each € 3, Line 7 implies that there
isaJ, € Just(a, OU O")s.t.J, € (OUPT)\ P, and the definition of
justification immediately implies th&® satisfies Condition 1 from Definition 7.
For eachf € &, Lines 14 and 15 imply thaP~ removes at least one axiom
from each justification fop in O U P*; henceP also satisfies Condition 2.

Let us assume that there exists a p{@t,P~) ¢ P for O givenO*, O~
3* and$. This means that either there isare 3 s.t. no justification for
in OUOT is contained iIOUPT)\ P, orthere is & € I~ and a justification
Jsfor3inOUO* st.J5 C (OUPT)\ P. Inthe first case, there can be no
justification forac in (O U P*) \ P, becauséO U P+)\ P~ C OUOT, so
(OUPH)\ P~ [~ a, contradicting our assumption thg® ™, P~) is a plan. In
the second casgl; € (O UP™)\ P, which implies(OUP*)\ P~ = j, also
contradicting our assumption. O

Figure 6 illustrates th€ontentCVS GUI for visualising plans. It shows two
of the minimal plans for our running exampl@ontentCVS provides additional
functionality to help the user select the most suitable matiplan (see Step 10).
In particular, it identifies the axioms in the structuralfeiience ofO and O
that are shared by all minimal plans (axioms marked with arifFigure 6), and

20

= Extracted Plans

AVAILABLE PLANS TQ CONSIDER DESIRED ENTAILMENTS

Select an avalable pian from list

Pian 1 ackitions 1, deletions 2) -

Sodioms to Select (Plan Add) Aoxioms 1o Deselect (Plan Delete)

JRA subClassOf RA and (suffered_By some Child) @ Poly_JRA subClassOf hasRF only Positive_RF
Poly_JRA subClassOf JRA and Multi_Joint Dis

9 comeBack |

+ UsePlan

& Show Impact ‘

= Refine Plans ‘

E]

< Extracted Plans

AVAILABLE PLANS TO CONSIDER DESIRED ENTAILMENTS

Select an avalable pian from st

Plan 4 Cackftions 1 , deletions 21 |

#xioms to Select (Plan Add) Axioms to Desslect (Plan Delete)
Plan4

JRA subClassOf RA and (suffered By some Child) @ Poly_JRA subClassOf JRA and (affects exactly 3 Joint) @
Poly_JRA subClassOf AbnormalRA

[Preeres | [@i || [fimra] [Doee |

Figure 6: GUI for Plan Selection iGontentCVS

presents the remaining (i.e., non-shared) axioms in a agp&ame, allowing
the user to select which ones among them a plan must eithesratilete. The
tool then filters the set of minimal plans according to therasselections. For
example, if the axionPoly_JRA T Abnormal_JRA in Figure 6 is selected, the
tool would discard any plan that does not involve adding detiley this axiom.

7. Evaluation

Our evaluation tries to answer the following important dicess:

1. Do conflicts of the kind described in Section 3 occur in pca@

2. Are the implemented algorithms computationally feasihlpractice?
3. Do our techniques provide useful assistance to ontolagiyneers?
4. IsContentCVS easy and intuitive to use?

To address the first question we analyse in Section 7.1 a segué versions of
a realistic ontology and the respective change logs of eacsion. To address
the second question, we describe in Section 7.2 a set ofyn#éxperiments
using the same sequence of versions. Finally, to addredaghevo questions,
we have conducted a pilot user study, which we describe iidet.3.

21

‘Change ‘02‘03‘04‘05‘06‘07‘08‘09‘010‘

Concepts added 8 3(10(38|24| 1 |27|11| 23
Concepts deleted 2|10(1j1]0l0]|]1|3]|1
Roles added 0/0|3|4|3|0]6|1|O0
Roles deleted o(oj1{0|0j0|l0O|1]|O
Concept axioms added| 31| 6 |18|53|51| 5 |47 | 26| 52
Concept axioms deleted 8 | 0 |10 9 | 0| 3 | 5 |14 17
Role axioms added 0/0|3|6|6(0]7]|2|O0
Role axioms deleted o|(0|3|0|0j0|2|0]| O
Annotations added 10| 5132/19|30| 2 |43| 26| 38
Annotations deleted 212(9/2|]0|0|2|6]| 6

Table 5: Summary of change logs.

Excerpt from version O,

a1 Document_entity M Domain_entity = |

as Document_content_spec C Document_entity

a3 Indicant C Domain_entity

«yg Present_absent_indicant C Indicant

a5 Section_content_spec = Document_content_spec
ag dincludes_sub_doc. T C Document_content_spec

a7 has_sub_doc C includes_sub_doc

Table 6: A relevant fragment of versidpy

7.1. Analysis of real changes

In this section, we study a sequencelofversions of a medical ontology
developed at the University of Manchester and used in theegbof the Clinergy
project® The sizes of the different versions vary from 71 conceptspl&s and
195 axioms in the first version to 207 concepts, 38 roles afda&ibms in the
last version; all the versions are expressed in the degmmifagic SHZQ(D).
The ontology was developed during a short period of timemfduly 21st 2008
until July 28th 2008. On average, the developers generateaotwo versions
of the ontology each day. This situation, in which versiore generated very
frequently, is consistent with the scenario described ttiGe 3.

3htt p: // www. opengal en. or g/ sour ces/ sof tware. htm .

22

Changes over Domain Entities AO,)!

71 Bruise_to_surface_structure C Trauma_to_surface_structure

Yo Trauma_to_surface_structure C Present_absent_indicant

~v3 Trauma_to_surface_structure = Vhas_locus.Surface_Anatomical_structure
~4 Surface_Anatomical_structure = Anatomic_structure

75 Anatomic_structure = Domain_entity

Changes over Document EntitiegAO,)?

01 Bruise_to_surface_structure C Section_content_spec

0o Surface trauma_subsection_spec C Section_content_spec

03 Bruise_to_surface_structure C Jhas_sub_doc.First_heart_sound_clin_holder
04 Bruise_to_surface_structure C Jhas_sub_doc.Second_heart_sound_clin_holder

05 Bruise_to_surface_structure C Jhas_sub_doc.Heart_murmur_clin_holder

Table 7: Excerpt of changéa0,)! and(AO,)? performed over versio®,

Table 5 summarises the content of the change logs of eaclonersor ex-
ample, the second column represents the changes perfororadvérsionO,
to versionO,. The table clearly shows how the ontology grows as it is being
developed: most of the changes involve addition of enting®ms and annota-
tions. Most of the added axioms are concept axioms (mostlysons, equiv-
alence and disjointness axioms), which is a typical situtatvhen modelling
using OWL. Interestingly, there are also a significant nunabeeletions, which
reflects the fact that ontology developers are revising thedelling choices and
fixing errors. Extra-logical changes such as modificatiorthé annotations are
also fairly common, which suggests that they should be takeraccount when
identifying potential conflicts.

In order to verify that conflicts of the kind described in Sewct3 are likely
to occur in practice, we have also performed a detailed arsabf the change
logs. Our findings suggest that changes leading to an euoh as the unsat-
isfiability of a concept, may involve the simultaneous madiion of different
aspects of the domain. For example, consider the evolutmm ¥ersionQO,
to versionO; and the two groups of changéAd,)! and(AO,)? indicated in
Table 7, which together with the fragment ©f, from Table 6 lead to the un-

4A document with an overview of the changes can be downloaded:ht t p: / / kr ono.
act. uji.es/peopl e/ Ernest o/ cont ent cvs/ synt heti c- st udy

23

satisfiability of the conceBruise_to_surface_structure. The changes inAO,)!
describe the concetruise_to_surface_structure as an anatomical structure (and
hence as a ‘domain entity’), whereas the changéaifl,)* describe it as a doc-
ument concept (and hence as a ‘document entity’); and césmDeain_entity
andDocument_entity are disjoint according t@, (see axiont; from Table 6).

Thus, under the assumption that changegd,)! and(AO,)? have been
performed concurrently by different ontology engineehng, presence of incom-
patible changes leads precisely to the issues pointed d&gdtion 3. This as-
sumption is reasonable, as different aspects of the domaiikaly to be devel-
oped by different experts.

7.2. Performance evaluation

In our experiments we have simulated the evolution of anlogtoby using
the sequence of versions from Section 7.1. The experimesris performed on
a laptop computer with a 1.82 GHz processor and 3Gb of RAM. &lerage
classification time of an ontology in the sequence is appnaiely one second
when using the Pellet reasoner [50].

For each pait0;, 0,,1, i € {1,...,9} of consecutive versions, and both
the smallest and largest approximations of the deductiferdnce implemented
in ContentCVS, we have performed the experiment in Table 8. The Roman
numbers in Table 8 refer to measurements that are storealgdiine experiment
and presented in Table 9. These experiments follow our agpréor conflict
resolution in Table 4, with the assumption that versi@dns the local ontology,
versionQ;, is the ontology in the repository, and the steps in Table direqy
manual intervention are performed randomly.

Table 9 summarises our resuttdvost of the values in the table are either
average or maximum values for the 200 iterations in the loomfTable 8. Av-
erage values are indicated with the tag ‘avg’ in the heaaderpaaximum values
with the tag ‘max’. Several conclusions can be drawn fronséhexperiments.

First, from a computational point of view, the main bottlekés the compu-
tation of all the justifications for the entailments of irgst. Once the justifica-
tions have been computed, the time needed for computingdins s relatively
low. In Table 9, we can see that the average time needed géicatson can
reach5.9 seconds (se¥, O,&0O5); if 300 justifications have to be computed in
total, then the total time may reach 30 minutes. Hence, ingirtant to inves-

Shttp://krono. act. uji.es/ peopl e/ Ernest o/ cont ent cvs/
synt heti c- st udy

24

Input: O, O': ontologies; approximation functicdiff

ComputeA; and store its sizd Y and computation timdl()

repeat
Randomly selec C Ag, and computé),,, := OUS
Computediffy, (Oaux, O) U diffx (Oaux, O') and store its sizdl()
Computediff~ (O, O,ux) and store its sizd{)
Get all justifications for entailments iiff..; store avg. time per justificatio’v{
Compute>, and store the number ofminimums {1)
Randomly select— from minimums of> and™ from maximums of-
ComputeP (min. plans); store number of plafgll) and extraction timé&VIIl)

until 200 iterations have been performed

Table 8: Synthetic Experiments

Smallesdiff,, approximation Largestdiff,, approximation
||V Vv o vED VI VLIV |V VI Vil VI
0& O avg|avg| avg |avg|avg/max| avg || avg | avg | avg|avg| avg/max avg

0,&0, | 50 (0.03|15| 6 | 0.1|15| 1/1 | 1.5 ||111| 17 |2.0| 33|495/5508 10.3
03&0, | 82(0.02|13| 4 |0.26/13| 3/18| 1.7 {128 90 |0.9| 30| 46/896 | 3.6
04&05 | 93]0.02((31|14|0.1|29|3/32| 1.2 |/267| 48 |5.9/{49| 2.7/6 | 30
07&0s [110/0.03||19(15(0.02|18| 1/4 |0.07||216| 78 |1.2|47|488/3888 4

Os&0Og | 79 (0.02|15| 6 |0.06|14| 1/2 | 0.3 ||251| 14 |3.7|46| 101/720|21.5
0y&019|117|0.01(| 24| 8 | 1.5|24| 7/50|15.6(|208|154|5.3| 31| 35/225 | 22.7

Table 9: Summary of Results. Roman numbers refer to Tablén® §iven in seconds

tigate optimisation techniques for computing all justificas; first steps in this
direction have been taken in [54, 25, 23].

Second, the amount of information presented to the usezliadepends on
the selected approximation for the deductive differenee Section 6.2). In the
case of the smallest approximation, the average numberafaxn the relevant
differences (sedll andl1V) is in the rangei—31, and the average number of
minimal plans (se&/Il) is in the rangel-50. In contrast, in the case of the
largest approximation, these average numbers are in tigesan—267, and6—
5508 respectively. The amount of information the user would neconsider
is thus much larger. Table 9 also shows that the use of thendepey relation
> can lead to a significant reduction in the amount of inforprathat is initially
presented to the usevk). Note that for the largest approximation the number of
minimums for> is comparable to the size of the relevant deductive difiezen
for the smallest approximation.

Overall, we believe that this experiment demonstrates ttiatalgorithms

25

implemented iContentCVS exhibit reasonable performance, and that our ap-
proach is computationally feasible. The use of larger agprations of deduc-
tive difference may, however, require improved technigees€omputing justi-
fications. The use of larger approximations may also riskwkielming the user
with information, although presentation techniques suctha dependency one
implemented irContentCVS can help to ameliorate this problem.

7.3. User study

We have conducted a pilot user study to evaluate the usabflithe GUI
implemented inContentCVS, as well as to provide empirical evidence of the
adequacy of our approach in practice. The details of the wcted study, in-
cluding the questionnaire and the test ontologies, ardadlaionline®

7.3.1. Design of the study
The user study consists of three main parts, each of whiaives the com-
pletion of a number of tasks, as we describe next.

Part 1. Local evolution of an ontology

The first part simulates a conventional ontology repair aderwhere a (sin-
gle) developer performs a number of changes to his/her agya, and, as a
result, creates a new versidh of the ontology in which errors may have been
introduced. The main goal is to evaluate the repair teclasgonplemented in
ContentCVS, in particular the identification of errors using deductdiéfer-
ences and error repair via the generation and selectiontabseiplans.

The test ontology used in this part of the study describesldimeain of aca-
demic publications and bibliographic references, whiah plrticipants in the
study are expected to be relatively familiar with. The chestp the original
version(, involve the definition of three new concepts and the deletiba
property domain restriction. Users were first asked to usgasaner to classify
O,, examine the resulting entailments and try to understaadjitven justifica-
tions. Next, users were asked to identify and repair two kioiderrors, namely
the occurrence of unintended entailment&inthat did not occur irQ,, and the
lost of intended entailments that heldd@, but not in©,. Finally, users were
asked to repeat this process by taking into account not amiyie subsumptions,
but also entailments of the forth C -B, A C dR.B andA C VR.B.

Part 2. Reconciliation of two independently-developedgy versions

Shttp://krono. act. uji.es/ peopl e/ Ernest o/ cont ent cvs/ user - st udy

26

This part of the study simulates the scenario where a (Sidghkeloper work-
ing with a local copyO” of an ontology performs a CVS-update and needs to
reconcile the local versio®” with the versionO% in the repository. The main
goal is twofold; first, to evaluate the functionality @ontentCVS for directly
comparing ontology versions, both from a syntactic and feosemantic point
of view; second, to evaluate the means providedoyntentCVS for building
an error-free reconciled version ready to be committedeéddWS repository.

Users were asked to reconcile two versions of an ontologgribésg types
of Juvenile Ideopathic Arthritis. To this end, they first exaed the structural
difference between both versions and selected the axiorbe iacluded in a
temporary versiod/, , of the reconciled ontology. Next, users classifiag, ,
and identified errors in the form of missing intended entaitits or new unin-
tended ones. As in Part 1, users were then asked to repedatteisstep by
considering additional types of entailments and to use tbpgsed dependency
relation between entailments to group them. Finally usersevasked to repair
the identified errors by selecting a suitable plan. Note tthetest ontology ver-
sions used in this part of the study closely reproduces auring example, and
the tasks involved follow the steps in Table 4 from Section 6.

Part 3: Concurrent development of an ontology

The final part of the study simulates the scenario where a puoflusers are
developing an ontology concurrently usi@gntentCVS. As in Part 1, we used
the familiar domain of publications and bibliographic refieces.

Each test involved three or four participants in the studypfioduce a con-
trolled experiment, each participant was asked to extenthidial version of
the ontology by performing a number of changes specifiedatprThe first
participant was in charge of performing changes concerdifigrent types of
academic staff members; the second one made changes dagaerants such
as conferences; the third one made changes concerningnaicaatganisations;
finally, the fourth one was asked to describe different kinflsesources and
publications. Each participant was asked to perform a Cdi&it either upon
completion of all the changes, or when explicitly indicatedheir task sheets.
In order to provide a more realistic environment, the exaattan time in which
users attempt to commit their changes was not a-priori fixédhe commit
failed, the participant was asked to perform an update artwmh@le the changes
using theirContentCVS client. Once the participants had agreed upon a rec-
onciled version of the ontology, they were asked to disdussibng themselves
and with the coordinator of the study.

27

7.3.2. Results and discussion

In total, eight people participated in Parts 1 and 2 of thelystun the case
of Part 3, we conducted three tests each of which involvdweeihree or four
participants. The participants of the study are acadensearehers, most of
them working in fields other than the Semantic Web. For exapgame of the
participants work in a bio-genomics group, others in a rmisoand cognitive
sciences group, and so on. Most users evaluated their ergerin knowledge
representation as ‘intermediate’, in first order logic abesi ‘intermediate’ or
‘low’ and in description logics and OWL also as either ‘intexdiate’ or ‘low’.
All participants except for one had tried Protégé befand half of them had
used a reasoner before when developing an ontology. Howewee of the
participants was familiar with justification-based ex@tans. The results can
be summarised as follows:

e Part 1. Most users were able to understand the justifications geavby
Protégé, although most of them found it ‘hard’ or ‘very dfaio resolve
potential errors manually. All the participants could idgnboth new
unintended entailments and lost intended entailments wisarg Con-
tentCVS and described the functionality provided by our tool forntie
fying these entailments as either ‘good’ or ‘very good’. Mparticipants
were satisfied with the smallest approximation of the dedectifference
implemented inContentCVS, and complained about excessive amounts
of displayed information when using the largest implemereproxima-
tion instead. None of them considered tikaintentCVS should aim at
implementing richer approximations. Concerning the gati@n of plans,
most users declared this functionality as either ‘usefulvery useful’ and
found the capabilities a€ontentCVS to recommend plans also useful.

e Part 2 Most users considered either ‘useful’ or ‘very useful’ ttem-
putation of structural differences between ontology wersi However,
many users found it difficult to detect potential errors dyripy examin-
ing the structural difference. As in Part 1, users liked tinectionality in
ContentCVS for detecting potential errors using approximations of the
deductive difference. Interestingly, by using the largggiroximation im-
plemented inContentCVS, users were able to detect errors other than
unsatisfiable concepts and atomic subsumptions, whichftheyd useful.

All users considered that the use of a large approximatiaddeo an ex-
cessive amount of displayed information; however, all eihthalso found
the presentation technique based on the dependency relativery use-
ful in alleviating this problem, but complained about thepense time.

Finally, most users were either ‘very satisfied’ or ‘satdfi@ith the rec-
onciled ontology obtained after the execution of the sekbcepair plan.

e Part 3. Most participants had used a CVS system before for managxig
files and described the CVS functionality implemente@ontentCVS as
either ‘very useful’ or ‘useful’. Many participants emplnsed the impor-
tance of some previous training for taking full advantagehefCVS func-
tionality in ContentCVS. As in parts 1 and 2, the use of a combination of
structural and deductive differences for detecting enptus the computa-
tion of plans for repairing them was evaluated very pod§iv€oncerning
the ontology finally obtained, the participants were ablelitain an error-
free ontology and were satisfied with the result. Only in oagecthe final
discussion revealed an error in the final ontology; howdweparticipants
acknowledged that this error was not due to a deficiency otcible

Finally, all users evaluated the tool very positively. Mosthem evaluated
the GUI as ‘good’ and the ontology development workflow inmpésted in the
tool as either ‘very good’ or ‘good’. Therefore, we consitlee feedback very
positive in general. The main points of criticism were thikolwing:

e Excessive amounts of information displayed when usingdaapproxi-
mations of the deductive difference. Even if the identifmabf dependen-
cies between entailments helped in alleviating this problge consider it
important to investigate new ways of organising a potelgt@rerwhelm-
ing number of entailments.

e Slow response of the tool when computing all justificatiohsestain en-
tailments and/or computing large approximations of theudade differ-
ence. For large-scale ontology development, the furthémagation of
our algorithms will be necessary. To this end, we considee@slly
promising the use oifhcremental reasoningechniques (see for example
first results in [5]), which aim at avoiding unnecessary oeiputations
after performing a (small) number of changes to the ontalogy

Addressing these deficiencies will be part of our future work

8. Related work

In recent years, there have been several proposals for wimgrthe support
for collaboration in ontology engineering tools.

Collaborative Protégé [17, 14, 57] allows developers aotdhdiscussions,
chat, and annotate changes. Ontology versions are compsirggithe Prompt-

Diff algorithm [15, 16], which creates a ‘structural diffebwveen them using a
29

number of heuristics. Changes can be annotated as inst@iran@sntology [14].
Collaborative Protégé has been tested in different sa@nabtaining good re-
sults [48]; however users still asked for more sophistata@mmunication tech-
niques, as well as for a mechanism to prevent undesireddbgpmsequences.

The authors of [44] have proposed a framework to manage avghpate
changes in collaborative workflows in which OWL 2 changes farenalised
using an ontology [43]. The authors of [46] have presentedrdaology change
management system in which the change history is stored envarsand the
system can identify differences in the change sets fronemifft clients.

DOGMA-MESS [12, 11]is a methodology with tool support fonemunity-
grounded ontology engineering. The methodology emphasiseimportance
of developing common conceptual models, especially wherpthcess of col-
laborative ontology engineering crosses the boundariassofgle organisation.
Ontology developers extend a consensual upper ontolopwiimlg some prede-
fined restrictions of the extension of upper knowledge @euslicies [10]). If
a reuse policy is violated a conflict arises. [31] and [27]spre similar frame-
works where reuse policies are based on the locality prppédntologies [7].

Several methodologies and tools focus on the definition whé& or semi-
formal argumentation models to achieve a consensus ovegebka For exam-
ple, HCOME [38] and DILIGENT [56, 55, 51] are methodologiekiah follow
a formal argumentation model. DILIGENT exploits an argutaéon ontology
to describe and store (as instances) the different dismuskreads. Thus, the
revision of past decisions and conclusions can be easiigvet and reviewed,
unlike traditional communications means like e-mail ortcl@cero [13] imple-
ments and argumentation model based on the DILIGENT metbggovhereas
[37] presents a system based on HCOME.

We believe that the functionality and guidelines descrilbgd 7, 14, 46, 11,
51, 37] and our techniques naturally complement each ofmrexample, dis-
cussion threads and annotations as well as formal argutrentaodels could
be used irContentCVS to assist users in selecting intended and unintended con-
sequences (i.e. in Steps 9 and 10 of Table 4), and for regpterationale be-
hind their selections. Similarly, the guidelines providgdthe DOGMA-MESS
methodology could be integrated in our framework to helpettgyers from dif-
ferent organisations to reach consensus.

The authors of [49] propose a ‘locking’ mechanism that ai@avuser, for
example, to establish a lock over a concept, meaning that ogers are not al-
lowed to make changes that ‘affect’ that concept until thok lmas been released.
Although errors can still occur, the idea is that these lagkald mitigate them.

30

The precise guarantees provided by these locks are, houwetetear. Conflicts
are still likely to arise, and the approach in [49] does nowpte any means for
detecting and resolving them if they do.

The OWLDIff tool ” provides a GUI for computing the deductive differences
between pairs of OWL 2 EL ontologies. These differences hosva as a set
of highlighted concepts, which are the ones whose meanifeysibetween the
two ontologies. However, the tool does not provide meangxpfaining these
differences to the user, for defining approximations, foitfdimig a reconciled
ontology or for resolving conflicts.

Finally, the techniques we propose for conflict resolutigterd those used
for debugging and repairing inconsistencies based orfipaions (e.qg., [34, 47,
35, 33, 25, 23]). In Section 6 we have already pointed out pleeific improve-
ments w.r.t. existing technigues implemente€ontentCVS.

9. Conclusion

We have proposed a novel approach for facilitating conotiwatology de-
velopment, described a tool that implements it and predemf@eliminary eval-
uation of the tool. The main contributions of our researa lsa summarised as
follows:

e We have adapted the Concurrent Versioning paradigm to @gyotngi-
neering, which allows developers to make changes condiyrand re-
motely to the same ontology, track changes, and manag®wusrsi

¢ We have proposed notions of equivalence and differencedsgtwntology
versions.

e We have proposed a collection of techniques for resolvingliots be-
tween ontology versions both at the structural and at theas&mlevel.

e We have adapted state-of-the art ontology debugging amdrteghniques
to our setting and proposed several improvements.

e We have developed and evaluated a prototypical tool andnaat@romis-
ing preliminary results as well as encouraging feedbaak fugers.

In future work, we plan to improve our tool in a number of waySirst, we
are working on improving the system’s performance and iti@dar the com-
putation of justifications. As pointed out in Section 7, thee wf incremental
reasoning techniques is particularly interesting in tleigard. Second, we are

"OWLDIff: http://sourceforge. net/projects/owdiff
31

enhancing the tool with new features. In particular, we gtassupport richer
approximations and the use ohit tests—files containing a set of unintended
entailments that can be used to detect modelling errorsh&umore, we aim to
integrate in our tool some of the functionality provided Igts-of-the-art frame-
works, such as Collaborative Protégé, for holding dismrss and annotating
changes. Another interesting direction for future redeavould be to provide
means for assigning responsibilities and duties to diffeomtology developers
and support for automatically checking whether changeserbgdievelopers are
consistent with their duties. Finally, the integration ak&erence thesaurus [32]
within the proposed framework might help reducing the lakaonflicts caused
by the use of different labels to refer to the same entity.

Acknowledgments

This research has been partially funded by the Spanish iNdtResearch
Program (TIN2008-01825/TIN). Ernesto Jimenez-Ruiz waspsued by the
PhD Fellowship Program of th@eneralitat Valencian@BFPI106/372). Bernardo
Cuenca Grau is supported by a Royal Society University Resdzellowship.
The authors also wish to acknowledge Alan Rector (InforamatManagement
Group, University of Manchester) for providing us with awable ontology test
sequence. Finally, we are also very grateful to the resessdhom the Univer-
sity Jaume | of Castellon who participated in our user study

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Bat] J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill.. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. MbiRUG. Sherlock, Gene
Ontology: tool for the unification of biology, Nature Gerst25 (1) (2000) 25-29.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, PPatel-Schneider (eds.), The
Description Logic Handbook: Theory, Implementation, ampAcations, Cambridge Uni-
versity Press, 2003.

[3] N. Choi, I.-Y. Song, H. Han, A survey on ontology mappisdGMOD Rec. 35 (3) (2006)
34-41.

[4] O.Corcho, M. Fernandez-Lopez, A. Gomez-Pérez, Mathamgies, tools and languages for
building ontologies: Where is their meeting point?, Datatth Eng. 46 (1) (2003) 41-64.

[5] B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, Histoatters: Incremental ontol-
ogy reasoning using modules, in: Proc. of the 6th Internafi®emantic Web Conference
(ISWC), vol. 4825 of LNCS, Springer, 2007, pp. 183-196.

[6] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Jingt right amount: extracting
modules from ontologies, in: Proc. of the 16th Internatiddenference on World Wide
Web (WWW), 2007, pp. 717-726.

32

[7]
(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Mtzduweuse of ontologies: Theory
and practice, Journal of Artificial Intelligence ReseardhlR) 31 (2008) 273-318.

B. Cuenca Grau, |. Horrocks, B. Motik, B. Parsia, P. R&ehneider, U. Sattler, OWL 2:
The next step for OWL, Journal of Web Semantics 6 (4) (2008}-3Q22.

S. de Coronado, L. W. Wright, G. Fragoso, M. W. Haber, EHahn-Dantona, F. W. Hartel,
S. L. Quan, T. Safran, N. Thomas, L. Whiteman, The NCI Thasaquality assurance life
cycle, Journal of Biomedical Informatics 42 (3) (2009) 53839.

P. De Leenheer, A. de Moor, R. Meersman, Context dep@yd@anagement in ontology
engineering: A formal approach, J. Data Semantics 8 (20643@&.

P. De Leenheer, C. Debruyne, DOGMA-MESS: A tool for fadented collaborative on-
tology evolution, in: On the Move to Meaningful Internet 8ms: OTM 2008 Workshops,
vol. 5333 of LNCS, Springer, 2008, pp. 797-806.

A. de Moor, P. De Leenheer, R. Meersman, DOGMA-MESS: Aanieg evolution support
system for interorganizational ontology engineering,lidth International Conference on
Conceptual Structures, ICCS, vol. 4068 of Lecture Notesdmfuter Science, Springer,
2006, pp. 189-202.

K. Dellschaft, H. Engelbrecht, J. M. Barreto, S. Rutedk, S. Staab, Cicero: Tracking de-
sign rationale in collaborative ontology engineering,Time Semantic Web: Research and
Applications, 5th European Semantic Web Conference (ESWRTS, Springer, 2008,
pp. 782-786.

N. Fridman Noy, A. Chugh, W. Liu, M. A. Musen, A framewofer ontology evolution
in collaborative environments, in: Proc. of the 5th Intéior@al Semantic Web Conference
(ISWC), vol. 4273 of LNCS, Springer, 2006, pp. 544-558.

N. Fridman Noy, S. Kunnatur, M. Klein, M. Musen, Trackithanges during ontology
evolution, in: Proc. of the Third International Semantic BA@onference (ISWC), vol.
3298 of LNCS, Springer, 2004, pp. 259-273.

N. Fridman Noy, M. A. Musen, Ontology versioning in antology management frame-
work, IEEE Intelligent Systems 19 (4) (2004) 6-13.

N. Fridman Noy, T. Tudorache, S. de Coronado, M. A. Mydeaveloping biomedical
ontologies collaboratively, in: Proc. of AMIA SymposiunQ@s.

A. Gomez-Pérez, M. C. Suarez-Figueroa, Scenadobdilding ontology networks within
the NeOn methodology, in: Proc. of the fifth internationahfsmence on Knowledge cap-
ture (K-CAP), ACM, New York, NY, USA, 2009, pp. 183-184.

F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, Jo&x, Modeling a description
logic vocabulary for cancer research, Journal of Biomddidarmatics 38 (2).

M. Hartung, T. Kirsten, E. Rahm, Analyzing the evolutiof life science ontologies and
mappings., in: Proc. of the 5th international workshop oniaDiategration in the Life
Sciences (DILS), vol. 5109 of LNCS, Springer, 2008, pp. I1-2

M. Hepp, P. De Leenheer, A. de Moor, Y. Sure (eds.), GgplManagement, Semantic
Web, Semantic Web Services, and Business Applications,vof Semantic Web And
Beyond Computing for Human Experience, Springer, 2008.

M. Horridge, S. Bechhofer, The OWL API: A Java API for vikarg with OWL 2 ontolo-
gies, in: OWLED, vol. 529 of CEUR Workshop Proceedings, CEWR.org, 2009.

M. Horridge, B. Parsia, From justifications towards gi©for ontology engineering, in:
Proceedings of the Twelfth International Conference onddies of Knowledge Repre-
sentation and Reasoning, KR, AAAI Press, 2010.

33

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Horridge, B. Parsia, U. Sattler, Explanation of OWht&Iments in Protege 4, in: In-
ternational Semantic Web Conference (Posters & Demos)4¢dl of CEUR Workshop
Proceedings, CEUR-WS.org, 2008.

M. Horridge, B. Parsia, U. Sattler, Laconic and predistifications in OWL, in: The
Semantic Web - ISWC 2008, 7th International Semantic Welf&@ence, ISWC, vol. 5318
of Lecture Notes in Computer Science, Springer, 2008, pp-338.

I. Horrocks, P. F. Patel-Schneider, F. van HarmelennF§HZ Q and RDF to OWL: the
making of a web ontology language, Journal of Web Semantft$ (?003) 7—26.

L. lannone, I. Palmisano, A. L. Rector, R. Stevens, Assgy the safety of knowledge
patterns in owl ontologies, in: The Semantic Web: Reseanth/Agpplications, 7th Ex-
tended Semantic Web Conference, ESWC, vol. 6088 of LectatedNin Computer Sci-
ence, Springer, 2010, pp. 137-151.

E. Jiménez-Ruiz, B. Cuenca Grau, |. Horrocks, R. Begl Building ontologies collabo-
ratively using ContentCVS, in: Proc. of the InternationaMshop on Description Logics
(DL), vol. 477 of CEUR Workshop Proceedings, 2009.

E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Beglga ContentCVS: A CVS-based
Collaborative ONTology ENgineering Tool (demo), in: Predags of the 2nd Interna-
tional Workshop on Semantic Web Applications and Tools fife [Sciences (SWAT4LS
2009), Amsterdam, The Netherlands, vol. 559 of CEUR WorkdPimceedings, 2009.

E. Jiménez-Ruiz, B. Cuenca Grau, |. Horrocks, R. Begla Ontology integration using
mappings: Towards getting the right logical consequerinefroc. of the European Se-
mantic Web Conference (ESWC), Springer LNCS, 2009, pp. 183-

E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. SatereR. Berlanga, Safe and economic
re-use of ontologies: A logic-based methodology and toppsut, in: The Semantic Web:
Research and Applications, 5th European Semantic Web @orde, ESWC, vol. 5021 of
Lecture Notes in Computer Science, Springer, 2008, pp. 18%—

A. Jimeno-Yepes, E. Jiménez-Ruiz, R. Berlanga, D.Hé Schuhmann, Reuse of termi-
nological resources for efficient ontological engineeiimdjife sciences, BMC Bioinfor-
matics 10 (Suppl 10).

A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Findiad justifications of OWL DL en-
tailments, in: Proc. of the 6th International Semantic Welm€rence (ISWC), vol. 4825
of LNCS, Springer, 2007, pp. 267-280.

A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, Repgiunsatisfiable concepts in
OWL ontologies, in: Proc. of the 2nd European Semantic Webf&@ence (ESWC), vol.
4011 of LNCS, Springer, 2006, pp. 170-184.

A. Kalyanpur, B. Parsia, E. Sirin, J. A. Hendler, Debirggunsatisfiable classes in OWL
ontologies, Journal of Web Semantics 3 (4) (2005) 268—293.

B. Konev, D. Walther, F. Wolter, The logical differenpeoblem for description logic ter-
minologies, in: Proc. of the 4th International Joint Coefaze on Automated Reasoning
(IJCAR), vol. 5195 of LNCS, Springer, 2008, pp. 259-274.

K. Kotis, On supporting HCOME-30 ontology argumentatiusing semantic wiki tech-
nology, in: On the Move to Meaningful Internet Systems: OTBD& Workshops, 2008,
pp. 193-199.

K. Kotis, G. A. Vouros, Human-centered ontology engiring: The HCOME methodol-
ogy, Knowl. Inf. Syst. 10 (1) (2006) 109-131.

A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Vokn infrastructure for searching,

34

[40]

[41]
[42]
[43]
[44]

[45]

[46]
[47]

[48]

[49]

[50]
[51]
[52]
[53]

[54]

[55]

[56]

[57]

reusing and evolving distributed ontologies, in: Prochef International World Wide Web
Conference (WWW), 2003, pp. 439-448.

J. L. V. Mejino Jr., C. Rosse, Symbolic modeling of stwwral relationships in the Founda-
tional Model of Anatomy, in: Proc. of First International Yshop on Formal Biomedical
Knowledge Representation (KR-MED), 2004, pp. 48—62.

B. Motik, B. Cuenca Grau, |. Horrocks, Z. Wu, A. Fokoue,l@tz, OWL 2 Web Ontology
Language: Profiles, W3C Recommendation (2009).

B. Motik, P. Patel-Schneider, B. Parsia, OWL 2 web oogyl language structural specifi-
cation and functional-style syntax, W3C Recommendati®0#2.

R. Palma, P. Haase, O. Corcho, A. Gomez-Pérez, Cheeggesentation for OWL 2 on-
tologies, in: The Sixth OWLED Workshop on OWL: Experienced ®irections, 2009.

R. Palma, P. Haase, Q. Ji, D1.3.2. Change managemaipog collaborative workflows,
NeOn Deliverable available at: http://www.neon-projea/ (December, 2008).

A. L. Rector, J. Rogers, Ontological and practical &sin using a description logic to
represent medical concept systems: Experience from GALENroc. of Reasoning Web,
2006, pp. 197-231.

T. Redmond, M. Smith, N. Drummond, T. Tudorache., Mangghange: An ontology
version control system, in: Proc. of OWL: Experiences ane&ions, OWLED, 2008.

S. Schlobach, Z. Huang, R. Cornet, F. van Harmelen, Bgimg incoherent terminologies,
Journal of Automated Reasoning 39 (3) (2007) 317-349.

D. Schober, J. Malone, R. Stevens, Observations irabolative ontology editing using
Collaborative Protégé, in: Proceedings of the WorkshopCollaborative Construction,
Management and Linking of Structured Knowledge (CK2000D2

J. Seidenberg, A. L. Rector, A methodology for asyndious multi-user editing of seman-
tic web ontologies, in: Proc. of the 4th International Coafece on Knowledge Capture
(K-CAP), ACM, 2007, pp. 127-134.

E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, Y. K&ellet: A practical OWL-DL
reasoner, J. Web Sem. 5 (2) (2007) 51-53.

H. Sofia Pinto, C. Tempich, S. Staab, Ontology engimggaind evolution in a distributed
world using DILIGENT, in: Handbook on Ontologies, Spring2®09, pp. 153-176.

K. Spackman, SNOMED RT and SNOMED CT. Promise of an magional clinical on-
tology, M.D. Computing 17.

H. Stuckenschmidt, M. Klein, Reasoning and change rgameent in modular ontologies,
Data Knowl. Eng. 63 (2) (2007) 200-223.

B. Suntisrivaraporn, G. Qi, Q. Ji, P. Haase, A modukitm-based approach to finding all
justifications for OWL DL entailments, in: Proc. of the 3rdias Semantic Web Confer-
ence (ASWC), vol. 5367 of LNCS, Springer, 2008, pp. 1-15.

C. Tempich, E. Simperl, M. Luczak, R. Studer, H. S. Piitia@yumentation-based ontology
engineering, IEEE Intelligent Systems 22 (6) (2007) 52—-59.

C. Tempich, H. Sofia Pinto, Y. Sure, S. Staab, An Arguragah Ontology for Dlstributed,
Loosely-controlled and evolvinG Engineering processesNfologies (DILIGENT), in:
The Semantic Web: Research and Applications, Second Eamdpemantic Web Confer-
ence (ESWC), 2005, pp. 241-256.

T. Tudorache, N. Fridman Noy, S. W. Tu, M. A. Musen, Sugtipg collaborative ontol-
ogy development in Protégé, in: International Semantb\W@onference (ISWC), LNCS,
Springer, 2008, pp. 17-32.

35

