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1 Motivation

The design, maintenance, reuse, and integration of ontologies are complex tasks. Like
software engineers, ontology engineers need to be supported by tools and methodolo-
gies that help them to minimize the introduction of errors, i.e., to ensure that ontologies
are consistent and do not have unexpected consequences. In order to develop this sup-
port, important notions from software engineering, sucimadule black-box behaviqr
andcontrolled interactionmust be adapted.

Recently, there has been growing interest in the topic of modularity in ontology
engineering [10, 9, 8, 5, 3], motivated by the above mentioned application needs. This
paper extends our previous results[3]. We focus on the problem of “safe” reuse of on-
tologies and consider the scenario in which we are developing an ontBlagyl want
to reuse a seé% of symbols—that is, concept names, role names and individuals— from
a “foreign” ontologyQ without changing their meaning.

Suppose that an ontology engineer is building an ontology about research projects,
which specifies different types of projects according to the research topics they focus on.
For example, the conceptsenetic_Disorder_Project and Cystic_Fibrosis.EUProject
describe projects about genetic disorders and European projects about cystic fibrosis
respectively, as given by the axioms P1 and P2 in Figure 1. The ontology engineer is an
expert on research projects; he knows, for example, that every instaite Bfoject
must be an instance éfroject (axiom P3) and that the roleas_Focus can be applied
only to instances oProject (axiom P4). He may be unfamiliar, however, with most
of the topics the projects cover and, in particular, with the te€@iysic_Fibrosis and
Genetic_Disorder mentioned in P1 and P2. In order to complete the projects ontology
with suitable definitions of these medical terms, he decides to reuse the knowledge
about these subjects from a well-established medical ontology.

Suppose tha€ystic_Fibrosis and Genetic_Disorder are described in an ontology
containing axioms M1-M4 in Figure 1. The most straightforward way to reuse these
concepts is to import irP the ontologyQ—that is, to add the axioms fro@ to the
axioms ofP and work with the extended ontologyU Q. Importing additional axioms
into an ontology may result into new logical consequences. For example, axioms M1—
M4 in Q imply that every instance diystic_Fibrosis is an instance o&enetic_Disorder:

Q E «a := (Cystic_Fibrosis C Genetic_Disorder) (1)

Indeed,«r; = (Cystic_Fibrosis = Genetic_Disorder) follows from axioms M1 and M2
as well as from M1 and M3y follows from «; and M4. Using inclusiorny from



Ontology of medical research projectsp:

P1 Genetic_Disorder_Project = Project M Jdhas_Focus.Genetic_Disorder
P2 Cystic_Fibrosis. EUProject = EUProject M Jdhas_Focus.Cystic_Fibrosis
P3 EUProject C Project

P4 Jhas_Focus. T C Project

E1 Project M (Genetic_Disorder 11 Cystic_Fibrosis) C L

E2 V has_Focus.Cystic_Fibrosis T Jhas_Focus.Genetic_Disorder

Ontology of medical termsQ:

M1 Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas M Jhas_Origin.Genetic_Origin
M2 Genetic_Fibrosis = Fibrosis M 3has_Origin.Genetic_Origin

M3 Fibrosis M Jlocated_In.Pancreas T Genetic_Fibrosis

M4 Genetic_Fibrosis T Genetic_Disorder

Fig. 1: Reusing medical terminology in an ontology on research projects

(1) and axioms P1-P3 from ontology we can now prove that every instance of
Cystic_Fibrosis_EUProject must also be an instance Génetic_Disorder_Project:

P U Q = := (Cystic_Fibrosis_.EUProject C Genetic_Disorder_Project) (2)

Note that, on the one han®, |~ 8 and, on the other hand, the ontology engineer might
be not aware of (2), even though it concerns the terms of primary scdpe in

Itis to be expected that axioms likein (1) from an imported ontolog® cause new
entailments like3 in (2) over the terms defined in the main ontold@yOne would not
expect, however, that the meaning of the terms defingd @lhanges as a consequence
of the import since these terms are supposed to be completely specified @itBirch
a side effect is highly undesirable for the modeling of ontol@ygince the ontology
engineer ofP might not be an expert on the subject@fand is not supposed to alter
the meaning of the terms defineddh not even implicitly. The meaning of the reused
terms might change after the import due, for example, to modeling errors. In particular,
suppose the ontology engineer has learned about the coreapisic_Disorder and
Cystic_Fibrosis from the ontologyQ (including the dependency (1)) and has decided to
introduce additional axioms formalizing the following statements:

“Every instance oProject is different from every instance Génetic,Disord%%
.and every instance dystic_Fibrosis. )

* Everyproject thathas_Focus on Cystic_Fibrosis, alsohas_Focus on Genetic_Disorder{4)

Note that the statements (3) and (4) add new information about projects and, intuitively,
they should not change or constrain the meaning of the medical terms.

Suppose the ontology engineer has formalized statements (3) and{4jsing ax-
ioms E1 and E2 respectively. At this point, he has introduced modeling errors by trans-
lating the wordsandandeveryas conjunctiom1 and value restrictioll respectively. As



a consequence, axioms E1 and E2 do not correspond to (3) and (4): E1 actually formal-
izes the following statemeritEvery instance oProject is different from every common
instance ofzenetic_Disorder and Cystic_Fibrosis” , and E2 expresses tH&very object

that has_Focus only on Cystic_Fibrosis if at all, alsohas_Focus on Genetic_Disorder” .

This kind of modeling errors are difficult to detect, especially when they do not lead to
inconsistencies in the original ontology.

Note that, although axiom E1 does not correspond to fact (3), it is still a consequence
of (3) and hence it should not constrain the meaning of the medical terms. In contrast, E2
is not a consequence of (4) and, in fact, it does constrain the meaning of these medical
terms. Indeed, axioms E1 and E2 together with axioms P1-P4ranply new axioms
about the concep®Bystic_Fibrosis andGenetic_Disorder, namely their disjointness:

P = 7 := (Genetic_Disorder M Cystic_Fibrosis C 1) (5)
The entailment (5) can be proved using axiom E2 which is equivalent to:
T C 3has_Focus.(Genetic_Disorder LI ~Cystic_Fibrosis) (6)

The inclusion (6) and P4 imply that every element in the domain must be a project—
thatis,? &= (T L Project). Now, together with axiom E1, this implies (5). The
axioms E1 and E2 not only imply new statements about the medical terms, but also
cause inconsistencies when used together with the imported axiomsJrdndeed,

from (1) and (5) we obtaif® U Q |= ¢ := (Cystic_Fibrosis C L) which expresses the
inconsistency of the concefiystic_Fibrosis.

To summarize, we have seen that importing an external ontology can lead to unde-
sirable side effects in our knowledge reuse scenario, like the entailment of new axioms
or even inconsistencies over the reused vocabulary.

The contributions of this paper are as follows. First, we formalize some reasoning
services that are relevant for ontology reuse. In particular, we propose the notion of safe
reuse of a signature in an ontology. Second, we show that the problem of checking safety
is undecidable inALCO. This result leaves us with two alternatives: we can either
focus on simple DLs for which this problem is decidable, or we may look for sufficient
conditions for safety—that is, an incomplete solution. We define in general terms the
notion of a sufficient condition for safety—safety class- and define a family of safety
classes—called locality— with some compelling properties. We have implemented a
safety checking algorithm and obtained empirical evidence of its usefulness in practice.

This paper comes with an extended version available online [4]; we refer the reader
to the extended version for further technical details.

2 Conservative Extensions and Safety

As argued in the previous section, an important requirement for the reuse of an ontol-
ogy @ within an ontologyP should be tha U Q produces exactly the same logical
consequences over the vocabulary®as Q alone does. This requirement can be nat-
urally formulated using the well-known notion of a conservative extension, which has
recently been investigated in the context of ontologies [7, 8].



Definition 1 (Conservative Extension).Let £ be a description logic and let); C
O be two ontologies, an8 a signature ovelL. We say thatD is an S-conservative
extensiorof O; w.r.t. £, if for every axiomu over £ with Sig(a) C S, we haveD = o
iff O1 E «. We say thatD is a conservative extensioof O; w.r.t. £ if O is an S-
conservative extension 6f; w.r.t. £ for S = Sig(O).

Definition 1 implies that, in order to show thRtU Q is not aS-conservative extension
of Q it suffices to find an axior overS that is implied byP U Q but not byQ alone.
In our example, the ontolog® U Q is not a conservative extension @ w.r.t. S =
{Cystic_Fibrosis, Genetic_Disorder} since? U Q impliesa; = (Cystic_Fibrosis C L)
andas = (Genetic_Disorder C 1) overS, but Q does not.

Definition 1 applies to fixe@®, Q. In realistic scenarios, however, the reused ontol-
ogy @ may evolvebeyond the control of the designers7f which may not be autho-
rized to modifyQ, or may decide at a later time to reuse the symligistic_Fibrosis
andGenetic_Disorder from a medical ontology other thad. Therefore, for application
scenarios in which the external ontologymay change, it is reasonable to “abstract”
from the particular® under consideration. In other words, the fact that the axioms in
‘P do not change the meaning of the external symbo% should bendependentrom
the particular meaning of these symbols. This idea can be made precise as follows:

Definition 2 (Safety for a Signature).Let £ be an ontology language, and €t be
an ontology ands a signature over’. We say that) is safe forS w.r.t. Z, if for every
ontology®’ over L with Sig(O) N Sig(O’) C S, we have tha® U O’ is a conservative
extension o)’ w.rt. L.

Definition 2 captures the intuition in our example: the axioni®ishould not yield new
consequences over the signatSrand the signaturBig(Q) of the reused ontolog@,
independently of the particula@ under consideration. In our example, the ontology
O = {E2} is not safe w.r.tS = {Cystic_Fibrosis, Genetic_Disorder} and £ = ALC.
Indeed, takeQ; = { T C Cystic_Fibrosis; Genetic_Disorder C L}. Then,Q; U O is
inconsistent wherea@; is consistent. Consequently,; U O is not aS-conservative
extension of9; w.r.t. £ = ALC, and therefor® = {E2} is not safe foiS and L.

Proving that an ontology is safe is more involved than proving that it is not. One way
to prove thatO is S-safe is the following: if we can take an arbitrary interpretation for
the symbols irS and extend it to a model @ by interpreting the additional symbols
in Sig(O), then©O must beS-safe. This property can be formalized as follows:

Definition 3. Two interpretations; = (A%:,-71) andZ, = (A%2,.%2) coincide on a
signatureS (notation:Z, |s = Z»|s) if A7t = A2 and X7+ = X 72 for everyX € S.

Lemma 1. Let O be aSHOZQ ontology andS a signature such that for every inter-
pretationZ there exists a modey of O such that7|s = Z|s. ThenO is safe forS
w.rt. L = SHOZQ.

We can now prove that the ontolo@® consisting of axioms P1-P4 is safe for=
{Cystic_Fibrosis, Genetic_Disorder}. Take an arbitrary interpretatidh of S and con-
struct an interpretatiofy to be identical t& except for the interpretations of the atomic
conceptssenetic_Disorder_Project, Cystic_Fibrosis_EUProject, Project, EUProject and



the atomic rolenas_Focus, all of which we interpret in7 as the empty set. All the ax-
ioms P1-P4, E2 are satisfied jfand hence7 = P;.
Using Lemma 1, we are now ready to show the main result in this section:

Theorem 1 (Undecidability for Safety of Ontologies). Given an.ALC-ontology O
and a signatures it is undecidable whethap is S-safe w.rt.L = ALCO.

Proof. The proof is based on a reduction to a domino tiling problem. A domino system
isatripleD = (T, H,V)whereT = {1, ..., k}isafinite setofilesandH,V C T'xT
arehorizontalandvertical matching relationsA solutionfor a domino systenD is a
mappingt; ; that assigns to every pair of integerg > 1 an element off", such that
(tij,tij+1) € Vand(t; j,ti+1,,) € H. A periodic solutionfor a domino systenD

is a solutiort; ; for which there exist integers, > 1, n > 1 calledperiodssuch that
Livm,; = tij andt; j., = t; ; for everyi,j > 1.

Let D be the set of all domino systeni3, be the subset dP that admit a solution
andD,, be the subset @b, that admit a periodic solution. It is well-known [1, Theorem
3.1.7] that the set® \ D, and D, arerecursively inseparablethat is, there is no
recursive (i.e. decidable) subsBt C D of domino systems such th@,, C D’ C
D,. For every domino syster, we construct a signatur® = S(D), an ontology
O = O(D) which consists of a singlelLC-axiom such that(a) if D does not have a
solution then® = O(D) is safe forS = S(D) w.r.t. £ = ALCO, and(b) if D has a
periodic solution thel® = O(D) is not safe foiS = S(D) w.r.t. £ = ALCO.

In other words, for the se®’ consisting of the domino systeni® such that® =
O(D) is not safe forS = S(D) w.r.t. £ = ALCO, we haveD,, C D' C D,. Since
D\ D, andD,, are recursively inseparable, this implies undecidabilityffoand hence
for the problem of checking i® is anS-safe w.r.t.L = ALCO, because otherwise one
can use this problem for deciding membershi®in

GivenD = (T, H,V), letS consist of fresh atomic concepts for everyi € T
and atomic roles andry . Consider an ontolog@e in Figure 2 constructed fab.
Note thatSig(Oyie) = S. The axioms oy express the tiling conditions for a domino

() TC A U---U A, whereT = {1,...,k}
(g2) AiMA; T L 1<i<j<k

(g3) Ai EHTH'(I_'(i,j)GHAJ) 1<i<k

(ga) Ai C3rv.(Ugjyev 45) 1 <1<k

Fig. 2: An ontologyQOiie = Osie (D) expressing tiling conditions for a domino systém

systemD, namely(q1) and(g2) express that every domain element is assigned with a
unique tilet € T'; (¢3) and(q4) express that every domain element has horizontal and
vertical matching successors. Now ddie an atomic role an# an atomic concept with
s,B ¢ 8S.LetO := {5} where:

G:= TELCds. U(C,iEDi)EOme(Ci N-D;) U (Irg.Jry.BN Hrv.ElTH.—!B)}



We say thatry andr, commute in an interpretatio = (AZ,-Z) if for every
domain elements, b, ¢, d; andd, from AZ with (a,b) € r5Z, (b,d1) € %, (a,c) €
rvt, and{c, dy) € rgt, we haved; = d,. The following claims can be easily proved:

Claim 1. If Oye(D) has a model in whichr g andry commute, therD has a solution.

Claim 2. If Z is a model ofO = {3}, then eitherZ [~ Oyje Or ry andry do not
commute inZ.

To prove Property (a), we use Lemma 1 and demonstrate theth#s no solution then
for every interpretatiof there exists a model of of O such that7|s = Z|s, which
implies thatO is safe forS w.r.t. £. LetZ be an arbitrary interpretation. Sinde has
no solution, then by the contra-position of Claim 1 eitherZ1i% not a model oDy,
or (2) ri andry do not commute irf. We demonstrate for both of these cases how to
construct the required modgl of O such that7|s = Z|s.

Case (1). Iff = (A%, -T) is not a model oy then there exists an axiofd; =
D;) € Oy such thatZ (= (C; C D;). That is, there exists a domain element A
such thate € C# buta ¢ D?. Let us define7 to be identical taZ except for the
interpretation of the atomic role which we define in7 ass’ = {(z,a) | z € A}.
Since the interpretations of the symbolsSihas remained unchanged, we have 057,

a € -DJ, and saJ |= (T C 3s.[C; M —D,]). This implies that7 = 3, and so, we
have constructed a modgl of O such that7|s = Z|s.

Case (2). Suppose tha andry- do not commute if = (A%, 7). This means that
there exist domain elemenis b, ¢, d; andd, from AT with (a,b) € rgZ, (b,d;) €
rvZI, {a,¢) € rvT, and{c,dy) € rg?, such thatd; # do. Let us define to be
identical toZ except for the interpretation of the atomic raland the atomic concept
B. We interprets in 7 ass? = {(z,a) | z € A}. We interpretB in 7 asB7 = {d;}.
Note thata € (3ry.3ry.B)7 anda € (Iry.Irg.—B)7 sinced; # do. So, we have
J E (T C 3s.[3ry.Fry.B N 3Iry. Iry.—B]) which implies that7 | 3, and thus, we
have constructed a modél of O such that7|s = Z|s.

To prove Property (b), assume thathas a periodic solutioty ; with the periods
m,n > 1. We show thatD is notS-safe w.r.t.L. We build anALCO-ontology®’ with
Sig(0) N Sig(0’) € SsuchthatO U O = (T C 1), but®’ = (T C 1). This
will imply that O is not safe for®’ w.r.t. £ = ALCO, and hence, is not safe f&
w.rt. £ = ALCO. We define®’ such that every model @’ is a finite encoding of the
periodic solutior; ;. For every pail(i, j) with 1 < ¢ < m andl < j < n, introduce a
fresh individuala, ; and take®’ the extension oDye with the following axioms:

(1) {ai i} EFrvdai; b (p2) {as i} EVrv{ai,; 3, d2=d1+1 modm

(p3) {aij} EIrmfaij}t  (pa){aiy} EVradai,}t,  Jj2=j1+1 modn
(ps) TC U1§i§m71§j§n {aij}

Axioms (p1)—(ps) ensure that; andry commute in every model @’. Indeed?’ has

a model corresponding to every periodic solution fowith periodsm andn. Hence

O’ }£ (T C 1). Also, since every model @’ is a model 0fOye in whichr g andry

commute, by Claim 20’ U O is unsatisfiable, s® U O = (T C 1).
O



3 Safety Classes

Theorem 1 leaves us with two alternatives: first, we can focus simple DLs for which
this problem is decidable; second, we may look for sufficient conditions for the notion
of safety—that is, if an ontology satisfies our conditions then we can guarantee that it
is safe, but not necessarily vice versa. In this paper, we will explore the latter approach.

In general, any sufficient condition for safety can be represented by defining, for
every signatureS, the set of ontologies over a language that satisfy the condition for
that signature. These ontologies should be guaranteed to be safe.

Definition 4 (Class of Ontologies, Safety ClassA class of ontologies for a DIC
and a signatur8 is a functionO(-) that assigns to every subs&tof S a setO(S’) of
ontologies inZ; it is anti-monotoniaf for everyS; C S,, we haveO(S;) C O(Sy);
it is subset-closed for everyS and ©; C O we have thatD € O(S) impliesO; €
O(8); itis union-closedf O; € O(S) andO; € O(S) implies(O; UOs3) € O(S) for
everyS. A safety classor £ is a class of ontologie®(-) for £ such that, for everg,
every ontology irO(S) is safe forS.

Safety classes may admit many natural properties, as given in Definitidnti4.
monotonicityintuitively means that if an ontolog§) can be proved to be safe w.IS.
using the sufficient condition, thefl can be proved to be safe w.r.t. every subses.of
Similarly, subset-closureneans that under the same assumption, every sub&etah
also be proved to be safe using the same sufficient condition. If a safety clageris
closedand two ontologie®); andO, can be proved safe using that sufficient test, then
their union®; U O, can also be proved safe using the same test.

3.1 Locality

In this section we introduce a particular family of safety classe&fer SHOZ Q, that

we call locality classes. In Section 2, we have seen that, according to Lemma 1, one
way to prove that) is S-safe is to show that evel§-interpretation can be extended to

a model ofO. Local ontologies are those for which safety can be used using Lemma 1.

Definition 5 (Locality). Given aSHOZ Q signatureS, we say that a set of interpreta-
tionsI is local w.r.t.S if for everySHOZ Q-interpretationZ there exists an interpreta-
tion 7 € Isuch thatZ|s = J|s. Aclass of interpretationis a functionI(-) that given
a SHOTIQ signatureS returns a set of interpretatiorl§S); it is local if I(S) is local
w.r.t. S for everyS; it is monotonicif S; C S, impliesI(S;) C I(Ss).

An axioma (an ontology®) is valid in I if every interpretatiorf € I is a model of
« (respectivelyO). Given a class of interpretatiorig-), O(-) is the class of ontologies
O(-) based or(:) if for everyS, O(S) is the set of ontologies that are valid IfS);
if I(-) is local then we say thad(-) is aclass of local ontologiesand for evenyS and
O € O(S) and eveny € O, we say that), respectivelyr is local (based ori(-)).

Example 1.Let Ig:g(-) be aclass o6 HOZ Q interpretations defined as follows. Given
a signatures, the seﬁg:g(S) consist of interpretationg such that-? = () for every
atomic roler ¢ S andAY = () for every atomic concept ¢ S. It is easy to show that



I;;:%(S) is local for everyS, since for every interpretatich = (A%, -7) and the inter-
pretation7 = (A7, -7) defined byA” := AT, r7 = (forr ¢ S, A7 =(for A ¢S,
andX Y := X7 for the remaining symbolX, we have7 € I;~/(S) andZ|s = J|s.
SinceI;—§(S1) C I;=1(S,) for everyS; C S, we have thal;—}(-) is monotonic;
IX:%(-) is also compact, since for evey andS, the sets of interpretatiorlg:g(sl)

andIg:%(Sz) are defined differently only for elements$h A S..

Given a signatur®, the setAxg:g(S) of axioms that are local w.r.8 based on
I;=0(S) consists of all axioms such for every7 € I;=/(S), we have that7 k= «.
Then the class of local ontologies basedgjjg(-) could be defined by OA”:g(S)
iff O C Ax;=0(S).

Proposition 1 (Locality Implies Safety). LetO(+) be a class of ontologies based on a
local class of interpretationk(-). ThenO(-) is a subset-closed and union-closed safety
class forL = SHOZQ. If additionallyI(-) is monotonic, the®(-) is anti-monotonic.

Proposition 1 and Example 1 suggest a particular way for proving safety of ontolo-
gies. Given arlSHOZ Q ontology©® and a signatur8 it is sufficient to check if every
axioma in O is satisfied by every interpretation fronl:g(S); that is, givere andsS,
it suffices to interpret every atomic concept and atomic role n&t as the empty set
and then check if is satisfied in all interpretations of the remaining symbols. Note that
for definingOﬁ:%(S), we do not fix the interpretation of the individuals outs&leut
in principle, we could do that. The reason is that there is no elegant way how to describe
such interpretations. Namely, every individual needs to be interpreted as an element of
the domain, and there is no “canonical” element of every domain to choose, as opposed
to the “canonical” subsets of (pairs of) the domain elements, which can be taken, say
as the empty set or the set of all (pairs of) the domain elements. These observations
suggest the following test for locality:

Proposition 2 (Testing Locality). Given aSHOZ Q-signatureS, concept’, axioma
and ontologyO let 7(C, S), 7(«, S) and (O, S) be defined recursively as follows:

7(C,S) := 7(4,8) = 1 if A ¢ S and otherwise= A; (a)
|T(C1T|CQ,S) ZT(Cl,S)ﬂT(OQ,S); (b)
| 7(=C1,8) = —7(C1,8); (c)
| 7(3R.C1,S) = Lif Sig(R) ¢ S and otherwise= 3R.7(C4, S); (d)
|7(>nR.Cy,S) = Lif Sig(R) ¢ S and otherwise= (>n R.7(C1,S)). (e)
T(a,S) i= 7(C1 C Cy,S) = (7(C1,8) E 7(C4,8)); (g9)
|7(R1 C Ry,S) = (LLC 1)if Sig(R1) € S, otherwise
=3R;.T C Lif Sig(Rs) € S, otherwise= (R; C R»); (h)
|T(a:C,S) =a:7(C,8S); (4)
|7(r(a,b),S) =TELC Lifr¢ S and otherwise= r(a, b); ()
| 7(Trans(r),S) = L C Lifr ¢ Sandotherwise= Trans(r); (k)
| 7(Funct(R),S) = L C Lif Sig(R) ¢ S and otherwise= Funct(R). )
7(0,8) = Uyeo (@, S) (m)

Then,0 € OA‘:S(S) iff every axiom inr (O, S) is a tautology.



Example 2.Let O = {a} consists of axiomx = M2 from Figure 1. We demonstrate
using Proposition 2 tha® is local w.r.t.S = {Fibrosis, Genetic_Origin}. According
to Proposition 2, in order to check @ is local w.r.t.S; it is sufficient to perform the
following replacements in (the symbols fron8 are underlined):

L [by (a)] L [by (d)]
—N
M2  Genetic_Fibrosis = Fibrosis M 3has_Origin.Genetic_Origin @)

We obtainr (M2, S) = (L = Fibrosis M L) which is aSHOZ Q-tautology. Henc® is
local w.r.t.S and hence by Lemma 1 &safe w.rtSHOZQ.

By Proposition 2, one can use available DL-reasoners for testing locality. If this is
too costly, one can still formulate a tractable approximation of locality:

Definition 6 (Syntactic Locality for SHOZ Q). Let S be a signature. The following
grammar recursively defines two sets of conc€fs’(S) and Con?(S) for S:

Con’(8) = A |-c?|cnc?|3RY.C |3R.CY | (=nR".C) | (>nR.C").
Con?(S) ==-C? | CcPnCs .

whereA? ¢ S is an atomic concept is a role, andC is a conceptC? € Con’(S),
Cg) € Con?(S), i = 1,2, and R is (possibly inverse of) an atomic rold ¢ S. An
axioma is syntactically local w.r.tS if it is of one of the following forms(1) R? C R,
or (2) Trans(R?), or (3) Funct(R?), or (4) C* C C, or (5) C C C4, 0r (6) a:C4. A
SHOTIQ-ontologyO is syntactically local w.r.tS if everya € O is syntactically local.

Itis easy to see from the inductive definitiong@bn’(S) andCon4(S) in Definition 6

that for every interpretatiof = (AZ,.7) from I;=}(S) we have tha(R?)? = 0,

(CHT = g and(C?)T = AT, C? € Con?(S) andC? € Con?(S). Hence, every
syntactically local axiom is satisfied in every interpretatibfrom I}{:g(S), and so

is also semantically local. Furthermore, it can even be shown that the safety class for
SHOZQ based on syntactic locality enjoys all of the properties from Definition 4—that
is, it is anti-monotone, subset-closed and union-closed.

Example 3(Example 2 continuedfixiom M2 from Figure 1 is syntactically local w.r.t.
S; = {Fibrosis, Genetic_Origin}:

€ Con"(S;)[matchesA?] € Con’(S,)[matchesIR?.C]
—
M2  Genetic_Fibrosis = Fibrosis M Jhas_Origin.Genetic_Origin (8)

€ Con’(S;)[matchesC 1 €]

Itis easy to show that syntactic locality can be checked in polynomial time with respect
to the size of the input ontology and input signature.

Note that semantic locality does not imply syntactic locality. For example, the axiom
a = (A C AUB)islocal w.r.t. evens since it is a tautology, but it is not syntactically
local w.r.t.S = {A, B} since it involves symbols i only.
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Table 1: Examples for and Comparison Between Different Local Classes of Interpretations

The locality condition in Example 1 is just a particular example of a locality class.
Other classes of local interpretations can be constructed in a similar way, by fixing the
interpretations of the symbols not$to different values. In Table 1 we provide several
such classes of local interpretations by fixing the interpretation of atomic roles outside
S to either the empty sdt, the universal relatiom x A, or the identity relatiorid on
A, and the interpretation of atomic concepts outSde either the empty sét or the
set A of all domain elements. Each class of local interpretations in Table 1 defines a
corresponding class of local ontologies. In Table 1 we have listed all of these classes
together with examples of typical types of axioms used in ontologies. Table 1 shows
that different types of locality conditions are appropriate for different types of axioms.
Note that B is not local for any of our locality conditions, sinc& & not safe foiS.

One could design algorithms for testing locality for the classes of interpretations
in Table 1 similar to the one presented in Proposition 2. E.g., locality for the class
1;=%(S) can be tested as in Proposition 2, where the ¢agef the definition for
7(C,S) is replaced with: (A, S) = T if A ¢ S and otherwise= A”. For the remain-
ing classes of interpretations, that is 1§~ 24 (S) andI;—id(S), checking locality is
not straightforward, since it is not clear how to eliminate the universal roles and identity
roles from the axioms and preserve validity in the respective classes of interpretations.
Still, it is easy to design tractable syntactic approximations for all these locality condi-
tions by modifying Definition 6 accordingly. In Figure 3 we give recursive definitions
for syntactically local axioms\x;—*(S) that correspond to the classes of interpreta-
tionsI;—*(S) from Table 1, where some cases in the recursive definitions are present
only for the indicated classes of interpretations.

In order to check safety in practice, one may try to apply different sufficient tests
and check if any of them succeeds. For such a purpose, one could combine two dif-
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Fig. 3: Syntactic Approximations to the Locality Classes

ferent safety classes and obtain a more powerful one by checking whether an ontology
satisfies either the first or the second condition. The combination can be achieved by
forming a union of safety classes: given two safety cla€sgs) andOx(-), their union

(01 UO2)(-) defined by(O1 UO2)(S) = O1(S)U0O(S), also gives a safety class. It

is easy to demonstrate that if both safety clag€3e§) andO»(+) are anti-monotonic or
subset-closed then their union is also anti-monotonic or subset-closed. Unfortunately
the union-closure property for safety classes is not preserved under union of safety
classes. For example, the uni¢®; =% U O;=2"?)(:) of the classe©;—f(-) and
Og:ﬁm() is not union-closed since it captures, for example, the ontol@gygon-
sisting of axioms BP—P7 from Table 1, which satisfies the fist locality condition, the
ontology O, consisting of axioms &-P9 satisfies the second locality condition, but
their union®; U O, is not even safe fos.

It can be shown that the class ':8(-) and 05" (-) of local ontologies are
maximal union-closed safety classes &7 Q—that is, there is no union-closed class
that strictly extends them.

We have verified empirically that syntactic locality provides a powerful sufficient
test for safety which works for many real-world ontologies. We have implemented a
(syntactic) locality checker and run it over ontologies from a library of 300 ontologies
of various sizes and complexity some of which import each otheff6t.all ontologies
P thatimport an ontolog¥, we check syntactic locality @ for S = Sig(P)NSig(Q).

It turned out that from 96 ontologies that import other ontologies, all but 11 are
syntactically local w.r.t. the given interface signature. From the 11 non local ontologies,
7 are written in the OWL-Full species of OWL to which our framework does not yet
apply. The remaining 4 non-localities are due to the presence of so-calipging
axiomsof the form A = B’, whereA ¢ S andB’ € S. Note that these axioms simply
indicate that the concept names B’ in the two ontologies under consideration are
synonyms. Indeed, we were able to easily fix these non-localities as follows: we replace
every occurrence oft in P with B’ and then remove this axiom from the ontology.
After this transformation, all 4 non-local ontologies turned out to be local.

! The library is available atttp://www.cs.man.ac.uk/ ~horrocks/testing/



4  Qutlook

This paper extends the framework for modular reuse of ontologies presented in [3]. We
have formalized the notion of safe reuse of ontologies. We have shown that checking
safety of an ontology w.r.t. a signature is undecidableAdiCO. We have provided

a general notion of a sufficient condition for checking safety—a safety class—and ex-
amples of safety classes based on semantic and syntactic restrictions. The former can
be checked using a reasoner and the latter can be checked syntactically in polynomial
time. It turns out that these sufficient conditions for safety work surprisingly well for
many real-world ontologies. In a recent paper [2], we have also demonstrated how to
use safety classes for extracting modules from ontologies.
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