
Optimized DL Reasoning via Core Blocking

Birte Glimm, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, UK

1 Introduction

State of the art reasoners for expressive DLs are typically model building procedures
that decide the (un)satisfiability of a knowledge base K via a constructive search for
an abstraction of a model for K. Despite numerous optimizations, certain existing and
emerging knowledge bases still pose significant challenges to such reasoners mainly
because these abstractions can be very large.

To ensure that only finite model abstractions are constructed (hyper)tableau reason-
ers use a cycle detection technique called blocking. It has already been demonstrated
that using a more fine-grained blocking condition can make the constructed abstractions
smaller, resulting in a significant speedup [1]. Even with such a blocking condition,
however, the constructed model abstractions can be very large; furthermore, checking
such fine-grained conditions can itself be costly.

To address these problems, we propose a new core blocking technique. Our tech-
nique first employs an easy-to-check and very “aggressive” blocking condition that can
halt the model construction much earlier than existing techniques. This condition is
so aggressive that, if used alone, it is not necessarily the case that the constructed ab-
straction can be expanded into a model. Therefore, after a model abstraction has been
constructed, a detailed check is performed to ensure that all blocks are indeed valid, and
the model construction terminates only if all blocks pass this check.

We further present an empirical evaluation using a prototypical implementation of
our technique in the HermiT reasoner. The evaluation compares the performance of
the hypertableau algorithm employing the original blocking condition and several core
blocking variants on widely used ontologies. The evaluation shows that the model ab-
straction size can be reduced significantly. The effects of core blocking are most pro-
nounced with large and complex ontologies such as DOLCE or GALEN. Furthermore,
core blocking allows HermiT to classify an OWL version of the FMA ontology [2],
whereas with standard blocking the reasoner runs out or memory.

Further details and evaluation results are available in a technical report [3].

2 Preliminaries

The formal definition of the hypertableau calculus is technically involved; therefore, we
will introduce only those aspects needed to understand the idea behind core blocking.
For further details and the precise definitions, we refer to [4].

The calculus is applicable to a knowledge base K = (T ,A) expressed in SROIQ
[5]. The calculus does not operate on K directly; rather, in order to reduce nondeter-
minism, it first translates K into a set of clauses C and an ABox A. The class of clauses

on which the hypertableau calculus operates is called HT-clauses. An HT-clause is
an implication of the form

∧m
i=1 Ui →

∨n
j=1 Vj , where Ui and Vj are called the an-

tecedent and the consequent atoms, respectively. Most notably, for r an atomic role, s
is a role, A is an atomic concept, and B, each antecedent atom is of the form A(x),
r(x, x), r(x, yi), r(yi, x), A(yi), or A(zj). Each consequent atom is of the form B(x),
>n s.B(x), B(yi), r(x, x), r(x, yi), r(yi, x), r(x, zj), r(zj , x), x ≈ zj , or yi ≈ yj .
These syntactic restrictions reflect the structure of DL axioms and ultimately ensure
termination of the calculus. HT-clauses are straightforwardly interpreted in first-order
logic, and they intuitively state that at least one consequent atom must be true whenever
all atoms in the antecedent are true. We next revise the derivation rules of the calculus.

The Hyp-rule is the main derivation rule. The rule is applicable to an HT-clause
cl and an ABox A` if a mapping σ from the variables in cl to the individuals in A`

exists such that σ(Ui) ∈ A` for each 1 ≤ i ≤ m, but σ(Vj) 6∈ A` for each 1 ≤ j ≤ m;
if such σ exists, then a consequent atom Vj of cl is nondeterministically chosen and
A` is extended to A`+1 = A` ∪ {σ(Vj)}. For example, when applied to the HT-clause
r(x, y)→ (> 1 r.A)(x) ∨D(y) and an ABox A` containing r(a, b), the Hyp-rule ex-
tends A` either with (> 1 r.A)(a) or D(b). The >-rule deals with existential quan-
tifiers and number restrictions. Let ar(s, a, b) = s(a, b) if s is an atomic role and
ar(s, a, b) = r(b, a) if s is an inverse role such that s = r−. The rule is applicable
to (>n r.B)(a) ∈ A` if no individuals b1, . . . , bn exist such that ar(r, a, bi) ∈ A` and
B(bi) ∈ A` for each 1 ≤ i ≤ n, and bi 6≈ bj ∈ A` for each 1 ≤ i < j ≤ n. If this is
the case, then A` is extended to A`+1 by introducing fresh individuals c1, . . . , cn and
adding assertions ar(r, a, ci) and B(ci) for 1 ≤ i ≤ n, and ci 6≈ cj for 1 ≤ i < j ≤ n.

The ≈-rule deals with equality: given a ≈ b, the rule replaces the individual a in all
assertions with the individual b, and adds some bookkeeping information to keep track
of the rule application. Finally, the⊥-rule detects contradictions—called clashes—such
as A(a) and ¬A(a), or a 6≈ a. A clash-free ABox to which no derivation rule is appli-
cable is called a pre-model.

2.1 Blocking

Unrestricted application of the >-rule could lead to nontermination of the HT calculus.
To prevent that, the >-rule is applied to an assertion (>n r.B)(a) only if the individual
a is not blocked, as described next.

To apply blocking, the individuals are split into two sets. Root individuals (mainly
individuals occurring in the input), which are never blocked and blockable individuals,
which are introduced by the >-rule and they can be blocked. For A an atomic concept
and r an atomic role, we define labels of an individual and an individual pair as follows:

LA(s) = {A | A(s) ∈ A} LA(s, t) = {r | r(s, t) ∈ A}

To prevent cyclic blocks, we use a strict order ≺ over all individuals, which coincides
with the order in which individuals are inserted into the ABox.

Pairwise anywhere blocking is necessary for knowledge bases that use inverse roles
and number restrictions. Each individual s in an ABox A is assigned by induction on
≺ a status as follows: s is blocked if it is directly or indirectly blocked; s is indirectly

blocked if it has a blocked ancestor; and s is directly blocked by an individual t if, for
s′ and t′ the predecessors of s and t, respectively, s, t, s′, and t′ are all blockable, t is
not blocked, t ≺ s, and (1) –(4) hold.

LA(s) = LA(t) (1) LA(s′) = LA(t′) (2)
LA(s, s′) = LA(t, t′) (3) LA(s′, s) = LA(t′, t) (4)

The simpler single anywhere blocking can be used on knowledge bases without inverse
roles, and it differs from the above definition in that s is directly blocked by an individual
t if s and t are blockable, t is not blocked, t ≺ s, and (1) holds.

A pre-model A′ can be extended to a model for (A, C) by unraveling. Roughly
speaking, each individual s that is directly blocked in A′ by t is replaced by a “copy”
of t; a precise account of this process is given in [4].

3 Optimized Blocking Strategies

For tableau algorithms that normally require pairwise blocking, Horrocks and Sattler
proposed a more precise blocking condition [1], which amounts to single subset block-
ing with additional constraints on the predecessor of the individual that is to be blocked
and on the blocker itself. Although checking the blocking conditions is quite expensive,
the optimization exhibits substantial improvements in reasoning performance due to the
significantly smaller pre-models.

Related blocking optimizations were proposed in the context of first-order theorem
proving [6]; however, these techniques do not guarantee termination for DLs such as
SROIQ that provide for nominals, number restrictions, and inverse roles.

Caching [7] is an orthogonal approach for reducing the pre-model size by reusing
already constructed pre-model fragments. In fact, caching techniques can be used to
obtain a worst-case optimal algorithm for certain DLs [8, 9]; in contrast, standard (hy-
per)tableau algorithms are usually not worst-case optimal.

3.1 Core Blocking

Unlike existing blocking techniques, core blocking is approximate rather than exact: ap-
plying core blocking alone does not guarantee that a pre-model can indeed be unraveled
into a model. To ensure the latter, a pre-model needs to be checked to discover invalid
blocks; if such blocks are found, the derivation is continued until either a contradiction
is derived or all blocks become valid.

To formalize the process of discovering approximate blocks, we assume that each
assertion α in an ABox is associated with a Boolean flag that determines whether α is
a core assertion. A core blocking policy will be used to determine which assertions are
core. In Section 3.3 we present two policies that strike a balance between the poten-
tial for reduction in the pre-model size and the cost of validating blocks. Before that,
however, we introduce a general notion of core blocking that is applicable to any policy.

Definition 1. For an ABox A and a pair of individuals s and t, let

Lcore
A (s) ={A | A ∈ LA(s) and A(s) is a core assertion in A} and

Lcore
A (s, t) ={r | r(s, t) ∈ LA(s, t) and r(s, t) is a core assertion in A}.

Single and pairwise core blocking are obtained from the respective definitions given in
Section 2.1 by using Lcore

A instead of LA in conditions (1)–(4); furthermore, in single
core blocking, for s to be directly blocked by t we additionally require both s and t to
be successors of blockable individuals.

The requirement that s and t are successors of blockable individuals ensures that
single core blocking can also be used with knowledge bases that contain inverse roles.

A blocking validation test checks whether any of the derivation rules would be ap-
plicable if we were to unravel a candidate pre-modelA` to a model. If no rule becomes
applicable, then we can guarantee that the model construction succeeds, i.e., the block
is indeed valid. To this end, we define an ABox valA`

(s) for a blockable individual s
that, intuitively, contains the assertions from the unraveling of A` that affect inferences
involving s.

Definition 2. Let C be a set of HT clauses, and letA` be an ABox. For an individual w,
let |w| = w if w is not blocked in A`, and |w| = w′ if w is blocked in A` by w′. For a
blockable individual s, the ABox valA`

(s) is the union of the sets shown in the following
table, where u denotes the predecessor of s, v denotes a successor of |s|, b denotes a
root individual, C denotes a concept, and r denotes an atomic role.

1 2 3
{C(u) | C(u) ∈ A`} {r(u, s) | r(u, s) ∈ A`} {r(s, u) | r(s, u) ∈ A`}
{C(s) | C(|s|) ∈ A`}
{C(v) | C(|v|) ∈ A`} {r(s, v) | r(|s|, v) ∈ A`} {r(v, s) | r(v, |s|) ∈ A`}
{C(b) | C(b) ∈ A`} {r(s, b) | r(|s|, b) ∈ A`} {r(b, s) | r(b, |s|) ∈ A`}

A blockable individual s is safe for blocking in an ABox A` if the following condi-
tions are satisfied:

– the Hyp-rule is not applicable to an HT-clause γ ∈ C and valA`
(s) with a mapping

σ such that σ(x) = s, and
– the >-rule is not applicable to an assertion (>n r.B)(s) in valA`

(s).

A directly blocked individual s with predecessor s′ is validly blocked in A` if both s
and s′ are safe for blocking.

On knowledge bases that normally require single blocking (i.e., that do not contain
inverse roles), Definitions 1 and 2 can be simplified. By the model construction from
[4], valA`

(s) then needs to contain only sets from columns 1 and 2 in Definition 2;
this, in turn, allows us to drop the extra requirement on the predecessors of s and t in
Definition 1 in the case of single core blocking.

3.2 Applying Core Blocking in a Derivation

If an individual s is core-blocked by an individual t but the block is identified as in-
valid, one should reconsider t as a potential blocker for s only after valA`

(s) changes;
otherwise, the calculus might get stuck in an endless loop trying to block s by t and sub-
sequently discovering the block to be invalid. We deal with this problem by associating
with each individual s in A` a Boolean flag modA`

(s) that is updated as the derivation
progresses. Intuitively, modA`

(s) = true means that valA`
(s) has changed since the

last time blocks were checked for validity. We also maintain a set S of pairs of validly
blocked and blocking individuals, which we to ensure that the calculus terminates only
when all blocks are valid.

Definition 3. Let S be a set of pairs of individuals; let A` be an ABox; and let s and
t be individuals occurring in A`. Then, s is directly blocked by t in A` for S-core
blocking iff s is directly blocked by t in A` for core blocking and

〈s, t〉 ∈ S or modA`
(s) = true or modA`

(t) = true.

A derivation by the hypertableau calculus with core blocking for a set of HT-clauses C
and an ABox A is constructed by applying the following steps.

1. Set S := ∅, Aa := A, and modAa(s) := true for each individual s in Aa.
2. Apply the hypertableau calculus exhaustively toAa and C while using S-core block-

ing in the >-rule; furthermore, whenever A`+1 is derived from A`, for each indi-
vidual s in A`+1 set
(a) modA`+1(s) := true if valA`+1(s) 6= valA`

(s) or if s does not occur inA`, and
(b) modA`+1(s) := modA`

(s) otherwise.
Let Ab be a resulting ABox to which no derivation rule is applicable.

3. Set S to be equal to the set of pairs 〈s, t〉 of individuals such that s is directly
blocked in Ab by t and s is validly blocked in Ab.

4. Set modAb(s) := false for each individual s in Ab.
5. If an individual s exists such that s is core blocked in Ab by t but 〈s, t〉 6∈ S, then

set Aa := Ab and go to Step 2.
6. Return Ab.

Roughly speaking, our algorithm first applies the derivation rules as usual, with the
difference that core blocking is used (this is because S = ∅ in Step 1). After computing
a candidate pre-modelAb in Step 2, in Step 3 the algorithm updates S to the set of pairs
of valid blocks, and in Step 4 it marks all individuals in Ab as not changed. In Step 5,
the algorithm checks whetherAb contains invalid blocks. If that is the case, the process
is repeated; but then, S-core blocking ensures that only those blocks are considered that
are known to be valid or for which at least one of the individuals has changed since the
last validation. Theorem 1 shows that the calculus is sound, complete, and terminating.

Theorem 1. Let C be a set of HT-clauses and A an ABox.

1. The hypertableau calculus with core blocking terminates.
2. If C and A are satisfiable, then ⊥ 6∈ Ab for some Ab computed by the calculus.

3. If C and A are unsatisfiable, then ⊥ ∈ Ab for each Ab computed by the calculus.

Proof (Sketch). For the first claim, assume thatAb is an ABox computed in Step 2 such
that, whenever s is directly blocked in Ab by t for core blocking, then s is directly
blocked in Ab by t for standard blocking. Each individual s is then validly blocked in
Ab, so 〈s, t〉 ∈ S at Step 3 and the condition at Step 5 is not satisfied, so the calculus
terminates. Thus, in the worst case, core blocking reduces to standard blocking, which
implies a bound on the size of Ab in the usual way [4]. Furthermore, if an individual
t does not validly block s in an ABox Ab, then t can be considered again as a blocker
for s only after valAb(s) or valAb(t) changes. Since Ab is bounded in size, valAb(s)
and valAb(t) can change only a bounded number of times; hence, t is considered as a
candidate blocker for s only a finite number of times, which implies termination.

The second claim holds in the same way as in [4]. Finally, for the third claim,
given an ABox Ab computed by the calculus such that ⊥ 6∈ Ab, we unravel Ab into
an interpretation in the standard way [4]. From the definition of unraveling in [4], one
can see that, for each blockable individual s, the ABox valAb(s) contains the assertions
that correspond to the part of the unraveled interpretation involving s. Since s is validly
blocked in Ab, all the relevant restrictions are satisfied for s. Since all blocks are valid
in Ab, the unraveled interpretation is a model of C and A. ut

3.3 Core Blocking Policies

We now present two policies for identifying core assertions. Each policy can be used
with either single or pairwise core blocking.

The simple core policy is inspired by the following observation. Let A be a poten-
tially infinite ABox obtained by applying the hypertableau calculus without blocking
to an EL knowledge base K, and let s and t be two individuals introduced by ap-
plying the >-rule to assertions of the form (>n r.B)(s′) and (>mr′.B)(t′). Then,
LA(s) = LA(t); in fact, the concept labels LA(s) and LA(t) depend only on the con-
cept B. The policy thus makes such assertions B(s) and B(t) core in the hope that, if a
knowledge base is sufficiently “EL-like,” then s would validly block t.

Definition 4. The simple core policy marks all assertions as not core unless they are
covered by one of the following rules.

– Each assertion B(cj) derived by applying the >-rule to an assertion of the form
(>n r.B)(a) is marked as core.

– Each assertion α′ derived by the≈-rule from an assertion α via merging is marked
as core if and only if α is core.

– If an ABox contains α as a noncore assertion but some derivation rule derives α as
a core assertion, the former assertion is replaced with the latter.

Simple core blocking generates very small cores, but it can be imprecise and can
therefore lead to frequent validation of blocks. For example, if s and t are individuals
introduced by applying the >-rule as above, then inferences involving the predecessor
of s can cause the propagation of new concepts to s, which might invalidate blocking.

Furthermore, if the knowledge base contains nondeterministic concepts, then nondeter-
ministic inferences involving s and tmay cause LA(s) and LA(t) to diverge, which can
also invalidate blocking. We therefore define the following, stronger notion of cores.

Definition 5. The complex core policy is the extension of the simple core policy in
which, whenever the Hyp-rule derives an assertion σ(Vj) using a mapping σ and an
HT-clause γ =

∧m
i=1 Ui →

∨n
j=1 Vj , the assertion σ(Vj) is marked as core if and only

if σ(Vj) is a concept assertion and

– n > 1, or
– σ(Vj) is of the form B(s) with s a successor of σ(w) for some variable w in γ.

The complex core policy is motivated by the fact that, when EL-style algorithms
are extended to expressive but deterministic DLs such as Horn-SHIQ [10], the con-
cepts that are propagated to an individual from its predecessor uniquely determine the
individual’s label, so we mark all such assertions as core.

4 Empirical Evaluation

We implemented the different core blocking strategies in our HermiT reasoner and car-
ried out a preliminary empirical evaluation. For the evaluation, we selected several on-
tologies commonly used in practice. We classified each ontology and tested the satis-
fiability of all concepts from the ontologies with the different blocking strategies. Our
main measurement is the number individuals in the final pre-model since this number
directly relates to the amount of memory required by the reasoner.

We conducted our tests on a 2.6 GHz Windows 7 Desktop machine with 8 GB
of RAM. We used Java 1.6 allowing for 1 GB of heap space in each test. All tested
ontologies, a version of HermiT that supports core blocking, and Excel spreadsheets
containing test results are available online.1

Figures 1–4 contain concepts on the x-axis; however, concept names are not shown
due to the high number of concepts. The concepts are ordered according to the per-
formance under the standard blocking strategy reasoner. The y-axis either displays the
number of individuals in the pre-models or the reasoning times in milliseconds. All rea-
soning times exclude loading and preprocessing times, since these are independent of
the blocking strategy. Some figures employ a logarithmic scale to improve readability.
The label standard pairwise refers to the standard pairwise anywhere blocking strategy,
complex pairwise refers to pairwise core blocking with the complex core policy, etc.

Tables 1–2 show average measurements taken while testing the satisfiability of all
concepts in an ontology. The meaning of various rows is as follows: final pre-model size
shows the average number of individuals in the final pre-model; finally blocked shows
the average number of blocked individuals in the final pre-model; and number of valida-
tions shows the average number of validations before a pre-model was found in which
all blocks are valid; time in ms shows the average time to test concept satisfiability; and
validation part shows the percentage of this time taken to validate blocks. Finally, all ta-
bles show the time needed to classify the ontology in the format hours:minutes:seconds.

1 http://www.hermit-reasoner.com/coreBlocking.html

Fig. 1. The number of individuals in the pre-models for all concepts in DOLCE

Fig. 2. The reasoning times in ms for testing the satisfiability of all concepts in DOLCE

DOLCE is a small but complex SHOIQ(D) ontology containing 209 concepts and
1,537 axioms that produce 2,325 HT-clauses. Core blocking works particularly well on
DOLCE. The pre-model sizes (see Figure 1) and the reasoning times (see Figure 2)
for all core blocking variants are consistently below those obtained with the standard
anywhere blocking strategy. The simple single core blocking strategy gives the smallest
pre-models but the reasoning times are slightly smaller for the simple pairwise strategy.
This is because the simple single strategy produces more invalid blocks and, conse-
quently, requires more expansion and (expensive) validation cycles before a final pre-
model is found (see Table 1). Overall, the strategies work very well because DOLCE
does not seem to be very highly constrained and many blocks are valid immediately.

GALEN is the original version of the GALEN medical ontology dating from about
10 years ago. Apart from CB [10], which implements an extension of an EL-style
algorithm to Horn-SHIQ [10], HermiT is currently the only reasoner that can clas-
sify this ontology. GALEN is a Horn-SHIF ontology containing 2,748 concepts and
4,979 axioms that produce 8,189 HT-clauses, and it normally requires pairwise block-
ing. GALEN is unusual in that it contains 2,256 “easy” concepts that are satisfied in very
small pre-models (< 200 individuals) and 492 “hard” concepts that are satisfied in very
large pre-models (> 35,000 individuals) for the standard blocking strategy. The classi-
fication times in Table 2 take all concepts into account; in all other cases we omit the
measurements for the “easy” concepts since they do not show much difference between
the different blocking strategies and just clutter the presentation. As for DOLCE, the

Table 1. Average measurements over all concepts in DOLCE and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 28,310 13,583 5,942 1,634 1,426
finally blocked 19,319 9,341 4,241 1,207 1,046
number of validations — 1.03 1.06 1.09 2.09
time in ms 41,821 5,970 1,663 511 601
validation part — 2.17% 3.98% 48.84% 65.63%
classification time 01:18:32 00:24:03 00:08:43 00:03:45 00:05:29

Fig. 3. The number of individuals in the pre-models for the (hard) concepts in GALEN

simple single core blocking strategy produces the most significant reduction in model
size (see Figure 3). Although this strategy requires the most validation rounds, and these
take up 86% of the overall reasoning time, this strategy is still the fastest (see Figure 4)
since the reduction in model sizes compensates for the expensive block validations.

The only optimization in HermiT that needs adapting in order to work with core
blocking is the blocking cache: once a pre-model for a concept is constructed, parts of
the pre-model are reused in the remaining subsumption tests [4]. This dramatically re-
duces the overall classification time. The blocking cache can only be used on ontologies
without nominals; in out test suite only GALEN falls into that category. Although the
blocking cache could in principle be adapted for use with core blocking, this has not
yet been implemented, so we switched this optimization off.

The foundational model of anatomy (FMA) is a domain ontology about human
anatomy [2]. The ontology is one of the largest OWL ontologies available, containing
41,648 concepts and 122,617ALCOIF(D) axioms, and it is transformed into 125,346
HT-clauses and 3,740 ABox assertions. We initially tried to take the same measurements
for FMA as for the other ontologies; however, after 20 hours we processed only about
10% of the concepts (5,288 out of 41,648), so we aborted the test. Only the single
simple core blocking strategy was able to process all 5,288 concepts. The pairwise
simple core strategy stayed within the memory limit, but was significantly slower and
suffered from 5 timeouts due to our imposition of a 2 minute time limit per concept. The
standard blocking strategy exceeded either the memory or the time limit on 56 concepts,
the pairwise complex core strategy on 70, and the single complex core strategy on 37
concepts. Therefore, we produced complete measurements only with single simple core

Fig. 4. The reasoning times for testing the satisfiability of the (hard) concepts in GALEN

Table 2. Average measurements over (hard) concepts in GALEN and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 37,747 33,557 4,876 4,869 2,975
finally blocked 19,290 19,726 2,234 1,896 1,247
number of validations — 9.18 12.65 8.87 13.91
time in ms 33,293 36,213 8,050 10,485 7,608
validation part — 27.47% 74.91% 81.47% 86.78%
classification time 03:50:01 04:35:12 01:07:18 01:27:50 01:02:44

blocking, using which HermiT was able to classify the entire ontology in about 5.5
hours, discovering 33,431 unsatisfiable concepts. The ontology thus seems to contain
modeling errors that went undetected so far due to lack of adequate tool support. The
unsatisfiability of all of these concepts was detected before blocking validation was
required. The sizes of the ABoxes constructed while processing unsatisfiable concepts
is included in the final pre-model size in Table 3, although these are not strictly pre-
models since they contain a clash.

We also tested how much memory is necessary to construct all pre-models for
DOLCE and GALEN under different blocking strategies. Starting with 16MB, we dou-
bled the memory until the tested strategy could build all pre-models. The simple and
complex core blocking strategies require as little as 64MB and 128MB of memory,
respectively, whereas the standard blocking technique requires 512MB.

5 Discussion

In this paper we presented several novel blocking strategies that can improve the perfor-
mance of DL reasoners by significantly reducing the size of the pre-models generated
during satisfiability tests. Although we expected complex core blocking to work better
on knowledge bases in expressive DLs, the evaluation shows that the simple core pol-
icy clearly outperforms the complex core policy regarding space and time on all tested
ontologies. On more complex ontologies, the memory requirement with core blocking
seems to decrease significantly.

Table 3. Average measurements over FMA with the single simple core strategy

final pre-model size 1,747 finally blocked 1,074
time in ms 518 validation part 0.00%
number of validations 0.2 classification time 05:31:23

On ontologies where very few individuals are blocked (e.g., Wine) the new strate-
gies cannot really reduce the sizes of the pre-models [3]; however, they do not seem to
have a negative effect on the reasoning times either.

The current publicly available version of HermiT (1.2.2) uses simple single core
blocking as its default blocking strategy for ontologies with nominals; for ontologies
without nominals it uses standard anywhere blocking with the blocking cache opti-
mization, an optimization that has not yet been extended to core blocking.

Blocking validation is not highly optimized in our prototypical implementation.
This is most apparent for the single simple core strategy that causes the most invalid
blocks and where block validation takes 86% of the time for GALEN. Only the signifi-
cant model size reductions allows this strategy to nevertheless be the fastest. We believe
that we can significantly improve the performance in the future. We identified the two
most common reasons for invalid blocks: the >-rule is applicable to an assertion from
valA`

(s) of a blocked individual, or the Hyp-rule is applicable to the assertions from the
temporary ABox of the predecessor of a directly blocked individual. Testing for these
two cases first should reduce the overall time of validity tests. Finally, we shall adapt
the blocking cache technique to core blocking.
Acknowledgements The presented work is funded by the EPSRC project HermiT: Rea-
soning with Large Ontologies.

References

1. Horrocks, I., Sattler, U.: Optimised reasoning for SHIQ. In: Proc. of ECAI-02. (2002)
2. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in owl:

Experience and perspectives. J. of Web Semantics: Science, Services and Agents on the
World Wide Web 4(3) (2006) 181–195

3. Glimm, B., Horrocks, I., Motik, B.: Optimized dl reasoning via core blocking. Technical
report, University of Oxford (2010) http://www.comlab.ox.ac.uk/files/2743/paper.pdf.

4. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. of
Artificial Intelligence Research 173(14) (2009) 1275–1309

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. KR-06.
(2006) 57–67

6. Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model
Generation Methods. In: Proc. of IJCAR-06. Volume 4130 of LNCS. (2006) 125–139

7. Ding, Y., Haarslev, V.: Tableau Caching for Description Logics with Inverse and Transitive
Roles. In: Proc. DL. (2006)

8. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles. In: Proc. of
TABLEAUX 2009. LNCS (2009) 205–219

9. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelligence Journal
124(1) (2000) 87–138

10. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proc. of IJCAI-
09. (2009) 2040–2045

