
Optimising Ontology Classification

Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos

Oxford University Computing Laboratory, UK

Abstract. Ontology classification—the computation of subsumption hi-
erarchies for classes and properties—is one of the most important tasks
for OWL reasoners. Based on the algorithm by Shearer and Horrocks [9],
we present a new classification procedure that addresses several open is-
sues of the original algorithm, and that uses several novel optimisations
in order to achieve superior performance. We also consider the classifica-
tion of (object and data) properties. We show that algorithms commonly
used to implement that task are incomplete even for relatively weak on-
tology languages. Furthermore, we show how to reduce the property clas-
sification problem into a standard (class) classification problem, which
allows reasoners to classify properties using our optimised procedure. We
have implemented our algorithms in the OWL HermiT reasoner, and we
present the results of a performance evaluation.

1 Introduction

Ontology classification—the computation of subsumption hierarchies for classes
and properties—is a core reasoning service provided by all OWL reasoners known
to us. The resulting class and property hierarchies are used in ontology engineer-
ing, where they help users to navigate through the ontology and identify errors,
as well as in tasks such as explanation and query answering.

Significant attention has been devoted to the optimisation of individual sub-
sumption tests; however, most OWL reasoners solve the classification problem
using an enhanced traversal (ET) classification algorithm similar to the one used
in early description logic reasoners [1]. This can be inefficient when classifying
large ontologies: even if each subsumption test is very efficient, the extremely
large number of tests performed by ET can make classification an expensive oper-
ation. Moreover, with the exception of HermiT, all OWL reasoners we are aware
of construct property hierarchies simply by computing the reflexive-transitive
closure of the subproperty axioms occurring in the ontology—a procedure that
is incomplete for each ontology language that supports existential restrictions
(someValuesFrom), functional properties, and property hierarchies.

In order to address some of the problems of ET on large ontologies, an alter-
native classification algorithm, called KP, was proposed recently [9]. Unlike ET,
KP does not construct the hierarchy directly; instead, it maintains the sets of
known (K) and possible (P) subsumer pairs, and it performs subsumption tests
to augment K and reduce P until the two sets coincide. To further reduce the
number of tests, KP exploits the transitivity of the subclass relation to propagate
(non-)subsumptions and thus speed up the convergence of K and P .

In this paper we address several issues that were left open in the work on
KP, we present an optimised version of the resulting algorithm, and we evaluate
its implementation in the HermiT reasoner. The new algorithm exhibits a con-
sistent performance improvement over ET, and in some cases it reduces overall
classification times by a factor of more than ten.

We then turn our attention to the classification of object and data properties.
We show that merely computing the reflexive-transitive closure of the asserted
hierarchies produces an incomplete hierarchy, and we discuss why the ET and
KP algorithms do not perform well when applied to property classification. We
then present a novel encoding of the property classification problem into a class
classification problem, which allows us to exploit our new classification algorithm
to correctly and efficiently compute property hierarchies. We have implemented
our property classification algorithm in HermiT, thus making HermiT the only
OWL reasoner we are aware of that correctly classifies object and data properties.

2 Preliminaries

An OWL 2 ontology consists of a set of axioms that describe the domain being
modelled. For a full definition of OWL 2, please refer to the OWL 2 Structural
Specification and Direct Semantics [7, 6]; here we present only several examples
of typical OWL axioms in the OWL 2 Functional Syntax:

SubClassOf(Human Animal) (1)
DataPropertyAssertion(age Alex “27”ˆˆxsd:integer) (2)

ObjectPropertyRange(colour ObjectOneOf(red green blue)) (3)

Axiom (1) states that the class Human is a subclass of the class Animal (i.e., that
all Humans are Animals); axiom (2) states that the individual Alex is related to
the integer 27 by the data property age (i.e., that the age of Alex is 27); finally,
axiom (3) states that the range of the object property colour consists of red,
green, and blue (i.e., that the colour of an object can only be red, green, or blue).
Concrete values such as the literal “27”ˆˆxsd:integer in the above example are
taken from the OWL 2 datatype map, which contains most of the XML Schema
datatypes plus certain OWL-specific datatypes.

The interpretation of axioms in an OWL ontology O is given by means of
two-sorted interpretations over the object domain and the data domain, where
the latter contains concrete values such as integers, strings, and so on. An in-
terpretation maps classes to subsets of the object domain, object properties to
pairs of elements from the object domain, data properties to pairs of elements
where the first element is from the object domain and the second one is from
the data domain, individuals to elements in the object domain, a datatype to a
subset of the data domain, and a literal (a data value) to an element in the data
domain. For an interpretation to be a model of the ontology, several conditions
have to be satisfied [6]. For example, if O contains SubClassOf(C D), then the
interpretation of C must be a subset of the interpretation of D. If the axioms

of O cannot be satisfied in any interpretation (i.e., if O has no model), then O
is inconsistent ; otherwise, O is consistent. If the interpretation of a class C is
necessarily a subset of the interpretation of a class D in all models of O, then
we say that O entails C v D and write O |= C v D. If the interpretations of
C and D necessarily coincide, we write O |= C ≡ D. A class C is satisfiable if
a model of O exists in which the interpretation of C is non-empty; otherwise,
C is unsatisfiable. We use analogous notations for object and data properties.
For full details of the OWL 2 Direct Semantics, please refer to the OWL 2 Di-
rect Semantics specification [6]. We use CO to denote the set of classes that
occur in O extended with owl:Thing and owl:Nothing; similarly, we use OPO
(resp. DPO) to denote the sets of object (resp. data) properties occurring in
O extended with owl:TopObjectProperty and owl:BottomObjectProperty (resp.
owl:TopDataProperty and owl:BottomDataProperty).

We next illustrate these definitions by means of an example. Let O be an
ontology containing axioms (4) and (5); then, O entails C v E even though this
is not stated explicitly. This is because axiom (4) ensures that in every model
of O, an instance i of C must be related to an instance of the class D with the
property op. Since i has an op-successor, the property domain axiom (5) ensures
that i is also an instance of the class E, and hence that C is contained in E.

SubClassOf(C ObjectSomeValuesFrom(op D)) (4)
ObjectPropertyDomain(op E) (5)

2.1 The KP Classification Algorithm

Classification of an ontology O computes all pairs of classes 〈C,D〉 such that
{C,D} ⊆ CO and O |= C v D; similarly, object (resp. data) property classifi-
cation of O computes all pairs of object (resp. data) properties 〈R,S〉 such that
{R,S} ⊆ OPO (resp. {R,S} ⊆ DPO) and O |= R v S. For example, given an
ontology containing (4) and (5), a classification algorithm should compute

{〈owl:Nothing, C〉, 〈owl:Nothing, D〉, 〈C,E〉, 〈E, owl:Thing〉, 〈D, owl:Thing〉}.

The recently proposed KP algorithm [9] extends the standard ET algorithm [1].
The KP algorithm maintains two binary relations K and P over CO such that,
at any point during algorithm’s execution, 〈C,D〉 ∈ K implies that O |= C v D
is known for certain, and 〈C,D〉 ∈ P implies that O |= C v D is possible (i.e., no
evidence to the contrary has been uncovered thus far). In particular, 〈C,D〉 6∈ P
means that O 6|= C v D is known, so P \K contains all pairs 〈C,D〉 such that
C v D is possible but not yet known. The algorithm expands K and reduces P
until K = P , at which point O |= C v D iff 〈C,D〉 ∈ K. Roughly speaking, the
algorithm chooses an unclassified class C (i.e., one where a class D exists such
that 〈C,D〉 ∈ P \K), generates a partial hierarchy HC of all unknown possible
subsumers of C, and applies the standard ET procedure to insert C into HC .
The newly computed subsumption and non-subsumption relations are then used
to extend K and reduce P .

Algorithm 1 Prune Additional Possible Subsumptions
Algorithm: pruneNonPossible(P,K, V,N)
Input: P : a set of possible subsumptions to be pruned, K: a set of known subsump-

tions, V : a set of new positive subsumptions, N : a set of new non-subsumptions
1 for each 〈C,D〉 ∈ N do
2 for each E,F such that 〈C,E〉 ∈ K and 〈F,D〉 ∈ K remove 〈E,F 〉 from P
3 for each 〈C,D〉 ∈ V do
4 for each 〈D,E〉 ∈ P do
5 if 〈E,F 〉 ∈ K and 〈C,F 〉 6∈ P then remove 〈D,E〉 from P
6 for each 〈E,C〉 ∈ P do
7 if 〈F,E〉 ∈ K and 〈F,D〉 6∈ P then remove 〈E,C〉 from P

The algorithm exploits the transitivity of v to reduce the number of sub-
sumption tests needed to make K and P converge: whenever K is extended
with fresh tuples it is also transitively closed, and a pruning strategy is used to
remove tuples from P that correspond to obvious non-subsumptions. For exam-
ple, if {〈C,D〉, 〈E,F 〉} ⊆ K, then 〈D,E〉 ∈ P implies 〈C,F 〉 ∈ P since, by the
transitivity of v, adding 〈D,E〉 to K requires 〈C,F 〉 to be added as well; but
then, 〈C,F 〉 6∈ P implies 〈D,E〉 6∈ P . Analogously, if 〈C,D〉 ∈ P , 〈E,F 〉 ∈ K
and 〈C,F 〉 6∈ P , then 〈C,D〉 ∈ K implies 〈D,E〉 6∈ P . The complete pruning
strategy of KP is shown in Algorithm 1. Note that this algorithm consists of
several nested loops that iterate over potentially very large relations, which can
make the algorithm inefficient in practice.

An important question when using KP is how to initialise K and P . The
authors suggested to exploit the information generated by (hyper)tableau rea-
soners. In particular, when testing the satisfiability of a class A, (hyper)tableau
algorithms usually initialise a node s0 with the label L(s0) = {A} and then
apply expansion rules in order to try to construct a pre-model—an abstraction
of a model for A; if a pre-model is constructed, then the (possibly expanded)
label L(s0) may provide information about subsumers and non-subsumers of A
(if a pre-model cannot be constructed, then A is unsatisfiable and is equivalent
to owl:Nothing). More precisely, if L(s0) does not contain a class B, then we can
infer the non-subsumption A 6v B. Similarly, if B was deterministically added
to L(s0) (i.e., if no non-deterministic expansion was involved), then we can infer
A v B. Consequently, one can initially perform a satisfiability test for all the
classes in CO and use the resulting pre-models to initialise K and P . It is not
clear, however, whether it is generally efficient to perform all these tests.

3 Optimised Classification

We now present a new classification algorithm that we have implemented in
the HermiT reasoner. Our algorithm is based on KP, but it addresses several
open problems and incorporates numerous refinements and optimisations. The
latter include, for example, a more efficient strategy for initialising K and P , a

practical approach to pruning P , and several heuristics. We next describe our
new algorithm and then contrast it with the relevant parts of KP.

Our approach is shown in Algorithm 2. Like KP, our algorithm maintains
a set K of known and a set P of possible subsumption pairs. The algorithm
uses an OWL reasoner to check satisfiability of classes (line 6) or subsumption
between classes (line 25) using the well-known reduction of class subsumption
to class satisfiability. In lines 2, 16, 24, 35 and 37, the algorithm manipulates K
and P using operations that are defined next.

Definition 1. Let U be a set of elements and let R ⊆ U × U be a binary relation
over U . The set reachable(C,R) of elements reachable from C ∈ U in R contains
all D ∈ U for which a path {〈C,C1〉, 〈C1, C2〉, . . . , 〈Cn, D〉} ⊆ R exists.

Let ∼ be a relation over U defined as follows: C ∼ D if and only if D = C, or
D ∈ reachable(C,R) and C ∈ reachable(D,R). Let [C] := {D ∈ U | D ∼ C} be
the set of elements equivalent to C under ∼, and let U∼ := {[C] | C ∈ U}. The
relation R∼ induced by ∼ on R is defined as R∼ := {〈[C], [D]〉 | 〈C,D〉 ∈ R}.

The hierarchy in R is the triple hierarchy(R) = (V,H, ρ) where V ⊆ U con-
tains exactly one arbitrarily chosen element C ∈ [D] for each [D] ∈ U∼, ρ maps
each C ∈ V into ρ(C) = [C], and H is a transitively-reduced strict partial order
over V such that 〈C,D〉 ∈ H if and only if 〈ρ(C), ρ(D)〉 ∈ R∼.

The projection project(R,S) of R to a set S ⊆ U , and the range R[C] of an
element C ∈ U in R are defined as follows:

project(R,S) = {〈C,D〉 | C,D ∈ S and D ∈ reachable(C,R)}
R[C] = {D | 〈C,D〉 ∈ R}

Intuitively, hierarchy(K) extracts from K sets of classes for whichO |= C ≡ D
is known and then chooses one representative from each set to construct a
transitively-reduced strict partial older.

Our algorithm can be roughly divided into two parts. Lines 1–15 are respon-
sible for the initialisation of K and P using a novel heuristic, and lines 16–37
are responsible for extending K and reducing P using a mixture of the ET
algorithm—as in KP—and a new technique for pruning P .

The Initialisation Phase In KP, relations K and P are initialised by perform-
ing a satisfiability test for each atomic class in O. Although modern reasoners
can usually perform individual tests quite efficiently, the initialisation time can
become large if there are many classes, so it is beneficial to avoid unnecessary
tests whenever possible. For example, if C v D and C is satisfiable, then the
pre-model constructed by a (hyper)tableau satisfiability test for C will also be
a pre-model for D and for every other class occurring in the pre-model. We can
thus avoid performing satisfiability tests for the classes outlined above, and from
the pre-model for C we can read off information about the possible subsumers
of all classes occurring in the pre-model. In order to maximise the effect of this
optimisation, we first check the satisfiability of classes that are likely to be clas-
sified near the bottom of the hierarchy: such classes are likely to produce larger

Algorithm 2 New Classification Algorithm
Algorithm: Classify(O)
Input: O: an ontology to be classified

1 K := performStructuralSubsumption(O)
2 (V,H, ρ) := hierarchy(K)
3 Initialise a list ToTest := {C | 〈owl:Nothing, C〉 ∈ H}, Unsat := ∅, and P := ∅
4 while ToTest 6= ∅ do
5 Iteratively remove the head C from ToTest until C is found such that P [C] = ∅
6 A := buildModelFor(C(s0))
7 if A = ∅ then // C is unsatisfiable
8 for each 〈C,D〉 ∈ H do add D to the front of ToTest
9 for each descendant E of C in H that is not already in Unsat do
10 Add 〈E, owl:Nothing〉 to K, add E to Unsat, and remove E from ToTest
11 else
12 for each D ∈ L(s0) that was derived deterministically do add 〈C,D〉 to K
13 for each s in A and for each D ∈ L(s) do
14 if P [D] = ∅ then P [D] := L(s) ∩CO
15 else P [D] := P [D] ∩ L(s)
16 for each D ∈ CO and for each E ∈ reachable(D,K) do set P [D] := P [D] \ {E}
17 UnClass := {C ∈ CO | P [C] 6= ∅}
18 while UnClass 6= ∅ do
19 Choose some C ∈ UnClass and set B := P [C]
20 A := buildModelFor((C u ¬F)(s0)) with F the conjunction of all concepts in B
21 if A 6= ∅ then // all possible subsumers of C are non-subsumers
22 for each s in A and each D ∈ L(s) do set P [D] := P [D] ∩ L(s)
23 else
24 (V,H, ρ) := hierarchy(project(K,B ∪ {owl:Nothing, owl:Thing}))
25 Initialise a queue Q with Q := {owl:Thing}
26 while Q 6= ∅ do
27 Remove the head H from Q
28 for each D such that 〈D,H〉 ∈ H and D ∈ P [C] do
29 A := buildModelFor((C u ¬D)(s0))
30 if A 6= ∅ then // C u ¬D was satisfiable—that is, C 6v D
31 for each s in A and each D ∈ L(s) do set P [D] := P [D] ∩ L(s)
32 else
33 Add 〈C,D〉 to K, and add D to the end of Q
34 P [C] := ∅
35 for each D ∈ UnClass and E ∈ reachable(D,K) do set P [D] := P [D] \ {E}
36 Remove from UnClass each D such that P [D] := ∅
37 return hierarchy(K)

pre-models that are richer in (non-)subsumption information and that can be
used as pre-models for many other classes.

Our algorithm implements this idea as follows. First, it applies a simple
structural subsumption algorithm to identify the obvious subsumptions in O
and thus instantiate K. Then, it extracts a class hierarchy H from K and col-
lects all classes C such that 〈owl:Nothing, C〉 ∈ H (i.e., all ‘leaves’ of H). Then,
for each such C, the algorithm performs a satisfiability test; if C is satisfiable,
then the constructed pre-model can be used to determine new known and pos-
sible subsumers as illustrated in lines 11–15. Note, however, that C is tested for
satisfiability only if P [C] = ∅ (line 5), which avoids the test if a pre-model for
C has been generated previously. The pre-model for C is used to update K[C]:
if D was added to L(s0) deterministically (which can easily be checked in rea-
soners that use dependency-directed backtracking), then D is guaranteed to be
a subsumer of C [8], so 〈C,D〉 is added to K. The pre-model for C is also used
to update P [D] for each class D occurring in (any part of) the pre-model: if
D(s) ∈ A and no possible subsumer for D is known yet, then P [D] is initialised
to L(s); otherwise, P [D] is restricted to the elements in L(s). Note that P [D]
cannot become empty as it necessarily contains D.

Consider, for example, an ontology O containing axioms (4)–(7). Initially,
structural subsumption initialises K by setting K[X] = {X, owl:Thing} for each
X ∈ CO, and K[owl:Nothing] = CO. At this point, ToTest contains C,D,E, F
and G. Let us assume that C is chosen first, and a pre-model for C(s0) is gener-
ated. Due to axiom (4), s0 must be related to an instance of D, say s1, by prop-
erty op. Since D ∈ L(s1), the pre-model is also a pre-model for D. Due to axiom
(6) and the ObjectUnionOf constructor, the reasoner can non-deterministically
add E or F to L(s1). Let us assume that the reasoner chooses E and then
terminates returning A; this pre-model can be used to infer that P [C] = {C}
and P [E] = P [D] = {D,E}. In the next iteration, D is chosen from the list, but
P [D] 6= ∅ (information for D is already known), so no test is performed for D. At
some point G is chosen and a model for G(s0) is constructed. Due to axiom (7),
the reasoner relates s0 with some fresh s1 by property op2 such that D ∈ L(s1).
Let us assume, however, that to satisfy axiom (6), the reasoner now adds F to
L(s1). Since P [D] 6= ∅, L(s1) can be used to prune P [D]; more precisely, since
E 6∈ L(s1), E is removed from P [D].

SubClassOf(D ObjectUnionOf(E F)) (6)
SubClassOf(G ObjectSomeValuesFrom(op2 D)) (7)

Note that neither K nor P are updated if C is unsatisfiable, so little infor-
mation is obtained from a satisfiability test for C. Hence, if O contains many
unsatisfiable classes, initialisation might not provide enough initial information
for K and P . Consequently, whenever our algorithm finds an unsatisfiable class
C, it traverses H “upwards” until it finds a satisfiable class; furthermore, the
unsatisfiability is propagated to all descendants of C in H (lines 7-10). Apart
from making initialisation more robust, such an approach potentially identifies
unsatisfiable classes without performing actual satisfiability tests (e.g., if D is

discovered to be unsatisfiable and O contains C v D). An example of such an
ontology is FMA [2], which can be classified using our algorithm much more
efficiently than with ET (see Section 6).

The Classification Phase It is possible that all subsumers of a class D are
identified after the initialisation phase, and this can happen even if the satisfia-
bility of D had not been tested explicitly (in line 6). In our running example, all
possible subsumers of D are already known (since P [D] ⊆ K[D]). For memory as
well as for performance reasons, our algorithm next identifies only those classes
for which there are unknown possible subsumers (lines 16-17), and operates only
on them.

For these classes our algorithm proceeds as follows. It iteratively chooses
a class C with P [C] 6= ∅ and checks C v D for each D ∈ P [C]. In order to
perform these checks as efficiently as possible, the algorithm does not test each
subsumption separately. Instead, inspired by the clustering optimisation [3], our
algorithm tries to build a model for C u ¬F , where F is the conjunction of all
possible subsumers of C (line 20). If a model exists, then C 6v F and so all
concepts in P [C] are non-subsumers of C.

If a model for C u ¬F does not exist, then at least one concept in P [C]
is a subsumer of C, so a more detailed check is needed. The algorithm then
proceeds as follows. It computes a transitively-reduced strict partial order H of
the subsumers ‘induced’ by C. The standard ET algorithm is then applied to
C over H in order to identify the (non-)subsumers of C. In contrast to KP, our
algorithm introduces the following optimisation: if C u ¬D is satisfiable for D
a possible unknown subsumer of C (i.e., if O 6|= C v D), then the constructed
pre-model can again be used to prune non-subsumers as was done in the initial-
isation phase. This process is performed in place of Algorithm 1, as it provides
a more efficient pruning strategy. Another interesting and useful consequence of
interleaving pruning with subsumption checking is that it can lead to the pruning
of other possible subsumers of C that might otherwise be tested in a subsequent
iteration. Therefore, the algorithm checks whether D is still a possible subsumer
of C (line 28) before trying to construct a pre-model for C u ¬D (line 29).

After the classification phase, all unknown possible subsumers will have been
tested, and K contains all subsumption relations, so it is used to construct the
final class hierarchy.

3.1 Further Comparisons with the KP Algorithm

We have already illustrated the major differences between Algorithm 2 and KP,
such as the initialisation of K and P , and our new technique for pruning relations
from P . In the following, we point out some additional differences, and we discuss
further the pruning technique.

– Memory Efficiency: Our algorithm uses memory much more efficiently
than KP. Recall that KP transitively closes K, which is not a good strat-
egy on large ontologies such as FMA or SNOMED that contain thousands of

classes. Furthermore, KP assumes that P ⊇ K—that is, all known subsump-
tions (including those derived by the transitive closure) are contained in P .
In contrast, our algorithm uses a graph reachability algorithm to identify
whether 〈C,D〉 belongs to the transitive closure of K, and removes the in-
formation about the classified classes from P , both of which can significantly
reduce the algorithm’s memory footprint.

– Pruning: Although our classification algorithm does not directly use Al-
gorithm 1, it indirectly implements parts of Algorithm 1. For example, if
B ∈ P [A], but tests show that O 6|= A v B, then B can also be inferred to
be a non-subsumer of all the subsumers of A as in the first loop of Algo-
rithm 1. The second loop of Algorithm 1 prunes possible subsumptions when
new positive subsumptions are inferred. However, our experience has shown
that this strategy rarely identifies new non-subsumptions in practice. Con-
sequently, the cost of applying such an expensive algorithm rarely outweighs
the cost of performing a couple of additional subsumption tests.

– Bottom-up Phase: As in the ET algorithm, KP includes a bottom-up
phase where the subsumees of an unclassified class C are identified in order to
correctly place C into the class hierarchy. Our algorithm, however, does not
include a bottom-up phase, which considerably simplifies the implementation
as one does not need doubly-linked data structures for efficient retrieval of
both successors and predecessors of C in K and P . Note that our algorithm
is still complete since, if C is a possible but not yet known child of D, then
C ∈ P [D] and the relevant subsumption is tested when D is selected.

4 Object Property Classification

Classification of properties has, to the best of our knowledge, not been discussed
in the literature. Apart from HermiT, all ontology reasoners that we are aware
of construct the property hierarchy simply by computing the reflexive-transitive
closure of the asserted property hierarchy. Such an algorithm is cheap to imple-
ment and requires no complex reasoning; however, it is incorrect for OWL as
well as for considerably weaker ontology languages. Consider, for example, an
ontology containing the following axioms:

SubClassOf(ObjectSomeValuesFrom(op1 owl:Thing)
ObjectSomeValuesFrom(op2 owl:Thing)) (8)

SubObjectPropertyOf(op1 op3) (9)
SubObjectPropertyOf(op2 op3) (10)
FunctionalObjectProperty(op3) (11)

These axioms entail op1 v op2: given op1(i1, i2), axiom (8) requires the existence
of an op2-successor for i1; since both op1 and op2 are subproperties of op3 and op3

is functional, then i2 must also be the op2-successor for i1, so we have op2(i1, i2).

Property chains and nominals can also imply implicit property subsumptions.
The problems with property chains are demonstrated by the following example.

SubClassOf(owl:Thing ObjectSomeValuesFrom(op owl:Thing)) (12)

SubObjectPropertyOf(ObjectPropertyChain(
op1 op ObjectInverseOf(op)) op2) (13)

Whenever i1 has an op1-successor i2, axiom (12) ensures that i2 has an op-
successor i3; hence, we have op1(i1, i2), op(i2, i3) and ObjectInverseOf(op)(i3, i2),
and from axiom (13) we can infer op2(i1, i2), so the ontology implies op1 v op2.
Property classification in HermiT was initially based on the ET algorithm. Sim-
ilarly to class subsumption testing, we concluded that O |= op1 v op2, for op1

and op2 object properties, iff O ∪ {op1(a, b),¬op2(a, b)} is not satisfiable, where
a, b were individuals not occurring in O. However, this is correct only for simple
properties [7], where simple properties are roughly those that do not occur in
property chains and transitivity axioms.

The problem with complex properties (i.e., non-simple ones) is that com-
plex property assertions are not necessarily made explicit in the constructed
pre-models. To ensure decidability, property chains and transitivity axioms are
typically encoded into subclass axioms that propagate classes along paths in
the pre-model in a way such that adding all missing property relationships does
not violate any ontology axiom. Roughly speaking, given the property axiom
SubObjectPropertyOf(ObjectPropertyChain(op op) op) (which states that op is
transitive), each axiom containing a universal quantifier over op is rewritten in
a particular way; for example, axiom (14) is replaced with axioms (15)–(17)

SubClassOf(C ObjectAllValuesFrom(op D) (14)
SubClassOf(C ObjectAllValuesFrom(op Dop)) (15)

SubClassOf(Dop D) (16)
SubClassOf(Dop ObjectAllValuesFrom(op Dop)) (17)

where Dop is a fresh class. In order to compute all axioms required to eliminate
all property inclusions, a non-deterministic finite automaton is constructed for
each complex property, and subclass axioms are then extracted from automa-
ton’s transitions [4]. In order for the elimination to work as desired, negative
property assertions with complex properties must be rewritten. For example,
assertion (18) must be rewritten as (19)

NegativeDataPropertyAssertion(op a b) (18)

ClassAssertion(ObjectAllValuesFrom(op
ObjectComplementOf(ObjectOneOf(b))) a) (19)

where (19) states that a belongs to the class of individuals for which all op-
successors are not b. The universal quantifier then triggers the generation of
further axioms in the property chain elimination as described above.

Since complex property assertions are not necessarily made explicit in the
pre-models, we cannot read off non-subsumptions from pre-models; that is, when
op1(a, b) occurs but op2(a, b) does not occur in a pre-model, we cannot conclude
op1 6v op2 if op2 is a complex property. This significantly reduces the opportuni-
ties for pruning the search space, which makes property classification harder than
standard (class) classification. We point out that, in the case described above,
the publicly available 1.2.2 version of HermiT incorrectly concludes op1 6v op2.
We corrected this error in the version of HermiT used for evaluation (see Section
6), which significantly decreased the performance of property classification.

In order to address these issues, we developed a new property classification
technique that reduces property classification to standard (class) classification.
Any classification algorithm, such as the one described in Section 3, can then be
used to classify the property hierarchy, and it can use all relevant optimisations
for pruning the search space. The reduction is defined as follows.

Definition 2. Let O be an OWL 2 ontology and let OPE be the object properties
and inverse object properties occurring in O. An object property to class map-
ping w.r.t. O is a total and injective function τ from OPE to classes not occur-
ring in O. Let Cf be a class occurring neither in O nor in the range of τ . The ob-
ject property hierarchy induced by τ w.r.t.O, written HτO, is the transitive reduc-
tion of the relation {〈op1, op2〉 | op1, op2 ∈ OPE and Oτ |= τ(op1) v τ(op2)},
where Oτ is an extension of O with axioms of the following form for each object
property op ∈ OPE.

EquivalentClasses(τ(op) ObjectSomeValuesFrom(op Cf))

We write (HτO)∗ to denote the reflexive-transitive closure of HτO.

Intuitively, to test op1 v? op2, we test C1 v? C2, where C1 and C2 are the
representative classes introduced by τ for op1 and op2, respectively. As in stan-
dard classification, the reasoner checks this subsumption by trying to construct
a pre-model containing C1(i) and ¬C2(i) for some individual i. The axioms in
Oτ then cause the addition of an op1-successor of i, say i′, with Cf (i′). If, due
to other axioms in O, i′ is necessarily an op2-successor of i as well, then the
corresponding axiom in Oτ for op2 causes the addition of C2(i), which leads to
a clash, which confirms the subsumption. Complex properties are handled us-
ing the transformation described earlier, so reading off non-subsumptions and
pruning the set of possible subsumers works exactly as for classes.

The following theorem shows that this reduction of the object property clas-
sification problem to a standard classification problem is indeed correct.1

Theorem 1. Let O be an OWL 2 ontology with op1, op2 ∈ OPE, let τ be an
object property to class mapping w.r.t. O, and let HτO be the object property
hierarchy induced by τ w.r.t. O. Then O |= op1 v op2 iff 〈op1, op2〉 ∈ (HτO)∗.

1 A complete proof is available in the accompanying technical report at
http://www.hermit-reasoner.com/2010/classification/Classification.pdf

5 Data Property Classification

Problematic constructors such as property chains do not apply to data proper-
ties, so one might think that data properties can be classified by just computing
the reflexive-transitive closure of the asserted data property subsumptions. This,
however, is not the case since we can easily adjust axioms (8)–(11) to work with
data properties and rdfs:Literal instead of owl:Thing.

Another problem is that data property subsumption tests are difficult to im-
plement. Since data properties are always simple, to test O |= dp1 v dp2 with dp1

and dp2 data properties, we might try to check whetherO∪{dp1(i, n),¬dp2(i, n)}
is unsatisfiable for i a fresh individual and n a fresh data value. We cannot, how-
ever, simply choose n to be any data value that does not occur in the input
ontology. Assume, for example, that we selected an integer that does not occur
in the input ontology O; there are infinitely many integers, so there is always
one not occurring in O. This, however, might lead to conclusions that depend
on the chosen integer: unlike for a fresh individual that can be interpreted as
an arbitrary element of the object domain, the interpretation of a data value is
fixed a priori. This problem can be solved by inventing a dummy datatype D
that is considered to be non-disjoint with all datatypes in the OWL 2 datatype
map (i.e., its value space can be intersected with any other data range without
causing a contradiction); the only constraint for D is that a data value cannot
belong to D and its complement. In order to check if O |= dp1 v dp2, the reasoner
now checks the satisfiability of O extended with the following axioms, where i
is a fresh individual:

ClassAssertion(DataSomeValuesFrom(dp1 D) i) (20)
ClassAssertion(DataAllValuesFrom(dp2 DataComplementOf(D)) i) (21)

There is, however, still a problem with this approach. Datatype reasoning
is typically implemented using a procedure such as the one presented by Motik
and Horrocks [5]. If an individual i has a data property successor n, then one
must check whether there are only finitely many values that n can take; if that is
the case, one must find data values for n and the ‘relevant’ siblings of n that are
related to the same individual i as n. A sibling n′ is relevant if it can also have
only finitely many possible data values and the assignment must be different from
the one for n due to an inequality between n and n′ (e.g., the inequality can be
introduced by an at-least restriction). Thus, to handle D properly, an inequality
must be generated between siblings n and n′ if one of them must belong to D
while the other must belong to the complement of D, which guarantees that the
two nodes are not assigned the same data value in the procedure by Motik and
Horrocks. Furthermore, note that even if n and n′ must be assigned the same
values, n and n′ are not merged; for example, if an individual is required to
have the integer 1 both as a dp1- and a dp2-successor, the two successors will be
represented as separate objects in a pre-model. This again prevents the reading
off of non-subsumptions between data properties. We should point out that this
problem was also overlooked in HermiT 1.2.2, and correcting the error again
significantly increased data property classification times.

We can, however, reduce data property classification to standard classi-
fication similarly as for object properties. This reduction allows us to read
off subsumptions and non-subsumptions between data properties, because such
(non-)subsumptions are reflected in the classes introduced by the encoding.

Definition 3. Let O be an OWL 2 ontology and let D be a dummy datatype
as discussed above. A data property to class mapping w.r.t. O is a total and
injective function σ from DP to classes not occurring in O. The data property
hierarchy induced by σ w.r.t. O, written HσO, is the transitive reduction of the
relation {〈dp1, dp2〉 | dp1, dp2 ∈ DP and Oσ |= σ(dp1) v σ(dp2)}, where Oσ
is an extension of O with axioms of the following form for each data property
dp ∈ DP.

EquivalentClasses(σ(dp) DataSomeValuesFrom(dp D))

We write (HσO)∗ to denote the reflexive-transitive closure of HσO.

The following theorem shows that the reduction is indeed correct. The proof
is a straightforward adaptation of the proof of Theorem 1.

Theorem 2. Let O be an OWL 2 ontology with dp1, dp2 ∈ DPO, let σ be a data
property to class mapping w.r.t. O, and let HσO be the data property hierarchy
induced by σ w.r.t. O. Then O |= dp1 v dp2 iff 〈dp1, dp2〉 ∈ (HσO)∗.

6 Evaluation

We have implemented Algorithm 2 and the property classification encodings in
the HermiT 1.3 (hyper)tableau reasoner. To evaluate the effectiveness of our
technique, we compared the performance of HermiT 1.3 against HermiT 1.2.2a
(which implements the ET strategy, but with bugs related to property classi-
fication corrected as described in Sections 4 and 5). In our tests, we used two
versions of the GALEN ontology, several ontologies from the Open Biological
Ontologies (OBO) Foundry, the Food and Wine ontology from the OWL Guide,
the Foundational Model of Anatomy (FMA), and ontologies from the Gardiner
ontology suite. All ontologies and both HermiT versions are available online.2

Table 1 summarises the numbers of classes and properties in each of the test
ontologies.

The tests consisted of classifying the classes and properties of our test ontolo-
gies. We measured the classification time (in seconds) as well as the number of
actual reasoning tests performed (including both satisfiability and subsumption
tests). All experiments were performed on a UNIX machine of an Intel x86 64bit
Cluster on one node with two quad core 2.8GHz processors and Java 1.5 allow-
ing 2GB of heap memory. The results are summarised in Table 2. The upper
part of the table contains all the deterministic ontologies (that is, the ontologies
that do not use disjunctive constructors), while the lower part contains all the
non-deterministic ontologies. For ontologies without data properties, we write ‘-’
in Table 2 and OoM stands for Out of Memory.

Table 1. Number of classes and properties in the evaluated ontologies

classes object data classes object data
prop. prop. prop. prop.

GALEN-d 2 748 413 0 AEO 760 47 16
GALEN-und 2 748 413 0 substance 1 721 112 33

GO 19 528 1 0 ProPreO 482 30 0
GO XP 27 883 5 0 OBI 2 638 77 6

chebi 20 979 10 0 Food-Wine 139 17 1
NCI 27 652 70 0 FMA 2.0 41 648 148 20

Table 2. Evaluation results for class and property classification (time in seconds)

Ontology Classes Object Properties Data Properties
1.2.2a (ET) 1.3 (KP) 1.2.2a (ET) 1.3 (KP) 1.2.2a (ET) 1.3 (KP)
Tests Time Tests Time Tests Time Tests Time Tests Time Tests Time

GALEN-d 2 744 3.6 3 380 2.9 6 073 439.2 197 < 1 - - - -
GALEN-und 2 744 28.3 4 009 7.2 6 001 459.5 198 < 1 - - - -

GO 19 260 43.0 14 288 3.7 4 < 1 3 < 1 - - - -
GO XP 27 880 119 20 029 14.4 9 10.4 6 4.8 - - - -
chebi 20 693 69.8 13 484 7.6 26 59.9 12 18.1 - - - -
NCI 27 652 71.1 21 367 10.5 71 < 1 72 < 1 - - - -
AEO 2285 2.1 364 1.7 214 6.0 34 < 1 223 4.6 28 < 1

substance 4 569 15.9 2 730 12.8 962 23.6 107 < 1 957 22.5 40 < 1
ProPreO 1 441 7.3 1 157 6.8 518 3 33 < 1 - - - -

OBI 12 444 254.7 3 047 170.1 2 278 310.5 52 3.4 39 6.0 7 < 1
Food-Wine 382 18.8 243 11.7 65 11.6 13 2.0 4 < 1 3 < 1
FMA 2.0 49 716 7 973.8 10 980 731.8 8 281 16 668.3 128 8.4 283 469.9 29 < 1

As Table 2 shows, the new classification strategy of HermiT 1.3 is in all
cases significantly faster than the ET strategy of HermiT 1.2.2a, sometimes
by one or even two orders of a magnitude. This is particularly the case for
property classification where, as we have explained in the previous section, none
of HermiT’s standard optimisations can be applied, and one relies completely
on the insertion strategy of ET to reduce the number of subsumption tests.
In contrast, our property classification encoding can reuse the standard (class)
classification optimisations, thus achieving a very good and robust performance.
These results show that it is practically feasible to perform correct property
classification through reasoning, instead of the cheap but incomplete transitive
closure algorithms. The results for standard classification are similar: the new
algorithm has significantly reduced the classification time in most cases. The
significant performance gain in the classification of FMA is due in part to the
heuristic implemented in lines 7–10 of Algorithm 2, which prevents HermiT from
repeatedly performing class satisfiability tests for unsatisfiable classes.

The good performance results are also confirmed by the significant reduction
in the number of required reasoning tests. The only case where HermiT 1.3
performs more tests is on GALEN, which is due to the fact that, on deterministic
ontologies, HermiT 1.2.2a uses satisfiability tests and the pre-model reading
technique [8] which identifies all subsumers of the tested class. In contrast, our

2 http://www.hermit-reasoner.com/2010/classification/Evaluation.zip

Table 3. Number of tests performed by HermiT 1.3 compared to KP

GOt GALENt NCIt

KP 32 614 4 657 48 389

HermiT 1.3 27 250 4 983 41 094

method does not test the satisfiability of each class, so after the first phase there
are unknown possible subsumers that need to be checked in the second phase.
Especially in GALEN, most of them are subsumers, so the pruning step in lines
30–31 is rarely applicable. Nevertheless, such reasoning tests are usually very
fast, so the overall system still performs better than HermiT 1.2.2a. On GALEN-
und, where satisfiability tests are expensive, the benefits of not performing a
satisfiability test for every class are particularly noticeable.

As a final experiment, we compared the performance of our system with the
one that implements the KP algorithm [9]. We tested our system on three spe-
cially constructed ontologies that were used in [9] to evaluate the KP algorithm,
and we compared the number of tests performed by our method with the number
of tests published in [9]; Table 3 summarises the results. We can again see that
for all ontologies but GALEN, our system performs fewer tests; furthermore,
the same observations as above explain this difference. Unfortunately, the origi-
nal implementation of KP was not available, so we were unable to compare the
performance of HermiT with that of KP on the ontologies from Table 2.

7 Conclusions

In this paper, we considered the problem of efficiently classifying OWL ontolo-
gies. Unlike in previous approaches, we consider all classification tasks, including
class, object and data property classification. To the best of our knowledge, prop-
erty classification has not previously been discussed in the literature.

We presented a new classification algorithm that is based on KP [9], but
that solves several open problems and that incorporates numerous refinements
and optimisations. The latter include, for example, a novel heuristic strategy
for initialising relations K and P , an efficient pruning strategy, and a novel
heuristic for pruning unsatisfiable classes. Additionally, our new algorithm is
more memory efficient than KP.

We presented examples that show why traditionally used algorithms based on
the reflexive-transitive closure of the asserted property hierarchy are incomplete
for property classification in OWL. We then discussed the difficulties in reusing
well-known optimisations in the context of property classification, and we pre-
sented a novel reduction of the property classification problem to a standard
classification problem. This reduction allows us to reuse all the optimisations
applicable to the classification of classes.

Finally, we have implemented all our algorithms and reductions in version
1.3 of the HermiT reasoner, and have compared its performance with earlier ver-
sions using the standard classification method. Our results are very encouraging,

showing significant improvements in classification times. Moreover, in the case
of properties, our experiments show for the first time that complete property
classification can be effectively implemented in practice.

We are currently working on extending our algorithm to handle realisation—
the task of computing, for each individual i in an ontology, the most specific
classes C such that i is an instance of C—and for realising property instances.
Our preliminary results suggest that the performance of realisation can be sig-
nificantly improved by applying the ideas outlined in this paper.

Acknowledgements The presented work is funded by the EPSRC project
HermiT: Reasoning with Large Ontologies. The evaluation has been performed
on computers of the Oxford Supercomputing Centre.

References

1. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical
analysis of optimization techniques for terminological representation systems, or
making kris get a move on. In: KR. pp. 270–281 (1992)

2. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in
OWL: Experience and perspectives. Web Semantics 4(3), 181–195 (2006)

3. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: IJCAI. pp. 161–168 (2001)

4. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
KR-06. pp. 57–67 (2006)

5. Motik, B., Horrocks, I.: OWL datatypes: Design and implementation. In: Proc. of
the Int. Semantic Web Conf. (ISWC-08). LNCS, vol. 5318, pp. 307–322. Springer
(2008)

6. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B.: OWL 2 web ontology lan-
guage direct semantics. URL (2009), w3C Recommendation, http://www.w3.org/
TR/owl2-direct-semantics/

7. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language struc-
tural specification and functional-style syntax. URL (2009), w3C Recommendation,
http://www.w3.org/TR/owl2-syntax/

8. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research 36, 165–228 (2009)

9. Shearer, R., Horrocks, I.: Exploiting partial information in taxonomy construction.
In: Proc. of the Int. Semantic Web Conf. (ISWC-09). vol. 5823, pp. 569–584 (2009)

A Appendix

Theorem 1 Let O be an OWL 2 DL ontology with op1, op2 ∈ OPE, let τ be an
object property to class mapping w.r.t. O, and let HτO be the object property
hierarchy induced by τ w.r.t. O. Then O |= op1 v op2 iff 〈op1, op2〉 ∈ (HτO)∗.
Proof: (The ‘if’ direction) We show the contrapositive: if O 6|= op1 v op2,
then 〈op1, op2〉 6∈ (HτO)∗. Let I be a model of O such that I 6|= op1 v op2 and
let 〈i1, i2〉 be in the extension of op1, but not in the extension of op2. Such an
interpretation and a pair of individuals exists by definition of non-subsumption
w.r.t. O. Since 〈op1, op2〉 6∈ (HτO)∗ iff Oτ 6|= τ(op1) v τ(op2), we show how to
(conservatively) extend I into a model I ′ of Oτ such that I ′ 6|= τ(op1) v τ(op2).
In order to interpret the new symbols in Oτ , we set the extension of Cf to {i2}
and, for each op ∈ OPE, we interpret τ(op) as the set of individuals i such that
〈i, i2〉 is in the extension of op. Clearly, I ′ satisfies the additional axioms in Oτ .
Since 〈i1, i2〉 is in the extension of op and i2 is in the extension of Cf , then i1
is in the extension of τ(op1). Since 〈i1, i2〉 is not in the extension of op2 by our
assumption, then i1 is not in the extension of τ(op2), which proves our claim.

(The ‘only if’ direction) We show the contrapositive: ifOτ 6|= τ(op1) v τ(op2),
then O 6|= op1 v op2. Let I be a model of Oτ such that there is an individual i1 is
in the extension of τ(op1) and not in the extension of τ(op2). Such a model I and
individual i1 exist by the definition of non-entailment and subsumption. Since
I |= Oτ , i1 is in the extension of τ(op1), so the axiom for op1 in Oτ ensures that
an individual i2 in the extension of Cf exists such that 〈i1, i2〉 is in the extension
of op1. Since Oτ is an extension of O, by the monotonicity of interpretations we
have I |= O. Assume now that 〈i1, i2〉 is in the extension of op2. Then the axiom
for op2 in Oτ together with the fact that i2 is in the extension of Cf implies that
i1 is in the extension of C2, which is a contradiction.

