
How Incomplete is Your Semantic Web Reasoner?
Systematic Analysis of the Completeness of Query Answering Systems

Giorgos Stoilos and Bernardo Cuenca Grau and Ian Horrocks
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford, UK

Abstract

Conjunctive query answering is a key reasoning service for
many ontology-based applications. In order to improve scal-
ability, many Semantic Web query answering systems give up
completeness (i.e., they do not guarantee to return all query
answers). It may be useful or even critical to the designers
and users of such systems to understand how much and what
kind of information is (potentially) being lost. We present a
method for generating test data that can be used to provide at
least partial answers to these questions, a purpose for which
existing benchmarks are not well suited. In addition to devel-
oping a general framework that formalises the problem, we
describe practical data generation algorithms for some pop-
ular ontology languages, and present some very encouraging
results from our preliminary evaluation.

Introduction
Ontologies expressed in the W3C’s Web Ontology Lan-
guage (OWL) and its revision OWL 2 are playing a key role
in the development of the Semantic Web. An important ap-
plication of OWL is data access (Poggi et al. 2008), where
an ontology is used to describe the meaning of the data
stored in various sources, and query answers reflect both the
data and the knowledge captured in the ontology. In this set-
ting, query languages are often based on conjunctive queries
(CQs) (Glimm et al. 2007; Ortiz, Calvanese, and Eiter 2008;
Calvanese et al. 2007; Lutz, Toman, and Wolter 2009;
Pérez-Urbina, Motik, and Horrocks 2008), with the ontol-
ogy providing the vocabulary used in queries.

Unfortunately, the worst-case complexity of CQ answer-
ing for OWL and OWL 2 is very high—in fact the decid-
ability of general CQ answering for OWL is still open—and
even for decidable cases, existing algorithms for sound and
complete query answering may not scale well in practice.
As a result, those attempting to develop scalable systems of-
ten choose to restrict the expressive power of the ontology
language or to give up completeness (or both).

In Semantic Web applications, completeness is often not
strictly required; consequently, many systems have chosen
to give up completeness. This allows them to support a large
fragment of OWL (2), and also to base their implementations
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on scalable database and RDF triple store technologies. Ex-
amples of such systems are Oracle’s Semantic Data Store,
Sesame, OWLim, Minerva, HAWK, and Virtuoso.

The tradeoff between completeness and efficiency is ob-
viously a continuum. At one extreme, a very efficient (but
highly incomplete) CQ answering system could be imple-
mented by ignoring the ontology and matching the query
against the data using a database or triple store. At the other
extreme lie complete but comparatively inefficient systems
based on theorem proving techniques. Incomplete systems
lie somewhere between these two extremes, finding some
but not all the answers implied by the ontology and the data.

A major difficulty with incomplete CQ answering systems
is determining “how incomplete” they are. Thus, application
developers may find it difficult to assess whether a system
meets their needs. In practice, such systems are often eval-
uated using standard benchmarks, such as the Lehigh Uni-
versity Benchmark (LUBM) (Guo, Pan, and Heflin 2005)
and the University Ontology Benchmark (UOBM) (Ma et
al. 2006). LUBM consists of an ontology describing an aca-
demic domain, a collection of Java classes for automatically
creating “realistic” data, and a set of 14 test queries; UOBM
is an extension of LUBM with a richer ontology.

This kind of evaluation is of limited utility for assessing
completeness: the degree of completeness exhibited by a
system is likely to be highly dependent on the test ontology,
query and data, and good behaviour on LUBM or UOBM
does not guarantee good behaviour in general. Moreover,
the data generated in LUBM and UOBM exhibits several
limitations concerning the evaluation of completeness:

1. The data is not generic. The generation scripts have been
crafted for the specific ontology in the benchmark, and
cannot be reused to generate data for other ontologies.

2. The data is not exhaustive. Completeness can be mea-
sured only w.r.t. a fixed number of relational structures
hard-coded into the generation scripts, and not w.r.t. other
relational structures that may occur in “real data”.

3. Query answers may not be verifiable. Since the correct
answers are not known a-priori, completeness can only
be measured by comparison with the output of a com-
plete system, and hence cannot be verified at all for large
datasets that no complete system can handle.
The first limitation could be addressed by using randomly



generated data. However, such data typically bears little re-
semblance to real data, and so tells us little about a system’s
likely behaviour in practice. Moreover, it is unlikely to be
exhaustive (the number of possible relational structures may
be infinite), and query answers may not be verifiable.

In this paper, we present a novel framework for the auto-
matic generation of ontology data that addresses all of the
above problems. The idea behind this framework is that,
given an ontology T (with no data attached to it) and a CQ
q, we would like to generate an exhaustive (and hopefully
small) collection of datasets D such that, if a system S is
complete for T , q and each of the datasets d ∈ D, then
S is complete for T , q and any dataset. Furthermore, for
each d ∈ D, the correct answer to q w.r.t. T and d should
be known; we can then check the answers given by S and
provide a quantitative measure of its “completeness degree”
w.r.t. T and q. Although a favourable result with such a D
does not guarantee the completeness of S in general, it does
allow application developers to assess with a much higher
degree of confidence whether S meets their needs, particu-
larly if the ontology and the kinds of query to be answered
are largely determined by the application.

In order to be exhaustive, D would need to include in-
stances of every kind of relational structure that can pro-
duce an answer to q. Unfortunately, we show that there exist
OWL ontologies and CQs for which such a D would neces-
sarily be infinite. However, we go on to show that exhaustive
collections of datasets do exist for ontologies and CQs satis-
fying certain restrictions, and we investigate the design of an
algorithm for generating them. Furthermore, we show that
by fixing an upper bound on the number of individuals that
can occur in a dataset, an exhaustive D always exists (even
for arbitrary OWL and OWL 2 ontologies), and we also ex-
amine how to generate such collections in practice.

We have implemented a dataset generator and evaluated
it on the LUBM ontology and queries using several CQ an-
swering systems based on incomplete algorithms. Our re-
sults show that systems which are complete w.r.t. the LUBM
suite for many (if not all) of the test queries, prove to be
incomplete w.r.t. the same ontology and queries when the
datasets produced by our generator are substituted for the
LUBM data. Analysis of failed tests provides useful insights
into the causes of incompleteness, and shows that such cases
are not unrealistic. Finally, our techniques can be used to
generate datasets that are harder than those in LUBM, and
thus could be useful for performance analysis.

The proofs of all theorems can be found online1.

Preliminaries
Description Logics The formal underpinning of OWL(2) is
based on description logics (DLs) (Baader et al. 2002). We
next recapitulate the syntax of the DLs used in this paper.

Let C, R, and I be countable, disjoint sets of atomic con-
cepts, atomic roles, and individuals. A role is either atomic
or an inverse role R− for R ∈ R. For R,R′ roles, a RIA has
the form R v R′ and a transitivity axiom Trans(R).

1http://aaai2010web.tripod.com/syntheticgeneration.pdf

Let DL be either DL-Litecore (Calvanese et al. 2007),
EL (Baader, Brandt, and Lutz 2005), or FL0 (Baader et al.
2002). For A ∈ C, R a role, and C1, C2, C DL-concepts,
the set of DL-concepts is the smallest containing: (i) A,
∃R.>, if DL = DL-Litecore; (ii) >, A, C1 u C2, ∃R.C,
if DL = EL; and (iii)>, A, C1 uC2, ∀R.C, if DL = FL0.

A DL-GCI has the form C1 v C2 for C1, C2 DL-
concepts; if DL = DL-Litecore, then C2 can also be the
negation of a DL-Litecore-concept. A DL-TBox T is a fi-
nite set ofDL-GCIs. An ABoxA is a finite set of assertions
A(a) or R(a, b), for A ∈ C, R ∈ R, and a, b ∈ I. A
DL-ontology O = T ∪ A consists of a DL-TBox T and an
ABoxA. The semantics and definitions of various reasoning
problems are standard.

Conjunctive and Datalog Queries We use the standard
notions of first-order term, atom and variable. A datalog
clause is an expression H ← B1 ∧ . . . ∧Bn where H (the
head) is a (possibly empty) function-free atom, {Bi} (the
body) is a set of function-free atoms, and each variable in the
head also occurs in the body. A datalog program P is a finite
set of datalog clauses. A datalog query q is a tuple 〈QP , P 〉
with QP a query predicate and P a datalog program. We
denote with var(q) the set of variables occurring in q. A
query q is a union of conjunctive queries (UCQ) if QP is
the only predicate occurring in head position in P and the
body of each clause in P does not contain QP ; finally, q is
a conjunctive query (CQ) if it is a UCQ and P has exactly
one clause. If q = 〈QP , P 〉 is a CQ we often abuse notation
and write q = P ; if q is a UCQ with P = {P1, . . . , Pn}, we
often write q = {q1, . . . , qn} with qi = Pi a CQ. A variable
in a CQ is distinguished if it appears in the head.

A tuple of constants ~a is a certain answer of a datalog
query q = 〈QP , P 〉 over O = T ∪ A iff O ∪ P |= QP (~a),
where P is seen as a set of universally quantified implications
with first-order semantics; the set of certain answers of q on
O = T ∪ A is (equivalently) denoted as either cert(q, T ,A)
or cert(q,O). A CQ answering algorithm ans for DL is a
procedure that, for eachDL-ontologyO and CQ q computes
in a finite number of steps a set ans(q,O) of tuples of con-
stants. It is sound if ans(q,O) ⊆ cert(q,O) for each O and
q. It is complete if cert(q,O) ⊆ ans(q,O) for each O,q.
It is monotonic if ans(q,O) ⊆ ans(q,O′) for each O, O′
and q with O ⊆ O′. Finally, it is invariant under isomor-
phisms if for each pair of isomorphic ABoxesA andA′ (i.e.,
identical modulo renaming of individuals), ans(q, T ,A) and
ans(q, T , A′) are also identical modulo the same renaming.

Justifications We will often use the notion of a justifi-
cation for an entailment (see e.g., (Kalyanpur et al. 2007)),
which we define next for the case of CQ answering.

Definition 1 Let O be consistent, q a CQ and ~a ∈
cert(q,O). An ontology J ⊆ O is a justification for q,~a
in O if ~a ∈ cert(q, J) and ~a 6∈ cert(q, J ′) for each J ′ ⊂ J .

A Framework for ABox Generation
In this section, we present a framework for the automatic
generation of ontology data. The central notion is that of
a testing base: a collection of ABoxes for a TBox T and
CQ q. Each element of a testing base (called a testing unit)



represents a minimal ABox which can produce an answer to
q. To check completeness, a testing base must be exhaustive,
i.e., it must contain all “relevant” testing units.
Definition 2 An ABox A is a testing unit for a CQ q and
TBox T if T ∪ A is consistent and there exists a tuple
~a ∈ cert(q, T ,A) such that A is the ABox part of some
justification for q, ~a in T ∪A. A testing base B is a finite set
of testing units for q, T . It is exhaustive if, for each testing
unitA for q and T , it contains an ABox that is isomorphic to
A, and it is minimal if no two ABoxes in it are isomorphic.

As an example, consider T = {∃R.> v A,S v R}
and q = 〈QP , P 〉 where P = {QP (x)← A(x) ∧R(x, y)}.
The following ABoxes are testing units for q and T , and the
testing base B = {A1, . . . , A8} is exhaustive and minimal:

A1 = {R(a, b)} A2 = {A(a), R(a, b)}
A3 = {R(a, a)} A4 = {A(a), R(a, a)}
A5 = {S(a, b)} A6 = {A(a), S(a, b)}
A7 = {S(a, a)} A8 = {A(a), S(a, a)}

Intuitively, given an ABoxA, any ~a ∈ cert(q, T ,A) must
be entailed by some subset of A that is isomorphic to an
ABox in B, and thus a CQ answering algorithm that cor-
rectly computes cert(q, T ,Ai) for each Ai ∈ B should cor-
rectly compute cert(q, T ,A) for any ABoxA. This intuition
is formalised in the following theorem.
Theorem 3 Let ans be a sound, monotonic and invariant
under isomorphisms CQ answering algorithm for DL. Let
q be a CQ, T a DL-TBox and B an exhaustive testing base
for q and T . Then, the following property (♦) holds for any
A′ s.t. T ∪A′ is consistent: If ans(q, T ,A) = cert(q, T ,A)
for each A ∈ B, then ans(q, T ,A′) = cert(q, T ,A′).
Furthermore, given a CQ answering algorithm ans, we can
quantify the completeness of ans for a CQ q and TBox T by
comparing ans(q, T ,A) with cert(q, T ,A) for each ABox
A in a minimal exhaustive testing base for q and T .
Definition 4 Let ans, q, T and B be as in Theorem 3 with
B being also minimal. The completeness degree δ of the
algorithm ans for q and T is defined as follows:

δ(ans, q, T ) =
]{A ∈ B | cert(q, T ,A) = ans(q, T ,A)}

]B
Consider our example CQ q, TBox T and testing base

B = {A1, . . . , A8} as given above. An algorithm a1

that ignores T and simply matches q to the data would
only compute the correct answers for A2 and A4; hence,
δ(a1, q, T ) = 0.25. An algorithm a2 that handles RIAs but
not existential quantification would only compute the correct
answers forA2,A4,A6 andA8; thus, δ(a2, q, T ) = 0.5. Fi-
nally, a complete algorithm a3 would compute the correct
answers for all ABoxes; hence, δ(a3, q, T ) = 1.

Intuitively, given a CQ q, a TBox T , and CQ answer-
ing algorithms ans and ans′, if there is some ABox A s.t.
ans does not compute the correct answer to q w.r.t. T and
A, then δ(ans, q, T ) should be less than one; furthermore,
if ans′ computes the correct answer to q w.r.t. T and A
whenever ans does, then δ(ans′, q, T ) should be greater than
δ(ans, q, T ). Our notion of completeness degree conforms
to these intuitions, as shown in the following proposition:

Proposition 5 Consider the notation in Theorem 3. The fol-
lowing properties hold for any A s.t. T ∪ A is consistent:

1. If cert(q, T ,A) 6= ans(q, T ,A), then δ(ans, q, T ) < 1.
2. Let ans′ be a CQ answering algorithm with the same

properties as ans in Theorem 3. If, for each A,
cert(q, T ,A) = ans(q, T ,A) implies cert(q, T ,A) =
ans′(q, T ,A), then δ(ans, q, T ) ≤ δ(ans′, q, T ).

Unfortunately, an exhaustive testing base might not exist,
even for rather simple TBoxes and queries.

Theorem 6 Let DL be EL, or FL0, or a DL allowing for
transitivity axioms. There is a CQ q and a DL-TBox T for
which no exhaustive testing base exists.

The proof of Theorem 6 exploits the fact that we
can have infinitely many non-isomorphic ways to ob-
tain a certain answer by considering ABoxes with chains
R(a1, a2), . . . R(an−1, an) of increasing length and using
either transitive roles, or cyclic axioms involving existen-
tial (universal) quantification (note that a testing base must
be a finite set). In practice, however, it may be reasonable
to impose an upper bound on the length of such chains (e.g.,
by limiting the number of individuals in an ABox). We can
thus obtain a weaker notion of exhaustiveness.

Definition 7 A testing base for q and T is n-exhaustive if,
for each testing unit A for q and T with at most n individu-
als, it contains an ABox that is isomorphic to A.

For any positive integer n, an n-exhaustive testing base
always exists, as established in the following proposition.

Proposition 8 For any TBox T , CQ q and positive integer
n, there is a minimal, n-exhaustive testing base.

Furthermore, n-exhaustive testing bases enjoy analogous
properties to exhaustive ones. If B is n-exhaustive, Property
(♦) from Theorem 3 and Properties 1 and 2 from Proposition
5 hold for any ABox with at most n individuals.

Computing Testing Bases
In this section, we propose techniques for computing testing
bases. We start by identifying sufficient conditions for an
exhaustive testing base to exist. Then, we investigate the
design of practical algorithms for computing testing bases.

Existance of an Exhaustive Testing Base
By Theorem 6, there are CQs and TBoxes given in rather in-
expressive DLs for which an exhaustive testing base does
not exist. In this section, however, we identify a family
of TBoxes and queries that are relevant in practice and for
which exhaustive testing bases can be computed.

To this end, we establish a connection between the exis-
tence for T , q of an exhaustive testing base and the existence
of a UCQ rewriting; that is, a UCQ that “compiles” all the
information in T that is relevant to q for the purpose of query
answering, as formalised next.

Definition 9 A UCQ rewriting for a TBox T and a CQ q is
a UCQ rew(T , q) such that, for each ABox A

1. cert(q, T ,A) ⊆ ∪
q′∈rew(T ,q)

cert(q′, ∅,A); and



2. for each q′ ∈ rew(T , q), cert(q′, ∅,A) ⊆ cert(q, T ,A).

Several algorithms for computing UCQ rewritings have
been proposed in the literature. In (Calvanese et al. 2007),
it was shown that a UCQ rewriting always exists if T is
expressed in certain extensions of DL-Litecore, including
the one underlying the QL profile of OWL 2 (Motik et al.
2009). Furthermore, (Pérez-Urbina, Motik, and Horrocks
2008) showed that UCQ rewritings may exist even if T is
expressed in a logic of the EL family and proposed an algo-
rithm that computes a UCQ rewriting whenever one exists.

In what follows, we show that it is always possible to con-
struct an exhaustive testing base for T ,q from a UCQ rewrit-
ing for T , q. Our technique is based on the intuition that
testing units can be computed by mapping the variables from
a CQ in rew(T , q) to individuals, as formalised next.

Definition 10 Let q be a CQ and π a mapping from all the
variables of q to individuals. The following ABox is an in-
stantiation of q:

Aqπ := {A(π(x)) | A(x) body atom }∪
{R(π(x), π(y)) | R(x, y) body atom }

Not all instantiations of a CQ in a rewriting, however, lead
to a testing unit, as discussed in the following examples.

Example 11 Consider the following TBox and CQ:

T = {∃R−.> v A} q = {QP (x)← R(x, y) ∧A(y)}.

The UCQ {q, q1, q2} with q1 = {QP (x) ← R(x, y)}, and
q2 = {QP (x) ← R(x, y) ∧ R(z, y)}, is a UCQ rewriting.
However, the ABox Aq2π = {R(a, b), R(c, b)}, where π =
{x 7→ a, y 7→ b, z 7→ c}, is not a testing unit. This is
because there is a different instantiation of q2, namely Aq2π′

with π′ = {x 7→ a, y 7→ b, z 7→ a}, s.t. Aq2π andAq2π′ lead to
the same certain answer and Aq2π′ ⊂ Aq2π .

Example 12 Consider the following TBox and CQ:

T = {C uB v B} q = {QP (x)← B(x)}
The UCQ {q, q1} with q1 = {QP (x) ← C(x) ∧ B(x)}
is a UCQ rewriting, but Aq1π1

= {C(a), B(a)} with π1 =
{x 7→ a} is not a testing unit. This is because there is an
instantiation Aqπ of q, where π = {x 7→ a}, s.t. Aqπ and
Aq1π1

lead to the same answer and Aqπ ⊂ Aq1π1
.

These examples suggest that, when instantiating a CQ, we
need to make sure that there is no “smaller” instantiation of
a (possibly different) CQ in the rewriting.

Definition 13 Let u = {q1, . . . , qn} be a UCQ and as-
sume w.l.o.g. that var(qi) ∩ var(qj) = ∅ for i 6= j. Let
ind = {a1, . . . , am} be a set of individuals s.t. m = ]var(u),
Πu a subset of the mappings from var(u) to ind and Πq the
restriction of Πu to the variables in q ∈ u. The set Πu is a
valid instantiation of u if it is a maximal subset of the map-
pings from var(u) to ind with the following property:

(∗): for each qi, qj ∈ u and π ∈ Πqi
, there is no

mapping π′ from var(qj) to ind s.t. π and π′ map
the distinguished variables in qi and qj identically and
Aqj

π′ ⊂ Aqi
π .

Algorithm 1 Compute a non-exhaustive testing base
Algorithm: tb(u)
Input: a UCQ rewriting u for T , q
1 Initialize Out := ∅
2 Compute u′ := sub(cond(u))
3 Construct ind := {a1, . . . , an} for n = ]var(u′)
4 For each qi ∈ u′

For each injective mapping π from var(qi) to ind

Out := Out ∪ {Aqi
π }

5 Return Out

It is easy to see that a (finite) valid instantiation for a given
UCQ always exists. Furthermore, valid instantiations of a
UCQ rewriting always produce testing units, as shown next.

Lemma 14 Let T ′ ⊆ T and u = rew(T ′, q) a UCQ rewrit-
ing for T ′, q. Let Πu be a valid instantiation. Then, for each
qi ∈ u and each π ∈ Πqi such that T ′ ∪ Aqi

π is consistent,
we have that Aqi

π is a testing unit for T , q.

In order to compute exhaustive testing bases, we need to
consider the rewritings of all possible subsets of the input
TBox, as shown by the following theorem.

Theorem 15 Let ℘(T ) be the powerset of T . For each Ti ∈
℘(T ), let rew(Ti, q) be a UCQ rewriting. Finally, let

rew℘(T , q) = ∪
Ti∈℘(T )

rew(Ti, q)

Then, for Πu a valid instantiation of rew℘(T , q), the follow-
ing set is an exhaustive testing base for T ,q:

B = {Aqj
π | qj ∈ rew℘(T , q), π ∈ Πqj

, T ∪Aqj
π consistent}

The main result in this section easily follows.

Corollary 16 Let q be a CQ and T a TBox for which there
is a UCQ rewriting. Then, there exists a testing base for q,
T that is both exhaustive and minimal.

Practical Algorithms
According to Theorem 15, an algorithm for computing an
exhaustive testing base for T , q needs to first compute the
UCQ rew℘(T , q) and then compute testing units by using
only valid instantiations. Such an algorithm is not practi-
cal: first, it must examine exponentially many subsets of T ;
second, it needs to check property (∗) from Definition 13,
which potentially involves exponentially many ABox con-
tainment tests in the number of query variables.

In this section, we present a practical algorithm (see Al-
gorithm 1) for computing a possibly non-exhaustive testing
base, which we have implemented. As we will discuss later
on, our empirical results suggest that the output of our al-
gorithm can be successfully used in practice to approximate
the completeness degree of several Semantic Web reasoners.

Algorithm 1 takes a UCQ rewriting u for a TBox T and
CQ q, which can be computed using any state-of-the-art
rewriting algorithm (Calvanese et al. 2007; Pérez-Urbina,
Motik, and Horrocks 2008), and computes a testing base for
T ,q. To achieve practicality, our algorithm does not consider



rewritings for the subsets of T and hence the output testing
base might not be exhaustive.

In Line 3, Algorithm 1 adapts well-known techniques to
reduce the size of the input rewriting, as described next.

Definition 17 A CQ q is reduceable if there exist distinct
atoms in its body that are unifiable with θ being their most
general unifier. A reduction q′ of q is obtained by applying
θ to the body of q. A condensation reduction cond(u) of a
UCQ u is a UCQ in which there are no two queries q, q′
such that q′ subsumes q and q′ is a reduction of q.

A subsumption reduction of u is a UCQ sub(u) in which
there are no two queries q, q′ such that q′ subsumes q.

Intuitively, these reductions avoid many tests when check-
ing property (∗) from Definition 13. For example, applying
cond to the UCQ in Example 11 would eliminate the query
q2, so Aq2π would not be computed. Similarly, applying sub
to the UCQ in Example 12 would eliminate the query q1 thus
discarding the instantiationAq1π1

. These reductions, however,
do not completely eliminate the need for checking (∗).

Example 18 Consider the following TBox and CQ:

T = {C v ∃R.>} q = {QP (x)← R(x, y) ∧R(y, z)}

Given the rewriting {q, q1} with q1 = {QP (x)← R(x, y)∧
C(y)}, neither cond nor sub removes any query. However,
the ABoxAqπ = {R(a, a), C(a)} with π = {x 7→ a, y 7→ a}
is not a testing unit since a subset of it leading to the same
certain answer ({R(a, a)}) is already a testing unit.

To remedy this issue, our algorithm (see loop from Line 4)
considers only instantiations of CQs in the rewriting that are
injective (i.e. map distinct variables to distinct individuals).
Using this restriction, the ABoxAqπ from Example 18 would
not be computed, and we can show the following result:

Theorem 19 Algorithm 1 computes a testing base for q,T .

We conclude this section by considering the case of
TBoxes T and CQs q to which the negative results from The-
orem 6 apply. By Corollary 16, no UCQ rewriting exists for
such T and q. However, it might be possible to “compile”
the relevant information for q in T into a Datalog query.

Definition 20 A Datalog rewriting for a TBox T and a CQ q
is a Datalog query d = 〈QP , P 〉 such that cert(q, T ,A) =
cert(d, ∅,A) for any ABox A.

In (Pérez-Urbina, Motik, and Horrocks 2008) it was
shown that Datalog rewritings always exist if T is expressed
in certain DLs of the EL family. For example, given q =
{QP (x) ← B(x)〉} and T = {∃R.B v B}, the rewriting
algorithm from (Pérez-Urbina, Motik, and Horrocks 2008)
computes the (recursive) Datalog query q = 〈QP , P 〉 where

P = {QP (x)← B(x), B(x)← R(x, y) ∧B(y)}

Algorithm 2 exploits Datalog rewritings for computing a
subset of an n-exhaustive testing base. The algorithm
unfolds the Datalog program using SLD-resolution with
backward-chaining and instantiates the body of each of the
resolved clauses using an injective mapping. Cycles due to
recursion are only unfolded up to a finite depth because the

Algorithm 2 Approximate an n-exhaustive testing base
Algorithm: ntb(d, n)
Inputs: a Datalog rewriting d = 〈QP , P 〉 for T ,q

a non-negative integer n
1 Construct ind := {a1, . . . , an}
2 Initialize Out := ∅
3 Initialize a tree with a root node R = QP
4 Repeat

For each node N = A1 ∧ . . . . . . ∧Am with depth i ≤ n
For each clause C ← B1 ∧ . . . ∧B` in P

If Ak and C are unifiable with mgu θ for some k ≤ m
Create a child M = (A1 ∧ . . . ∧Ak−1 ∧B1 ∧ . . .∧

B` ∧Ak+1, . . . , Am)θ of N
For each injective π from vars in M to ind

Out := Out ∪ {AMπ }
Until no new ABox is added to Out

5 Return Out

possible number of injective mappings using n individuals is
finite. Analogously to Algorithm 1, the output of Algorithm
2 contains only testing units, but it does not contain all the
testing units of an n-exhaustive testing base.

Implementation and Evaluation
We have implemented Algorithm 1 in a prototype tool called
SyGENiA, which uses REQUIEM2 for the computation of
UCQ rewritings. We have run SyGENiA over the LUBM
TBox and queries to compute testing bases, which we then
used to evaluate the completeness of four systems: Sesame
2.3-pr1,3 OWLim 2.9.1.,4 Minerva v1.5,5 and HAWK v3.1.6
Since REQUIEM does not currently support individuals in
queries or transitivity in the TBox, we have replaced the in-
dividuals in queries by distinguished variables and removed
the only transitivity axiom in the LUBM TBox. In this set-
ting, all queries lead to UCQ rewritings w.r.t. the LUBM
TBox, as there is no recursion involved in the rewriting pro-
cess. Thus, exhaustive testing bases exist for all queries.

Table 1 summarises the results w.r.t. the LUBM queries
for which the LUBM and the SyGENiA datasets lead to
different completeness results. Our datasets reveal many
sources of incompleteness in the evaluated systems and pro-
vide a clearer picture of their behaviour w.r.t. the LUBM
ontology and queries. Interestingly, OWLim and Minerva,
which are 100% complete w.r.t. the LUBM benchmark (and
which are reported to be 100% complete even for the UOBM
benchmark) were found to be incomplete for several queries.
Similarly, Sesame and HAWK were found incomplete for
many queries for which they were complete according to
the LUBM benchmark; furthermore, for certain queries for
which Sesame and HAWK were 0% complete w.r.t. LUBM,
we found that these systems retrieve the correct answers for
some testing units and therefore are not totally incomplete.

2http://www.comlab.ox.ac.uk/projects/requiem/home.html
3http://www.openrdf.org/
4http://www.ontotext.com/owlim/
5http://www.alphaworks.ibm.com/tech/semanticstk
6http://swat.cse.lehigh.edu/downloads/index.html]hawk



HAWK OWLim
Query Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q6 Q8 Q10
LUBM 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1

SyGENiA .13 .66 .2 .3 .05 .01 .07 .18 .05 .5 .04 .1 .96 .93 .96
Sesame Minerva

Query Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q5 Q6 Q7 Q8 Q10 Q12 Q13
LUBM 1 1 1 .83 .87 .83 .64 .83 0 0 1 1 1 1 1 1 1

SyGENiA .75 .2 .43 .01 .02 .02 .09 .017 .05 .24 .89 .87 .9 .76 .87 .66 .24

Table 1: Completeness degree measured on the LUBM and SyGENiA datasets respectively

Our techniques provide a detailed diagnosis of the sources
of incompleteness since we can point out the testing units
for which a system fails and quantify how “severe” the in-
completeness is for a given CQ. For example, according to
our framework, Sesame is incomplete for queries Q2, Q4
and Q5. This is not surprising, as these queries use inverse
roles (e.g., memberOf and member), which Sesame does
not handle. The resulting incompleteness, however, is rather
severe (e.g. Sesame is only 20% complete for Q4). How-
ever, the LUBM generator does not create assertions involv-
ing the role member and hence Sesame is complete for these
queries w.r.t. the LUBM data. For Q6 OWLim fails to entail
T ∪ {GraduateStudent(a)} |= Student(a) since it is not
complete for inferences involving existential quantification
and GraduateStudent v Student follows from

GraduateStudent v ∃takesCourse.GraduateCourse,
GraduateCourse v Course,

Student ≡ ∃takesCourse.Course

Minerva and HAWK use a DL reasoner to classify the
ontology and make explicit subsumptions between atomic
concepts. These two systems fail to entail Q5(a) from
T ∪ {headOf(a, b)}, which follows from the entailment
T |= ∃headOf.> v Person involving a complex concept.
These examples suggest that the identified sources of incom-
pleteness could easily occur in realistic data.

Finally, we have started exploring the use of our tech-
niques for performance evaluation. We generated a pool of
individuals and then created an ABox by duplicating test-
ing units using individuals from the pool. The generated
ABoxes had the same number of individuals and assertions
as LUBM’s dataset Univ-1. Our first experiments show that
SyGENiA’s datasets are approximately 2-4 times harder to
load and reason with. However, further research is required
to interpret these results, and we leave this for future work.

Conclusions and Future Work
This paper addresses the problem of generating ontology
data for evaluating the completeness of Semantic Web rea-
soners. We have developed a general framework formalis-
ing our problem and studied theoretical and practical dif-
ficulties. We have provided practical algorithms for some
popular DLs and evaluated them. Our first results provide
a clear picture of the completeness of several systems w.r.t.
the LUBM ontology and queries. There are many interest-
ing challenges for future work, such as the design of practi-
cal data generation algorithms for expressive DLs and their

evaluation on expressive ontologies, and the application of
our techniques to performance analysis of CQ answering.
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