Can OWL and Logic Programming
Live Together Happily Ever After?

Boris Motik!, Tan Horrocks!, Riccardo Rosati?, and Ulrike Sattler?

1 University of Manchester, Manchester, UK
2 Universitd di Roma “La Sapienza”, Rome, Italy

Abstract. Logic programming (LP) is often seen as a way to overcome
several shortcomings of the Web Ontology Language (OWL), such as the
inability to model integrity constraints or perform closed-world querying.
However, the open-world semantics of OWL seems to be fundamentally
incompatible with the closed-world semantics of LP. This has sparked a
heated debate in the Semantic Web community, resulting in proposals for
alternative ontology languages based entirely on logic programming. To
help resolving this debate, we investigate the practical use cases which
seem to be addressed by logic programming. In fact, many of these re-
quirements have already been addressed outside the Semantic Web. By
drawing inspiration from these existing formalisms, we present a novel
logic of hybrid MKNF knowledge bases, which seamlessly integrates OWL
with LP. We are thus capable of addressing the identified use cases with-
out a radical change in the architecture of the Semantic Web.

1 Introduction

In the past couple of years, a significant body of Semantic Web research was
devoted to defining a suitable language for ontology modeling. In 2004, this
endeavor resulted in the Web Ontology Language (OWL). OWL is based on
Description Logics (DLs) [1]—a family of knowledge representation formalisms
based on first-order logic and exhibiting well-understood computational prop-
erties. OWL has been successfully applied to numerous problems in computer
science, such as information integration or metadata management. Prototypes
of OWL reasoners,? such as RACER, FaCT++, Pellet, or KAON2, have been
implemented and applied in research projects; commercial implementations and
projects using them are currently emerging.

However, the experience in building practical applications has revealed sev-
eral shortcomings of OWL. For example, OWL does not allow for integrity con-
straints or closed-world reasoning. Rule-based formalisms grounded in logic pro-
gramming have repeatedly been proposed as a possible solution, so adding a rule
layer on top of OWL is nowadays seen as a central task in the development of
the Semantic Web language stack. The Rule Interchange Format (RIF) work-

3 A list of reasoners is available at http://www.cs.man.ac.uk/~ sattler /reasoners.html.



ing group? of the World Wide Web Consortium (W3C) is currently working on
standardizing such a language.

Responding to popular demand, the Semantic Web Rule Language (SWRL)
was proposed in [13]. However, as the authors point out, SWRL is a simple exten-
sion of OWL with material (first-order) implication and, due to the straightfor-
ward way in which the rules are integrated with OWL, it is trivially undecidable.
Furthermore, SWRL was designed as a first-order language, so it does not ad-
dress nonmonotonic reasoning tasks, such as expressing integrity constraints.
OWL and SWRL were criticized on these accounts in [4], and an alternative
ontology language OWL-Flight, based entirely on logic programming, was pro-
posed. In [14], the authors go even further by saying that a true rule formalism
grounded in logic programming is intrinsically incompatible with OWL. They
propose to change the layering architecture of the Semantic Web: instead of
building rules on top of OWL, they propose OWL and rules to exist side-by-
side, with semantic interoperability grounded in Description Logic Programs
(DLP) [11]—a straightforward intersection of DLs and LP. Furthermore, the au-
thors propose the Web Service Modeling Language (WSML) [3] or F-Logic [15]
as suitable ontology languages based on logic programming. These approaches
were criticized in [12] on the grounds that separating OWL and rules creates
two Semantic Webs with little or no semantic interoperability.

To help in resolving this debate, in Section 3 we investigate the practical
use cases which are difficult or impossible to realize in OWL, but seem to be
addressed by logic programming. These use cases are not novel to knowledge
representation: numerous formalisms addressing different subsets of these re-
quirements have already been developed, so we present an overview of the most
relevant ones in Section 4. Many existing proposals are based on description
logics, so analyzing them provides valuable insights into integrating logic pro-
gramming with OWL without sacrificing backwards compatibility.

By combining the ideas from the existing formalisms with the principles of
logic programming, we developed a novel formalism of hybrid MKNF knowledge
bases, which we overview in Section 5. This formalism, based on the logic MKNF
by Lifschitz [18], is fully compatible with both OWL and logic programming, and
thus addresses the identified use cases without sacrificing backwards compatibil-
ity. Because it subsumes logic programming, our logic provides a foundation for
integrating OWL with languages such as WSML and F-Logic. Thus, it is possible
to obtain a coherent stack of logical languages without establishing the “twin
towers of the Semantic Web” [12], and our formalism provides a framework for
integrating several proposals considered within RIF.

Due to space constraints, we present hybrid MKNF knowledge bases only
at a high level by means of an example. For precise definitions and decision
procedures, please refer to [19].

* http://www.w3.org/2005 /rules/



2 Preliminaries

2.1 The OWL Family of Languages

OWL is actually a family of three ontology languages: OWL-Lite, OWL-DL,
and OWL-Full. The first two languages can be considered syntactic variants
of the SHZF(D) and SHOZN (D) description logics, respectively, whereas the
third language was designed to provide full compatibility with RDF(S). We focus
mainly on the first two variants of OWL because OWL-Full has a nonstandard
semantics that makes the language undecidable and therefore difficult to imple-
ment. OWL comes with several syntaxes, all of which are rather verbose. Hence,
in this paper we use the standard DL syntax, which we overview next. For a full
introduction to the syntax and the semantics of DLs, please refer to [1].

The main building blocks of DL knowledge bases are concepts (or classes),
representing sets of objects, roles (or properties), representing relationships be-
tween objects, and individuals, representing specific objects. Concepts such as
Person are atomic. Using a rich set of concept constructors, one can construct
complex concepts, which describe the conditions on concept membership. For
example, the concept JhasFather.Person describes those objects that are re-
lated through the hasFather role with an object from the concept Person. A
DL knowledge base O typically consists of a TBox 7 and an ABox A. A TBox
contains axioms about the general structure of all allowed worlds, and is there-
fore akin to a database schema. For example, the TBox axiom (1) states that
each instance of the concept Person must be related by the role hasFather with
an instance of the concept Person. An ABox contains axioms that describe the
structure of a particular world. For example, the axiom (2) states that Peter is
a Person, and (3) states that Paul is a brother of Peter.

(1) Person C 3hasFather.Person
(2) Person(Peter)
(3) hasBrother (Peter, Paul)

A DL knowledge base can be given semantics by translating it into first-
order logic with equality. Atomic concepts are translated into unary predicates,
complex concepts into formulae with one free variable, and roles into binary pred-
icates. The basic reasoning problems for OWL are checking if an individual a is
an instance of a concept C' (written O = C(a)) or if the a concept C' is subsumed
by another concept D (written O = C C D). These problems are decidable for
OWL-Lite and OWL-DL in EXPTIME and NEXPTIME, respectively.

The concept-centric style of modeling endorsed by OWL has proven to be
particularly suitable for modeling taxonomic knowledge. Furthermore, the open-
world semantics of OWL grounded in first-order logic allows one to state general
truths, and not only statements about known objects. In fact, in OWL one can
introduce new, unknown individuals to express such truths, which provides an
elegant way of modeling incomplete information.



2.2 Logic Programming

Logic programming (LP) is a family of KR formalisms centered around the
notion of rules—statements of the following form:

(4) H«— Bf,...,Bf notBy,...,notB;

Different semantics for LP have been considered in practice, with stable models
[9] being the most widely accepted one: a set of atoms M is a stable model of
a set of rules P if it is the minimal model of a program P™, where the latter
is obtained by replacing each atom not B, with its value in M. A set of rules
P can have zero, one, or several stable models, and checking satisfiability of P
is an NP-complete problem, assuming P is function-free. Numerous variants of
these basic formalisms have been considered, such as rules with disjunctions in
the rule heads or extensions with classical negation; a combination of these two
features is commonly known as answer set programming [10].

F-Logic [15] is a language layered on top of logic programming, providing
object-oriented primitives for modeling concept hierarchies, concept instantia-
tion, relationships between individuals, and inheritance. For execution, F-Logic
theories can be compiled into logic programming; hence, the relationship between
F-Logic and LP is somewhat similar to the relationship between C++ and as-
sembler. OWL-Flight [4] and the Web Service Modeling Language (WSML) [3]
are other notable object-oriented front-ends for logic programming.

Logic programming partly evolved as an extension of relational databases
with deductive features. Therefore, LP typically focuses on efficient query an-
swering over a bounded data set, and is often used in data-intensive applications
that require managing large amounts of data. With the introduction of answer
set programming, LP is increasingly seen as a general problem-solving formalism,
capable of succinctly expressing hard computational problems.

3 Why Integrate OWL With Logic Programming?

In this section we motivate the need for integrating OWL and LP. In particular,
we present several important modeling problems that are hard, if not impossible
to solve using OWL alone, but can easily be addressed using logic programming.

Higher Relational Expressivity. OWL provides a rich set of primitives for ex-
pressing concepts; however, the set of primitives regarding roles is often not
sufficient for practical applications. Roughly speaking, OWL can model only
domains where objects are connected in a tree-like manner; however, many real-
world applications require modeling general relational structures. For example,
saying that “an uncle of a person is a brother of that person’s father” requires
expressing a triangle between the person, the father, and the uncle. An in-depth
discussion about the relational expressivity of OWL can be found in [20].



Polyadic Predicates. The basic modeling constructs of OWL are concepts and
roles, which correspond to unary and binary predicates. However, many relation-
ships encountered in practice are of arity larger than two. For example, flight
connections between cities together with the airline providing the service can
naturally be represented using a ternary predicate, so flight(MAN, STR, HLX)
might mean that HLX offers flights between Manchester and Stuttgart.

Closed-World Reasoning. Consider an OWL knowledge base O containing an
assertion flight(a,b) for each pair of cities connected by a flight. Due to the
open-world semantics of OWL, we can use O to answer positive queries—that
is, queries about which cities are connected by a flight. However, we cannot use
O to answer negative queries: O does not contain explicit information about
not connected cities, so, for each ¢ and d, we have O (= —flight(c, d). Answering
queries about negative information in an intuitive way usually requires some
form of closed-world reasoning.

The difference between open- and closed-world reasoning can be intuitively
described as follows. In first-order logic, if a fact a holds only in a subset of the
models of O, then we can conclude neither O = « nor O (£~ «a; in a way, O
is underspecified with respect to «. In contrast, closed-world formalisms make
the common-sense conjecture that all relevant information is explicitly known,
so all unprovable facts should be assumed not to hold in O. Hence, closed-world
reasoning can be understood as reasoning where O }= « implies O |= —a.

The requirement for closed-world reasoning comes in practice in two distinct
forms. Certain applications require only closed-world querying of open-world
knowledge bases. A closed-world query language can be layered on top of OWL
without changing the semantics of OWL itself.

Alternatively, closed-world reasoning can be integrated into the reasoning
process itself. For example, after determining that ¢ and d are not connected
by a flight, a travel planning application might check for a train connection.
This is usually enabled through a form of default or weak negation, commonly
denoted with not. Default negation is closely related to closed-world reasoning:
intuitively, from O [~ « one concludes O |= not . Unlike a closed-world query
language, default negation must be built into the foundations of the knowledge
representation formalism, affecting its semantics significantly.

We point out two common misconceptions about closed-world reasoning. The
first one is that closed-world reasoning can be emulated within first-order logic
by specifying complete information—for example, using a form of role closure.
The following axiom states that flights exist only between cities a and b, and b
and ¢, thus making the role flight closed:

(5) Y,y : flight(x,y) « (z=aAy=bd)V(zxmbAy=c)

Assuming that O contains only (5), we can now conclude O = —flight(a, d),
so role closure seems to solve the problem. However, such a solution is not
satisfactory since it does not provide the required support for inferencing. For
example, it is natural to query O for nondirect flights between cities—that is,



to query the transitive closure of flight. A natural solution is to add a transitive
role anyLengthFlight and the axiom flight T anyLengthFlight. However, O can
again answer only positive queries, since we did not say that anyLengthFlight is
a minimal transitive relation containing flight. In fact, transitive closure is not
axiomatizable in first-order logic, so answering our (quite natural) query requires
some form of closed-world, non-first-order reasoning.

Furthermore, closed-world reasoning is often confused with closed-domain
reasoning. Consider a knowledge base O containing axioms (1)—(3). Axioms (1)
and (2) state that Peter has a father without saying who the father is. The
only persons known in O are Peter and Paul, but in open-domain reasoning
the unnamed father of Peter is not required to be either of them: the existen-
tial quantifier in (1) can refer to an object not explicitly mentioned by name.
However, the fact that the existential quantifier makes the domain of the on-
tology open is unrelated to the problems of open- or closed-world reasoning. As
explained earlier, closed-world reasoning is about drawing common-sense conjec-
tures regarding explicit or implicit objects; it has nothing to do with the ability
to refer to new individuals. In fact, closing the domain of O can be done without
leaving first-order logic, by including the axiom T L {Peter, Paul}. Now, the
father of Peter is either Paul or Peter (note that we did not say that fatherhood
is acyclic), so the domain of O is closed. However, closing the domain does not
provide any new default consequences. For example, the sex of Peter has not
been explicitly specified, so O & Man(Peter) and O & —Man(Peter). Tt is also
possible to combine closed-world reasoning with the ability to refer to unknown
individuals. For example, if we additionally state that Peter, Paul, and the un-
named father are different objects, by closed-world reasoning we can deduce that
the domain contains exactly three objects, even though only two individuals are
known by name. The domain in this example is open in the (weaker) sense that
it is not restricted to named individuals.

Integrity Constraints. In OWL, domain and range restrictions constrain the type
of objects that can be related by a role. For example, (6) states that fatherhood
is defined only for persons and animals. Also, participation restrictions specify
that certain objects have relationships to other objects. For example, (7) states
that each person has a social security number.

(6) JhasFather. T T Person LI Animal
(7) Person C JhasSSN.SSN

Under standard first-order semantics, (6) and (7) imply new facts: from O =
{hasFather(Peter, Paul), Person(Ann)}, we conclude Person Ll Animal(Peter)
and that Ann has a social security number (we do not know which one).
Axioms (6) and (7) describe the structure of the world being modeled. How-
ever, one often wants to describe the required structure of the knowledge base. In
traditional object-oriented modeling, (6) means “fatherhood can be stated only
for objects known to be persons or animals”; similarly, (7) means “a social secu-
rity number must be known for each person.” Under such an interpretation, the



axioms (6) and (7) would be interpreted as integrity constraints. Now O would
invalidate the integrity constraints, since it is incomplete. It is well-known that
integrity constraints cannot be realized within first-order logic [22].

Modeling Fxceptions. Exceptions abound in the natural world. For example,
most people have the heart on the left, but some people (called dextrocar-
diacs) have it on the right side of the body. Such a domain cannot be mod-
eled in OWL: the axioms Human C HeartOnLeft, Dextrocardiac © Human, and
Dextrocardiac © —HeartOnLeft make the concept Dextrocardiac unsatisfiable. To
enable exception modeling, one must go beyond first-order logic and apply a non-
monotonic formalism, usually involving some form of default negation.

One might argue that exceptions should be handled extralogically: one could
preprocess a knowledge base and add an assertion HeartOnLeft(«) to each object
« that is provably a Human and not an Dextrocardiac. However, this solution is
far from ideal. The preprocessing algorithm would be defined in an ad-hoc way,
thus destroying the well-defined semantics—something deemed to be a crucial
feature of OWL. Also, it would be difficult to describe the interaction between
preprocessing and the actual reasoning. Nonmonotonic formalisms provide a
coherent framework for studying such issues.

4 Existing Solutions to the Problems Mentioned

The use cases from Section 3 are not novel to knowledge representation, and
they have been addressed previously by different formalisms. Many of them are
based on DLs, so they provide important guidelines for integrating OWL with
logic programming without introducing backwards incompatibility.

4.1 First-Order Rule Formalisms for DLs

Many different proposals exist for extending DLs with first-order rules.’ The gen-
eral idea is quite simple: one allows for the axioms of the form H «— By,..., B,
where H (the rule head) and B; (the rule body) can be of the form C(s) or
R(s,t), for C' a concept, R a role, and s and ¢ terms (i.e., variables or in-
dividuals). The rules are interpreted under standard first-order semantics as
Vx:HV-B;V...V~-B,, where x is the set of free variables of all H and B;.
The Semantic Web Rule Language (SWRL) [13] was layered on top of OWL
based on these principles. The following rule models the relationship about un-
cles from Section 3:

(8) hasUncle(x, z) < hasFather(x,y), hasBrother(y, z)

It is straightforward to extended SWRL with n-ary predicates, in which case one
usually distinguishes the DL-predicates (the predicates allowed to occur in DL
axioms) from the non-DL-predicates (the predicates occurring solely in rules).

® Some authors insist on calling first-order rules clauses, reserving the term “rules”
for nonmonotonic formalisms. This has not established itself in the Semantic Web.



First-order extensions of DLs with rules are quite straightforward from the
standpoint of the semantics: the rules are actually standard first-order material
implications, just like standard DL inclusion axioms. All first-order properties,
such as contrapositive inferences, apply to the rules as well: from A(x) «— B(x)
and —A(a) we can derive ~B(a).

Unfortunately, extending DLs with rules significantly affects the computa-
tional properties of the resulting formalism. In [17], it was shown that integrat-
ing recursive Horn rules with even moderately expressive DLs makes reasoning
undecidable. Hence, various syntactic restrictions on the rules and the DL have
been investigated to regain decidability. For example, CARIN [17] proposes role
safety, according to which at least one variable from a literal with a role predi-
cate must also occur in a non-DL-literal in the rule body. AL-log [6] and DL-safe
rules [20] explore a related notion, which was recently generalized in DL+log [23]
to weak safety: each variable from the rule head must occur in a non-DL-literal
in the rule body. Weakly safe rules can derive facts only about explicitly known
individuals; however, in contrast to AL-log and DL-safe rules, the body literals
of DL+log rules can be matched to existentially introduced individuals. Thus,
DL+]og generalizes conjunctive queries over DL knowledge bases.

Note that the shortcomings in relational expressivity have been partially ad-
dressed in the DL SROZQ [16]. This logic extends OWL-DL with complex role
inclusion axioms, such as hasFather o hasBrother C hasUncle, where o stands
for role concatenation. To make reasoning decidable, these axioms must be reg-
ular—that is, compatible with a certain acyclic ordering. For example, the pre-
vious axiom alone is allowed, but it cannot be used together with the axiom
hasChild o hasUncle C hasBrother, as this would create a cycle in the defini-
tions of hasBrother and hasUncle. We discuss the relationship between SROZQ
and rule-based solutions on an example in Section 5.

4.2 Autoepistemic Nonmonotonic Extensions of DLs

Many extensions of DLs with nonmonotonic features are based on autoepistemic
logics, as they allow for introspection—the ability to reason about one’s own
beliefs. In these proposals, DLs are extended with an autoepistemic knowledge
operator K, which can be applied to concepts and roles with an intuitive meaning
“is known to hold.” Consider again the example from Section 3 of asking whether
two cities are not connected by a flight: whereas O [ —flight(c,d) holds due
to the open-world semantics of OWL, we have O = =K flight(c, d), intuitively
meaning that “c and d are not known to be connected by a flight.” A formula
K« is true if « is true in each first-order model I of a knowledge base O.
Autoepistemic reasoning can be integrated with DLs in two distinct ways.

Epistemic Operators in Queries. An approach to autoepistemic querying of DL
knowledge bases® was presented in [5], and it was recently generalized to the

6 Actually, a more general KR formalism was presented in [5], in which K can also
occur in the DL knowledge base. However, a reasoning algorithm has been presented
only for the case of ordinary knowledge bases and epistemic queries.



Epistemic Query Language (EQL) [2]. We overview here EQL-Lite(Q)—a frag-
ment of EQL with favorable computational properties. Given a first-order DL
query language Q, EQL-Lite(Q) queries are first-order formulae built over the
atoms of the form K g, where ¢ is a query expressed in the language Q. For
example, the cities not connected by a flight can be retrieved using the query
qlz,y] = K ¢'[x,y], where ¢'[x,y] = hasFlight(x,y) is a first-order (conjunc-
tive) query. Since K can occur only in queries, the semantics of K is layered
on top of the standard DL semantics in a nonintrusive way. In fact, K can be
understood as the consequence operator, and EQL-Lite(Q) can be understood
as an algebra for manipulating first-order consequences of O.

Epistemic Operators in the Knowledge Base. Autoepistemic query languages
do not provide default negation or exception modeling; to enable such features,
autoepistemic reasoning must be tightly integrated with ordinary DL reason-
ing. This can be achieved by allowing K to occur in DL axioms. Usually, a
negation-as-failure operator not—intuitively understood as “can be false”—is
added as well. The first-order version of such a logic is known as the logic of min-
imal knowledge and negation-as-failure (MKNF) [18], and it generalizes several
important nonmonotonic formalisms, such as logic programming under stable
model semantics [9] and default logic [21].

Based on these principles, the authors extend in [7] the DL ALC with an
autoepistemic knowledge operator K and an autoepistemic assumption operator
A (which is semantically equivalent to = not from the first-order MKNF). The
authors also present a decision procedure for an expressive fragment of this logic.
Such a logic elegantly addresses the problems from Section 3 related to nonmono-
tonic reasoning, while being fully compatible with the underlying semantics of
DLs. It clearly provides for closed-world querying, and A directly corresponds to
default negation. It also enables defining integrity constraints and provides for
exception modeling. For example, the problem of dextrocardiacs from Section 3
can be modeled as K Human M — A Dextrocardiac € K HeartOnLeft.

5 Integrating OWL and LP by Hybrid MKNF KBs

Related approaches presented in Section 4 may give us important clues on how
to seamlessly integrate OWL with logic programming. On the one hand, a rule
formalism layered on top of a DL may address the problems related to rela-
tional expressivity and the lack of polyadic predicates. On the other hand, the
autoepistemic extensions of DLs integrate closed- and open-world reasoning and
thus provide a common logical framework for nonmonotonic extensions of DLs.
By integrating these two formalisms, we have developed a novel approach that
can be used to seamlessly integrate any DL with LP-style rules. Due to space
constraints, we give here only a high-level overview of our proposal; for a com-
plete definition, complexity, and decision algorithms, please see [19].



A hybrid MKNF knowledge base KC consists of a knowledge base O in any
decidable description logic DL and a set P of MKNF rules of the following form:

9) KH V...vVKH, —KB{,...,KB} not By ,...,not B

Asin SWRL, H;, B, and B; are first-order atoms of the form P(ty,...,t,). For
P = = or a predicate occurring in O, the atom is a DL-atom; otherwise, it is a
non-DL-atom. We assume that DL comes with an operator 7 that translates any
DL knowledge base O into a formula 7(QO) of first-order logic with equality. The
semantics of our formalism is defined by mapping K into the following first-order
MKNF formula,where x is the set of free variables of a rule r:

7(K)=Kn(O) A /\ vx T

To obtain a logic with intuitive consequences, we make the standard names
assumption, which imposes certain restrictions on the models of 7(/C); for more
details, please refer to [19]. All inference problems for I, such as satisfiability or
entailment, are defined w.r.t. 7(K) in the obvious way.

As we discuss in [19], such a formalism can fully capture the semantics of
SWRL and DL+log [23]. The only approach for combining (possibly nonmono-
tonic) rules with DLs that we are aware of and that cannot be captured using
hybrid MKNF rules is the one by Eiter et al. [8]

Similarly to related extensions of DLs with rules, our logic is undecidable in
the general case. We address this using the well-known concept of DL-safety: an
MKNF rule is DL-safe if each variable in the rule occurs in a non-DL-atom of
the form K A in the rule body. Notice that a rule r can automatically be made
DL-safe by appending to its body a special literal K O(x) for each variable z,
and by adding an assertion K O(«) for each individual « occurring in . We shall
discuss the consequences of this transformation on the semantics of r shortly;
moreover, an in-depth discussion of this issue can be found in [20]. We believe
that our approach can easily be extended to handle weakly safe rules.

In [19] we present decision procedures for different types of rules. Further-
more, we analyze the data complexity of reasoning (the complexity under the
assumption that the TBox and the rules are fixed, but the ABox varies). As-
suming that reasoning in DL is data complete for NP (which is the case for
expressive DLs such as SHZQ), our logic has the same complexity as the cor-
responding fragment of logic programming. Furthermore, we identify fragments
with polynomial data complexity, which are particularly interesting for practice.

The semantics of hybrid MKNF knowledge bases exhibits two important
properties. On the one hand, it is fully compatible with OWL: if P = (), then
K E aif and only if O | « for any first-order formula «. In other words, all stan-
dard DL questions are answered in the usual way. On the other hand, MKNF is
also fully compatible with logic programming: in [18] it was shown that a dis-
junctive logic program under stable model semantics is equivalent to the MKNF
theory where each rule is replaced by an MKNF implication (9). Hence, our
formalism reduces to logic programming for @ = (). Function symbols are not



Table 1. A Hybrid MKNF Knowledge Base about Cities

(10) historicCity T FhasChurch.church Historic cities have churches.
(11) church C 3designedBy.architect Churches are designed by architects.
K famousCitizen(z, z) Architects are famous citizens in cities
(12) K hasChurch(z,y), K designedBy(y, 2), where they build their churches
K O(z), KO(y), K O(2) Y '
(13) 3famousCitizen.T T interestingCity Cities with famous people are interesting.
(14) historicCity(Barcelona) Barcelona is a historic city.
(15) hasChurch(Barcelona, SagradaFamilia) The famous church in Barcelona...
(16) designedBy(SagradaFamilia, Gaudi) ...was designed by Antonio Gaudi.
(17) seasideClity C JhasRegion.beach Seaside cities have a beach.
(18) beach C recreational Beaches are for recreation.
(19) JhasRegion.recreational = livable City Livable cities provide for recreation.
(20) portCity(Barcelona) Barcelona is a city with a port.
(21) portCity(Hamburg) Hamburg is a city with a port.
(22) —seasideCity(Hamburg) Hamburg is not a seaside city.
(23) K ?{GSOZQ(Z)O’II({(é)(?;; K designedBy(z, y), Auxiliary for the following rule.
(24) — K church(z), not DesignOK (z), K O(z)| Each church must have an architect.
(25) church(HolyFamily) Holy Family is a church.
(26) HolyFamily ~ SagradaFamilia Definition of synonyms.
(27) —seasideCity = notSC An atomic name for —seasideCity.
(28) K sl?;z(i‘iggggg,:ot notSC(x), K O(x) Port cities are usually at the seaside.
(29) K SKugli]ijg:élz(x), K historicCity(z) Suggest to visit livable and historic cities.
(30) —livableCity = notLivableCity An atomic name for —livable.
(31) K Consider(z) «— Take cities that are not known to be
not notLivableCity(z), K O(x) unlivable into consideration as well.

Note: DL-predicates start with a lowercase, and non-DL-predicates with an uppercase
letter. There is an assertion O(a) for each object a.

allowed to occur in the rules, since this would make query answering undecid-
able. However, from the standpoint of the semantics, extending the formalism
with function symbols is straightforward, and identifying decidable fragments is
an interesting topic for future research. Finally, MKNF rules can also be used
to integrate OWL with languages providing an object-oriented view over logic
programming, such as F-Logic or WSML.

At first glance, our proposal may seem to be difficult to use and understand.
However, we believe MKNF rules to be quite intuitive: just read K A as “A is
known to hold” and not A as “it is possible for A not to hold.” We demonstrate
this on the following example, which also shows how MKNF rules address the
requirements from Section 3. Imagine a system helping us to decide where to go
on holiday, based on the tourism ontology K shown in Table 1.

The impact of DL-safety is demonstrated by axioms (10)—(13). By (10) and
(11), each historic city « has at least one church 3, which has at least one
architect . By (12), v is a famous citizen of a so, by (13), « is an interest-
ing city. Now if (12) were a normal (non-DL-safe, first-order) rule, one might
perform this inference for any individuals «, 8, and -, which would thus im-
ply K | historicCity T interestingCity. However, (12) is DL-safe—all variables
occur in an atom with the predicate O. Hence, it is applicable only to the individ-



uals known in the ABox by name, and not to those introduced by the existential
quantifier, so we cannot conclude that interestingClity subsumes historicCity.
Note that (12) could be stated in SROZQ using a “non-DL-safe” role inclusion
axiom, and this would correctly imply the subsumption relationship.

Whereas making rules DL-safe usually restricts the subsumption inferences,
it typically has less impact on ABox query answering. Namely, (14)—(16) specify
the names of a church in Barcelona and its architect. All variables in (12) can
now be bound to known individuals, so K | famousCitizen(Barcelona, Gauds);
by (13), we derive K |= interestingCity(Barcelona). Hence, DL-safety is a com-
promise that provides for ABox query answering at the expense of some sub-
sumption inferences if expressivity beyond SROZQ is needed, but without losing
decidability. DL-safety is crucial for nonmonotonic reasoning: without it, most
nonmonotonic logics with existential quantification are not even semidecidable.

Consider an integrity constraint requiring that an architect should be explic-
itly specified for each explicitly mentioned church. One might intuitively write
the rule «— K church(x), not designedBy(x,y), K O(x), K O(y) (paraphrased as
“it is an error to have a known church without a known designer”). However,
this rule is incorrect: all variables in rules are universally quantified, so this rule
requires each church to be connected through designedBy to each other object.
To formulate the integrity constraint correctly, we introduce the auxiliary rule
(23) which projects the variable y from designedBy(z,y), and then use the result
in (24) to identify the churches without a designer.

Nonmonotonic formalisms usually assume that distinct constants mean dif-
ferent things—a feature known as unique name assumption (UNA). Let us for
the moment assume that K does not contain (26). We would then intuitively
expect (24) to be violated, since the designer of HolyFamily has not been spec-
ified. However, without UNA, I would be satisfiable, and it would entail that
HolyFamily and SagradaFamilia are the same things. To avoid such counterin-
tuitive consequences, logic programming assumes UNA by default.

In contrast, OWL does not employ UNA: explicit equality statements can
be used to define synonyms. We integrate OWL with logic programming by
using the standard names assumption. Roughly speaking, we allow that two
individuals are equal only if there is explicit evidence for doing so. For more
information on this issue, please refer to [19]; we just note here that such a
semantics does not change any standard OWL consequences. Returning to our
example, we make HolyFamily and SagradaFamilia synonyms by (26), which
then makes (24) satisfied for (16) and (25).

Rule (28) asserts the common-sense knowledge that port cities are usually
at the seaside, allowing us to conclude K [ seasideCity(Barcelona). However,
(28) allows for exceptions: the atom not notSC(z) basically says “if not proven
not to be at the seaside.” (Axiom (27) is needed because only atomic concepts
can occur in MKNF rules.) According to (22), Hamburg is an exception (it is
located on the river Elbe), so the default conclusion K = seasideCity( Hamburg)
of (28) is suppressed, as it would lead to contradiction.



The rule (29) is intended as a query that suggests which cities to visit. Even
though the conclusion seasideCity( Barcelona) was derived by nonmonotonic rea-
soning, it implies further conclusions through monotonic reasoning. Namely, ax-
ioms (17)—(19) imply K = livableCity(Barcelona), which is derived by standard
DL reasoning involving unnamed individuals (introduced by JhasRegion. Beach).
Hence, K = Suggest(Barcelona).

Finally, (31) shows how default negation is layered over open-world seman-
tics. Intuitively, MKNF performs open- and closed-world inferences “in paral-
lel.” For example, K & livableCity (Hamburg) and K = —livableCity (Hamburg)
hold according to the usual DL semantics. By reformulating these questions
with closed-world interpretation in mind, we get K = not livable City (Hamburg)
(Hamburg is not known to be livable) and K |= not notLivable(Hamburg) (Ham-
burg is not known not to be livable either). Hence, (31) allows us to conclude
Consider ( Hamburg)—even though we do not know for sure that Hamburg is
a livable city, we do not know the opposite either, so it might still be worth
a visit. Intuitively speaking, the DL part of K is interpreted under open-world
semantics; however, K and not allow the user to put on “closed-world glasses”
and examine the nonmonotonic consequences of the DL part. By using these
consequences in rules, one can enforce new nonmonotonic conclusions.

6 Conclusion

Motivated by the ongoing controversy in the Semantic Web community about the
proper layering of a nonmonotonic rule formalism on top of OWL, we analyze the
shortcomings of OWL that are deemed to be solvable using logic programming.
Furthermore, we overview existing formalisms that address these requirements.
We thus gain insight into how OWL could be integrated with rules without
sacrificing semantic compatibility with either formalism.

By combining the ideas of SWRL and DL-safe rules with the approaches for
autoepistemic extensions of DLs, we propose a new formalism of hybrid MKNF
knowledge bases that seamlessly integrates OWL with logic programming. We
present the features of our formalism on a nontrivial example. Under the stan-
dard DL-safety assumption, our formalism is decidable, and its data complexity
is not higher than for plain logic programming. Therefore, our formalism pro-
vides a solid foundation for the integration of OWL and logic programming, as
well as a framework for integrating several considered proposals within RIF.

The main challenge for our future work is to implement our approach in the
KAON27 reasoner and thus validate the usefulness of our formalism in practice.
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