
6

Extracting Modules from Ontologies:
A Logic-Based Approach

Bernardo Cuenca Grau1, Ian Horrocks1, Yevgeny Kazakov1, and Ulrike Sattler2

1 University of Oxford, UK
2 University of Manchester, UK

Summary. The ability to extract meaningful fragments from an ontology is essential for on-
tology reuse. We propose a definition of a module that guarantees to completely capture the
meaning of a given set of terms, i.e., to include all axioms relevant to the meaning of these
terms. We show that the problem of determining whether a subset of an ontology is a module
for a given vocabulary is undecidable even for OWL DL. Given these negative results, we
propose sufficient conditions for a for a fragment of an ontology to be a module. We propose
an algorithm for computing modules based on those conditions and present our experimental
results on a set of real-world ontologies of varying size and complexity.

6.1 Introduction

The design, maintenance, reuse, and integration of ontologies are complex tasks.
Like software engineers, ontology engineers need to be supported by tools and
methodologies that help them to minimize the introduction of errors, i.e., to ensure
that ontologies are consistent and do not have unexpected consequences. In order to
develop this support, important notions from software engineering, such as module,
black-box behavior, and controlled interaction, need to be adapted.

For example, suppose that an ontology engineer is building an ontology about
research projects, which specifies different types of projects according to the research
topic they focus on. The ontology engineer in charge of the projects ontology may
use terms such as Cystic Fibrosis and Genetic Disorder in his descriptions of medical
research projects. The ontology engineer is an expert on research projects; he may be
unfamiliar, however, with most of the topics the projects cover and, in particular, with
the terms Cystic Fibrosis and Genetic Disorder. In order to complete the projects
ontology with suitable definitions of these medical terms, he decides to reuse the
knowledge about these subjects from a well-established medical ontologyQ.

The most straightforward way to reuse these concepts is to construct the logical
unionP ∪Q of the axioms in P andQ. This form of reuse is used frequently and can
be achieved in OWL using the owl : imports construct. Well-established medical on-
tologies, such as NCI and SNOMED, are, however, typically very large, and importing

H. Stuckenschmidt et al. (Eds.): Modular Ontologies, LNCS 5445, pp. 159–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 B. Cuenca Grau et al.

the whole ontology would make the consequences of the additional information costly
to compute and difficult for our ontology engineers (who are not medical experts) to
understand. Thus, in practice, we need to extract a module that includes just the rele-
vant information. Ideally, this module should be as small as possible while still guar-
anteeing to capture the meaning of the terms used; that is, when answering arbitrary
queries against our projects ontology, importing the module would give us exactly the
same answers as if we had imported the whole medical ontology. In this case, impor-
ting the module instead of the whole ontology will have no observable effect on our
ontology—apart from allowing for more efficient reasoning.

Concerning the efficiency of reasoning, the time needed to process an ontology
is often too high for ontology engineering, where fast response under changes in
the ontology is required, or for deployment in applications, where fast response to
queries is required. The ability to extract modules in the sense described above would
address both these problems: it would allow us to identify a (hopefully small) part of
the ontology that is affected by a given change or that is sufficient to answer a given
query—and then to reason over this part only without losing any consequences.

The contributions of this paper are as follows:

1. We propose a definition of a module Q1 within a given ontology Q for a given
vocabulary S.

2. We take the above definition as a starting point, and investigate the problem of
computing modules. We show that none of the reasonable variants of this prob-
lem is solvable in general already for rather restricted sub-languages of OWL
DL. In fact, it is even not possible to determine whether a subsetQ1 of an onto-
logyQ is a module in Q for S.

3. Given these negative results, we propose sufficient conditions for a fragment
of an ontology to be a module—that is, if the fragment satisfies our conditions
then we can guarantee that it is a module but not vice versa These conditions are
based on the notion of locality of an ontology w.r.t. a signature, as first introduced
in [4].

4. We propose an algorithm for computing locality-based modules.
5. We describe our implementation and present empirical results on a set of real-

world ontologies of varying size and complexity. Using our syntactic approxi-
mation, we obtain modules that are small enough for reuse applications.

6.2 Preliminaries

In this section we introduce description logics (DLs) [2], a family of knowledge
representation formalisms which underlie modern ontology languages, such as
OWL DL [16]. A hierarchy of commonly-used description logics is summarized in
Table 6.1.

The syntax of a description logic L is given by a signature and a set of construc-
tors. A signature (or vocabulary) Sg of a DL is the (disjoint) union of countably
infinite sets C of atomic concepts (A,B, . . .) representing sets of elements, R of

6 Extracting Modules from Ontologies: A Logic-Based Approach 161

Table 6.1. The hierarchy of standard description logics

Constructors Axioms [Ax]
Rol Con RBox TBox ABox

EL r �, A, C1 � C2, ∃R.C A ≡ C, C1 � C2 a : C, r(a, b)
ALC –��– –��–, ¬C –��– –��–
S –��– –��– Trans(r) –��– –��–

+ I r−

+ H R1 � R2

+ F Funct(R)
+ N (� n S)
+ Q (� n S.C)
+ O {i}

Here r ∈ R, A ∈ C, a, b ∈ I, R(i) ∈ Rol, C(i) ∈ Con, n ≥ 1 and S ∈ Rol a
simple role[10].

atomic roles (r, s, . . .) representing binary relations between elements, and I of indi-
viduals (a, b, c, . . .) representing constants. We assume the signature to be fixed for
every DL.

Each DL provides constructors for defining the set Rol of (general) roles
(R,S, . . .), the set Con of (general) concepts (C,D, . . .), and Ax of axioms
(α, β, . . .) which includes the role axioms (RBox), terminological axioms (TBox)
and assertions (ABox).
EL [1] is a simple DL which allows one to construct complex concepts using

conjunction C1 �C2 and existential restriction ∃R.C starting from atomic concepts
A, roles R and the top concept �. EL provides no role constructors and no role
axioms; thus, each role R in EL is atomic. The TBox axioms of EL can be either
concept definitionsA ≡ C or general concept inclusion axioms (GCIs)C1 � C2. EL
assertions are either concept assertions a :C or role assertions r(a, b). We assume
the concept definition A ≡ C is an abbreviation for two GCIs A � C and C � A.

The basic description logic ALC [17] is obtained from EL by adding the concept
negation constructor ¬C. We introduce some additional constructors as abbrevia-
tions: the bottom concept ⊥ is a shortcut for ¬�, the concept disjunction C1 � C2

stands for ¬(¬C1 � ¬C2), and the value restriction ∀R.C stands for ¬(∃R.¬C). In
contrast to EL, ALC can express contradiction axioms like � � ⊥. The logic S is
an extension of ALC where, additionally, some atomic roles can be declared to be
transitive using a role axiom Trans(r).

Further extensions of DLs add features such as inverse roles r− (indicated by
appending a letter I to the name of the logic), role inclusion axioms (RIs) R1 � R2

(+H), functional roles Funct(R) (+F), number restrictions (�nS), with n ≥ 1,
(+N), qualified number restrictions (�nS.C), with n ≥ 1, (+Q)1, and nominals
{a} (+O). Nominals allow for the construction of concepts representing a singleton

1 The dual constructors (� n S) and (� n S.C) are abbreviations for ¬(� n + 1 S) and
¬(� n + 1 S.¬C), respectively.

162 B. Cuenca Grau et al.

set {a} (a nominal concept) from an individual a. These extensions can be used in
different combinations; for example ALCO is an extension of ALC with nominals;
SHIQ is an extension of S with role hierarchies, inverse roles and qualified number
restrictions; and SHOIQ is the DL that uses all the constructors and axiom types
we have presented.

Modern ontology languages, such as OWL, are based on description logics and, to
a certain extent, are syntactic variants thereof. In particular, OWL DL corresponds to
SHOIN [9]. In this paper, we assume an ontology O based on a description logic
L to be a finite set of axioms in L. The signature of an ontologyO (of an axiom α) is
the set Sig(O) (Sig(α)) of atomic concepts, atomic roles and individuals that occur
in O (respectively in α).

The main reasoning task for ontologies is entailment: given an ontologyO and an
axiom α, check if O implies α. The logical entailment |= is defined using the usual
Tarski-style set-theoretic semantics for description logics as follows. An interpreta-
tion I is a pair I = (ΔI , ·I), where ΔI is a non-empty set, called the domain of
the interpretation, and ·I is the interpretation function that assigns: to every A ∈ C
a subset AI ⊆ ΔI , to every r ∈ R a binary relation rI ⊆ ΔI ×ΔI , and to every
a ∈ I an element aI ∈ ΔI . Note that the sets C, R and I are not defined by the
interpretation I but assumed to be fixed for the ontology language (DL).

The interpretation function ·I is extended to complex roles and concepts via DL-
constructors as follows:

(�)I = Δ
(C �D)I = CI ∩DI

(∃R.C)I = {x ∈ ΔI | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(¬C)I = ΔI \CI

(r−)I = {〈x, y〉 | 〈y, x〉 ∈ rI}
(�nR)I = { x ∈ ΔI | �{y ∈ ΔI | 〈x, y〉 ∈ RI} ≥ n }

(�nR.C)I = { x ∈ ΔI | �{y ∈ ΔI | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n }
{a}I = {aI}

The satisfaction relation I |= α between an interpretation I and a DL axiom α (read
as I satisfies α, or I is a model of α) is defined as follows:

I |= C1 � C2 iff CI
1 ⊆ CI

2 ; I |= a : C iff aI ∈ CI ;

I |= R1 � R2 iff RI
1 ⊆ RI

2 ; I |= r(a, b) iff 〈aI , bI〉 ∈ rI ;

I |= Trans(r) iff ∀x, y, z ∈ ΔI [〈x, y〉 ∈ rI ∧ 〈y, z〉 ∈ rI ⇒ 〈x, z〉 ∈ rI];
I |= Funct(R) iff ∀x, y, z ∈ ΔI [〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI ⇒ y = z];

An interpretation I is a model of an ontologyO if I satisfies all axioms in O. An
ontology O implies an axiom α (written O |= α) if I |= α for every model I of
O. Given a set I of interpretations, we say that an axiom α (an ontology O) is valid
in I if every interpretation I ∈ I is a model of α (respectively O). An axiom α is a
tautology if it is valid in the set of all interpretations (or, equivalently, is implied by
the empty ontology).

6 Extracting Modules from Ontologies: A Logic-Based Approach 163

Let S1,S be signatures such that S1 ⊆ S. The restriction of an S-interpretation
I = (ΔI , ·I) to S1 is an interpretation I|S1 = (ΔI1 , ·I1) over S1 such that ΔI1 =
ΔI and XI1 = XI for every X ∈ S1. An expansion of an S1-interpretation I1

to S is an S-interpretation I such that I|S1 = I1. A trivial expansion of an S1-
interpretation I1 to S is an expansion of I1 to S such that XI = ∅ for every atomic
concept and atomic role X ∈ S \ S1.

6.3 Modules for Knowledge Reuse

Suppose that an ontology engineer wants to build an ontology about
research projects. He defines two concepts Genetic Disorder Project and
Cystic Fibrosis EUProject in his ontology P . The first one describes projects about
genetic disorders; the second one, European projects about cystic fibrosis, as given
by the axioms P1 and P2 in Figure 6.1.

Ontology of medical research projects P:

P1 Genetic Disorder Project ≡ Project � ∃has Focus.||Genetic Disorder||
P2 Cystic Fibrosis EUProject ≡ EUProject � ∃has Focus||Cystic Fibrosis||.
P3 EUProject � Project

Ontology of medical terms Q:

M1 ||Cystic Fibrosis|| ≡ Fibrosis � ∃located In.Pancreas � ∃has Origin.Genetic Origin

M2 Genetic Fibrosis ≡ Fibrosis � ∃has Origin.Genetic Origin

M3 Fibrosis � ∃located In.Pancreas � Genetic Fibrosis

M4 Genetic F ibrosis � Genetic Disorder

M5 DEFBI Gene � Immuno Protein Gene � associated WithCystic Fibrosis

Fig. 6.1. Reusing medical terminology in an ontology on research projects

The ontology engineer is an expert on research projects: he knows, for exam-
ple, that a EUProject is a Project (axiom P3). He is unfamiliar, however, with most
of the topics the projects cover and, in particular, with the terms Cystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In this case, he decides to reuse the know-
ledge about these subjects from a well-established and widely-used medical ontology

The most straightforward way to reuse these concepts is to import the medical
ontology. This may be, however, a large ontology, which deals with other matters
in which the ontology engineer is not interested, such as genes, anatomy, surgical
techniques, etc. Ideally, one would like to extract a (hopefully small) fragment of the
medical ontology—a module—that describes in detail the concepts we are reusing in
our ontology. Intuitively, importing the moduleQ1 intoP instead of the full ontology
Q should have no impact on the modeling of the ontology P .

Suppose that the concepts Cystic Fibrosis and Genetic Disorder are described in
an ontologyQ containing axioms M1-M5 in Figure 6.1. If we include in the module

164 B. Cuenca Grau et al.

Q1 just the axioms that mention either Cystic Fibrosis or Genetic Disorder, namely
M1, M4 and M5, we lose the following dependency:

Cystic Fibrosis � Genetic Disorder (6.1)

The dependencies Cystic Fibrosis � Genetic Fibrosis � Genetic Disorder fol-
low from axioms M1-M5, but not from M1, M4, M5, since the dependency
Cystic Fibrosis � Genetic Fibrosis does not hold after removing M2 and M3. The
dependency (6.1), however, is crucial for our ontology P as it (together with axiom
P3) implies the following axiom:

Cystic Fibrosis EUProject � Genetic Disorder Project (6.2)

This means, in particular, that all the projects annotated with the concept name
Cystic Fibrosis EUProject must be included in the answer for a query on the con-
cept name Genetic Disorder Project. Consequently, importing a part of Q contai-
ning only axioms that mention the terms used in P instead of Q results in an
underspecified ontology. We stress that the ontology engineer might be unaware of
dependency (6.2), even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a module Q1 ⊆
Q to be reused in our ontology P is that P ∪ Q1 should yield the same logical
consequences in the vocabulary ofP asP∪Q does. Note that, as seen in the example,
this requirement does not force us to include inQ1 all the axioms in Q that mention
the vocabulary to be reused, nor does it imply that the axioms in Q that do not
mention this vocabulary should be omitted.

Based on the discussion above, we formalize our first notion of a module as
follows:

Definition 1 (Module). Let L be a description logic, Q1 ⊆ Q be two ontologies
expressed in L and let S be a signature. We say thatQ1 is an S-module inQw.r.t. L, if
for every ontologyP and every axiomα expressed in L with Sig(P∪{α})∩Sig(Q) ⊆
S, we have P ∪Q |= α iff P ∪Q1 |= α. �

In Definition 1 the signature S acts as the interface signature between P andQ in the
sense that it contains the symbols thatP and αmay share withQ. It is also important
to realize that there are two free parameters in Definition 1, namely the ontology P
and the axiom α. Both P and α are formulated in some ontology language L, which
might not necessarily be OWL DL.

Fixing the language L in which P and α can be expressed is essential in Defini-
tion 1 since it may well be the case thatQ1 is a module inQ w.r.t. a language L1, but
not w.r.t. L2. Fixing L, however, is not always reasonable. If Q1 is an S-module in
Q, it should always be possible to replaceQ withQ1 regardless of the particular lan-
guage in which P and α are expressed. In fact, we may extend our ontology P with
a set of Horn rules, or extend our query language to support arbitrary conjunctive
queries. In any case, extending the ontology language for P and the query language
for α should not preventQ1 from being a module in Q.

It is therefore convenient to formulate a more general notion of a module which
abstracts from the particular language under consideration; that is, we say that Q1

6 Extracting Modules from Ontologies: A Logic-Based Approach 165

is an S-module in Q iff it is an S-module in Q, according to Definition 1 for every
language L with Tarski-style set-theoretic semantics. The modules we obtain in this
paper will be modules in precisely this stronger sense.

According to Definition 1, there may be a large number of modules for a given
input ontology and signature. In many applications one is usually not interested in
extracting arbitrary modules from a reused ontology, but in extracting modules that
are easy to process afterwards. Ideally, the extracted modules should be as small
as possible. Hence, it is reasonable to consider the problem of extracting minimal
modules—that is, modules that contain no other module as a subset In our example
from Figure 6.1, there are two minimal S-modules Q1 = {M1,M2,M4} and
Q2 = {M1,M3,M4}: if we remove any axiom from them, the dependency (6.1)
will no longer hold.

As seen above, minimal modules are not necessarily unique. While in some cases
it is reasonable to extract all minimal modules, in others it may suffice to extract just
one. Thus, givenQ and S, the following tasks are of interest:

T1. compute all minimal S-modules in Q
T2. compute some minimal S-module in Q (6.3)

Axioms that do not occur in a minimal module of Q are not essential for P in the
sense that they do not need to be imported into P . This is not true for the axioms that
occur in minimal modules of Q. These arguments motivate the following notion:

Definition 2 (Essential Axiom). Given a signature S and an ontologyQ, we say that
an axiom α ∈ Q is S-essential in Q w.r.t. L if α belongs to some minimal S-module
in Q w.r.t. L. �

In our example, the axioms M1 −M4 from Q are essential for the signature S =
{CysticFibrosis,Genetic Disorder}, and the axiom M5 is not essential. In certain
situations one might be interested in computing the set of (non)essential axioms of
an ontology, which can be done by computing the union of all minimal modules.
Hence, the following task may also be of interest:

T3. compute the union of all minimal S-modules in Q,
which is the set of all S-essential axioms in Q (6.4)

Note that computing the union of minimal modules might be easier than computing
all the minimal modules since one does not need to identify which axiom belongs to
which minimal module.

6.4 Computational Properties of Module Extraction

In this section, we study the decidability/computability of the tasks described in
Section 6.3. We start by investigating the relationships between Tasks T1,T2 and
T3; our main result is that tasks T1 and T2 are inter-reducible whereas T3 is “eas-
ier” than both T1 and T2. Next, we establish the relationship between our notion of
module and the notion of a conservative extension, whose complexity/decidability

166 B. Cuenca Grau et al.

for Description Logics has been recently established. Finally, we show that deciding
whether an axiom is essential in an ontology for a given signature is an undecidable
problem for the logicALCO. As a consequence, tasks T1-T3 are proved algorithmi-
cally unsolvable forALCO.

6.4.1 Reductions between Tasks

Before we formalize we establish the reductions between tasks T1-T3, we prove in
the following proposition some important properties of modules that we will exploit
along this section.

Proposition 1 (Properties of Modules)
Let Q1 ⊆ Q2 ⊆ Q3 be three SHOIQ ontologies and S be a signature. Then:

1. If Q1 is an S-module in Q2 and Q2 is an S-module in Q3 then
Q1 is an S-module in Q3 (transitivity)

2. If Q1 is an S-module in Q3 then
(a)Q1 is an S-module in Q2 and (b)Q2 is an S-module in Q3 (convexity)

Proof

1. Suppose that Q1 is an S-module in Q2 and Q2 is an S-module in Q3. In order
to prove that Q1 is an S-module in Q3 according to Definition 1, take any ontology
P and an axiom α such that Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S and P ∪ Q3 |= α. We
demonstrate that P ∪Q1 |= α (�):

SinceQ2 is an S-module in Q3, Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S and P ∪Q3 |= α,
we have P ∪Q2 |= α. Since Q1 is an S-module in Q2, Sig(P ∪ {α}) ∩ Sig(Q2) ⊆
Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S, and P ∪Q2 |= α, we have P ∪Q1 |= α (�).

2.(a) Suppose that Q1 is an S-module in Q3. In order to prove that Q1 is an S-
module in Q2, consider any ontology P and an axiom α such that Sig(P ∪ {α}) ∩
Sig(Q2) ⊆ S and P ∪Q2 |= α. We demonstrate that P ∪Q1 |= α (�):

Without loss of generality, we can assume that Sig(P∪{α})∩Sig(Q3) ⊆ S, since
the symbols that are in Sig(P ∪ {α}) but not in Sig(Q2) could be renamed so that
they are not contained in Sig(Q3). Since Q1 is an S-module in Q3 and P ∪ Q3 |=
P ∪Q2 |= α, we have P ∪Q1 |= α (�).

2.(b) Suppose that Q1 is an S-module in Q3. In order to prove that Q2 is an S-
module in Q3, consider any ontology P and an axiom α such that Sig(P ∪ {α}) ∩
Sig(Q3) ⊆ S and P ∪Q3 |= α. We demonstrate that P ∪Q2 |= α (†):

SinceQ1 is an S-module inQ3, Sig(P ∪{α})∩ Sig(Q3) ⊆ S, and P ∪Q3 |= α,
we have P ∪Q1 |= α. SinceQ1 ⊆ Q2, we have P ∪Q2 |= α (†). �

Intuitively, Part 2(a) of Proposition 1 claims that every superset of an S-module of
this ontology is also an S-module of the ontology. This means, in particular, that it
is sufficient to compute only the minimal modules of an ontology in order to have a
complete information about all the modules.

Intuitively, task T2 should be simpler than T1. That is, any procedure which solves
the task T1, also provides a solution for task T2. Surprisingly, the converse of this

6 Extracting Modules from Ontologies: A Logic-Based Approach 167

property holds as well: any procedure for T2 can be turned into a procedure for T1.
The following lemma is the key property underlying this reduction:

Lemma 1 (A Criterium for Minimal Modules)
Let Q be an ontology and S be a signature. Let M be the set of all subsets Q2 of Q
such thatQ2 is a minimal (and hence is the only) S-module in Q2.

Then Q1 is a minimal S-module in Q iff (i) Q1 ∈ M, and (ii) there is no
Q2 ∈M such thatQ1 � Q2.

Proof

(⇒) Suppose Q1 is a minimal S-module in Q. We need to show that properties (i)
and (ii) above hold forQ1.

(i) Suppose, to the contrary, that the property (i) does not hold for Q1, i.e. Q1

is not a minimal module in Q1. Then there exists a Q2 � Q1 ⊆ Q such that Q2 is
an S-module in Q1. Since Q1 is an S-module in Q, By the part 1 of Proposition 1
(transitivity), Q2 is an S-module in Q. Hence Q1 is not a minimal module in Q
contrary to what has been assumed.

(ii) Suppose, to the contrary, that the property (ii) does not hold for Q1, that is,
there exists Q2 ∈ M such that Q1 � Q2 ⊆ Q. Since Q1 is an S-module in Q,
by the part 2(a) of Proposition 1, Q1 is an S-module in Q2. Hence Q2 /∈ M by
the definition of M (since Q2 is not a minimal S-module in Q2), which yields a
contradiction.

(⇐) Assume that conditions (i) and (ii) above hold forQ1, butQ1 is not a minimal
S-module in Q. There are two cases possible: (a) Q1 is not an S-module in Q, and
(b)Q1 is an S-module in Q, but not a minimal S-module.

In the case (a), there has to be a minimal S-moduleQ2 inQ such thatQ1 � Q2 ⊆
Q. By the direction (⇒) of the lemma applied to Q2, we have Q2 ∈ M. But this
contradicts the condition (ii), sinceQ1 ∈ M and Q1 � Q2.

In the case (b), there is a minimal S-module Q2 in Q such that Q2 � Q1 ⊆ Q.
By the property 2.(a) of Proposition 1, Q2 is an S-module in Q1, which contradicts
the condition (i) sinceQ1 is not a minimal S-module in Q1. �

We use this property to show that tasks T1 and T2 are indeed inter-reducible:

Proposition 2. Tasks T1 and T2 from (6.3) are inter-reducible.

Proof. As it has been already pointed out, using a procedure for task T1 one can
obtain a procedure for task T2 by just returning any of the computed minimal S-
modules in Q.

Now suppose we have a procedure P2 for task T2, namely, that given a signature
S and an ontology Q returns some minimal S-module Q1 in Q. We construct a
procedure P1 that returns all minimal S-modules, which is based on the criterium
for minimal S-modules formulated in Lemma 1. Note that procedure P2 satisfies the
following property:

Given S andQ2, the procedure P2 for T2 returnsQ2 if and
only if Q2 is the only minimal S-module in Q2.

(6.5)

168 B. Cuenca Grau et al.

Procedure P1 should work as follows. Given S and Q, P1 first computes the set
M of subsets Q2 in Q such that Q2 is the only S-module in Q2 using property
(6.5) of procedure P2. More precisely, in order to computeM, we enumerate all the
subsets of Q and select those subsets Q2 for which P2 returns Q2. Next, P1 returns
those sets from M that are contained in no other set from M. By Lemma 1, P1
returns exactly all minimal S-modules in Q. �

Obviously, task T3 is at least not harder then task T1:

Proposition 3. Tasks T1 and T2 are reducible to task T3; that is, any procedure for
T1 or T2 can be used for solving T3.

It is not clear, however, whether the procedure for T3 can be used to obtain a pro-
cedure for T1. Nevertheless, as we will demonstrate Section 6.4.2, this issue is not
relevant since all of the tasks formulated above are algorithmically unsolvable for
OWL DL.

6.4.2 Modules and Conservative Extensions

The notion of a module is closely related to the notion of a conservative extension
which has been used to characterize formal requirements in ontology integration
tasks [7, 5, 4, 12]. In the literature we can find at least two different notions of con-
servative extensions in the context of ontologies [12]:

Definition 3 (Conservative Extensions)
Let Q1 ⊆ Q be two ontologies, S a signature and L a logic. We say that Q is a
deductive S-conservative extension of Q1 w.r.t. L, if for every axiom α over L with
Sig(α) ⊆ S, we have Q |= α iff Q1 |= α. We say that Q is a model S-conservative
extension of Q1 if, for every model I1 of Q1, there exists a model I of Q such that
I|S = I1|S. �

Intuitively, an ontology Q is a deductive conservative extension of an ontology
Q1 ⊆ Q for a signature S iff every logical consequence α of Q constructed using
only symbols from S is already a consequence of Q1; that is, the additional axioms
in Q do not add new logical consequences over the vocabulary S. Analogously to
modules, the notion of a deductive conservative extension depends on the ontology
language L in which Q and α are expressed.

In contrast, model conservative extensions are not defined in terms of logical en-
tailment, but using the models directly. Intuitively, an ontology Q is a model con-
servative extension of Q1 ⊆ Q if every model of Q1 can be expanded to a model
of Q by interpreting new symbols and leaving the interpretations of the old symbols
unchanged.

The notion of model conservative extension is strictly stronger than the deductive
one [12] since it does not depend on expressivity of the ontology language. That is,
if Q is a model S-conservative extension ofQ1, it is also a deductive S-conservative
extension of Q1, but not necessarily vice versa.

Example 1. Let Q be the ontology consisting of axioms M1 −M5 in Figure 6.1.
Let S = {Cystic Fibrosis, Genetic Disorder} and Q1 = {M1, . . . ,M4}. We show

6 Extracting Modules from Ontologies: A Logic-Based Approach 169

that Q is a model S-conservative extension of Q1 and, hence, also a deductive con-
servative extension ofQ1.

Let I1 be an arbitrary model ofQ1. We demonstrate that we can always construct
a model I ofQ which interprets the symbols from S in the same way as I1 does, i.e.
I|S = I1|S.

Let I be as I1 except for the interpretation of the atomic concepts DEFBI Gene
and Immuno Protein Gene, and the atomic role associatedWith, all of which we
interpret in I as the empty set. Note that these atomic concepts and this atomic role
do not occur in Q1. Hence, I interprets the concepts in Q1 exactly like I1, and so
I is a model of Q1. Furthermore, I is a model of M5 since the concepts on the left-
hand-side and the right-hand-side of this axiom are both interpreted as the empty set.
Thus,Q is a model S-conservative extension ofQ1.

In fact, it was sufficient to take any expansion I of I1 in which DEFBI Gene
is interpreted as the empty set. Hence Q is a model S-conservative extension of
Q1 for every S that does not contain DEFBI Gene since M5 is satisfied in every
interpretation where this concept is interpreted as the empty set.

Now, if we remove M2 and M3 from Q1, then Q is no longer a model S-
conservative extension of Q1 for S = {Cystic Fibrosis, Genetic Disorder}. Indeed,
it is possible to find an interpretation I1 of the remaining axioms M1 and M4 from
O1, in which Genetic Disorder is interpreted as the empty set, but Cystic Fibrosis is
not. For example, consider an interpretation I1 = ({a}, ·I1) with:

Cystic FibrosisI1 = FibrosisI1 = PancreasI1 = Genetic OriginI1 = {a};
located InI1 = has OriginI1 = {(a, a)}; and
Genetic FibrosisI1 = Genetic DisorderI1 = ∅.

We cans see that I1 is a model of M1 and M4, but there is no model I of Q
such that I|S = I1|S. Indeed, for every model I of Q, we must have I |= α :=
(Cystic Fibrosis � Genetic Disorder) because Q |= α. However, this would im-
ply also that I1 |= α, since I|S = I1|S, but this does not hold for I1 defined
above. �

Although Definition 1 is close to the notion of deductive conservative extension,
there are two important differences. First, in the definition of deductive conservative
extension, the logical consequences are considered only w.r.t. the ontologies Q and
Q1 of interest whereas, in our definition of module, all the possible ontologies P in
which the module can be used are taken into account. Second, in the definition of
deductive conservative extension, the signature of α is required to be a subset of S
whereas, in our definition of module, only the common part of {α} ∪P andQ is re-
quired to be a subset of S. Despite these differences, the two notions of conservative
extensions are related to our notion of module:

Proposition 4 (Modules vs. Conservative Extensions)
Let Q1 ⊆ Q be two ontologies. Then:

1. IfQ1 is an S-module inQ w.r.t. L thenQ is a deductive S-conservative extension
ofQ1 w.r.t. L;

170 B. Cuenca Grau et al.

2. IfQ is a model S-conservative extension ofQ1 thenQ1 is an S-module in Q for
every ontology language L with Tarski-style set-theoretic semantics.

Proof

1. Let α be an axiom with Sig(α) ∈ S such that Q |= α. We have to show
that Q1 |= α (�). Take P := ∅ (the empty ontology). Since Q1 is a module in Q,
Sig(P ∪ {α}) ∩ Sig(Q) ⊆ S, and P ∪ Q = Q |= α, by Definition 1, we have
Q1 = P ∪Q1 |= α.

2. Assume that Q is a model S-conservative extension of Q1, but Q1 is not an
S-module in Q w.r.t. some logic L. According to Definition 1, this means that there
exists an ontology P and an axiom α over L with Sig(P ∪{α})∩ Sig(Q) ⊆ S, such
that P ∪ Q |= α but P ∪ Q1 �|= α. The last implies that for some interpretation I1,
we have I1 |= P ∪ Q1, but I1 �|= α. Let I ′1 := I1|S∪Sig(Q). Obviously, I ′1 |= Q1.
By Definition 3, since Q is a model S-conservative extension of Q1, there exists
an interpretation I ′ such that I ′ |= Q and I ′|S = I ′1|S. Let I be the expansion
of I ′|S∪Sig(Q) to Sig(P ∪ {α}) by setting XI := XI1 for every X ∈ Sig(P ∪
{α}) \ S. Note that we also have I|S = I ′|S = I ′1|S = I1|S, hence I|Sig(P∪{α}) =
I1|Sig(P∪{α}), and so I |= P and I �|= α. Since I|S∪Sig(Q) = I ′|S∪Sig(Q) and
I ′ |= Q, we have I |= Q, which yields a contradiction. �

Proposition 4 shows that our notion of module stays “in between” the two notions
of conservative extensions. In particular, by applying Property 2 in Proposition 4 to
Example 1, we can show that the axioms M1-M4 in Figure 6.1 constitute a module in
the ontology Q, consisting of M1-M5. The converse of Property 1 in Proposition 4,
however, does not hold in general:

Example 2. Let Q1 = {}, Q = {� � ∃R.A} and S = {A}. The ontology Q is
a deductive S-conservative extension of Q1 w.r.t. ALC. Indeed, every ALC-axiom
α = (C1 � C2) over S = {A}, is equivalent in ALC to either � � �, � � ⊥,
� � A or A � ⊥, which are indistinguishable by Q1 and Q—that is, the axiom
is implied by Q1 iff it is implied by Q. Q1, however, is not an S-module in Q.
Consider anALC-ontologyP = {A � ⊥}, which is constructed over S. We can see
that P ∪Q |= � � ⊥, but P ∪Q1 �|= � � ⊥. �

Note that the construction in Example 2 also shows that the notion of deductive con-
servative extension is strictly weaker than the notion of model conservative extension
(as shown in [12]): Q is a deductive conservative extension of Q1 but, according to
Property 2 in Proposition 4, it is not a model conservative extension.

6.4.3 Undecidability Results

Given the relationships between our definition of module and conservative exten-
sions, it is worth examining the computational complexity of the associated pro-
blems. The problem of deciding whetherQ is an S-conservative extension ofQ1 has
been studied in [12], where it is proved to be 2-EXPTIME complete for ALCIQ

6 Extracting Modules from Ontologies: A Logic-Based Approach 171

(roughly OWL-Lite) and undecidable for OWL DL. For model conservative ex-
tensions, the problem is highly undecidable (non recursively enumerable), even for
ALC [12].

The decidability result from [12] for deductive conservative extensions, however,
does not transfer to our problem since an ontology Q may well be an S-deductive
conservative extension of Q1, but still Q1 might not be an S-module in Q. In fact,
we show that our problem is already undecidable forALCO ontologies:

Theorem 1 (Undecidability for Essential Axioms)
Given a signature S, an ALC-ontology Q and an axiom α ∈ Q, it is undecidable
whether α is S-essential in Q w.r.t. L = ALCO.

Proof. The proof is a variation of the construction for undecidability of deciding
deductive conservative extensions in ALCQIO given [12], based on a reduction
from a domino tiling problem.

A domino system is a triple D = (T,H, V) where T is a finite set of tiles and
H,V ⊆ T × T are horizontal and vertical matching relations. A solution for a
domino system D is a mapping t(·,·) that assigns to every pair of integers i, j ≥ 1 an
element ti,j ∈ T , such that (ti,j , ti,j+1) ∈ V and (ti,j , ti+1,j) ∈ H . A periodic so-
lution for a domino system D is a solution ti,j for which there exist integers m ≥ 1,
n ≥ 1 called periods such that ti+m,j = ti,j and ti,j+n = ti,j for every i, j ≥ 1.

Let D be the collection of all domino systems, D∫ be the subset of D that admit
a solution and D√∫ be the subset of D that admit a periodic solution. Note that

D√∫ ⊆ D∫ . It is well-known [3, Theorem 3.1.7] that the sets D \ D∫ and D√∫ are

recursively inseparable, that is, there is no recursive (i.e. decidable) subset D′ ⊆ D
of domino systems such that D√∫ ⊆ D′ ⊆ D∫ .

We use this property in our reduction. For every domino systemD, we construct a
signature S = S(D), an ontologyQ = Q(D) which is anALC-TBox, and an axiom
α ∈ Q such that:

(a) if D does not have a solution then α is not S-essential in Q w.r.t. L, and
(b) if D has a periodic solution then α is S-essential in Q.

In other words, for the set D′ of domino systems D such that α is S-essential
in Q = Q(D) w.r.t. L, we have D√∫ ⊆ D′ ⊆ D∫ . Since D \ D∫ and D√∫ are

recursively inseparable, this implies undecidability for D′ and hence for the prob-
lem of checking S-essential axioms, because otherwise one can use this problem for
deciding membership in D′.

The signature S, ontologyQ and axiom α ∈ Q are constructed as follows. Given
a domino system D = (T,H, V), let S consist of fresh atomic conceptsAt for every
t ∈ T and two atomic roles rH and rV . We defineQ to consists of axioms (q1)–(q5)
from Figure 6.2 and set α to be the axiom (q5).

Axioms of form (q1)–(q4) express that every domain element in a model for Q
is assigned with a unique tile t ∈ T and has horizontal and vertical matching suc-
cessors. Axiom (q5) plays a special role in our reduction for excluding those models

172 B. Cuenca Grau et al.

(q1) � � At1 � · · · �Atn if T = {t1, . . . , tn}
(q2) Ati �Atj � ⊥ whenever ti �= tj ,

(q3) Ati � ∃rH .(
⊔

(ti,tj)∈H Atj) ti, tj ∈ T

(q4) Ati � ∃rV .(
⊔

(ti,tj)∈V Atj)

(q5) � � ∃s.[∃rH .∃rV .B � ∃rV .∃rH .¬B] =: α

Fig. 6.2. An ontology Q for a domino system D

of Q for which the horizontal and vertical matching relations do not commute. We
can show that all axioms fromQ are independent, i.e. none of the axioms is a logical
consequence of the remaining axioms. In the remainder, we prove properties (a) and
(b) formulated above.

In order to prove property (a), assume that α is S-essential in Q w.r.t. L. We
demonstrate that D has a solution in this case.

Let Qα be a minimal S-module in Q containing α. Note that Qα implies all
axioms of form (q1)–(q4) in Q, since the signature of these axioms is a subset of S.
SinceQα contains α and all axioms ofQ are independent, this is only possible when
Qα = Q.

Since Qα = Q is a minimal S-module in Q, the set Q1 := Q \ {α} is not an S-
module inQ, and so, by the part 2 of Proposition 4,Q is not a model S-conservative
extension of Q1. This means that there is an S-interpretation I1 = (Δ, ·I1) that is a
model of the axioms of form (q1)–(q4), but which cannot be expanded to a model of
α by interpreting atomic role s and atomic concept B. We claim that this is possible
only if relations rH and rV commute in I1, that is, whenever rH(a, b), rV (b, c1),
rV (a, d) and rH(d, c2) hold in I1, then it must be the case that c1 = c2. Indeed,
otherwise one can expand I1 to a model I of α by setting sI = {(x, a) | x ∈
Δ} and BI = {c1}. Since I satisfies all formulas of forms (q1)–(q4) and admits
commutativity property for relations rH and rV , we can see that D has a solution.

In order to prove property (b), assume that D has a periodic solution ti,j with
the periods m,n ≥ 1. We demonstrate that α is S-essential in Q by showing that
Q1 := Q \ {α} is not an S-module in Q. For this purpose we construct an ALCO-
ontology P such that P ∪ Q |= ⊥, but P ∪ Q1 �|= ⊥. We define P such that every
model of P is a finite encoding of the periodic solution ti,j . For every pair (i, j) with
1 ≤ i ≤ m and 1 ≤ j ≤ n we introduce a fresh individual ai,j and add the following
axioms to P

(p1) ai,j :Ati,j , (p4) � �
⊔

1≤i≤m, 1≤j≤n {ai,j},
(p2) rV (ai1,j, ai2,j), (p5) {ai1,j} � ∀rV .{ai2,j}, i2 = i1 + 1 mod m
(p3) rH(ai,j1 , ai,j2), (p6) {ai,j1} � ∀rH .{ai,j2}, j2 = j1 + 1 mod n

The axioms (p1)–(p4) encode the solution ti,j for D, and so, ensure that axioms
(q1)–(q4) are satisfied. The axioms (p5) and (p6) ensure that the relations rV and rH
are defined completely, i.e. no other relations except for those specified in the first
column hold in models of P . In particular, in every model of P , relations rH and

6 Extracting Modules from Ontologies: A Logic-Based Approach 173

rV commute, and so, axiom α is not satisfied. Consequently,P ∪Q is unsatisfiable,
whereas P ∪Q1 is satisfiable, and so,Q1 is not an S-module in Q. �

Corollary 1. There exists no algorithm for performing any of the tasks T1-T3 from
(6.3), and (6.4) for ALCO-ontologies.

Proof. Theorem 1 implies directly that there is no algorithm for task T3 from (6.4),
because otherwise, one can check if an axiom α is S-essential in Q by simply com-
puting the set of all essential axioms by this algorithm for T3 and then checking if α
is contained in this set. The remaining tasks from (6.3) are unsolvable since they are
reducible to T3 by Proposition 3. �

Corollary 2. Given a signature S, an ALC-ontologyQ and an ontologyQ1 ⊆ Q, it
is undecidable whetherQ1 is an S-module in Q w.r.t. L = ALCO.

Proof. The procedure for deciding ifQ1 is an S-module inQ can be used for solving
task T1, which is not possible by Corollary 1. Indeed, by enumerating the subsets
of Q and checking if they are modules, one can compute all subsets M of Q that
are S-modules in Q. The set of all minimal modules in Q can be then computed
from M by filtering out those sets in M that are proper subsets of some other sets
inM. �

Corollary 2 has a strong impact on the problem of knowledge reuse and forces us to
revisit the original problem we aim at solving. As the problem of extracting minimal
modules cannot be computationally solved for OWL DL in none of the forms T1-T3,
T1s or T2s, we propose to relax some of the requirements in these tasks. We cannot
drop the requirements that extracted fragments should be modules since, in this case,
we have no guarantee for the correctness of the result. We can sacrifice, however,
the minimality requirements for the computed modules and consider the following
weakened version of the task T2:

T2w. compute some small enough S-module in Q (6.6)

Although it is always possible to extract an S-module in Q (one can simply return
Q which is always an S-module in Q), it still makes sense to develop, compare,
and practically apply procedures that compute reasonably small modules. In what
follows, we describe two procedures of this form, based on the notions of locality,
which we first introduced in [4]. The modules we obtain might be larger than the
minimal modules and therefore we need to show that, in practice, they are still rea-
sonably small.

6.5 Modules Based on Locality

In this section, we formulate the notion of locality, first introduced in [4] which
will constitute the basis of our algorithm for extracting modules. In this section, we
restrict ourselves to SHIQ, although the results provided here could we extended to
SHOIQ using the same treatment for nominals as in [4].

174 B. Cuenca Grau et al.

6.5.1 Locality

As a consequence of Case 2 in Proposition 4, model conservative extensions can be
used as a sufficient condition for the notion of module. It is not possible, however, to
design a procedure that extracts modules based on this condition since the problem
of deciding model conservative extensions is highly undecidable [12]. The idea un-
derlying this notion, however, can be used to establish sufficient conditions for the
notion of module which are decidable and can be used in practice.

Consider the first part of Example 1, where we show that the setQ of axioms M1-
M5 in Figure 6.1 is a model S-conservative extension of Q1 = {M1, . . . ,M4}, for
S = {Cystic Fibrosis, Genetic Disorder}. In this example, the model conservative
extension was shown by finding expansions of Sig(Q1)-interpretations to models
of Q in which all concept and atomic roles not in Sig(Q1) were interpreted as the
empty set. One could consider the cases where conservative extensions (and hence
modules) can be determined in this manner. This idea can be formalized using the
notion of locality:

Definition 4 (Locality [4]). Let S be a signature. We say that an axiom α is local
w.r.t. S if every trivial expansion of any S-interpretation to S ∪ Sig(α) is a model
of α. We denote by local(S) the collection of all axioms that are local w.r.t. S. An
ontologyO is local w.r.t. S if O ⊆ local(S). �

Intuitively, an ontologyO is local w.r.t. a signature S if we can take any interpretation
for the symbols in S and extend it to a model of O that interprets the additional
symbols as the empty set.

Example 3. Axiom M5 is local for S = {Cystic Fibrosis, Genetic Disorder}. In-
deed, as shown in Example 1, for every trivial expansion I of an S-interpretation
to S ∪ Sig(α), the concept DEFBI Gene is interpreted as the empty set, and so, I
satisfies M5.

On the other hand, M5 is not local w.r.t. S = {DEFBI Gene}. Indeed, take any
S-interpretation I1 in which DEFBI Gene is interpreted as a non-empty set. Then,
for every trivial expansion I of I1, the concept on the left-hand-side of M5 is always
interpreted as a non-empty set, whereas the concept on the right-hand-side is always
interpreted as the empty set. So I does not satisfy α.

In fact, this shows that axiom M5 is local w.r.t. S if and only if S does not contain
DEFBI Gene. �

The following is a simple but useful property of locality shows that the set of local
axioms can only become smaller if the signature expands:

Lemma 2 (Anti-Monotonicity of Locality). Let S1 and S2 be signature sets. Then
S1 ⊆ S2 implies local(S2) ⊆ local(S1).

Proof. Let α ∈ local(S2). We demonstrate that α ∈ local(S1). For this purpose, let
I1 be an arbitrary S1-interpretation. We need to show that every trivial expansion I′1
of I1 to S1 ∪ Sig(α) is a model of α.

6 Extracting Modules from Ontologies: A Logic-Based Approach 175

Let I2 be a trivial expansion of I1 to S2 (note that S1 ⊆ S2). Since α ∈ local(S2),
every trivial expansion I ′2 of I2 to S2 ∪ Sig(α) is a model of α. Note that I ′2 is a
trivial expansion of I1 to S2 ∪ Sig(α), hence I ′1 = I ′2|S1∪Sig(α) |= α. �

Locality can be used to formulate a sufficient condition for an ontology to be a model
conservative extension of another ontology:

Proposition 5 (Locality ⇒ Model Conservativity). Let O1, O2 be two ontologies
and S a signature such that O2 is local w.r.t. S ∪ Sig(O1). Then O1 ∪ O2 is an
S-model conservative extension of O1.

Proof. Let I1 be a model of O1. We show that there exists a model I of O1 ∪ O2

such that I|S = I1|S.
Let I be a trivial expansion of I1|S∪Sig(O1) to S ∪ Sig(O1) ∪ Sig(O2), thus, in

particular, I|S∪Sig(O1) = I1|S∪Sig(O1). We need to show that I is a model ofO1∪O2.
Since O2 is local w.r.t. S ∪ Sig(O1), by Definition 4, I is a model ofO2. Moreover,
since I|Sig(O1) = I1|Sig(O1) and I1 |= O1, we have I |= O1. Hence, I |= O1 ∪ O2

what was required to show. �

Using Proposition 5 and Property 2 of Proposition 4 we obtain:

Corollary 3. LetO1,O2 and S be as given in Proposition 5. ThenO1 is an S-module
in O1 ∪ O2.

Corollary 3 suggests how one can use locality for extracting modules. Given an on-
tologyQ and a signature S, it is sufficient to partitionQ into Q1 ∪ Q2 such thatQ2

is local w.r.t. S ∪ Sig(Q1). In this case,Q1 is an S-module in Q.

Definition 5 (Modules based on Locality Condition)
Given an ontology Q and a signature S, we say that Q1 ⊆ Q is a locality-based
S-module in Q if Q \ Q1 is local w.r.t S ∪ Sig(Q1). �

Remark 1. Note from Definition 5 that every locality-based S-module Q1 in Q, is
also a locality-based S ∪ Sig(Q1)-module in Q. �

Remark 2. Note that Q1 is a locality-based S-module in Q if every trivial expansion
of every model ofQ1 based on S ∪ Sig(Q1) to S ∪ Sig(Q), is a model forQ. �

Example 4 (Example 3, continued). We have seen in Example 3 that axiom M5 is
local w.r.t. every S that does not contain the atomic concept DEFBI Gene. In par-
ticular, for Q1 consisting of axioms M1-M4 from Figure 6.1, M5 is local w.r.t.
Sig(Q1). Hence, according to Definition 5, Q1 is a locality-based S-module in
Q = {M1, . . . ,M5} for every S ⊆ Sig(Q1). �

Remark 3. Note that the analog of the Part 1 in Proposition 1 does not hold for
locality-based modules since locality-based modules are not necessarily upward-
closed. For example, consider the following ontology and a signature:

Q = {(1) A1 � A2; (2) B � A1; (3) B � A2} S = {A1, A2}

176 B. Cuenca Grau et al.

It is easy to see that the set Q1 = {A1 � A2} consisting of the first axiom from
Q is a locality-based S-module in Q, since both axioms (2) and (3) are local w.r.t.
S ∪ Sig(Q1) = {A1, A2}. However, its superset Q′

1 = {A1 � A2; B � A1} is
not a locality-based module w.r.t. S, since the axiom B � A2 in Q \ Q′

1 is not local
w.r.t. S ∪ Sig(Q′

1) = {A1, A2, B}. Note that Q′
1 is an S-module in Q, since it is a

superset of an S-moduleQ1. �

6.5.2 Testing Locality

As demonstrated in Example 3, for testing locality of an axiom α w.r.t. S, it is suf-
ficient to interpret every atomic concept and atomic role not in S with the empty
set and then check if α is satisfied for all interpretations of the remaining symbols.
This observation suggests that locality can be tested by first simplifying the ontology
by eliminating atomic roles and concepts that are not in S, and then checking if the
resulting axioms are satisfied in every interpretation for the remaining symbols. This
idea is formalized as follows:

Proposition 6 (Testing Locality). Let O be a SHIQ ontology and S a signature.
Let OS be obtained fromO by applying the transformations below, where every A is
an atomic concept, every r is an atomic role with A, r /∈ S, and every R is a role r
or r− with r /∈ S: (1) replace all concepts of form A, ∃R.C or (�nR.C) with ⊥;
(2) remove every transitivity axiom Trans(r); (3) replace every assertion a :A and
r(a, b) with the contradiction axiom � � ⊥.

Then O is local w.r.t. S iff every axiom in OS is a tautology.

Proof. It is easy to check that the transformation above preserves the satisfaction
of axioms under every trivial expansion I of every S-interpretation to S ∪ Sig(O).
Hence, the resulting ontology OS is local w.r.t. S iff the original ontology O was
local w.r.t. S. Moreover, it is easy to see that there are no atomic concepts and atomic
roles outside S left in OS after the transformation. Hence, every axiom α from OS

is a tautology iffQ is local w.r.t. S. �

Note that according to Definition 4, assertions a :A and r(a, b) can never be local
since they can only be satisfied by interpretations that interpretA and r as non-empty
sets. Hence, assertions must be included in every locality-based module, which is
reflected in the step (3) of the transformation in Proposition 6.

Example 5. Recall that in Example 3 we have demonstrated that axiom M5 from Fig-
ure 6.1 is local w.r.t. S = {Cystic Fibrosis, Genetic Disorder}. Now we demonstrate
this using Proposition 6. Indeed, according to this proposition we need to perform
the following replacements:

DEFBI Gene ⇒ ⊥ (by (1) since DEFBI Gene �∈ S)

Immuno Protein Gene ⇒ ⊥ (by (1) since Immuno Protein Gene �∈ S)

∃associated With.Cystic Fibrosis⇒ ⊥ (by (1) since associated With �∈ S)

Hence, axiom M5 will be translated to axiom ⊥ � ⊥�⊥ which is a tautology. �

6 Extracting Modules from Ontologies: A Logic-Based Approach 177

An important conclusion of Proposition 6 is that one can use the standard capabili-
ties of available DL-reasoners2 such as FaCT++ [19], RACER [13], Pellet [18] or
KAON2 [14] for testing locality since these reasoners can test for DL-tautologies.
Checking for tautologies in description logics is, theoretically, a difficult problem
(e.g. for DL SHIQ is NEXPTIME-complete). There are, however, several reasons
to believe that the locality test would perform well in practice. First, and most im-
portantly, the size of the axioms in an ontology is usually small compared to the size
of the ontology. Second, DL reasoners are highly optimized for standard reasoning
tasks and behave well for most realistic ontologies.

In case this is too costly, it is possible to formulate a tractable approximation to
the locality conditions for SHIQ:

Definition 6 (Syntactic Locality for SHIQ). Let S be a signature. The following
grammar recursively defines two sets of concepts C⊥S and C�S for a signature S:

C⊥S ::= A⊥ | (¬C�) | (C � C⊥) | (∃R⊥.C)
| (∃R.C⊥) | (�nR⊥.C) | (�nR.C⊥) .

C�S ::= (¬C⊥) | (C�
1 � C�

2) .

where A⊥ /∈ S is a atomic concept, R is a role, and C is a concept, C⊥ ∈ C⊥S ,
C�

(i) ∈ C�S , i = 1, 2, and R⊥ /∈ Rol(S) is a role.
An axiom α is syntactically local w.r.t. S if it is of one of the following forms:

(1) R⊥ � R, or (2) Trans(R⊥), or (3) C⊥ � C or (4) C � C�. We denote
by s local(S) the set of all SHIQ-axioms that are syntactically local w.r.t. S. A
SHIQ-ontologyO is syntactically local w.r.t. S if O ⊆ s local(S). �

Intuitively, every concept in C⊥S becomes equivalent to⊥ if we replace every symbol
A⊥ or R⊥ not in S with the bottom concept ⊥ and the empty role respectively,
which are both interpreted as the empty set under every interpretation. Similarly, the
concepts from C�S are equivalent to � under this replacement. Syntactically local
axioms become tautologies after these replacements.

For example, it is easy to show that the axiom M2 from Figure 6.1 is local w.r.t.
S = {Fibrosis, has Origin}: if we replace the remaining symbols in this axiom with
⊥, we obtain a tautology⊥ ≡ ⊥:

⊥
︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis � ∃has Origin.

⊥
︷ ︸︸ ︷
Genetic Origin

︸ ︷︷ ︸
⊥

To distinguish the original notion of locality from its syntactic approximation, we
sometimes call the first as semantic locality, as it is defined in terms of the interpre-
tations.

2 See http://www.cs.man.ac.uk/˜sattler/reasoners.html for a list of cur-
rently available reasoners.

178 B. Cuenca Grau et al.

It is easy to show that the analog of Lemma 2 also holds for syntactic locality:

Lemma 3 (Anti-Monotonicity of Syntactic Locality)
Let S1 and S2 be signature sets. Then S1 ⊆ S2 implies s local(S2) ⊆ s local(S1).

Proof. It is easy to see from Definition 6 that C⊥S2
� C⊥S1

, C�S2
� C�S1

, and hence,
s local(S2) � s local(S1). �

As expected, syntactic locality is an approximation for semantic locality:

Proposition 7. Let S be a signature. Then s local(S) ⊆ local(S).

Proof. Let α be an axiom that is syntactically local w.r.t. S and let I = (Δ, ·I) be a
trivial expansion of some S-interpretation to S∪Sig(α). We have to demonstrate that
I is a model of α. By induction over the definitions of C⊥S and C�S from Definition 6,
it is easy to show that: (i) every role R /∈ Rol(S) and every every concept from C⊥S
is interpreted in I with the empty set, and (ii) every concept from C�S is interpreted
in I with Δ. By checking all the possible cases for a syntactically local axiom α in
Definition 5, it is easy to see that in every of these cases I is a model of α. �

The converse of Proposition 7 does not hold in general since there are semantically
local axioms that are not syntactically local. For example, the axiom α = (A �
A � B) is a tautology and thus is local w.r.t. every S. This axiom, however, is not
syntactically local w.r.t. S = {A, B} since it involves symbols in S only. Another
example, which is not a tautology, is the GCI α = (∃R.¬A � ∃R.¬B), which is se-
mantically local w.r.t. S = {R} (∃R.� � ∃R.� is a tautology), but not syntactically

Q1 is a syntactical locality-based S-module inQ

Q1 is a locality-based S-module inQ

Q1 contains all S-essential axioms
w.r.t. L inQ

(Proposition 10)

Q is a model S-conservative
extension of Q1

Q1 is an S-module in Q w.r.t. L

Q is a deductive S-conservative extension of Q1 w.r.t. L

(Proposition 4, part 1)

(Proposition 4, part 2)

(Proposition 5)

(Corollary 4)

(Definition 2)

Fig. 6.3. Summary for the main theoretical results of the chapter

6 Extracting Modules from Ontologies: A Logic-Based Approach 179

local. Thus, the limitation of syntactic locality is its inability to perform reasoning
on elements from S.

We distinguish the notion of modules based on these two locality conditions as
semantic locality-based modules and syntactic locality-based modules.

Corollary 4. IfQ1 is a syntactic locality-based S-module in Q, thenQ1 is a seman-
tic locality-based S-module in Q.

For the reference and for the convenience of the reader, we illustrate in Figure 6.3
the relationships between the key theoretical results in this chapter.

6.5.3 Computing Locality-Based Modules

Recall that, according to Definition 5, in order to construct a locality-based S-module
in an ontology Q, it suffices to partition the ontology Q as Q = Q1 ∪ Q2 such
that Q2 is local w.r.t. S ∪ Sig(Q1). Algorithm 1 outlines a simple procedure which
performs this task. Given an effective locality test locality test(α,S) (which uses
either a reasoner or the syntactical approximation) which returns true only if the
axiom α is local w.r.t. S, the algorithm first initializes the partition to the trivial one:
Q1 = ∅ and Q2 = Q, and then repeatedly moves to Q1 those axioms from Q2 that
are not local w.r.t. S ∪ Sig(Q1) until no such axioms are left in Q2.

In Table 6.2 we provide a trace of Algorithm 1 for the input (Q,S), where Q is
an ontology consisting of the axioms M1-M5 from Figure 6.1 and S is a signature
S = {Cystic Fibrosis, Genetic Disorder}. Each row in the table corresponds to an
iteration of the while loop in Algorithm 1. The last column of the table provides the
results of the locality test in line 4. Note that the syntactic locality condition was suf-
ficient in all tests: all axioms that were semantically non-local were also syntactically
non-local.

Algorithm 1. extract module(Q,S)
Input:
Q: ontology
S: signature

Output:
Q1: a locality-based S-module inQ

1: Q1 ← ∅ Q2 ← Q
2: while not empty(Q2) do
3: α← select axiom(Q2)
4: if locality test(α, S ∪ Sig(Q1)) then
5: Q2 ← Q2 \ {α} {α is processed}
6: else
7: Q1 ← Q1 ∪ {α} {move α intoQ1}
8: Q2 ← Q \Q1 {reset Q2 to the complement of Q1}
9: end if

10: end while
11: returnQ1

180 B. Cuenca Grau et al.

Table 6.2. A trace of Algorithm 1 for the input Q = {M1, . . . ,M5} and S =
{Cystic Fibrosis, Genetic Disorder}

Q1 Q2 New elements in S ∪ Sig(Q1) α local?

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M1 No

2 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M2 No

3 M1,M2 M3−M5 Genetic Fibrosis M3 No

4 M1−M3 M4,M5 − M4 No

5 M1−M4 M5 − M5 Yes

6 M1−M4 − − −

Proposition 8 (Correctness of Algorithm 1)
For every inputQ and S, Algorithm 1 computes a locality-based S-module in Q.

Proof. We have to show that (1) Algorithm 1 terminates for every input, and (2) the
output extract module(S,Q) is a locality-based S-module in Q.

(1) Termination of the algorithm follows from the fact that in every iteration of the
while loop either the size ofQ1 increases, or the size ofQ1 remains the same but the
size of Q2 decreases. Note that this means that Algorithm 1 terminates in quadratic
time in the number of axioms in Q, assuming constant time locality test.

(2) It is easy to observe that every axiom α that is neither in Q1 nor in Q2 is
local w.r.t. S ∪ Sig(Q1), since the only way such an α can appear is at the line 3
of the algorithm, and α remains in Q \ (Q1 ∪ Q2) only if S ∪ Sig(Q1) does not
change. �

Note that there is an implicit non-determinism in Algorithm 1, namely, in line 3 in
which an axiom fromQ2 is selected. It might well be the case that several choices for
α are possible at this moment. For example, the trace in Table 6.3 makes a different
choice for α from Q2 than the trace in Table 6.2. In the first iteration of the while
loop, we select α = M2 from Q2 instead of M1 as in Table 6.2. This has resulted
in a longer trace yet with the same result Q1 = {M1, . . . ,M4}. Note that axioms
M2 andM3 are selected several times and produce different results for the locality
tests, since Q1 has been modified. This demonstrates the reason why we reset Q2

to Q \ Q2 at the line 8 of Algorithm 1, namely, not to miss axioms that has been
checked to be local w.r.t. old Q1, but are no longer local w.r.t. newQ1.

As we have seen from the traces in Table 6.2 and Table 6.3, Algorithm 1 has
produced the same output despite the fact that different choices for α has been made
inside the while loop. One might wonder if this is always the case. It turns out that the
choices for α indeed do not have any impact on the result of Algorithm 1, provided
that the locality test satisfy some rather natural requirements:

Definition 7. We say that a locality test locality test(α,S) is anti-monotonic if for
every S1 ⊆ S2, whenever locality test(α,S2) succeeds then locality test(α,S1) suc-
ceeds as well.

6 Extracting Modules from Ontologies: A Logic-Based Approach 181

Table 6.3. An alternative trace of Algorithm 1 for the input Q = {M1, . . . ,M5} and S =
{Cystic Fibrosis, Genetic Disorder}

Q1 Q2 New elements in S ∪ Sig(Q1) α loc.

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M2 Yes

2 − M1,M3−M5 − M3 Yes

3 − M1,M4,M5 − M1 No

4 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M3 No

5 M1,M3 M2,M4,M5 Genetic Fibrosis M4 No

6 M1,M3,M4 M2,M5 − M5 Yes

7 M1,M3,M4 M2 − M2 No

8 M1−M4 M5 − M5 Yes

9 M1−M4 − − −

We say that locality ofQ1 w.r.t. S inQ1 is provable using locality test(α,S) if for
every α ∈ Q \ Q1, we have that locality test(α,S ∪ Sig(S1)) succeeds. �

Proposition 9 (Determinism of Algorithm 1)
The output of Algorithm 1 based on anti-monotonic locality test(α,S) is the smallest
Q1 such that locality of Q1 w.r.t. S is provable using locality test(α,S).

Proof. It is easy to see (see the proof of Proposition 8) that the locality of every
output Q1 of Algorithm 1 is provable using locality test(α,S). It remains, thus, to
show that for every subsetQ′

1 ⊆ Q such that locality of Q′
1 w.r.t. S in Q is provable

using locality test(α,S), we haveQ1 ⊆ Q′
1.

Assume, to the contrary, that for some run of the algorithm, the output Q1 is not
a subset of Q′

1. Since the initial Q1 = ∅ was a subset of Q′
1, there is a moment

in the computation such that Q1 was a subset of Q′
1, but Q1 ∪ {α} is no longer

a subset of Q′
1. For these particular values of Q1 and α we have: (i) Q1 ⊆ Q′

1,
(ii) α ∈ Q\Q′

1, and (iii) locality test(α,S∪ Sig(Q1)) fails. From (ii) by property
of Q′

1 we have locality test(α,S ∪ Sig(Q′
1)) succeeds, which implies using (i) and

anti-monotonicity of locality test that locality test(α,S ∪ Sig(Q1)) succeeds which
contradicts to (iii). This proves that Q1 is indeed a subset of Q′

1. �

Corollary 5 (Uniqueness of a Minimal Locality-Based Module)
Algorithm 1 using a test based on the semantic locality produces a unique minimal
locality-based S-module in Q.

Proof. By Lemma 2 the semantic locality admits anti-monotonicity. �

Corollary 6 (Uniqueness of a Minimal Syntactic Locality-Based Module)
Algorithm 1 using a test based on the syntactic locality produces a unique minimal
syntactic locality-based S-module in Q.

Proof. By Lemma 3 the syntactic locality admits anti-monotonicity. �

182 B. Cuenca Grau et al.

6.5.4 Properties of Locality-Based Modules

In this section, we outline some interesting properties of locality-based modules
which make it possible to use them for applications other than knowledge reuse.

Let Qloc
S be the smallest locality-based S-module in Q, which is unique by Co-

rollary 5 and is the output of Algorithm 1 for Q and S. The first property is a direct
consequence of Corollary 5:

Proposition 10. Qloc
S contains all S-essential axioms in Q w.r.t. every language L

with Tarski-style set-theoretic semantics.

Proof. LetQ1 be a minimal S-module inQ. We need to show thatQ1 ⊆ Qloc
S . Since

(i) Q1 is a subset of a locality-based S-module in Q (say, of Q itself) and (ii) there
is no proper subset of Q1 that is a locality-based S-module in Q, we have thatQ1 is
a subset of a minimal locality-based S-module in Q. Since such a module is unique
by Corollary 5, and it is Qloc

S , we have thatQ1 ⊆ Qloc
S . �

As shown in Table 6.2 and Table 6.3, the minimal locality-based S-module extracted
from Q contains all S-essential axioms M1–M4. In our case, the module contains
only essential axioms; in general, however, locality-based modules might contain
non-essential axioms; otherwise, they would provide a solution for our task T3 in
(6.4).

Proposition 11. Let Q be ontology, A and B atomic concepts and S(i) a signature.
Then:

1. S1 ⊆ S2 implies Qloc
S1
⊆ Qloc

S2
(monotonicity);

2. Q |= (A � B) iff Qloc
{A} |= (A � B).

3. Q |= (A � B) implies Qloc
{B} ⊆ Qloc

{A} or Qloc
{A} |= A � ⊥.

Proof

1. Since Qloc
S2

is a locality-based S2-module in Q, we have Q \ Qloc
S2

is local
w.r.t. S2 ∪ Sig(Qloc

S2
). By anti-monotonicity of locality (see Lemma 2), Q \ Qloc

S2
is

local w.r.t. S1 ∪ Sig(Qloc
S2

), hence Qloc
S2

is a locality-based S1-module in Q. Since
Qloc

S1
is contained in every locality-based S1-module in Q by Corollary 5, we have

Qloc
S1
⊆ Qloc

S2
.

2. The “if” part of this property is trivial since Qloc
{A} ⊆ Q. In order to prove the

“only if” part of the property, assume that Q |= (A � B). Let S := Sig(Qloc
{A}) ∪

{A}, and consider the following two cases:
(a) B ∈ S. Then by Remark 1,Qloc

{A} is an S-module inQ, and so,Qloc
{A} |= (A �

B) since Sig(A � B) ⊆ S.
(b) B �∈ S. We demonstrate that Qloc

{A} |= A � ⊥ which suffices for proving

Qloc
{A} |= A � B.

Assume, to the contrary, that Qloc
{A} �|= A � ⊥. Then there exists an S-

interpretation I such that I |= Qloc
{A} and AI �= ∅. Let I ′ be a trivial expansion of

6 Extracting Modules from Ontologies: A Logic-Based Approach 183

I to S ∪ Sig(Q). Since Qloc
{A} is a locality-based S-module in Q (see Remark 1 and

Remark 2), we have I ′ |= Q. However, I ′ is not a model of (A � B) sinceAI′ �= ∅,
but BI′

= ∅ since B /∈ S. This contradicts to the assumptionQ |= A � B.
3. As has been shown in the proof of property 2 above, if Q |= (A � B),

then either B ∈ Sig(Qloc
{A}) or Qloc

{A} |= A � ⊥. So, it remains to show that

B ∈ Sig(Qloc
{A}) implies that Qloc

{B} ⊆ Qloc
{A}. Indeed, by Remark 1, Qloc

{A} is a

locality-based (Sig(Qloc
{A}) ∪ {A})-module in Q. Since B ∈ Sig(Qloc

{A}), then, in

particular, Qloc
{A} is a locality-based {B}-module in Q. Since Qloc

{B} is contained in

every locality-based {B}-module in Q, we have Qloc
{B} ⊆ Qloc

{A} what was required
to prove. �

Proposition 11 gives two interesting properties of locality-based modules. The first
one states that such modules may only grow if the input signature extends. The se-
cond one implies that the module for a single atomic concept A provides complete
information about all the super-classes ofA. This property can be used for optimizing
classification: in order to classify an ontologyQ, i.e. to compute all subsumption rela-
tionsA � B between pairsA,B of atomic concepts inQ, it is sufficient to (1) extract
all modulesQloc

{A} ofQ for each atomic conceptA (2) classify each of these modules
independently (possibly in parallel), and (3) merge the results of the individual clas-
sifications. By Property 2, if the subsumption A � B is implied by the ontology Q
then it is implied by the moduleQloc

{A} and, hence, it will be obtained in step (2).
Finally, Property 3 in Proposition 10 can also be used to optimize classification.

The property provides a necessary condition for a subsumption A � B to hold in
an ontology, which can be used to quickly detect non-subsumptions: If the inclusion
Qloc

{B} ⊆ Qloc
{A} between the minimal locality-based modules does not hold, and A

is found to be satisfiable, then a reasoner does not need to prove the subsumption
A � B w.r.t.Q, since it never holds.

We have used these properties of locality-based modules for optimizing incremen-
tal classification—that is, to improve the efficiency of DL reasoners under changes
in the ontology. We refer the interested reader to [8] for details.

6.6 Implementation and Evaluation

In this section, we show that minimal locality-based modules obtained from realistic
ontologies are small enough to be useful in practice. For evaluation and comparison,
we have implemented the following algorithms using Manchester’s OWL API:3

A1:The PROMPT-FACTOR algorithm, as described in [15];
A2:The algorithm for extracting modules described in [6];
A3:Our algorithm for extracting modules (Algorithm 1), based on locality.

As a test suite, we have collected a set of well-known ontologies available on the
Web, which can be divided into two groups:

3 http://sourceforge.net/projects/owlapi

184 B. Cuenca Grau et al.

Simple. In this group, we have included the National Cancer Institute (NCI) Onto-
logy,4 the SUMO Upper Ontology,5 and the Gene Ontology (GO),6 These ontologies
are expressed in a simple ontology language and are of a simple structure; in partic-
ular, they do not contain GCIs, but only definitions.

Complex. This group contains the well-known GALEN ontology (GALEN-Full),7

the DOLCE upper ontology (DOLCE-Lite),8 and NASA’s Semantic Web for Earth
and Environmental Terminology (SWEET)9. These ontologies are complex since
they use many constructors from OWL DL and/or include a significant number of
GCIs. In the case of GALEN, we have also considered a version GALEN-Small
that has commonly been used as a benchmark for OWL reasoners. This ontology
is almost 10 times smaller than the original GALEN-Full ontology, yet similar in
structure.

Table 6.4. Comparison of Different Modularization Algorithms

Ontology � Atomic A1: Prompt-Factor A2: Mod. in [6] A3: Loc.-based mod.
Concepts Max.(%) Avg.(%) Max.(%) Avg.(%) Max.(%) Avg.(%)

NCI 27772 87.6 75.84 55 30.8 0.8 0.08
GO 22357 1 0.1 1 0.1 0.4 0.05
SUMO 869 100 100 100 100 2 0.09
GALEN-Small 2749 100 100 100 100 10 1.7
GALEN-Full 24089 100 100 100 100 29.8 3.5
SWEET 1816 96.4 88.7 83.3 51.5 1.9 0.1
DOLCE-Lite 499 100 100 100 100 37.3 24.6

For each of these ontologies, and for each atomic concept in their signature, we
have extracted the corresponding modules using algorithms A1-A3 and measured
their size. We use modules for single atomic concepts to get an idea of the typical
size of locality-based modules compared to the size of the whole ontology. Also,
as seen before, modules for atomic concepts are especially interesting for optimized
classification of ontologies.

The results we have obtained are summarized in Table 6.4. The table provides the
size of the largest module and the average size of the modules obtained using each
of these algorithms. In the table, we can clearly see that locality-based modules are
significantly smaller than the ones obtained using the other methods; in particular,
in the case of SUMO, DOLCE, and GALEN the algorithms A1 and A2 retrieve the
whole ontology as the module for each atomic concept. In contrast, the modules

4 http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
5 http://ontology.teknowledge.com/
6 http://www.geneontology.org
7 http://www.openclinical.org/prj_galen.html
8 http://www.loa-cnr.it/DOLCE.html
9 http://sweet.jpl.nasa.gov/ontology/

6 Extracting Modules from Ontologies: A Logic-Based Approach 185

we obtain using our algorithm are significantly smaller than the size of the input
ontology. In fact, our modules are not only smaller, but are also strict subsets of the
respective modules computed using A1 and A2.

For NCI, GO and SUMO, we have obtained very small locality-based modules.
This can be explained by the fact that these ontologies, even if large, are simple in
structure and logical expressivity. For GALEN, SWEET and DOLCE, the locality-
based modules are larger. Indeed, the largest module in GALEN-Small is 1/10 of the
size of the ontology. For DOLCE, the modules are even bigger—1/3 of the size of
the ontology—which indicates that the dependencies between the different concepts
in the ontology are very strong and complicated. The SWEET ontology is an excep-
tion: even though the ontology uses most of the constructors available in OWL, the
ontology is heavily underspecified, which yields small modules.

6.7 Conclusion

We have proposed a definition of a module for a given vocabulary within an ontology
to be reused. Based on this definition, we have formulated three reasoning problems
concerning the extraction of minimal modules and shown that none of them is al-
gorithmically solvable, even for simple fragments of OWL DL. We have introduced
locality-based modules as an approximation to minimal modules and have empir-
ically demonstrated that such modules are reasonably small for many real-world
ontologies.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005, pp. 364–
370 (2005)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge (2003)

3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspectives of
Mathematical Logic. Springer, Heidelberg (1997); Second printing (Universitext) 2001

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Proc. IJCAI 2007, pp. 298–304 (2007)

5. Cuenca Grau, B., Horrocks, I., Kutz, O., Sattler, U.: Will my Ontologies Fit Together? In:
Proc. DL 2006 (2006)

6. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and Web Ontologies.
In: Proc. KR 2006, pp. 198–209 (2006)

7. Ghilardi, S., Lutz, C., Wolter, F.: Did I Damage my Ontology? A Case for Conservative
Extensions in Description Logics. In: Proc. KR 2006, pp. 187–197 (2006)

8. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremental on-
tology reasoning using modules. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 183–196.
Springer, Heidelberg (2007)

186 B. Cuenca Grau et al.

9. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)

10. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of the IJCAI.
Morgan Kaufman, San Francisco (2005)

11. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.: SWOOP: A web editing
browser. Elsevier’s Journal Of Web Semantics 4(2), 144–153 (2006)

12. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics.
In: Proc. of IJCAI 2007, pp. 453–459 (2007)

13. Möller, R., Haarslev, V.: Description logic systems. In: The Description Logic Handbook,
ch. 8, pp. 282–305. Cambridge University Press, Cambridge (2003)

14. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases.
PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (2006)

15. Noy, N.F., Musen, M.A.: The PROMPT suite: Interactive tools for ontology mapping and
merging. Int. Journal of Human-Computer Studies 6(59) (2003)

16. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Web ontology language OWL Abstract Syn-
tax and Semantics. W3C Recommendation (2004)

17. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements.
Artif. Intell. 48(1), 1–26 (1991)

18. Sirin, E., Parsia, B.: Pellet system description. In: Proc. DL 2004 (2004)
19. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In:

Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 292–297. Springer,
Heidelberg (2006)

	Extracting Modules from Ontologies: A Logic-Based Approach
	Introduction
	Preliminaries
	Modules for Knowledge Reuse
	Computational Properties of Module Extraction
	Reductions between Tasks
	Modules and Conservative Extensions
	Undecidability Results

	Modules Based on Locality
	Locality
	Testing Locality
	Computing Locality-BasedModules
	Properties of Locality-BasedModules

	Implementation and Evaluation
	Conclusion
	References

