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1. Introduction

Ontologies expressed using the Web Ontology Language (OWL) and its
revision OWL 2 [25, 23] play a central role in the development of the Se-
mantic Web. They are also widely used in biomedical information systems
28, 10, 26|, as well as an increasing range of application domains such as
agriculture [31], astronomy [4], defence [20], and geography [11]. Ontology
classification—the computation of the subsumption hierarchies for classes
and properties—is a core reasoning service provided by all OWL reasoners
known to us. The resulting class and property hierarchies are used by ontol-
ogy engineers to navigate the ontology and identify modelling errors, as well
as for inference, explanation, and query answering.

Most OWL reasoners, such as Pellet [30], FaCT++ [33], and RacerPro
[13], solve the classification problem using an Enhanced Traversal (ET) clas-
sification algorithm similar to the one used in early description logic rea-
soners [2]. To construct a class hierarchy, this algorithm starts with the
empty hierarchy and then iteratively inserts each class from the ontology
into the hierarchy. Each insertion step typically requires one or more sub-
sumption tests—checks whether a subsumption relationship holds between
two classes—in order to determine the proper position of a class in the hi-
erarchy constructed thus far. Significant attention has been devoted to the
optimisation of individual subsumption tests [18, 16, 32, 5, 29, 8]. Neverthe-
less, the ET algorithm can be inefficient on ontologies with a large number
of classes: even if each subsumption test is very efficient, the large number of
tests required to construct a hierarchy can make classification an expensive
operation. Furthermore, repeatedly traversing a large class hierarchy during
each insertion step can be costly; this is particularly acute on the relatively
flat (i.e., broad and shallow) tree-shaped hierarchies often found in manually
constructed ontologies.

In order to overcome these deficiencies, algorithms for efficient classifica-
tion of ontologies expressed in the OWL 2 EL and OWL 2 QL profiles [24]
have been proposed [1]. It is, however, currently not known how to apply
these algorithms to OWL 2 ontologies.

Motivated by the desire to improve the performance of class classification,
in this paper we present a novel classification algorithm that can greatly re-
duce the number of required subsumption tests. Unlike ET, our algorithm
does not construct the hierarchy directly; instead, it maintains the sets of
known (K') and remaining possible (P) subsumer pairs, and it performs sub-



sumption tests to augment K and reduce P until K contains all the relevant
subsumptions and P becomes empty. Such a representation of the hierarchy
allows us to manipulate K and P using highly-tuned algorithms, such as the
ones for computing the transitive closure and the transitive reduction of a
relation. Furthermore, the relatively small subset of P that contains the re-
maining possible subsumers of a single class can be efficiently extracted using
simple operations, which can greatly reduce the cost of hierarchy traversal.
To further reduce the number of subsumption tests, we exploit the transitiv-
ity of the subclass relation to propagate (non-)subsumption information and
thus speed up the process of augmenting K and reducing P.

The practicability of such an algorithm critically depends on several fac-
tors. The first question is how to initialise K and P. We have developed
an initialisation approach that exploits information from reasoning tests in
order to eagerly identify subsumption relations and unsatisfiable classes and
thus reduce the overall amount of work. The second question is how to prop-
agate (non-)subsumptions in K and P efficiently: a naive strategy, such as
the one from [27], can be very inefficient in practice. We have addressed this
problem by again exploiting information gathered during reasoning tests.

After presenting the algorithm for the classification of classes, we turn
our attention to the classification of object and data properties. To the best
of our knowledge, all state of the art OWL reasoners construct property
hierarchies by simply computing the reflexive-transitive closure of the sub-
property axioms in the ontology. Such a procedure is incomplete, as can be
demonstrated by a simple example that uses existential restrictions (Object-
SomeValuesFrom), functional properties, and property hierarchies (i.e., the
example can be expressed in OWL Lite), or an example that uses existential
restrictions, property chains (ObjectPropertyChain), and inverse properties.
Surprisingly, however, the problem of efficiently and correctly constructing
property hierarchies has received almost no attention in the literature, de-
spite being a standard reasoning task that is extensively used by ontology
editors such as Protégé. Property classification can in theory be solved using
an algorithm such as ET; however, as we discuss in more detail, such an ap-
proach is unlikely to be efficient. As a remedy, we present a novel encoding of
the property classification problems into class classification problems, which
allows us to exploit our new class classification algorithm to correctly and
efficiently compute property hierarchies.

We have implemented all our techniques in the HermiT reasoner. To the
best of our knowledge, this makes HermiT the only OWL 2 DL reasoner that



correctly classifies object and data properties. Moreover, we have conducted
an extensive experimental evaluation of our algorithms, which shows that
they consistently outperform ET, sometimes by a factor of ten or more.

2. Preliminaries

In this section we briefly introduce OWL [25, 23]—the ontology language
developed by the W3C; we present an overview of the Enhanced Traversal
(ET) algorithm [2]; and we present an overview of the model-building calculi,
such as tableau and hypertableau, that provide the algorithmic foundation
for subsumption checking in most state of the art OWL reasoners.

2.1. OWL Ontologies

In this paper we focus on OWL 2 ontologies interpreted under the Di-
rect Semantics; however, our techniques are also applicable to OWL, as
well as any propositionally closed ontology language. For a full definition
of OWL 2, please refer to the OWL 2 Structural Specification and Direct
Semantics [25, 23]; here we just recapitulate the relevant terminology. A do-
main of interest can be modelled in OWL 2 by means of individuals (which
denote objects from the domain of discourse), literals (which denote data val-
ues, such as strings or integers), classes (which denote sets of individuals),
datatypes (which denote sets of data values), object properties (which relate
pairs of individuals), and data properties (which relate individuals with con-
crete values). Individuals, classes, datatypes, and object properties can be
used to form class expressions, data ranges, and object property expressions,
respectively; these are complex descriptions of sets of individuals, sets of lit-
erals, and relationships between individuals. Finally, class expressions, data
ranges, object property expressions, data properties, individuals, and liter-
als can be used to form axioms—statements that describe the domain being
modelled. Axioms describing individuals are commonly called assertions. An
OWL 2 ontology O is a finite set of axioms.

For example, consider axioms (1)—(4) below.!? Axiom (1) states that the
class Human is a subclass of the class Animal (i.e., all humans are ani-
mals). Axiom (2) states that the individual Alex is an instance of the class
Human, while axiom (3) states that the individual Alex is related to literal

LAll elements in OWL are identified using IRIs, but for brevity we do not use IRIs and
prefix names in this paper.



“27" " "xsd:integer by the data property hasAge (i.e., the age of Alex is 27).
Finally, axiom (4) states that the value of the object property hasColour can
be one of the individuals red, green, or blue.

SubClassOf(Human Animal) (1)

ClassAssertion(Human Alex)  (2)

DataPropertyAssertion(hasAge Alex “27”" “xsd:integer)  (3)
ObjectPropertyRange(hasColour ObjectOneOf(red green blue))  (4)

The semantics of axioms in an OWL ontology O is given by means of two-
sorted interpretations over the object domain and the data domain, where
the latter contains well-known data values such as integers and strings. An
interpretation I maps individuals to elements of the object domain, liter-
als to elements of the data domain, classes to subsets of the object domain,
datatypes to subsets of the data domain, object properties to sets of pairs of
object domain elements, and data properties to sets of pairs whose first com-
ponent is from the object domain and whose second component is from the
data domain. OWL 2 contains two classes, one datatype, two object prop-
erties, and two data properties which are all interpreted in every interpreta-
tion in a predetermined way. In particular, the class owl:Thing is mapped
to the set of all objects in the object domain, and the class owl:Nothing is
mapped to the empty set. Similarly, datatype rdfs:Literal is mapped to the
set of all data values in the data domain. Furthermore, the object prop-
erty owl:topObjectProperty is mapped to the set of all pairs of objects from
the object domain, and the object property owl:bottomObjectProperty is
mapped to the empty set. Finally, the data property owl:topDataProperty is
mapped to all pairs consisting of an object from the object domain and an ob-
ject from the data domain, and the data property owl:bottomDataProperty
is mapped to the empty set. An individual 7 is an instance of a class C' in
an interpretation I if the image of C' contains the image of i. For an object
property op, an individual ¢ is an op-successor of an individual j in an inter-
pretation [ if the image of op contains («, (), where o and (3 are the images
of ¢ and 7, respectively.

An interpretation [ is a model of the ontology if it satisfies all conditions in
[23]. For example, if O contains SubClassOf(C' D), then the conditions from
23] require each instance of C' to be an instance of D in I. Furthermore, if
O contains ClassAssertion(ObjectSomeValuesFrom(op C) i), then individual
i must be an instance of ObjectSomeValuesFrom(op C') in I; the latter is the
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case if an op-successor j in [ exists such that j is an instance of C' in I.

If the axioms of O cannot be satisfied in any interpretation (i.e., if O
has no model), then O is unsatisfiable; otherwise, O is satisfiable. If the
interpretation of a class C' is contained in the interpretation of a class D in
all models of O, then C' is a subclass of D (or, equivalently, D subsumes C')
in O and we write O |= C' C D. If the interpretations of C' and D necessarily
coincide in all models of O, then C' and D are equivalent in O and we
write O = C = D. A class C is satisfiable if a model of O exists in which the
interpretation of C'is not empty; otherwise, C' is unsatisfiable. If O |~ C' C D,
then a model I of O exists in which C has an instance that is not an instance
of D. We use analogous notation for object and data properties.

We use the following notation for sets of classes, object property expres-
sions, and data properties occurring in an ontology O:

o C,, is the set of all classes that occur in O and are different from
owl: Thing and owl:Nothing;

e OPE,, contains op and ObjectInverseOf(op) for each object property
op that occurs in O and is different from owl:topObjectProperty and
owl:bottomObjectProperty; and

e DP, contains each data property that occurs in O and is different from
owl:topDataProperty and owl:bottomDataProperty.

Furthermore, we use the following abbreviations as well:

Co=C, U {owl:Thing, owl:Nothing}
OPE, = OPE,, U {owl:topObjectProperty, owl:bottomObjectProperty }
DP, = DP,, U {owl:topDataProperty, owl:bottomODataProperty }

We next illustrate these definitions by means of an example. Let O be
the ontology containing axioms (5) and (6); then, O = C' C E even though
this is not stated explicitly. This is because axiom (5) ensures that, in each
model of O, each instance ¢ of C' is related to an instance of D using the
object property op. Each ¢ thus has an op-successor, so the property domain
axiom (6) ensures that ¢ is also an instance of E. Since this holds for an
arbitrary ¢, we can conclude that C'is a subclass of E.

SubClassOf(C' ObjectSomeValuesFrom(op D)) (5)
ObjectPropertyDomain(op E) (6)



2.2. Enhanced Traversal Algorithm

(Classification of an ontology O is the computation of all pairs of classes
(C, D) such that {C,D} C Cp and O |= C C D; similarly, object (resp.
data) property classification of O is the computation of all pairs of object
(resp. data) property expressions (R, S) such that {R,S} C OPEy (resp.
{R,S} CDPp) and O = RC S. Roughly speaking, for a relation U con-
taining all the resulting pairs, the corresponding hierarchy is the reflexive and
transitively reduced relation H that ‘implies’ all pairs in U.2 For example,
from an ontology that contains (5) and (6), a classification algorithm should
compute the following hierarchy:

{{owl:Nothing, C), (owl:Nothing, D), (C, E), (F, owl:Thing), (D, owl: Thing) }

A naive way to classify O is to check whether O = C C D for all possible
pairs of C' and D in O. Given n classes, such an algorithm requires n? tests,
which is inefficient even on medium-sized ontologies. To obtain a practical
classification algorithm, numerous optimisations have been developed with
the goal of reducing the number of tests performed. A prominent such tech-
nique is the Enhanced Traversal (ET) algorithm [2]. The algorithm starts
with the trivial hierarchy H = {(owl:Nothing, owl:Thing)} and it progres-
sively adds new classes to H using a two-phase procedure. In the first phase,
the most specific superclasses of a class C' are determined using a top-down
breadth-first traversal of H; in the second-phase, the most general subclasses
of C' are determined using a bottom-up traversal of H.

A sample run of the ET algorithm on an ontology O containing ax-
ioms (5) and (6) is shown in Figure 1. The algorithm starts by setting
H = {(owl:Nothing, owl: Thing) }. Next, the algorithm inserts C' into H us-
ing the following two steps:

e In the top-down phase, the algorithm checks O = C' C owl:Thing. This
subsumption trivially holds, so the algorithm proceeds with the ‘chil-
dren’ of owl:Thing; so far, this includes only owl:Nothing, so the al-
gorithm checks O = C' C owl:Nothing, which does not hold. Conse-
quently, C' must be inserted into H somewhere between owl:Thing and
owl:Nothing.

2For a binary relation R, its reflexive and transitive reduction is the minimal relation
R’ such that the reflexive and transitive closure of R’ is the same as the reflexive and
transitive closure of R.
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Figure 1: A run of ET over O containing axioms (5) and (6)

e In the bottom-up phase, the algorithm checks O |= owl:Nothing C C,
which trivially holds; next, the algorithm checks O |= owl:Thing C C,
which does not hold. Consequently, C' is inserted into H exactly be-
tween owl:Nothing and owl:Thing.

In an analogous way, D is next inserted into H exactly between owl:Nothing
and owl:Thing, but in a separate branch from C' since O £ C T D and
O DCC. Finally,sinceO FCC E, O ECC,and O |~ D C E, class
E' is inserted into H below owl:Thing and above C'.

The ET algorithm significantly reduces the number of subsumption tests
from the theoretical upper bound of n2. For example, in the top-down phase,
if O = C C D, then the algorithm does not need to check C' against the
children of D. Nevertheless, classifying large ontologies might still require a
large number of subsumption tests. This is because most real-world ontolo-
gies usually have relatively flat (i.e., broad and shallow) hierarchies with only
a few ‘top-level’ classes (i.e., classes located immediately below owl:Thing in
the hierarchy). In such cases, most classes have owl:Nothing as a child, so
in the bottom-up phase one must check the subsumption of a class against
a (possibly) large number of such ‘leaf’ classes. Furthermore, as H becomes
larger in size, repeated traversal of H in both the top-down and bottom-up
phases can be costly.

In order to further reduce the number of subsumption tests required to
compute the hierarchy, additional optimisation techniques have been pro-
posed. Most of these try to identify obvious (non-)subsumptions by propa-
gating information from previous tests [2] or via cheap syntactic checks, such
as told subsumers [2], told non-subsumers [12], and completely defined classes
[34]. While such optimisations can significantly improve the performance of
the ET algorithm, they do not overcome all the problems outlined above.



2.83. Model Construction using (Hyper)Tableau Calculi

It is well known that checking subsumption between classes C' and D
w.r.t. an ontology O (i.e., checking if O = C' C D) is equivalent to checking
whether the class

A = ObjectIntersectionOf(C' ObjectComplementOf( D ))
is unsatisfiable w.r.t. O, which is equivalent to checking whether

O U {ClassAssertion(A sg)}

is unsatisfiable for sy a ‘fresh’ individual (i.e., an individual not occurring in
O). To decide the latter problem, most OWL reasoners use a model construc-
tion calculus, such as tableau or hypertableau. For a detailed introduction to
the hypertableau calculus for OWL 2 please refer to [22], and for the tableau
calculus please refer to [17]; here, we just present an overview of the aspects
of these calculi that are relevant to our classification algorithms.

Although (hyper)tableau calculi have been formalised in a variety of ways,
all of them can be seen as constructing a generalised set of assertions that
represents (an abstraction of) a model of O. Each such calculus consists of
one or more derivation rules that can be applied to a set of assertions A to
produce a set of assertions A’, where the latter set makes a certain piece
of information from O explicit. Derivation rules usually add new class or
property assertions, and they may introduce new individuals; the latter may
be necessary to satisfy, for example, existential restrictions (ObjectSomeVal-
uesFrom). Moreover, in addition to standard assertions, derivation rules can
add a special assertion unsatisfiable if an obvious contradiction is detected.
Finally, derivation rules can be nondeterministic—that is, a derivation rule
can be allowed to choose between several alternative assertions to add. To
show that A is satisfiable, (hyper)tableau calculi construct a derivation—a
sequence of sets of assertions Ay, ..., .4, where

o A, contains all assertions in O and the assertion ClassAssertion(A s),
where sg is a fresh individual called the root,

e A, 1 is a possible result of applying a derivation rule to A; for each
0<i<n,and

e no derivation rule is applicable to A,,.



If a derivation exists such that A,, does not contain unsatisfiable, then A is
satisfiable and A,, is called a pre-model for A. If no such derivation exists,
then A is unsatisfiable (i.e., it is equivalent to owl:Nothing).

Each assertion occurring in a derivation Ay, ..., A, is derived either de-
terministically or nondeterministically, which is determined inductively as
follows: all assertions in A are derived deterministically; furthermore, an
assertion occurring in some A; is derived deterministically if and only if it
is derived using a deterministic derivation rule from assertions that were all
derived deterministically. In the rest of this paper we assume that, for each
assertion a occurring in some 4;, we can determine how o was derived. This
is straightforward in practice since all state of the art (hyper)tableau rea-
soners employ dependency directed backtracking [16]. In order to optimise
backtracking, these reasoners associate with each assertion o a dependency
set—a data structure that indicates the nondeterministic choices that « de-
pends on. Then, « is derived deterministically if and only if the dependency
set of v is empty. Discussing the details of dependency directed backtracking
is out of scope of this paper; please refer to [16] for further details.

For a set of assertions A and individuals s and t that appear in A, we
define the label L4(s) of s in A as follows:

La(s) :={A] ClassAssertion(A s) € A and A is a class}

The classification algorithm presented in this paper can be used with any
(hyper)tableau calculus such that, for each ontology O, each class A, and
each pre-model A, for A with root individual sy produced by the calculus,
the following property holds:

(P1) if C € L4,(s0) and the assertion ClassAssertion(C' sg) was derived
deterministically, then O = A C C.

All (hyper)tableau calculi used in practice that we are aware of satisfy this
property and so they can be used with our classification algorithm.

In addition, for each ontology O and each pre-model A, generated by
the hypertableau calculus used in the HermiT reasoner [22], the following
property holds:

(P2) for an arbitrary individual s in A,, and arbitrary classes D and F, if
De Ly, (s)and EE L4,(s), then O = D C E.
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Pre-models produced by tableau algorithms as presented in the literature also
satisfy property (P2); however, commonly used optimisations, such as lazy
unfolding [2], can compromise property (P2). Nevertheless, most (if not all)
implemented calculi produce pre-models that satisfy at least the following
weaker property:

(P3) for an arbitrary individual s in 4,, and arbitrary classes D and E where
E is primitive in O2 if D € L4,(s) and E & L4,(s), then O £ D C E.

Properties (P2) and (P3) can be used to extract (non-)subsumption infor-
mation from pre-models, as the following example demonstrates.

Example 1. Let O be an ontology that contains the following axioms:

SubClassOf(A B) (7)
SubClassOf(B () (8)
SubClassOf(E F') (9)

To check whether A is satisfiable, a (hyper)tableau calculus constructs a
pre-model that satisfies properties (P1) and (P3). In particular, the calcu-
lus starts with the set of assertions Ay = {ClassAssertion(A sp)}. To satisfy
the axioms in O, the calculus extends A, with ClassAssertion(B sg) and
ClassAssertion(C' s¢); let A, be the resulting pre-model. All practical (hy-
per)tableau calculi we are aware of are sufficiently optimised so as to pro-
duce A,, deterministically. We can now use the label £4,(s) to identify
(non-)subsumers of A as follows. Since F and F are primitive in O, from
E & Ly, (so) and F & L4, (so) we can conclude that neither £ nor F' is a
subsumer of A; this is because A, is an abstraction of a model of O that
witnesses the non-subsumption. Furthermore, from the fact that all asser-
tions in A, were derived deterministically, we can conclude that B and C
are subsumers of A. O

3. Optimised Class Classification

In this section we introduce our classification algorithm. We discuss the
main ideas and present an overview of the algorithm in Section 3.1, after
which we present the algorithm in full detail in Sections 3.2 and 3.3.

3A class E is said to be primitive in O if O is unfoldable [34] and it does not contain
an axiom of the form EquivalentClasses(E C).
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3.1. An Overview

In order to reuse the (non-)subsumption information from satisfiability
and subsumption tests, our algorithm maintains two binary relations on
Co x Cp which we denote with K and P. Relation K represents the known
subsumptions—that is, (C, D) € K implies that O = C' C D is known for
certain. One might be tempted to use a dual relation that represents the
known non-subsumptions; however, such a relation is typically quite large, so
maintaining it explicitly would be impractical. Our algorithm therefore man-
ages the non-subsumption information indirectly using a relation P of possi-
ble subsumptions. More precisely, (C, D) € P and (C, D) ¢ K implies that
O |= C C D is possible (i.e., no evidence to the contrary has been encoun-
tered thus far); thus, (C, D) & P and (C, D) ¢ K imply that O = C C D
is known. Apart from initialisation and during certain intermediate steps,
relations K and P are disjoint; thus, P reflects the ‘remaining work’ needed
to classify O.

Given a class C' for which another class D exists such that (C, D) € P,
our algorithm extracts from K and P a partial hierarchy Hq of all unknown,
but possible subsumers of C, and it then inserts C' into H¢ using a variant of
the ET algorithm. Class C' will typically have many known subsumers but
few unknown and possible subsumers, so Ho will usually be small. During
the insertion of C into H¢, our algorithm expands K and prunes P using
the information obtained in subsumption tests, thus potentially reducing
the work needed to classify the remaining classes. This process is repeated
until P becomes empty, at which point the transitive closure of K precisely
captures the subsumption relation between classes in O.

Our algorithm systematically exploits the transitivity of C to extend K
and prune P without actual reasoning. For example, if {(C, D), (E, F)} C K
and a subsumption test requires adding (D, F) to K, then (C,F) can be
added to K as well due to the transitivity of C. Ideally, our algorithm would
maintain the transitive closure of K as new subsumptions are discovered.
Efficient algorithms for the maintenance of transitive closures under updates
are available in the literature; however, we found them to be memory ineffi-
cient, which causes problems on large ontologies with many classes, such as
FMA and SNOMED. Therefore, instead of computing the transitive closure
of K explicitly, our algorithm uses a graph reachability algorithm to identify
whether a pair of the form (C, D) belongs to the transitive closure of K.

The transitivity of the subsumption relation can also be used to prune
pairs from P that correspond to obvious non-subsumptions. For example, if
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Figure 2: Eliminating impossible relations: nodes represent classes, solid
edges represent pairs in K, and the grey edge represents a pair that can be
in P only if the pair represented by the dashed edge is in PU K.

{{C,D),(E,F)} C K and {(D, E),(C, F)} C P, and we discover that (C, F')
should be removed from P (because C' is not subsumed by F), then we can
remove (D, F) from P as well: if (D, E) were later added to K, then (C, F')
would need to be added to K as well due to the transitivity of the subsump-
tion relation, which contradicts our evidence that C' is not subsumed by F'
Analogously, if {(C,D),(D,E)} C P, (E,F) € K,and (C,F) ¢ PU K, and
we discover that (C, D) should be added to K, then we can remove (D, E)
from P. Such situations are shown schematically in Figure 2.

Note, however, that checking conditions from the previous paragraph
requires several nested loops over potentially very large relations K and P;
thus, a direct implementation of such a scheme, as originally suggested in [27],
is unlikely to be efficient in practice. Our algorithm therefore uses a different
pruning strategy. Assume that a subsumption or a class satisfiability test
produces a pre-model A satisfying property (P2) from Section 2.3. For each
individual s in a pre-model A and each class D € L4(s), if (D, E) € P but
E & L4(s), then we can remove (D, E) from P: if F were a subsumer of
D, then s would be an instance of E in every pre-model, including A. We
present a variant of this scheme that is applicable if A satisfies only the weaker
property (P3). Although such approaches only partially capture the pruning
scheme from [27], they seem to exhibit a good balance between efficiency of
pruning and reduction of the number of subsumption tests.

Before presenting our algorithm, we next introduce several definitions.
For example, we define precisely what a hierarchy is, and we define certain
shortcuts for manipulating K and P. In order to use the same definitions
for class and property hierarchies, we present the definitions for a general
set U containing elements E+ and E,, and a subset S of U. To apply
these definitions to class classification, we should take U to be the set of all
classes in an ontology, Ft and E,| should be owl:Thing and owl:Nothing,
respectively, and S should be the set of classes that we want to classify.

13



Definition 2. Let U be a set containing special elements E| and E+, let S
be a subset of U, and let R C U x U be a binary relation on U.

o ForCeU,let Rlc ={D|{(C,D) € R}.

o For C,D € U, element D 1is reachable in R from element D, writ-
ten C' ~gr D, if elements Ey,...,E, € U with n > 0 exist such that
Ey=C, E,=D and (E;, E;11) € R for each 0 < i < n.* The opposite
of reachable is written C' v D.

e A hierarchy of S w.r.t. R, E\, and Et is a triple (V,H,p) whose
components satisfy the conditions listed below, for T defined as

T ={(E,,C),(C,Er) | Ce€S}U{(E,,Ex)}U
((C,D) €8x S|C~pD}.

— V is a set that contains, for each D € SU{E,, E1}, precisely one
C € SU{E,, Et} such that C ~»p D and D ~~7 C.

— H is the reflexive—transitive reduction of the relation
{{C,D) eV xV |C ~r D}.

— p: V — 25UELETY s the function on V such that D € p(C) if
and only if C' ~»p D and D ~7 C.

e hierarchy(S, R, £\, E1) is a function that returns one arbitrarily chosen
but fixed hierarchy of S w.r.t. R, F,, and E~.

Intuitively, hierarchy(S, R, E/|, E'r) arranges the elements of S into a hi-
erarchy where E';, and E+ are bottom and top elements, respectively, and
which ‘preserves’ the order of R; if S contains a subset of the elements of R,
the result can be understood as a ‘projection’ of R to S. The set V' contains
a single ‘representative’ C' for each strongly connected component of T', and
p(C) contains precisely the vertices of the strongly connected component of
T that contains C. Note that the result of hierarchy(S, R, E'|, E'r) is unique
up to the choice of the representative for each strongly connected component
of T'; furthermore, relation 7' contains the reflexive—transitive closure of R,

4Note that, according to this definition, each C' € U is reachable from itself.
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but one does not necessarily need to materialise the closure in order to de-
termine hierarchy(S, R, F |, E1); finally, if SU{E,, Et} = U (as is often the
case in practice), then the definition of 7" can be simplified to

T ={(E.,C),(C,E+) | CeS}U{(E.,Er)} UR.

Our classification algorithm is parameterised by three functions called
buildPreModel, explicit, and possible; that is, one can use our algorithm with
arbitrary functions that satisfy the properties specified in Definitions 3-5.

Definition 3. Let O be an ontology, and let D and N be sets of assertions.
Function buildPreModel(D, N, O) should return a set of assertions that is
either a pre-model of D UN U O, or that contains unsatisfiable if D UN U O
is unsatisfiable. The result should satisfy property (P1) from Section 2.3, and
it should be constructed by treating the assertions in D and N as having been
deriwed deterministically and nondeterministically, respectively.

Function buildPreModel is used to test the satisfiability of a class and sub-
sumption between classes using the (hyper)tableau calculus. In particular,
to check the satisfiability of C', our algorithm will call the function with D
and N defined as follows, where s is a ‘fresh’ individual:

D = { ClassAssertion(C sg) } N =10 (10)

If C is satisfiable, the function should return a pre-model of C' with root sg.
Furthermore, to check whether O = C' C D holds, our algorithm will call the
function with D and N defined as follows:

D = { ClassAssertion(C sg) } (1)
N = { ClassAssertion(Object ComplementOf(D s¢)) }

If the subsumption does not hold, the function should return a pre-model.
To understand why buildPreModel accepts as input two distinct sets of asser-
tions D and N, remember that, as discussed in Section 2.3, known subsumers
for a class A can be identified by performing a satisfiability test for A and
then checking which assertions involving the root individual were derived
deterministically. We extend this approach in a way that allows us to iden-
tify known subsumers during subsumption tests as well. To facilitate this,
buildPreModel accepts two sets of assertions. When constructing a pre-model
for DUN U O, the assertions in D are treated as having been derived de-
terministically, but the assertions in N are treated as having been derived
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nondeterministically (in practice, one can achieve this by associating each
assertion in A/ with a dummy nonempty dependency set). Let A be the
result of applying buildPreModel to D, N/, and O; if an assertion o € A was
derived deterministically, then we know that a was deterministically derived
from D and O only. Thus, when performing a subsumption test C' C D, if
an assertion ClassAssertion(E sg) in A was derived deterministically, then
we know for certain that E is a subsumer of C'. This is possible even if C'
is subsumed by D, so A is not a pre-model. Such a technique extends the
approaches in [27, 9] and, as we discuss in Section 6, it significantly improves
the performance of classifying the GALEN ontology [26].

Definition 4. Let S be a set of classes and let O be an ontology. Function
explicit(S, Q) should return a (possibly empty) set of pairs of classes (C, D)
such that C,D € S and O |=C C D.

Function explicit(S, O) is used to extract from the ontology O the ‘explicit’
class subsumptions—that is, subsumptions that can be extracted from O us-
ing a lightweight, typically syntactic analysis. The result of this function
is not necessarily transitively closed; in fact, transitively closing the result
might adversely affect the performance of classification. In the HermiT sys-
tem, this function returns all pairs of classes (C, D) such that C,D € S
and O contains an axiom of the form SubClassOf(C' D) or of the form
SubClassOf(C' ObjectInterserctionOf(D; ... D,)) in which we have D = D;
for some 1 <1i¢ <n.

Definition 5. Let S be a set of classes, let O be an ontology, let C' be a
class, let s be an individual, let A be a pre-model, and let K be a set of pairs
of classes satisfying the following conditions:

e O FI CF, for each (Fy, Fy) € K, and
o a class E exists such that E € LA(s) and E ~x C.

Function possible(S, O, C, s, A, K) should return a (not necessarily minimal)
subset of S that contains at least each class D € S such that O |= C C D.

Function possible(S, O, C, s, A, K) should return a subset of S that con-
tains all candidate subsumers of C'; note that this must include C itself. The
set K will contain pairs of known subsumers in O—that is, if F} ~~x F5 for
some Fj, Fy € S, then O |= F} C Fy. In the simplest case, the function can
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return S; however, one can exploit £4(s) and K to return a smaller set of
possible subsumers. For example, if A satisfies property (P2) from Section
2.3, as it is the case in the HermiT system, then we can define possible as

possible(S, O, C, s, A, K) = L4(s) N S.

The set K is not useful in this case: if F'¢ L4(s) and D ~»x F, then by
property (P2) we have D & L 4(s). In contrast, K is useful if 4 satisfies only
the weaker property (P3) from Section 2.3: then we can define possible as

possible(S, O, C, s, A, K) = {D € S| for each class F' such that F is
primitive in O and D ~~g F,
we have F' € L4(s)}.

The above definition can be intuitively understood as follows. By the con-
ditions on the arguments of possible, we know that £ € L(s) for some class
E such that E ~» C; thus, s should be an instance of C' in a model con-
structed from A (even if C' & L 4(s) holds due to various optimisations of the
calculus used to construct A). Consider now an arbitrary class D € S. If
a primitive class F' in O exists such that F' & L 4(s), by property (P3) we
know that O & C' C F; but then, if D ~~»x F holds as well, then we clearly
have O £ C C D. Such D need not be included in possible(S, O, C, s, A, K),
so the above definition simply excludes all D that satisfy this condition.

In addition to the above mentioned ‘parametric’ functions, our algorithm
uses two fully specified functions called known and prune, which are intro-
duced in Definitions 6 and 7, respectively.

Definition 6. Let S be a set of classes, let so be an individual, and let
A be a set of assertions. Function known(S, sg, A) returns the set contain-

ing each D € S for which A contains a deterministically derived assertion
ClassAssertion(D sg).

Function known(S, sg,.A) is called in our algorithm such that A is a pre-
model with root s for a class C'. Since A satisfies property (P1) from Section
2.3, from each deterministically derived assertion ClassAssertion(D sg) in A
we can conclude that O = C C D.

Definition 7. Let P and K be sets of pairs of classes, let O be an ontol-
ogy, and let A be a set of assertions. Function prune(P,O, A, K) returns
the relation obtained from P by removing each pair (C, D) for which an in-
dividual s in A and a class E exist such that E € LA(s), E ~k C, and
D ¢ possible(Cp, O,C, s, A, K).
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Algorithm 1 Classify(O)

Input: an ontology O whose set of classes Cp should be classified
1: A := buildPreModel((, §, O)
2: if unsatisfiable € A then

3: return the trivial hierarchy in which each class C' € Cp is subsumed
by owl:Nothing

end if

(K, P) := initialiseRelations(O, Cp)
processRemainingClasses(K, P, O, Cp)

return hierarchy(Cp, K, owl:Nothing, owl: Thing)

Function prune(P, O, A, K) removes from P pairs of classes (C, D) such
that O £ C' C D. Since P can be very large, this function requires careful im-
plementation in order to obtain an efficient implementation. Assuming that
possible(S, O, C, s, A, K) is defined as outlined in the previous paragraph,
this function can be efficiently implemented by iteratively considering each
individual s in A, each class E € L4(s), each class C' such that E ~»g C,
and each class D € P|¢; if D does not satisfy the conditions for membership
in possible(S, O, C, s, A, K), then (C, D) is removed from P.

Our algorithm for classifying classes is shown in Algorithm 1. The algo-
rithm first checks whether the given ontology is satisfiable; if not, a trivial
hierarchy in which all classes are subsumed by owl:Nothing is returned. If
the ontology is satisfiable, then the algorithm proceeds with the classifica-
tion. The goal is to compute a relation K such that, for each class A € Cp
different from owl:Nothing and each class B € Cp different from owl: Thing,
we have O = A C B if and only if A ~x B.° This is achieved by initialis-
ing relations K and P as described Section 3.2, and then processing possible
subsumptions in P using a modified version of the ET algorithm as described
in Section 3.3. Finally, the algorithm returns a hierarchy derived from K.

3.2. The Initialisation Phase

In [27], relations K and P are initialised by performing a satisfiability
test for each class to be added to the hierarchy and then extracting known

5Note that the excluded cases of owl:Nothing and owl:Thing are all tautologies, whose
management during classification can only add unnecessary overhead.
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Algorithm 2 initialiseRelations(O, S)

Input: an ontology O and a set S of classes to be classified

1: K = explicit(S, O)
2: (V, H, p) := hierarchy(S, K, owl:Nothing, owl: Thing)

3. P:={)

4: ToTest := {C' | (owl:Nothing, C) € H}
5: while ToTest # () do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

choose and remove C from ToTest
if P|c =0 and (C,owl:Nothing) ¢ K then

A := buildPreModel({ClassAssertion(C' sg)}, 0, O) // so is fresh
if unsatisfiable € 4 then // C is unsatisfiable
for all D such that D ~»g C and (D, owl:Nothing) ¢ K do
add (D, owl:Nothing) to K
remove D from ToTest
for all (D, F) € H with (E, owl:Nothing) ¢ K do
add E to ToTest
end for
end for
else
K := KU{(C,D) | D € known(S, so, A)}
for all sin A, all D € L4(s), and all E such that D ~»y E do
if P|z =0 then
P:=PU{(E,F) | F € possible(S,0, E,s, A, K)}
else
remove in P all (E, F') with F' ¢ possible(S, O, E, s, A, K)
end if
end for
end if

end if

28: end while
29: remove each (Eq, E9) from P such that By ~ g FEs
30: return (K, P)
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and possible subsumers from pre-models as discussed in Section 2.3. Al-
though modern reasoners can check satisfiability of classes quite efficiently,
the time required to test satisfiability of all the classes can become large
if the ontology contains many classes. Moreover, it is likely that many of
these satisfiability tests will be redundant and could thus be omitted. For
example, if O = C C D and C is satisfiable, then a pre-model A for C also
witnesses the satisfiability of D, as well as of any other class occurring in
A. We can thus avoid checking the satisfiability of each such D, and we can
use A to extract its possible subsumers. In order to maximise the effect of
this optimisation, we start by checking the satisfiability of classes likely to be
classified near the bottom of the hierarchy: such classes are likely to produce
larger pre-models that are richer in (non-)subsumption information and that
thus witness the satisfiability of numerous other classes. The drawback of
testing only classes near the bottom of the hierarchy is that we do not deter-
mine any known subsumers for classes that are higher in the hierarchy and
whose satisfiability can be demonstrated only indirectly. Our approach, how-
ever, seems to be quite effective in practice because a substantial number of
classes in an ontology end up near the bottom of the hierarchy; furthermore,
our strategies for updating K often infer the known subsumptions that are
missed in the initialisation phase.

These ideas are captured in Algorithm 2. The algorithm takes as input
an ontology O and a set of classes S C Cp to be classified. This generality
will allow us to reuse the algorithm for the classification of object and data
properties with only minor changes (see Sections 4 and 5).

First, K is initialised to all pairs of classes (C, D) for which the subsump-
tion is either explicitly stated in O, or whose subsumption can be derived by
lightweight transformations of the axioms in O (line 1). Relation K is next
turned into a hierarchy H (line 2), which in many practical cases provides
a good approximation of the final hierarchy; this approximate hierarchy H
is used next to optimise the order in which the algorithm processes classes.
For efficiency reasons, P is initialised in line 3 to () rather than all possible
pairs of classes in S; thus, during the initialisation, P|p = () means ‘the pos-
sible subsumers of D have not been determined yet’ rather than ‘there are
no possible subsumers of D’. Then, the set ToTest is initialised (line 4) to
contain the leaves of H (i.e., the classes directly above owl:Nothing). A class

6Note that V and p are not used in the rest of the initialisation algorithm.
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C' is then iteratively removed from ToTest (lines 5-28) and the satisfiability
of C is checked (line 8), unless the possible subsumers of C' were already
determined, or C' was determined to be unsatisfiable (line 7). If C' is unsat-
isfiable (lines 10-16), then each D that reaches C' in H is unsatisfiable as
well (recall that C'is reachable from itself); hence, this is recorded in K (line
11), D is removed from ToTest (line 12), and each parent E of D that is not
known to be unsatisfiable is added to ToTest (lines 13-15). In contrast, if C'
is satisfiable in a pre-model A with root s (lines 18-25), then the pre-model
A is used to identify the known subsumers of C' (line 18). Furthermore, for
each class E for which class D and individual s exist such that D € £ 4(s)
and D ~»y E, the set P is updated with the possible subsumers of E (lines
19-25). If P|g = (), this means that the possible subsumers of E have not
been initialised; therefore, P is modified to ensure that P|g contains each
class F that is a possible subsumer of F (line 21). If P|g # (), then P is mod-
ified by removing those pairs (F, F') such that F is not a possible subsumer
of E (line 23). Finally, after all possible subsumers of each class in S have
been determined, each subsumption that holds according to the information
in K can be removed from P (line 29). This now leaves P to reflect the
remaining work needed to classify the elements in S.

Note that, if the pre-model A constructed in line 8 satisfies property (P2)
from Section 2.3, then the condition in line 19 can be simplified to consider
each s in A and each class F such that E € L4(s). This is because, if
D € La(s) and D ~»y E for some class D, by the definition of H we have
O = D C E, and so by property (P2) we have E € L4(s). Consequently, if
the simplified loop considers some class D € L 4(s), it will also consider each
class E for which D ~y FE.

Also note that, if a class C' is unsatisfiable (lines 10-16), then our al-
gorithm propagates the unsatisfiability of C' to each class D that reaches
C in K. This allows our algorithm to identify unsatisfiable classes without
performing actual satisfiability tests, which significantly reduces the number
of satisfiability tests needed to classify ontologies with many unsatisfiable
classes; for example, as we discuss in Section 6 in more detail, this signifi-
cantly improves the performance of classifying the FMA ontology [10]. Note,
however, that such classes are removed from ToTest and are never considered
again after line 7 since (D, owl:Nothing) € K. Hence, the algorithm might
miss the opportunity to create a pre-model for a satisfiable parent class F
of one of these classes; this, in turn, might render the algorithm incomplete
since P|g might not contain all possible subsumers of £. This issue is avoided
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by adding all parents F of an unsatisfiable class D to ToTest in lines 13-15.

Example 8. Let O be an ontology containing axioms (12)—(15).

SubClassOf(C' ObjectSomeValuesFrom(op D)) (12)
ObjectPropertyDomain(op E) (13)

SubClassOf(D ObjectUnionOf(E F)) (14)
SubClassOf(G ObjectSomeValuesFrom(op2 D)) (15)

Assume that we want to classify the classes of the ontology using Algorithm
1. Since O is satisfiable, the algorithm proceeds by calling Algorithm 2 with
arguments O and Cp.

Algorithm 2 determines that O contains no explicit subsumptions, so
it initialises K to the empty relation. Thus, in the extracted hierarchy
all classes different from owl:Thing are above owl:Nothing, so ToTest ini-
tially contains C, D, E, F', and G. Let us assume that the algorithm next
checks the satisfiability of C' by producing a pre-model A for C with root
so that satisfies property (P2). Due to axiom (12), so must have an op-
successor, say $1, that is an instance of D. Since D € L 4(s1), the pre-model
A also witnesses the satisfiability of D. Due to axiom (14), A contains
ClassAssertion(E s1) or ClassAssertion(F' s1); let us assume that the former
is the case. Using the information from P, our algorithm modifies P to en-
sure P|c = {C} and P|g = P|p = {D, E}. Let us assume that D is selected
next; now P|p # (), which means that a pre-model for D has already been
encountered, so no test is performed for D. The algorithm then continues
processing classes in ToTest, and at some point it selects G and constructs
a pre-model A for G with root sy that satisfies property (P2). Due to ax-
iom (15), sp has an op2 successor, say si, that is an instance of D; that
is, D € L(s1). Let us assume, however, that axiom (14) is satisfied in A
by ClassAssertion(F s1). Now P|p # 0, so the classes in L£4(s1) are used
to prune P|p: since E & L 4(s1), relation P is modified to ensure E ¢ P|p;
thus, P|p is left to contain only D. Consequently, P|p = () after the final
cleanup—that is, all subsumers of D are known despite the fact that the
satisfiability of D has never been tested explicitly by Algorithm 2 in line
8, thus illustrating the benefit of exploiting the information generated by
satisfiability tests. O

Next, we prove the correctness of Algorithm 2.
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Lemma 9. When applied to a satisfiable ontology O and a set of classes
S C Cp, Algorithm 2 terminates. Let K and P be the relations produced by
the algorithm; then, for all classes A, B € S, the following properties hold:

1. A~k B implies O = AC B.

2. If A is unsatisfiable, then A ~> owl:Nothing.

3. If A is satisfiable and O |= A C B, then either A ~>x B or a class A’
exists such that A ~x A’, (A',B) € P, and O = A’ C B.

Proof. We show that the algorithm terminates after a finite number of steps.
Note that function buildPreModel terminates for each set of assertions and
each OWL 2 ontology [22]. Moreover, for each class C' removed from ToTest,
the algorithm adds (C,owl:Nothing) to K if C' is unsatisfiable, or in line 21
it extends P with pairs of the form (C, ) which makes P|c not empty; note
that in this case the algorithm also adds (C,C) to P. Furthermore, (C,C)
is never removed from P in line 23, so P|c never becomes empty in future
iterations of the while-loop. Thus, in the worst case, the algorithm considers
each class in S once and then terminates.

(Claim 1) Pair (D, owl:Nothing) can be added to K in line 11, but then
D is unsatisfiable. Alternatively, pair (C, D) can be added to K in line 18,
but then O |= C' C D by property (P1) from Section 2.3. Since these are the
only places where pairs are added to K, Claim 1 clearly holds.

In order to prove Claims 2 and 3, we first prove two useful properties.
Let H be as specified in line 2 and let A be an arbitrary class occurring in
H; then, the following properties hold at the beginning of each iteration of
the while-loop.

(#): If A is satisfiable and P|4 # (), then, for each class B € S
such that O = A C B, we have B € P|4.

(): If P|4 =0 and A +k owl:Nothing, then a class F' € ToTest
exists such that I+ owl:Nothing, '~y A, and P|g =0 for
each class G such that F ~y G and G ~pg A.

For property (#), consider an arbitrary class A occurring in H. Set P|4
can become nonempty in line 21; but then, P|4 = possible(S, D, s, A, K) after
the change, so P|4 clearly satisfies property () after the change. Alterna-
tively, set P|4 can be reduced in line 23 due to the removal of (A, B); but
then, O &£ A C B, so P|, clearly satisfies (#) after the change.
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We next show by induction over the iterations of the while-loop that an
arbitrary class A occurring in H satisfies property ().

Base Case: At the the beginning of the first iteration, ToTest contains all
classes of H ‘above’ owl:Nothing; hence, for an arbitrary class F' € ToTest,
we have F' g owl:Nothing. Therefore, if P|4 = () and A +y owl:Nothing,
then property (&) is satisfied for F' = A.

Induction Step: Assume that property (&) holds for A at the begin-
ning of iteration i. We show that property (&) also holds for A at the
end of the iteration—that is, the property holds at the beginning of itera-
tion i + 1. The claim is nontrivial only if P|4 = 0 and A ¥ owl:Nothing.
Since A satisfies the induction hypothesis, a class I € ToTest exists such
that F' »x owl:Nothing, F' ~»y A, and P|g = () for each class G such that
F ~py G and G~y A. Let C be an arbitrary class chosen in line 6. If C
does not satisfy the condition in line 7, then P|c # () or C' ~ owl:Nothing,
so C' # F, and thus F satisfies property (&) for A at the end of the iteration.
If C satisfies the condition in line 7, we have two possibilities.

First, assume that C is satisfiable, and let A be the pre-model obtained
in line 8. For an arbitrary class D, if P|p =0 at the beginning, but not
at the end of the loop, then by the condition in line 19 we have P|g # ()
at the end of the loop for each class E such that D ~~y E. Consequently,
if P|g # 0 at the end of the loop for some class G such that F ~»y G and
G ~pg A, then P|s # () at the end of the loop as well, so property (é) is
satisfied for A in line 26. Otherwise, since lines 17-26 never add a pair of the
form (F,owl:Nothing) to K, class F satisfies property (&) for A in line 26.

Second, assume that C' is unsatisfiable; then, property (&) can be affected
only if F'~»g C. To summarise, we have F' ~y C' and F ~»y A, where H
is a directed acyclic relation; but then, a ‘highest’ class D in H exists that
occurs on the path from F' to C' and on the path from F' to A. More formally,
D exists such that

.FWHDa
.DWHAa
e D~y C,and

e for each class D’ different from D such that D ~»gx D' and D' ~p A,
we have D' vy C.
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Furthermore, since F' +p owl:Nothing, we also have D +~k owl:Nothing.
Class D will clearly eventually be considered in line 10. If D = A, then
(A, owl:Nothing) is added to K in line 11, so A trivially satisfies prop-
erty (&) at the end of the iteration. If D # A, a class E exists such that
(D,E) € Hand E ~py A; since A ¥k owl:Nothing, for each such E we have
E + owl:Nothing; furthermore, by property (&), we have P|g = () for each
class G such that £ ~~g G and G ~g A. At least one such F is considered
in lines 13-15 and is added to ToTest in line 14, so F satisfies property (é)
for A at the end of the iteration.

This completes the proof of property (&) and we next prove Claims 2
and 3.

(Claim 2) Consider an arbitrary unsatisfiable class A € S. By the defi-
nition of the hierarchy function, a class A’ occurring in H exists such that
A€ p(A'). If A occurs in K, then we clearly have A ~»x A" and A’ ~ g A.
Assume that A does not occur in K. Then, since A is unsatisfiable (i.e.,
A # owl:Thing) and owl:Thing and owl:Nothing are the only classes that
can occur in H but not in K, we have A = owl:Nothing; but then A" = A,
and so we have A ~»x A" and A" ~»; A (remember that each class is reach-
able from itself). Class A’ satisfies property (é); furthermore, ToTest = ()
upon termination, so by the contrapositive of property (é) we have that
either A’ ~»x owl:Nothing or P|4 # (). Note, however, that unsatisfiable
classes never appear in pre-models, so the algorithm never adds a pair of
the form (A’,C) to P. Thus, P|a = 0, so we have A’ ~ owl:Nothing, and
consequently A ~- g owl:Nothing as well.

(Claim 3) Consider an arbitrary satisfiable class A € S and an arbitrary
class B € S such that O = A C B. By the definition of the hierarchy func-
tion, a class A" occurring in H exists such that A € p(A’). If A occurs in
K, then we clearly have A ~»x A’ and A"~ A. Assume that A does not
occur in K since A is satisfiable (i.e., A # owl:Nothing) and owl:Thing and
owl:Nothing are the only classes that can occur in A but not in K, we have
A = owl:Thing; but then A’ = A, and so we have A~ A" and A"~ A
(remember that each class is reachable from itself). Class A’ satisfies prop-
erty (é); furthermore, ToTest = () upon termination, so by the contraposi-
tive of property (&) we have that either A" ~» owl:Nothing or P|4 # (. By
Claim 1 and the fact that A is satisfiable the former cannot be the case, so
we have P|a # (). But then, by property (#) we have B € P| 4 after line 28,
so Claim 3 holds at this point. Pair (A’, B) can be removed from P in line
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29, but then A’ ~»x B, and so we have A ~»x B; thus, Claim 3 holds after
line 29 as well. O

3.3. The Classification Phase

In the classification phase, our algorithm determines which of the possible
subsumptions in P actually hold. This is done as shown in Algorithm 3. Each
class C' for which there are possible subsumptions is processed iteratively
(lines 1-34). Since K is initialised with explicit subsumptions in O, it is often
the case that no class in P|¢ is a subsumer of C', so identifying such situations
quickly can significantly reduce the total number of subsumption tests. This
is done by trying to construct a pre-model that satisfies C' and no D; € P|¢
(lines 2 and 3); if a pre-model A can be constructed, then no D; is a subsumer
of C, so all pairs (C, D;) are removed from P (line 5) and P is further pruned
using the information from A (line 6). If at least one D; € P|¢ is a subsumer
of C, the algorithm first reads the known subsumers of C off the returned set
of assertions A (line 8), and it prunes P by removing the known subsumers
of C' (line 9). As explained earlier, treating assertion ClassAssertion(F sg) as
being derived nondeterministically allows us to identify the known subsumers
of C' during a subsumption test. If C still has possible subsumers, then C'
is inserted into the hierarchy constructed thus far (lines 11-30). In order to
reduce the number of subsumption tests, the classes in P|c are arranged into
a hierarchy He that is compatible with K (line 11); then, H¢ is traversed
using a variant of the ET algorithm (lines 12-30). To this end, a queue
@ is initialised to contain all children of owl:Thing in Ho (line 12); this
prevents the algorithm from checking the trivial subsumption between C
and owl:Thing. As long as @ is not empty (lines 13-30), the head D of @
is popped off @ (line 14) with the intention to check whether D subsumes
C. The algorithm does not process the class D if this subsumption was
discovered to be known (line 15) or if D was removed from P|¢ since He was
constructed; this can happen if D is added to ) more than once due to the
presence of several paths from D to owl:Thing in Hq or if D was discovered
to be a subsumer of C' in a previously constructed pre-model. Otherwise, the
subsumption between C' and D is tested by trying to construct a pre-model
satisfying C' but not D (line 19). If such a pre-model A can be constructed,
then (C, D) together with all known subclasses of D are removed from P
(line 21), and P is further pruned using the information from A (line 22).
In contrast, if the subsumption holds, this is recorded in K (line 24), and
each child F of D in H¢ is added to @ (line 25) in order to continue the
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Algorithm 3 processRemainingClasses(K, P, O, S)

Input: binary relations K and P, an ontology O and a set of classes S

1: while some C € S exists such that P|¢c # () do
2: F := ObjectComplementOf(ObjectUnionOf(D; ... D,,))
where {D1,...,D,} = Pl¢

3: A := buildPreModel({ClassAssertion(C' sg)}, {ClassAssertion(F sg)}, O)
4: if unsatisfiable ¢ A then //no D; € P|c subsumes C
5: remove each (C, D;) from P such that D; € P|¢
6: P :=prune(P,0, A, K)
7 else
8: K := K U{(C,D) | D € known(S, sp, A)}
9: remove each (C, F) from P such that C ~x F
10: if P|c # () then
11: (Vo, He, pe) := hierarchy(P| ¢, K, owl:Nothing, owl: Thing)
12: initialise a queue @ to contain all D with (D, owl:Thing) € H¢
13: while @ # 0 do
14: remove the head D from ()
15: if C ~g D then
16: add to the end of @ each E such that (E,D) € Ho
17: else if D € P|c then
18: F := ObjectComplementOf(D)
19: A := buildPreModel({ClassAssertion(C' so)},
{ClassAssertion(F so)}, O)
20: if unsatisfiable ¢ A then // O CC D
21: remove each (C, E) from P such that £ ~»g D
22: P :=prune(P,0, A K)
23: else
24: add (C, D) to K
25: add to the end of @ each E such that (E, D) € Ho
26: end if
27: K := KU{(C,D) | D € known(S, sp,.A)}
28: remove each (C, E) from P such that C ~g FE
29: end if
30: end while
31: end if
32: remove each (F1, E) from P such that Ey ~g Fo
33: end if

34: end while

27



traversal of He. In either case, known subsumers of C' are read off A and P
is pruned accordingly (lines 27 and 28). Finally, P is pruned as discussed in
Section 3.1 for all newly discovered known subsumptions (line 32).

Please note that, if the pre-models constructed in lines 3 and 19 satisfy
property (P2) from Section 2.3, then lines 5 and 21 are subsumed by lines
6 and 22, respectively. In particular, for each class D; removed in line 5,
by property (P2) we have D; € L 4(s0), so (C, D;) is removed from P in line
6. Similarly, for each class F removed in line 21, by property (P2) we have
E & L a(s0), so (C, E) is removed from P in line 22.

In contrast to the ET algorithm, our algorithm does not include a bottom-
up phase. This considerably simplifies the implementation, as one does not
need data structures that allow retrieval of the predecessors of a class C' in
K and P: the algorithm can be efficiently implemented by explicitly keeping
track only of successor links. Furthermore, unlike in the bottom-up phase
of the ET algorithm, our algorithm never iterates over the successors of
owl:Nothing, which significantly reduces the cost of data structure traversal.

Lemma 10. Let O be a satisfiable ontology, and let K and P be the relations
obtained by applying Algorithm 2 to O and a set of classes S C Cp. Then,
applying Algorithm 3 to K, P, O, and S terminates. Let K be the rela-
tion produced by the algorithm; then, for all classes A, B € S, the following
properties hold:

1. A~k B implies O = ALC B.
2. If A is unsatisfiable, then A ~> owl:Nothing.
3. If A is satisfiable and O = A C B, then A ~k B.

Proof. First, we prove that the algorithm terminates. Consider an arbitrary
class C selected in line 1. We show that P|c = () at the end of the outer
while-loop; since the algorithm never adds pairs to P, this clearly implies
termination. Let A be the pre-model obtained in line 3. If A satisfies the
condition in line 4, then each pair (C, D;) is removed from P in line 5 thus
making P|c empty. We next assume that the condition in line 4 is not
satisfied, so the algorithm proceeds with lines 8-30. If P|c # 0 after line
9, the algorithm proceeds with lines 11-30. In particular, the algorithm
constructs a hierarchy H¢ containing each D € P|q, and then it traverses
H¢ using breadth-first search. Since H¢ is acyclic, the while loop in lines
13-30 terminates: each class D occurring in He can be added to () only as
many times as there are paths from owl:Thing to D in Ho. We next show
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that P|c = () in line 34 of the outer while loop. Since tuples are never added
to P, this clearly implies that the algorithm terminates.

To show that P|c = ) in line 34, we first prove that the following three
properties hold at the end of each iteration of the inner while loop—that is,
after line 29.

(#): For each class F such that C' ~~x E, we have E & P|c.
(x): For each class D selected in line 14, we have D ¢ P|c.
(#): For each class F' € P|¢, a class G € @ exists with F ~»x G.

For property (), note that the property holds before the while loop (i.e.,
after line 12) due to pruning in line 9; furthermore, K can be extended in an
iteration only in line 24, but then line 28 ensures that property (f) holds at
the end of the iteration.

For property (%), let D be an arbitrary class selected in line 14. If the
condition in line 15 holds, then D ¢ P|c due to property (). If the condition
in line 15 does not hold, then either (C, D) is removed from P in line 21, or
(C, D) is added to K in line 24 and so (C, D) is removed from P in line 28;
either way, D ¢ P|c at the end of the iteration.

For property (#), note that the property clearly holds after @ is initialised
in line 12. Consider now an arbitrary class F' such that F' € P|c at the
beginning of the iteration, and let G be the class that satisfies property (#)
for F'. Furthermore, let D be the class selected in line 14. If D # G, then
property (#) clearly holds for F' at the end of the iteration. If D = G, then
we have the following possibilities: some E such that F' ~~x E is added to
@ in line 16 or line 25, or (C, F) is removed from P in line 21. In all cases,
property (#) holds for F' at the end of the iteration.

We now complete the proof that P|c = () in line 34. In particular, since
Q = () after line 30, no F' € P|c can exist without violating property ().
Thus, the algorithm terminates, and we have P = () upon termination.

To complete the proof of this lemma, we next show that relations K and P

satisfy at all times during the algorithm’s execution the following properties
for all classes A, B € S.

1. A~k Bimplies O = AC B.
2. If A is unsatisfiable, then A ~~ g owl:Nothing.
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3. If A is satisfiable and O = A C B, then either A ~»x B or a class A’
exists such that A ~»x A, (A", B) € P,and O = A'C B.

Initially, these properties are satisfied as a consequence of Lemma 9.

(Property 1) A pair (A, B) can be added to K in lines 8 and 27, but then
O = A C B holds since A satisfies property (P1) from Section 2.3. Alter-
natively, a pair (A, B) can be added to K in line 24, but then O = AC B
holds as a consequence of the subsumption check in line 19. Thus, property
1 holds at any point during the algorithm’s execution.

(Property 2) Pairs are never removed from K, so Property 2 never ceases
to hold for an arbitrary unsatisfiable class A € S.

(Property 3) Consider arbitrary classes A, B € S such that A is satisfiable
and O = AC B. If A~k B holds at some point, then A ~»x B never ceases
to hold because pairs are never removed from K. Furthermore, assume that a
class A’ exists such that A ~»x A’ (A’ B) € P,and O = A’ C B. Property 3
might cease to hold for A and B only after a modification of P, so we next
consider all possible ways in which that could happen.

e If (A’ B) isremoved from P in line 9, 28, or 32, then we have A" ~~x B;
thus, we have A ~~ B, so Property 3 holds after the removal.

e If (C, D;) is removed from P in line 5, then O = C C D;; thus, we have
(C, D;) # (A, B), so Property 3 holds after the removal.

o If (C, E) isremoved from P in line 21, dueto O = C C D and E ~»x D
we have O} C C E. Thus, we have (C, E) # (A’, B), so Property 3

holds after the removal.

e If (F}, Fy) is removed from P in lines 6 and 22, by the definition of prune
we have O (£ Fy C F,. Thus, we have (Fy, Fy) # (A', B), so Property
3 holds after the removal.

Upon termination we have P = (), which together with Properties 1-3
clearly implies the claim of this lemma. O]

Theorem 11. For each ontology O, Algorithm 1 terminates and it correctly
computes the class hierarchy of O.

Proof. The claim holds trivially if O is unsatisfiable, so let us assume that
O is satisfiable. Termination is an immediate consequence of the fact that
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Algorithms 2 and 3 terminate on O. Finally, correctness also follows straight-
forwardly from Lemma 10 and the fact that Algorithm 1 produces a hierarchy
of Cp w.r.t. K, owl:Nothing, and owl:Thing. O]

4. Object Property Classification

To the best of our knowledge, classification of object properties has not
been discussed in the literature, and all ontology reasoners we are aware of
construct the object property hierarchy simply by computing the reflexive—
transitive closure of the asserted object property hierarchy. Such an al-
gorithm requires no complex reasoning and it can be easily implemented;
however, it is incomplete even for very simple sublanguages of OWL. We
demonstrate this by means of an example that uses existential restrictions
(ObjectSomeValuesFrom), functional properties, and property hierarchies.
In the rest of this section, we use opg) to denote an object property and
ope(;) to denote an object property expression.

Example 12. Consider an ontology containing the following axioms:

SubClassOf( ObjectSomeValuesFrom(op; owl:Thing)

ObjectSomeValuesFrom(ops owl:Thing) ) (16)
SubObjectPropertyOf(op; ops) (17)
SubObjectPropertyOf(opy ops) (18)
FunctionalObjectProperty(ops) (19)

These axioms entail op; T ops: if i5 is an op;-successor of 77 in an interpreta-
tion I, then axiom (16) requires the existence of an ops-successor i3 of 4; in
I; since both op; and opy are subproperties of ops and ops is functional, then
13 1s equal to 79, SO 75 is also an ops-successor of 4;. This is shown graphically
in the left part of Figure 3. O

Furthermore, the following example demonstrates that subsumption rela-
tionships between object properties can also be derived due to an interaction
between object property chains and inverse properties (ObjectInverseOf).

Example 13. Consider an ontology containing the following axioms:

SubClassOf(owl: Thing ObjectSomeValuesFrom(op owl:Thing)) (20)
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Figure 3: Graphical illustration of the models created in Examples 12 and
13. Dashed arrows indicate inferred relations, and op~ is the inverse of the
object property op.

SubObjectPropertyOf(
ObjectPropertyChain(op; op ObjectInverseOf(op))

ops (21)

)

If i1 has an op;-successor 45 in a model I, axiom (20) ensures that i, has an
op-successor ig; hence, (i1, i2) is in the interpretation of opy, (is, i3) is in the in-
terpretation of op, and (i, i5) is in the interpretation of ObjectInverseOf(op).
By axiom (21), then (i1,45) is in the interpretation of op, so, consequently,
the ontology entails op; C opy. This is shown graphically in the right part of
Figure 3. &

One might assume that object properties can be classified correctly and
efficiently by modifying the classification algorithm from Section 3 in the
obvious way: to check whether an object property op; subsumes an object
property opy, one should construct a model satisfying assertions (22) and (23)
where a and b are fresh individuals; furthermore, to update relations P and
K, one should consider labels of individual pairs instead of single individuals.

ObjectPropertyAssertion(op; a b) (22)
NegativeObjectProperty Assertion(ops a b) (23)

Somewhat surprisingly, such an algorithm is incomplete due to a problem
with complex properties—that is, properties that are transitive or are de-
fined using a complex property inclusion axiom. In all (hyper)tableau calculi
known to us, axioms defining complex properties are not handled directly,
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but via an equi-satisfiable encoding [15, 17, 19]. For example, consider an
ontology that contains the following axioms:

TransitiveObjectProperty(op) (24)
ObjectPropertyAssertion(op a b) (25)
ObjectPropertyAssertion(op b ¢) (26)

NegativeObjectPropertyAssertion(op a c) (27)

This ontology is clearly unsatisfiable. To determine this, one might expect a
(hyper)tableau algorithm to derive

ObjectPropertyAssertion(op a c) (28)

from (24)—(26), and then to derive a contradiction from (27) and (28). To
the best of our knowledge, however, no (hyper)tableau calculus works in
such a way. The addition of transitively implied object property assertions
such as (28) is not compatible with blocking [22]—a technique used to ensure
termination of pre-model construction. Instead, all calculi known to us use an
encoding that simulates the effects of axioms such as (24). In particular, each
negative object property assertion such as (27) is replaced with an equivalent
axiom (29).

ClassAssertion(
ObjectAllValuesFrom(op ObjectComplementOf(ObjectOneOf(c)))
a

)

Next, all axioms containing Object AllValuesFrom classes are transformed in
a certain way; for example, axiom (29) is replaced with the following axioms,
where () is a fresh class:

(29)

ClassAssertion(Object AllValuesFrom(op Q) a) (30)
SubClassOf(Q) ObjectComplementOf(ObjectOneOf(c))) (31)
SubClassOf(Q) ObjectAllValuesFrom(op Q)) (32)

Intuitively, axioms (30)—(32) ensure that each individual in a pre-model
reachable via op from a is an instance of

ObjectComplementOf(ObjectOneOf(c)),
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which captures the effect of axioms (24) and (29). Thus, axioms (24), (25),
and (30)—(32) imply a contradiction, as required; however, note that no ax-
iom forces a (hyper)tableau calculus to derive (28). Thus, a pre-model is
not guaranteed to contain all implied object property assertions for com-
plex properties, which adversely affects the completeness of our classification
algorithm from Section 3: due to missing property assertions, the set of pos-
sible subsumers P might not be correctly initialised, or certain subsumptions
might be incorrectly pruned from P. To summarise, the modified classifica-
tion algorithm will correctly classify object properties that are not complex,
but it might fail to discover certain subsumptions involving at least one com-
plex object property.

In order to overcome these issues, we developed a new property classifi-
cation technique that reduces object property classification to standard class
classification. Any complete class classification algorithm (such as the one
described in Section 3) can be used to classify the resulting ontology.

Definition 14. Let O be an OWL 2 ontology, let C; be a fresh class not
occurring in O, let a be a fresh individual not occurring in O, and let T be
an injective function that maps each object property expression ope € OPEq
into a class T(ope) as follows:

o 7(owl:topObjectProperty) = owl: Thing,
o T(owl:bottomObjectProperty) = owl:Nothing, and

o 7(ope) is a fresh distinct class not occurring in Co U {Ct} for each
ope € OPE,,.

Then, O, is the ontology obtained by extending O with assertion (33) and an
instance of axiom (34) for each ope € OPE,.

ClassAssertion(C a) (33)
EquivalentClasses(t(ope) ObjectSome ValuesFrom(ope Cy)) (34)

As we show in Theorem 15, the encoding from Definition 14 allows us to
check O |= ope; T opey by equivalently checking O, = 7(oper) C 7(opes).

Thus, for O, op; and ops defined as in Example 12, we can check whether
O E op1 C op, holds by checking whether O, = 7(op1) C 7(0op2) holds, where
O, contains the following axioms:

EquivalentClasses(7(op;) ObjectSomeValuesFrom(op; Cy)) (35)
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EquivalentClasses(7(op2) ObjectSomeValuesFrom(ops Cf)) (36)

The latter check can be realised as usual, by trying to construct a pre-model
for the following assertions, where sg is a fresh individual.

ClassAssertion(7(op1) so) (37)
ClassAssertion(Object ComplementOf(7(op2)) s¢) (38)

Since O, contains axiom (35), assertion (37) implies that sy must have an
opi-successor s; that is an instance of C; now if the axioms in O imply
that s; is necessarily an opg-successor of sy as well, then axiom (36) from O,
implies that s is an instance of 7(ops), which contradicts assertion (38).

Note that the axioms for complex properties in O, are subject to the
encoding of complex properties described above. The additional axioms in
O, might not look as if they contain an Object AllValuesFrom class, but this
becomes obvious if the axioms are normalised. Any (hyper)tableau reasoner
will pre-process these axioms before applying the actual reasoning calculus.
For example, axiom (35) is split into the following two axioms:

SubClassOf(7(op1) ObjectSomeValuesFrom(op; Cy))
SubClassOf(ObjectSomeValuesFrom(op; Cf) 7(opy))

These are subsequently reformulated as the following two axioms:

SubClassOf(owl: Thing Object UnionOf(
ObjectComplementOf(7(op;)) ObjectSomeValuesFrom(op;, Cy)))

SubClassOf(owl: Thing Object UnionOf(
ObjectComplementOf(ObjectSomeValuesFrom(op; Cf)) 7(op1)))

The latter axiom in finally brought into negation-normal form as follows:

SubClassOf(owl: Thing Object UnionOf(
ObjectAllValuesFrom(op; ObjectComplementOf(C/)) 7(op1)))

Now it is clear that axiom (35) contains an ObjectAllValuesFrom class ex-
pression, which triggers the encoding if op; is a complex property.
Furthermore, note that, by Definition 14, O, does not contain axioms
of the form (34) for owl:topObjectProperty and owl:bottomObjectProperty.
From a theoretical point of view, one could map these two properties via
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7 to fresh classes and then include the corresponding axioms of the form
(34) in O,. The drawback of such an approach, however, is that O, then
contains owl:topObjectProperty and owl:bottomObjectProperty even if O
does not, and reasoning with these two properties can be difficult. By map-
ping owl:topObjectProperty and owl:bottomObjectProperty to owl:Thing
and owl:Nothing, respectively, and not including in O, the corresponding
axioms of the form (34), we ensure that reasoning with O, is usually not
more difficult than reasoning with O.

Theorem 15. Let O, 7, and O; be as in Definition 14, and let ope; and opes
be arbitrary object property expressions in OPEqn. Then, O = ope; T opes
if and only if O, = T(oper) C 7(opes).

Proof. (<) We prove the contrapositive claim: if O [~ ope; C opes, then
O, [~ T(oper) C 7(opes). Assume that O (= opey T opey; then a model I of O
exists such that I [~ ope; T opes. Clearly, ope; # owl:bottomObjectProperty
and opey # owl:topObjectProperty. Let (i1, i2) be a tuple of objects that is
contained in the interpretation of ope; in I, but not in the interpretation of
opey in I. We conservatively extend I to I’ by interpreting the symbols in
O, that do not occur in O as follows:

e the interpretation of individual a in I’ is s,
o the interpretation of C'y in I’ contains only iy, and

e for each ope € OPE,,), the interpretation of 7(ope) in I’ contains each
i such that (i,45) is contained in the interpretation of ope in I.

Interpretation I’ clearly satisfies O, assertion (33), and all axioms of the
form (34) in O,; thus, I’ is a model of O,. If ope; = owl:topObjectProperty,
then 7(ope;) = owl:Thing, so ¢; is clearly in the interpretation of 7(ope; ); oth-
erwise, since (i1, i2) is in the interpretation of ope; and iy is in the interpreta-
tion of C, then i is in the interpretation of 7(ope;) by the construction of I'.
Similarly, if opes = owl:bottomODbjectProperty, then 7(opey) = owl:Nothing,
S0 ig is clearly not in the interpretation of 7(opes); otherwise, since (i, o)
is not in the interpretation of opes, then i; is not in the interpretation of
T(opez) by the construction of I’. Consequently, I’ [~ 7(ope;) C 7(opes), so
O, [~ 7(oper) C 7(opes), as required.

(=) We prove the contrapositive claim: if O, F~ 7(ope;) C 7(opey), then
O £ ope; C opey. Assume that O, = T7(opey) C 7(opes); then a model I of
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Algorithm 4 ClassifyObjectProperties(O)

Input: an ontology O whose set of object property expressions OPEp should be
classified
: A := buildPreModel(), 0, O)
2: if unsatisfiable € A then
return the trivial hierarchy in which each object property expression
ope € OPE( is subsumed by owl:bottomObjectProperty

—_

@

end if

construct a mapping 7 and the ontology O, as in Definition 14

initialise S to the range of 7

(K, P) := initialiseOPRelations(O, S, 7)

processRemainingClasses(K, P, O, S)

K' := mapClassesToProperties(K, T)

10: return

hierarchy(OPEp, K', owl:bottomObjectProperty, owl:topObjectProperty)

O, exists where some 4, is an instance of 7(ope;) but not of 7(opes); further-
more, O, contains all axioms of O, so [ is a model of O; finally, we clearly
have ope; # owl:bottomObjectProperty and opes # owl:topObjectProperty.
Now if ope; = owl:topObjectProperty, due to axiom (33), iy exists that is an
instance 45 of C'y in I, and, due to the semantics of owl:topObjectProperty, is
is an ope;-successor of iy in I; otherwise, due to axiom (34) for opey, iy exists
that is an an ope;-successor of 7; and that is an instance of Cy in I. But
then, O [~ ope; C opey holds trivially for opes = owl:bottomObjectProperty.
Assume now that opey, # owl:bottomObjectProperty and that 75 is an opes-
successor of 4; in I. Axiom (34) for opes implies that i; is an instance of
T(opes), so iy is an instance of 7(opey) in I, which is a contradiction. Con-
sequently, iy is not an opes-successor of i;—that is, I [~ ope; C opea—so
O £ opey C opes, as required. O

Our procedure for classifying object properties is shown in Algorithm 4.
As in the case of classification of classes, the algorithm first checks whether
the given ontology is satisfiable. If not, a trivial hierarchy in which all ob-
ject property expressions in O are subsumed by owl:bottomObjectProperty
is returned; otherwise, the algorithm proceeds with the classification. The
algorithm constructs a mapping 7 from object properties to classes as in Def-
inition 14 (line 5). Algorithm 4 next calls the procedure initialiseOPRelations,
which is defined analogously to procedure initialiseRelations (Algorithm 2),
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but with the following differences:

1. Instead of calling explicit (line 1 in Algorithm 2), initialissOPRelations
extracts from O the explicit object property subsumptions and then
initialises K with a tuple (7(ope;), T(opes)) for all object property ex-
pressions ope; and opes such that ope; is explicitly subsumed by opes.

2. All remaining steps in initialiseOPRelations are as in Algorithm 2, with
the difference that O, is used instead of O.

Once K has been computed by processRemainingClasses, Algorithm 4 uses 7
to map the classes in K back to a relation K’ over object property expressions
(line 9). Finally, the algorithm constructs the object property hierarchy based
on the subsumptions between object property expressions in K’ (line 10).

5. Data Property Classification

By a straightforward modification of Example 12, we can show that data
properties cannot be classified by computing the reflexive—transitive closure
of the explicitly stated data property inclusions; essentially, we just need to
replace owl:Thing with rdfs:Literal. Thus, reasoning is needed in order to
correctly classify data properties.

Interestingly, data property subsumption cannot be easily reduced to sat-
isfiability. To test O |= dp; T dpy with dp; and dpy data properties, we would
need to construct a pre-model satisfying assertions

DataPropertyAssertion(dp; i n) (39)
NegativeDataPropertyAssertion(dps i n) (40)

for ¢ a fresh individual and n a literal representing an arbitrary element of
the data domain. In OWL 2, however, there is no such thing as a literal
with an arbitrary data value: all literals are given a fixed interpretation as
specified by the OWL 2 datatype map. Note that we cannot select n as some
fixed literal not occurring in the ontology; for example, if we selected n to
be an integer not occurring in the ontology, we might get a contradiction if
the ontology axioms state that the range of dp; is xsd:string.

We can solve this problem by introducing a special datatype D that is
interpreted as an arbitrary subset of rdfs:Literal. More precisely, we define
an ontology O containing D to be satisfiable if and only if D can be assigned
an interpretation such that all axioms of O are satisfied. Then, we can reduce
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the problem of checking O = dp; C dps to the problem of checking whether
O extended with the following assertions is satisfiable, for i a fresh individual:

ClassAssertion(DataSomeValuesFrom(dp; D) i)  (41)
ClassAssertion(DataAllValuesFrom(dp, DataComplementOf(D)) i)  (42)

Datatype reasoning is commonly implemented in (hyper)tableau reason-
ers using a procedure such as the one by Motik and Horrocks [21]. This
procedure represents datatype constraints using assertions of the form dt(s),
—dt(s) and s; % sy, where dt is a datatype, and s, s; and sy are concrete
nodes—placeholders for data values. Given a set of assertions A, the pro-
cedure checks whether the concrete nodes occurring in A can be assigned
data values that respect all constraints. Roughly speaking, for every set of
concrete nodes sy, ..., s, such that A contains s; % s;,1 for each 1 <1 < n,
the procedure tries to identify distinct data values vy, ..., v, such that the
value v; is contained in the interpretation of each datatype dt; that occurs
in A in an assertion dt;(s;), and is not contained in the interpretation of any
datatype dt; that occurs in A in an assertion —dtx(s;). This procedure can
be extended to handle the datatype D as follows:

1. If A contains assertions D(s1) and =D(s2), but not the assertion s, % sa,
then A is extended with s; % s5.

2. Assertions of the form D(s;) and —D(sg) are ignored when trying to
assign data values to concrete nodes.

The first item ensures that concrete nodes s; and s, are not accidentally
assigned the same value, and the second item ensures that D places no addi-
tional constraints on the values assigned to concrete nodes in A.

Even if a concrete node s is assigned a value from D, the procedure from
[21] does not necessarily insert an assertion D(s) into each pre-model. We
therefore cannot read non-subsumptions off pre-models, which prevents us
from directly applying the classification algorithm from Section 3. We can,
however, reduce data property classification to class classification similarly
as in Section 4.

Note that the OWL 2 DL language allows owl:topDataProperty to occur
only as a super-property in SubDataPropertyOf axioms [25, Section 11.2],
which effectively ensures that owl:topDataProperty occurs only in tautolo-
gies. Thus, an axiom of the form

EquivalentClasses(Q) DataSomeValuesFrom(owl:topDataProperty D))
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where () is the class to which owl:topDataProperty is mapped is not allowed
in OWL 2 DL. Therefore, unlike in the case of object properties, we have no
choice but to ensure that owl:topDataProperty is mapped to owl:Thing. The
OWL 2 DL specification restricts the usage of owl:topDataProperty in order
to ensure that consequences of an OWL 2 DL ontology do not depend on the
choice of a datatype map, as long as the datatype map chosen contains all
the datatypes occurring in the ontology [23, Theorem DS1]. Due to this re-
striction, however, no data property different from owl:topDataProperty can
subsume owl:topDataProperty, unless the ontology is unsatisfiable. This, in
turn, ensures that our encoding does not need to include an axiom analogous
to (33); that is, we need not ensure that the interpretation of D is not empty,
which simplifies reasoning with D.

Definition 16. Let O be an OWL 2 ontology, let D be the special datatype
as discussed above, and let o be an injective function that maps each data
property dp € DPg into a class o(dp) as follows:

e o(owl:topDataProperty) = owl: Thing,
e o(owl:bottomDataProperty) = owl:Nothing, and
e o(dp) is a fresh distinct class not occurring in Co for each dp € DP,.

Then, O, is the ontology obtained by extending O with an instance of axiom
(43) for each dp € DPy,.

EquivalentClasses(o(dp) DataSome ValuesFrom(dp D)) (43)

The following theorem shows that the reduction is indeed correct.

Theorem 17. Let O, o, and O, be as in Definition 16, and let dpy and dps
be arbitrary data properties in DPo. Then, O |= dp; T dpy if and only if
O, = o(dp1) E o(dps).

Proof. (The < direction) We prove the contrapositive: if O F~ dp; C dp,,
then O, = o(dp1) C o(dps). Assume that O [~ dp; T dps; then a model I of
O exists such that I = dp; C dps. Clearly, dp; # owl:bottomDataProperty
and dps # owl:topDataProperty. Let (i,¢) be a pair of an individual and
a data value contained in the interpretation of dp; in I, but not in the
interpretation of dp, in I. We conservatively extend [ to I’ by interpreting
the symbols in O, that do not occur in O as follows:
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e the interpretation of D in I’ contains only ¢, and

e for each dp € DP},), the interpretation of o(dp) in I’ contains each ¢’
such that (¢, ¢) is contained in the interpretation of dp in I.

The interpretation I’ clearly satisfies O and all axioms of the form (43) in
O,; thus, I’ is a model of O,. If dp; = owl:topDataProperty, then i is clearly
in the interpretation of o(dp;); otherwise, since (7, ¢) is in the interpretation
of dp; and c is in the interpretation of D, then ¢ is in the interpretation of
o(dpy) by the construction of I’. Similarly, if dp; = owl:bottomDataProperty,
then i is clearly not in the interpretation of o(dp,); otherwise, since (i, c)
is not in the interpretation of dp,, then ¢ is not in the interpretation of
o(dpy) by the construction of I’. Consequently, I’ = o(dp,) C o(dps), so
O, W~ o(dpr) C o(dps), as required.

(The = direction) We consider the following cases, depending on whether
dp; and/or dp, are equal to owl:topDataProperty.

1. Assume dp, = owl:topDataProperty. Then o(dpy) = owl:Thing, so
O, = o(dp1) C owl:Thing, and O, = o(dp,) C o(dps), as required.

2. Assume dp; = owl:topDataProperty and dp, # owl:topDataProperty.
If O is unsatisfiable, then O, is unsatisfiable as well, so the claim clearly
holds. Assume that O is satisfiable in a model I. Let I’ be an interpre-
tation that coincides with I on all symbols and the object domain, and
whose data domain is obtained by extending the data domain of I with
an arbitrary constant o. The proof of [23, Theorem DS1] shows that I’
is a model of O; however, since all symbols are interpreted in I’ as in I,
and the interpretation of dp; = owl:topDataProperty contains the new
constant «, it is not the case that the interpretation of dp; is contained
in the interpretation of dps in I'. Consequently, O t~ dp; C dps, and
our claim holds vacuously.

3. In all other cases, we show the contrapositive: if O, £ o(dp,) C o(dps),
then O [~ dp; C dpy. Assume O, b o(dpy) C o(dpy); then a model [
of O, exists where some i is an instance of o(dp;) but not of o(dps);
furthermore, O, contains all axioms of O, so [ is a model of O; more-
over, dp; # owl:bottomDataProperty and dpy # owl:topDataProperty;
finally, the case dp; = owl:topDataProperty is covered in Point 2, so
we assume dp; # owl:topDataProperty. Since we assume i to be an
instance of o(dp;), due to axiom (43) for dp; then c¢ exists that is
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a dpp-successor of ¢ and that is an instance of D in I. But then,
O [~ dpy C dpy holds trivially for dps = owl:bottomDataProperty. As-
sume now that dps # owl:bottomDataProperty and that ¢ is a dps-
successor of 7 in /. Axiom (43) for dp, implies that i is an instance
of o(dpsy), so i is an instance of o(dpy) in I, which is a contradiction.
Consequently, ¢ is not a dpy-successor of i—that is, I [~ dp; T dp,—so
O [~ dpy C dpy, as required. ]

An algorithm for the classification of data properties of an ontology can
now be obtained by a straightforward modification of Algorithm 4.

6. Evaluation

We implemented Algorithms 1 and 4 and the adaptation of Algorithm 4
for data properties in version 1.3.5 of our HermiT reasoner. To evaluate the
effectiveness of our techniques and to contrast them with the ET strategy, we
compared the performance of HermiT 1.3.5 with that of HermiT 1.2.2a—an
earlier version of HermiT that uses the ET algorithm for classifying both
classes and properties. We have not compared HermiT with other reasoners,
as the source of any difference in performance would be difficult or impossible
to determine, and so such tests would tell us very little about the effectiveness
of our new classification technique. Moreover, other systems could (and we
believe should) easily adopt our new technique. We conducted our evaluation
using 70 well-known and widely-used ontologies. All test ontologies, both
HermiT versions, the Java programs that were used to produce the results,
and the test results are available online.”

Due to lack of space, in this paper we present the results for 20 representa-
tive ontologies on which we obtained ‘interesting’ results. These include two
versions of the GALEN medical ontology [26],% several ontologies from the
Open Biological Ontologies (OBO) Foundry,” the Food and Wine ontology
from the OWL Guide, three versions of the Foundational Model of Anatomy
(FMA) [10], and ontologies from the Gardiner ontology corpus [7]. For each

"http://wuw.hermit-reasoner.com/2011/classification/Evaluation.zip

8These are so-called GALEN-doctored (GALEN-d) and GALEN-undoctored (GALEN-
un) ontologies. Both were derived from an original GRAIL ontology, and the former is
a simplified version of the latter; this simplification was necessary to allow early tableau
reasoners to classify the ontology [16].

Yhttp://www.obofoundry.org/
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Table 1: Number of classes, properties, and assertions in the evaluated on-
tologies, as well as the DL fragment that the ontologies belong to

classes | object | data | assertions DL

prop. | prop. fragment

GALEN-d 2748 413 0 0 ELHIF p+
GALEN-un 2748 413 0 0 ELHIF p+
BTO 4978 5 0 12 300 Horn-ALE
CL-EMAPA 5952 16 0 391 Horn-ALE
MP 8246 2 0 39426 Horn-AL p+

DOID 8694 41 0 76418 | Horn-ALH p+

IMR 9164 3 0 139447 | Horn-ALE p+

chebi | 20979 10 0 243972 | Horn-ALE p+

NCI | 27652 70 0 0 Horn-ALE

GO_XP | 27883 5 0 163136 Horn-SH
biopax-level2 42 33 37 0| ALCHN(D)
biopax-level3 70 57 41 0 SHIN (D)
Food-Wine 139 17 1 482 | SHOIN(D)
ProPreO 482 30 0 0 SHIN

CL 1498 2 0 5908 ALC

substance | 1721 112 33 340 | SHOIN (D)
UBERON 4764 69 0 55360 SRT
FBbt_XP 7225 21 0 12580 SHT
PRO | 26017 8 0 138902 SH

FMA 2.0-CNS | 41648 148 20 86 | ALCOLZF (D)
FMA 3.0-noCNS | 85005 142 13 98 | ALCOZF (D)
FMA 3.0-noMTC | 85005 140 13 98 SROIQ(D)

of these ontologies, Table 1 shows the numbers of classes, properties, and as-
sertions, as well as the fragment of OWL 2 DL that the ontology is expressed
in.t0

Each test involved classifying the classes and properties of the respective
test ontology. We measured the overall classification times as well as the
number of reasoning (i.e., subsumption and satisfiability) tests performed.
Each classification task was performed three times and the results were av-

eraged over the three runs. All experiments were run on an HS21 XM Blade

10We use the standard description logic nomenclature for fragments of OWL 2 DL [3].
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server with two quad core Intel Xeon processors running at 2.83 GHz under
64bit Linux. We used Java 1.6, which was allowed 4GB of heap memory per
test. Each test was allowed at most six hours to complete.

The results for the representative ontologies are summarised in Table 2.
The upper part of the table shows the results for the deterministic ontolo-
gies (i.e., the ontologies that do not use disjunctive constructors), while the
lower part shows the results for the nondeterministic ontologies. The ‘data
properties’ columns contain ‘-’ for ontologies without data properties, while
(t/o) indicates a timeout.

As Table 2 shows, the new classification strategy of HermiT 1.3.5 is in all
cases significantly faster than the ET strategy of HermiT 1.2.2a, sometimes
by one or even two orders of a magnitude. This is particularly true for prop-
erty classification where, as explained in Sections 4 and 5, none of HermiT’s
standard optimisations can be applied, and where one must entirely rely on
the insertion strategy of ET to reduce the number of subsumption tests. In
contrast, our reductions of property to class classification allow one to ex-
ploit all optimisations available for the classification of classes, which ensures
a very good and robust performance. Note, however, that in some ontologies
(e.g., NCI and biopax-level2) HermiT 1.3.5 might need roughly the same
number of tests as HermiT 1.2.2a to classify the object properties. This is
because in these ontologies the property hierarchy is relatively flat—that is,
there are very few asserted subsumption relations between any of the object
properties, so our classification algorithm performs a satisfiability test for
almost all the classes that the properties are mapped to. Nonetheless, our
results clearly demonstrate that correct classification of properties is prac-
tically feasible and preferable to simple but incomplete transitive closure
algorithms. Finally, note that, although the Food-Wine ontology contains
only one data property, the algorithms still needs to check this property with
respect to the top and bottom data property in order to insert it correctly
into the hierarchy.

The results for classification of classes are similar: the new algorithm has
significantly reduced the classification times in most cases. The significant
performance gain in the classification of FMA is due in part to the heuristic
implemented in lines 10-16 of Algorithm 2, which prevents HermiT from
repeatedly testing the satisfiability of unsatisfiable classes.

Note that, compared to the first version of the algorithm and the evalua-
tion presented in [9], our revised algorithm requires far fewer reasoning tests
to classify the GALEN-d and GALEN-un ontologies. This is a consequence
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of identifying known subsumptions in lines 8 and 27 of Algorithm 3 even
after the initialisation phase.

7. Related Work

A strategy for the construction of hierarchies that performs well for tree-
like relations was described by Ellis [6]: elements are inserted into the hierar-
chy one at a time; furthermore, for each element, the subsumers are identified
using top-down breadth-first search, and the subsumees are identified using
bottom-up breadth-first search. Baader et al. [2] further refined this tech-
nique to avoid redundant subsumption tests in the top-down phase: a test
O = AC B is performed only if O = A C C holds for each subsumer C' of
B [2]. Haarslev and Méller [12] further improved the traversal of flat hier-
archies using a clustering technique, in which a single subsumption test can
sometimes eliminate several potential subsumers. This technique provided
us with inspiration for the efficient pruning of possible subsumers in line 6
of Algorithm 3.

Baader et al. [2] also described techniques for identifying subsumption
relations between classes by analysing the syntax of ontology axioms and
without running expensive subsumption tests; for example, from an axiom
of the form

SubClassOf(A ObjectIntersectionOf(B C)) (44)

where A, B and C are classes, one can deduce that B and C' are ‘told sub-
sumers’ of A. The various simplification and absorption techniques described
by Horrocks [16] can be used to increase the likelihood of identifying ‘told
subsumers’ syntactically. Haarslev et al. [14] further extended these ideas to
detect obvious non-subsumptions; for example, from an axiom of the form

SubClassOf(A ObjectIntersectionOf(ObjectComplementOf(B) C'))  (45)

one can deduce that A and B are disjoint, so neither class subsumes the other
(unless both are unsatisfiable). Tsarkov et al. [34] described a technique
for precisely determining the subsumption relationships between ‘completely
defined classes’—classes whose definitions contain only conjunctions of other
completely defined classes [34]. All these optimisations can be exploited in
the initialisation phase of our algorithm, by suitably modifying line 1 of
Algorithm 2.
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8. Conclusions

In this paper, we considered the problem of efficiently classifying OWL
ontologies. Unlike in earlier approaches, we consider all classification tasks,
including class, object property, and data property classification. To the best
of our knowledge, property classification has not previously been discussed
in the literature.

We presented a new classification algorithm that significantly improves
the performance of the existing class classification algorithms. The algo-
rithm is based on the idea of maintaining two sets of known and possible
subsumptions, which are updated appropriately as classification progresses.
An advanced pruning strategy exploits the transitivity inherent in the sub-
sumption hierarchy to prune these two relations and thus reduce the number
of required subsumption tests.

In addition, by means of several examples, we demonstrated that com-
monly used algorithms for property classification based on computing the
reflexive—transitive closure of the asserted property hierarchy are incomplete
even for very weak fragments of OWL. Furthermore, we discussed the difficul-
ties of applying our classification approach directly to property classification.
Finally, showed how to reduce the problems of classifying object and data
properties to the problem of classifying classes. These reductions can be used
to classify the property hierarchies while reusing all available optimisations.

We implemented all our algorithms in version 1.3.5 of the HermiT rea-
soner, and we compared the performance of HermiT 1.3.5 with an earlier
version of HermiT that uses the standard enhanced traversal classification
algorithm. Our results are very encouraging, showing significant improve-
ments in classification times and reductions in the number of subsumption
tests. Our experiments also show that both correct and efficient classification
of object and data properties is possible in practice.

We are currently working on extending our algorithm to individual re-
alisation—the tasks of computing, for each individual ¢ in an ontology, the
most specific classes C' such that ¢ is an instance of C'. Our preliminary
results suggest that the performance of realisation can also be significantly
improved by exploiting the ideas outlined in this paper.
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