
Deciding SHOQ⊓ Knowledge Base Consistency

using Alternating Automata

Birte Glimm1 and Ian Horrocks1 and Ulrike Sattler2

1 University of Oxford, Oxford, OX1 3QD, UK
2 The University of Manchester, Manchester, M13 9PL

Abstract. We introduce an automata-based method for deciding the
consistency of SHOQ⊓ knowledge bases. The presented algorithm de-
cides knowledge base consistency in deterministic double exponential
time for SHOQ⊓, but is in ExpTime if no role conjunctions occur in
the input knowledge base. This shows that SHOQ is indeed ExpTime-
complete, which was, to the best of our knowledge, always conjectured
but never proved.

1 Introduction

In this paper, we introduce an automata-based method for deciding the consis-
tency of SHOQ⊓ knowledge bases (KBs). The use of role conjunction naturally
arises, for example, in the context of conjunctive query answering when a query
contains two role atoms r(x, y) and s(x, y) for r, s roles and x, y variables. The
presented decision procedure can, for example, be used to check the consistency
of extended knowledge bases as they arise from the query rewriting procedure for
conjunctive queries in SHOQ [1]. We do not give proofs here, but refer interested
readers to [1] for detailed proofs.

In the following section, we give some background information. In Section 3,
we show how we can eliminate transitivity, which is non-trivial in the presence
of nominals and role conjunctions. In Section 4, we define a suitable alternating
automaton and show how we can transform models of the KB to trees that can
be processed by the automaton.

2 Preliminaries

We use the DL SHOQ, which extends the basic DL ALC with transitive roles,
role hierarchies, nominals and qualified number restrictions [2, 3]. We further
allow for role conjunctions in the place of role names in value and number re-
strictions, and denote the obtained DL with SHOQ⊓. In SHOQ⊓ one can, for
example, build the concept ∀(r1 ⊓ . . . ⊓ rn).C that is interpreted as {d ∈ ∆I |
there is a (d, d′) ∈ r1

I ∩ . . . ∩ rn
I with d′ ∈ CI}. In number restrictions, we

allow, as usual, only simple roles to occur in role conjunctions.
Since, in the presence of nominals, the ABox can be internalised, we assume

that a SHOQ⊓ knowledge base K is a pair (T ,R) where T is a TBox and R is



a role hierarchy. We use rol(K) for the set of role names used in K and nom(K)
for the set of individual names that occur in K. We assume that nom(K) is non-
empty. This is w.l.o.g. since we can always add an axiom {o} ⊑ ⊤ to T for a
fresh nominal o from the set of individual names NI .

For a concept C, we use nnf(C) to denote the negation normal form of C.
We define the closure cl(K) of K as the smallest set containing nnf(¬C ⊔ D)
if C ⊑ D ∈ T ; D if D is a sub-concept of C and C ∈ cl(K); and nnf(¬C) if
C ∈ cl(K).

3 Eliminating Transitivity

Since automata cannot directly handle transitive roles, we first transform a
SHOQ⊓ KB K into an equisatisfiable ALCHOQ⊓ KB elimTrans(K). In the pres-
ence of role conjunctions, it does not suffice to extend the standard encoding of
transitivity [4, 5] in a trivial way. Such a naive extension would result in an
ALCHOQ⊓ KB elimTrans(K) that is obtained from K by treating all transitive
roles as non-transitive and by adding an axiom

∀(r1 ⊓ . . . ⊓ rn).C ⊑ ∀(t1 ⊓ . . . ⊓ tn).(∀(t1 ⊓ . . . ⊓ tn).C)

for each concept ∀(r1 ⊓ . . . ⊓ rn).C ∈ cl(K) and roles t1, . . . , tn ∈ NtR such that
ti ⊑*Rri for each i with 1 ≤ i ≤ n.

t

r o′

t

t

t

t

o

Fig. 1. A represen-
tation of a model for
K.

The following example shows that this encoding does not
yield an equisatisfiable knowledge base. Let K = (T ,R)
be a knowledge base with

T = {{o} ⊑ ∃t.(∃t.(∃t.({o′}))),
{o} ⊑ ∃r.({o′})},

R = ∅, and t a transitive role. Figure 1 shows a represen-
tation of a model for K, where the grey edge represents
the role r and the black edges represent the role t. The
dashed black lines represent implicit (due to transitivity)
instances of t. It is not hard to check that adding the
axiom {o} ⊑ ∀(r ⊓ t).(¬{o′}) makes the KB inconsistent.

The trivial encoding elimTrans(K) of K contains (among others) the addi-
tional axiom ∀t.(¬{o′}) ⊑ ∀t.(∀t.(¬{o′})) since ∃t.({o′}) ∈ cl(K) and, thus,
∀t.(¬{o′}) ∈ cl(K). Adding the axiom {o} ⊑ ∀(r ⊓ t).(¬{o′}) to K does not
yield any further axioms in elimTrans(K) since r is a simple role. Since none of
the added axioms explicates the implicit t relation between the nominals o and
o′, extending K with the axiom {o} ⊑ ∀(r⊓ t).(¬{o′}) yields a consistent knowl-
edge base after applying the translation, contradicting our assumption that a
knowledge base K is consistent iff elimTrans(K) is consistent.

Intuitively, this problem arises since we can have arbitrary relations between
nominals. This can lead to situations where, as in the above example, we have
an explicit relationship between two nominals, but only together with the im-
plicit transitive shortcut can the universal quantifier over the role conjunction



be applied. Hence, the above described encoding does not suffice. We propose,
therefore, a more involved encoding that explicates all transitive shortcuts be-
tween nominals.

Definition 1. Let K = (T , R) be a SHOQ⊓ knowledge base. The function
elimTrans(K) yields the ALCHOQ⊓ knowledge base obtained from K as follows:

1. for each transitive role t and nominal o ∈ nom(K), add an axiom ∃t.(∃t.({o})) ⊑
∃t.({o}),

2. for each concept ∀R.C ∈ cl(K) with R = r1 ⊓ . . . ⊓ rn and transitive roles
t1, . . . , tn such that ti ⊑*Rri for each 1 ≤ i ≤ n, add an axiom ∀R.C ⊑
∀T.(∀T.C), where T = t1 ⊓ . . . ⊓ tn, and

3. all roles in elimTrans(K) are non-transitive.

With the above definition, elimTrans(K) contains, additionally, the axiom
∃t.(∃t.({o})) ⊑ ∃t.({o}), which ensures that the implicit t-edges to nominals
(the dashed lines in Figure 1) are made explicit. As a consequence, adding the
axiom {o} ⊑ ∀(r ⊓ t).(¬{o′}) indeed results in an inconsistent knowledge base.

Due to role conjunctions over non-simple roles, the encoding from Definition 1
yields not necessarily a knowledge base whose size is polynomial in the size of the
input KB. The size of K, denoted |K|, is simply the number of symbols needed
to write it over the alphabet of constructors, concept, role, and individual names
that occur in K. To the best of our knowledge, it is unknown if this blow-up can
be avoided.

Lemma 1. Let K be a SHOQ⊓ knowledge base with |K| = m and where the
length of the longest role conjunction occurring in K is n. Then K is consistent
iff elimTrans(K) is consistent and the size of elimTrans(K) is polynomial in m
and exponential in n.

The number of transitive sub-roles for a role ri that occurs in a role conjunc-
tion is bounded by m. Hence, we can use up to m transitive sub-roles for each
of the at most n role conjuncts in the second step of the encoding, which results
in at most mn additional axioms in elimTrans(K).

4 Deciding ALCHOQ⊓ Knowledge Base Consistency

In this section, we show how we can use alternating automata to decide the con-
sistency of an ALCHOQ⊓ knowledge base. We assume w.l.o.g. that existential
and universal restrictions in ALCHOQ⊓ knowledge bases are expressed using
number restrictions.

4.1 Alternating Automata

In this section, we devise an alternating automaton that accepts exactly (ab-
stractions) of models of ALCHOQ⊓ knowledge bases. Such automata have first
been used in the context of modal logics [6] and have also been extended to



the hybrid µ-calculus [7] (with converse programs), i.e., for deciding the con-
sistency of ALCIO knowledge bases with a universal role and fixpoints. The
latter approach, however, lacks support for qualified number restrictions and
adding those would result in a logic that is no longer decidable in ExpTime

[8]. Recently, alternating automata have also been used for answering regular
path queries in ALCQIbreg , which are a generalisation of unions of conjunctive
queries [9]. Both of the aforementioned approaches use two-way alternating au-
tomata that are ideally suited for logics that allow for inverse roles (converse
programs in the µ-calculus). Since SHOQ⊓ does not support inverse roles, we
choose the slightly simpler standard (one-way) alternating automata, where we
can only move downwards in the input tree.

Alternating automata have the power of making both universal and existen-
tial choices. Informally, this means that in the transition function, we can create
copies of the automaton, send them to successor nodes, and require that either
some (existential) or all (universal) of them are accepting. We use, as usual,
positive Boolean formulae as defined below in the specification of the transition
function.

Definition 2. Let IN∗ be the set of all (finite) words over the alphabet IN. A tree
T is a non-empty, prefix-closed subset of IN∗. The empty word ε is called the root
of T . For w, w′ ∈ T , we call w′ a successor of w if w′ = w · c for some c ∈ IN,
where “·” denotes concatenation and, for c = 0, we set w · c = w. A labelled tree
over an alphabet Σ is a pair (T,L), where T is a tree and L : T → Σ maps each
node in T to an element of Σ.

Let X be a set of atoms. The set B+(X) of positive Boolean formulae is built
over atoms from X, true, and false using only the connectives ∧ and ∨. Let X⊤

be a subset of X. We say that X⊤ satisfies a formula φ ∈ B+(X) if assigning
true to all atoms in X⊤ and false to all atoms in X \ X⊤ makes φ true.

Let [k] = {0, 1, . . . , k}. An alternating looping tree automaton on k-ary Σ-
labelled trees is a tuple A = (Σ, Q, δ, q0), where Q is a finite set of states, q0 ∈ Q
is the initial state, and δ : Q × Σ → B+([k] × Q) is the transition function.

A run of A on a Σ-labelled k-ary tree (T,L) is a (T ×Q)-labelled tree (Tr,Lr)
that satisfies the following conditions:

– Lr(ε) = (ε, q0),
– if y ∈ Tr with Lr(y) = (x, q) and δ(q,L(x)) = φ, then there is a (possibly

empty) set S ⊆ [k] × Q that satisfies φ such that, for each (c, q′) ∈ S, y has
a successor y · i in Tr with i ∈ IN and Lr(y · i) = (x · c, q′).

An automaton A accepts an input tree T if there exists a run of A on T . The
language accepted by A, lang(A), is the set of all trees accepted by A.

For alternating automata, the non-emptiness problem is the following: given
an alternating automaton A, is there a tree (T,L) such that A has an accepting
run on (T,L)?

Please note that, since we use looping automata, we do not impose any ac-
ceptance conditions and each run is accepting, i.e., we require only that the



conditions imposed on a run are satisfied. Other existing automata based proce-
dures for Description or Modal Logics use Büchi or parity acceptance conditions
[6, 7, 9], usually because the logics allow for the transitive closure operator to be
used on roles, which is not the case for ALCHOQ⊓. In the remainder we assume
that K = (T , R) is an ALCHOQ⊓ knowledge base.

4.2 Canonical Models of Bounded Branching Degree

Automata rely on the tree/forest model property of the logic. We define, there-
fore, canonical models of a knowledge base as models that have a domain that
consists of a collection of trees. In order to simplify the following definition we
make the unique name assumption. This is w.l.o.g. as we can guess an appropri-
ate partition among the individual names and replace the individual names in
each partition with one representative individual name from that partition and
we can also show that this does not affect the complexity.

Definition 3. Given a set of elements O = {o1, . . . , on}, a forest F w.r.t. O
is a subset of O × IN∗ such that, for each oi ∈ O, (oi, ε) ∈ F and the set {w |
(oi, w) ∈ F} is a tree.

A canonical model for K is a model I = (∆I ,·I) for K that satisfies the
following conditions:

F1 ∆I is a forest w.r.t. nom(K);
F2 if ((o, w), (o′, w′)) ∈ rI , then either

(a) w′ = ε or
(b) o = o′ and w′ is a successor of w;

F3 for each o ∈ nom(K), oI = (o, ε).

Usually, automata work on trees of bounded branching degree, where the
branching degree d(w) of a node w in a tree T is the number of successors of
w. If there is a k such that d(w) ≤ k for each w ∈ T , then we say that T has
branching degree k. We can show that a consistent ALCHOQ⊓ knowledge base
has a canonical model I = (∆I ,·I), where, for each o ∈ nom(K), the branching
degree of the tree {w | (o, w) ∈ ∆I} is bounded by some k that is polynomial in
the size of K assuming unary coding of numbers. For such a canonical model I,
we say that I has branching degree k. We use this result when we introduce the
abstractions of models that are accepted by our automata.

Lemma 2. Let |K| = m, nmax the maximal number occurring in number re-
strictions, and k = m · nmax. If K is consistent, then K has a canonical model
I with branching degree k.

4.3 Tree Relaxations

In this section, we show how we can obtain labelled k-ary trees from a canonical
model for an ALCHOQ⊓ knowledge base such that these trees can be used
as input for our automaton. Since the labelled trees that an automaton takes



as input cannot have labelled edges, we additionally store, in the label of a
node, with which roles it is related to its predecessor. Unfortunately, this does
not work for the nominal nodes since a nominal node can be the successor of
arbitrary elements and does not necessarily have a unique predecessor. In a first
step, we build, therefore, a relaxation for a canonical model where, for each
relationship between a node and a nominal node, we create a dummy node that
is a representative of the nominal node. The label of the representative node
is the extension of the label for the nominal node with rep and the role names
with which the node is related to the nominal. For a graphical illustration, let
K = (T ,R) with

T = { {o} ⊑ ∃t.(C ⊓ ∃r.(∃r.(D ⊓ ∃t.({o}))))
{o′} ⊑ ∃s.⊤ ⊓ ∃s.({o})

R = { r ⊑ t′}.

Figure 2 shows a canonical model I for K and a relaxation for K built from I.
In a second step, we build labelled trees from a relaxation, which we call tree
relaxations.

o′

r, t′

r, t′, D

(o′, ε)

(o, 111)

(o, 111)↑(o, ε)
t, rep, o

t

s

(o′, 1)

(o, 11)

(o, ε) o

C(o, 1)

t

(o, 11)

r, t′

(o, 111) D

r, t′

s

(o, ε) o

t, C(o, 1)
s

o′(o′, ε)

(o′, ε)↑(o, ε) (o′, 1)
s, rep, o

Fig. 2. A representation of a canonical model I for K (left) and its relaxation (right).

Definition 4. A set H ⊆ cl(K) is called a Hintikka set for K if the following
conditions are satisfied:

1. For each C ⊑ D ∈ T , nnf(¬C ⊔ D) ∈ H.
2. If C ⊓ D ∈ H, then {C, D} ⊆ H.
3. If C ⊔ D ∈ H, then {C, D} ∩ H 6= ∅.
4. For all C ∈ cl(K), either C ∈ H or nnf(¬C) ∈ H.

We use H(K) to denote the set of all Hintikka sets for K.
A relaxation R = (∆I ,L) for K with L : ∆I → 2cl(K)∪rol(K)∪{rep} satisfies the

following properties:

(R1) Let D = nom(K)× IN∗ and B = {d↑d′ | d ∈ D and d′ ∈ nom(K)×{ε}}, then
∆I ⊆ D ∪ B.



(R2) For each o ∈ nom(K), (o, ε) ∈ ∆I.
(R3) Each set {w | (o, w) ∈ ∆I ∩ D is a tree}.
(R4) If d↑d′ ∈ ∆I ∩ B, then {d, d′} ⊆ ∆I ,L(d↑d′) ∩ cl(K) = L(d′) ∩ cl(K), and

rep ∈ L(d↑d′).
(R5) For each d ∈ ∆I ,L(d) ∩ cl(K) ∈ H(K).
(R6) For each d ∈ ∆I, if r ⊑ s ∈ R and r ∈ L(d), then s ∈ L(d).
(R7) For each (o, ε) ∈ ∆I ,L(o, ε) ∩ rol(K) = ∅.
(R8) If d = (o, w) ∈ ∆I and (> n (r1 ⊓ . . . ⊓ rk).C) ∈ L(d), then there are

n distinct elements d1, . . . , dn ∈ ∆I such that, for each i with 1 ≤ i ≤
n, {r1, . . . , rk, C} ⊆ L(di) and either di = (o, w · c) with c ∈ IN or di = d↑
d′ ∈ ∆I ∩ B.

(R9) If d = (o, w) ∈ ∆I and (6 n (r1 ⊓ . . . ⊓ rk).C) ∈ L(d), then ♯({d′ ∈ ∆I |
d′ = (o, w · c) for some c ∈ IN or d′ = d↑do ∈ ∆I ∩ B and {r1, . . . , rk, C} ⊆
L(d′)}) ≤ n.

Lemma 3. K has a relaxation iff K is consistent.

In a second step, we build a so-called tree relaxation that is a labelled tree.
For this, we additionally add a dummy root node labelled with root that has all
nominal nodes as successors, and we require that the domain is a tree. A tree
relaxation can, additionally, have dummy nodes labelled with # and we assume
in the remainder that all tree relaxations are full trees, i.e., all non-leaf nodes
have the same number of successors, and we add dummy nodes labelled with #
where necessary.

Definition 5. A tree relaxation for K is a labelled tree (T,L) with L : T →
2cl(K)∪rol(K)∪{rep,#,root} that satisfies the following conditions:

(T1) L(ε) = {root} and, for each w ∈ IN+,L(w) ∩ {root} = ∅.
(T2) For each o ∈ nom(K), there is a unique c ∈ IN ∩ T with o ∈ L(c) and

{rep, #, rol(K)} ∩ L(c) = ∅.
(T3) If c ∈ IN ∩ T and nom(K) ∩ L(c) = ∅, then L(c) = {#}.
(T4) For each w ∈ IN+ ∩ T, ♯(L(w) ∩ nom(K)) ≤ 1.
(T5) For each w = w′ · c ∈ T with w′ ∈ IN+ and c ∈ IN, if L(w) ∩ nom(K) 6= ∅,

then rep ∈ L(w).
(T6) For each w, w′ ∈ T and o ∈ nom(K), if o ∈ L(w)∩L(w′), then cl(K)∩L(w) =

cl(K) ∩ L(w′).
(T7) For each w ∈ IN+ ∩ T , if {rep, #}∩L(w) 6= ∅, then, for each successor w′ of

w, # ∈ L(w′).
(T8) For each w ∈ T , if L(w) ∩ {#, root} = ∅, then L(w) ∩ cl(K) ∈ H(K).
(T9) For each w ∈ T and r ⊑ s ∈ R, if r ∈ L(w), then s ∈ L(w).

(T10) For each w ∈ T , if (> n (r1 ⊓ . . . ⊓ rm).C) ∈ L(w), then there are at least n
distinct successors w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for each i
with 1 ≤ i ≤ n.

(T11) For each w ∈ T , if (6 n (r1 ⊓ . . .⊓ rm).C) ∈ L(w), then there are at most n
distinct successors w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for each i
with 1 ≤ i ≤ n.



If T has branching degree k, then we say that (T,L) is a k-ary tree relaxation
for K .

Lemma 4. Let nmax be the maximal number occurring in a number restriction
in K, and k = nmax · |K| + ♯(nom(K)). K has a k-ary tree relaxation iff K is
consistent.

4.4 Deciding Existence of Tree Relaxations

In order to decide consistency of an ALCHOQ⊓ knowledge base K, it remains
to devise a procedure that decides whether K has a tree relaxation. For this, we
define an alternating automaton that accepts exactly the tree relaxations of K.
More precisely, we first define two alternating automata ĀK and AK, and then
define an automaton BK as their intersection. Informally, the automaton ĀK just
checks that the input tree has a structure as required whereas the automaton
AK checks that the input is indeed a tree relaxation for K. For alternating
automata, intersection is simple: we introduce a new initial state q0 and set
the transition function for q0 and each letter σ from the input alphabet Σ to
δ(q0, σ) = (0, q(0,1)) ∧ (0, q(0,2)), where q(0,1) and q(0,2) are the initial states of
ĀK and AK respectively. The size of the resulting automaton is the sum of the
sizes of ĀK and AK.

Let nmax be the maximal number occurring in number restrictions in K, and
k = nmax · |cl(K)| + ♯(nom(K)). The alphabet Σ for both automata is

2{rep,#,root}∪cl(K)∪rol(K)∪nom(K).

The automaton ĀK is defined as (Σ, {qr, qo, qn, qrep, q#}, δ̄, qr) and rather than
giving a precise definition of the transition function δ, we informally describe
the objectives of the automaton and its states:

– We distinguish root (state qr), nominal (state qo), nominal representative
(state qrep), dummy (state q#), and normal nodes (state qn).

– The label root is only found in the root node.
– The level one nodes are either “real” nominal nodes (i.e., they are not marked

as representatives with rep) with exactly one nominal and no roles in their
label, or they are dummy nodes labelled with # only.

– The level one nominal nodes have either normal, nominal representative, or
dummy nodes as successors.

– Nominal representative nodes are marked with rep, and have exactly one
nominal in their label.

– Dummy nodes have only dummy nodes as successors.

The automaton AK mainly checks the formulae occurring in the labels of
the input. Hence, most of the states correspond to formulae in cl(K) and the
transition function is more or less determined by the semantics. In the root
node, we additionally make a non-deterministic choice, for each nominal and
each atomic concept, whether the concept or its negation holds at the nominal



node. This choice is propagated downwards in the tree in order to ensure that
the nominal representatives agree with their corresponding real nominal nodes
on all atomic concepts. We propagate the concepts via a kind of universal role
u and we assume that u is a symbol that does not occur in cl(K) or rol(K). We
define the following set of auxiliary states, where NC is the set of all concept
names

Qrep = {¬{o} ⊔ C | o ∈ nom(K) and C = A or ¬A for A ∈ NC ∩ cl(K)}.

We then define AK as (Σ, Q, δ, q0), where q0 is the initial state and the set
Q of states is

{q0} ∪ cl(K) ∪ rol(K) ∪ {¬r | r ∈ rol(K)} ∪ {qT , qR} ∪ Qrep ∪ {∀u.C | C ∈ Qrep}∪
{〈⊲⊳ nR.C, i, j〉 |⊲⊳∈ {6, >}, ⊲⊳ nR.C ∈ cl(K), and 0 ≤ i, j ≤ k},

States of the form 〈⊲⊳ n R.C, i, j〉 are used to check that the number restric-
tions are satisfied. We now give a definition for the transition function together
with an explanation for each of the different types of states. For each σ ∈ Σ, the
transition function δ is defined as follows:

At the root node, we are in the initial state q0 which has the following tasks:
(a) we make the non-deterministic guesses for all atomic concepts, (b) we check
that there is exactly one nominal node for each of the nominals in nom(K), and
(c) we make sure that the axioms in T and R are satisfied in all non-dummy
descendants. Let ℓ = ♯(nom(K)).

δ(q0, σ) =
∧

A∈σ∩NC

ℓ
∧

i=1

((0, ∀u.(¬{oi} ⊔ A)) ∨ (0, ∀u.(¬{oi} ⊔ ¬A)))∧

ℓ
∧

i=1

k
∨

j=1

(j, {oi}) ∧
∧

1≤i<j≤k

(

∧

o∈nom(K)

(i,¬{o}) ∨ (j,¬{o})

)

k
∧

i=1

(i, qT ) ∧ (i, qR)

Whenever we are in a state that is used to propagate information downwards
through the whole tree via the “universal role” and we are not at a dummy node,
we check that the required concept holds at the current node and also check all
successors. More precisely, for each C ∈ Qrep,

δ(∀u.C, σ) =























(0, C) ∧
k
∧

i=1

(i, ∀u.C) if #, root /∈ σ

k
∧

i=1

(i, ∀u.C) if root ∈ σ

true otherwise

All non-dummy descendants of the root nodes must satisfy the TBox and
RBox axioms. We give the definition for TBox Axioms here and the one for the
RBox are analogously:

δ(qT , σ) =







∧

C⊑D∈T

((0, nnf(¬C)) ∨ (0, D)) ∧
k
∧

i=1

(i, qT ) if # /∈ σ

true otherwise



The concepts that are used as states are inductively decomposed according to
the semantics. We start by defining the base cases. For each α ∈ (NC ∩ cl(K)) ∪
rol(K) ∪ nom(K), we set δ(α, σ) to true if α ∈ σ and to false otherwise. Since we
use constructors for nominals, we set, for each o ∈ nom(K), δ({o}, σ) = (0, o).
For negated names ¬α and nominal constructors we proceed just in the opposite
way. Conjunction and disjunction are then handled in the straightforward way.
For each C1⊓C2 ∈ cl(K), we set δ(C1⊓C2, σ) = (0, C1)∧(0, C2) and analogously
for disjunction.

For number restrictions, we have to use a more sophisticated technique that
involves states that count how many successors have been checked and how
many of the checked ones fulfill the requirements of the number restriction.
This technique was introduced by Calvanese et al. [10]. More precisely, for each
concept of the form (> n R.C) ∈ cl(K) with R = r1 ⊓ . . . ⊓ rm,

δ(> n R.C, σ) =

{

(0, 〈> n R.C, 0, 0〉) if rep /∈ σ
true otherwise

For 1 ≤ i ≤ k and 1 ≤ j ≤ n
δ(〈> n R.C, i, j〉, σ) = (((i,¬r1) ∨ . . . ∨ (i,¬rm) ∨ (i, nnf(¬C)))∧

(0, 〈> n R.C, i + 1, j〉))∨
((i, r1) ∧ . . . ∧ (i, rm) ∧ (i, C)∧
(0, 〈> n R.C, i + 1, j + 1〉))

Then, for 1 ≤ i ≤ k, δ(〈> n R.C, i, n〉, σ) = true and, for 1 ≤ j < n, δ(〈>
n R.C, k, j〉, σ) = false. Informally, we use the counter i to count how many of
the k successors have already been checked and j is increased for each successor
that fulfills the requirements of the number restriction. The atmost number
restrictions are handled analogously.

We can now check whether the language accepted by the automaton BK is
empty, which is enough to decide consistency of K:

Theorem 1. Let BK an alternating automaton as defined above. Then K is
consistent iff the language accepted by BK is non-empty.

4.5 Combined Complexity

Since looping alternating tree automata are a special case of alternating Büchi
tree automata, we can use the result that, for an alternating Büchi automaton A

with n states and input alphabet with ℓ elements, non-emptiness of the language
accepted by A is decidable in time exponential in n and polynomial in ℓ [11]. By
analysing the set of states and the size of the input alphabet of our automaton,
we get the following result:

Theorem 2. Checking the consistency of an ALCHOQ⊓ knowledge base K can
be done in deterministic time single exponential in the size of K assuming unary
coding of numbers in number restrictions.



By Lemma 1, we obtain the following upper bound on deciding consistency
of SHOQ⊓ knowledge bases.

Theorem 3. Let K be a SHOQ⊓ knowledge base where |K| = m and the length
of the longest role conjunction occurring in K is n. Deciding the consistency of K
can be done in deterministic time single exponential in m and double exponential
in n assuming unary coding of numbers in number restrictions.

The above result also shows that SHOQ, i.e., when no role conjunctions
are used, is indeed ExpTime-complete. This was always conjectured but, to the
best of our knowledge, never proved. It remains an open question whether the
exponential blow-up in the presence of role conjunctions can be avoided.

References

1. Glimm, B.: Querying Description Logic Knowledge Bases. PhD thesis, The Uni-
versity of Manchester, Manchester, United Kingdom (2007)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook. Cambridge University Press (2003)

3. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(d) description logic. In
Nebel, B., ed.: Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), Morgan Kaufmann, Los Altos (2001) 199–204

4. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. In
Furbach, U., Harrison, J., Shankar, N., eds.: Proceedings of the International Joint
Conference on Automated Reasoning (IJCAR 2006). Volume 4130., Seattle, WA,
USA, Springer-Verlag (2006) 662–667

5. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ− Description Logic to Dis-
junctive Datalog Programs. In Dubois, D., Welty, C.A., Williams, M.A., eds.:
Proceedings of the 9th International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2004), Whistler, Canada, AAAI Press/The
MIT Press (2004) 152–162

6. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proceedings of
the 25th International Colloquium on Automata, Languages, and Programming,
London, UK, Springer-Verlag (1998) 628–641

7. Sattler, U., Vardi, M.Y.: The hybrid µ-calculus. In: Proceedings of the Inter-
national Joint Conference on Automated Reasoning (IJCAR 2001), London, UK,
Springer-Verlag (2001) 76–91

8. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen (2001)

9. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: An automata-theoretic approach. In: Proceedings of the 22th
National Conference on Artificial Intelligence (AAAI 2007). (2007)

10. Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Pro-
ceedings of the 2002 Description Logic Workshop (DL 2002). Volume 53., CEUR
(http://ceur-ws.org/) (2002)

11. Vardi, M.Y.: Alternating automata and program verification. In van Leeuwen, J.,
ed.: Computer Science Today. Volume 1000 of Lecture Notes in Computer Science.
Springer-Verlag (1995) 471–485


