
Reasoning Support for Expressive Ontology

Languages Using a Theorem Prover

Ian Horrocks and Andrei Voronkov ?

The University of Manchester
{horrocks|voronkov}@cs.man.ac.uk

Abstract. It is claimed in [45] that first-order theorem provers are not
efficient for reasoning with ontologies based on description logics com-
pared to specialised description logic reasoners. However, the develop-
ment of more expressive ontology languages requires the use of theorem
provers able to reason with full first-order logic and even its extensions.
So far, theorem provers have extensively been used for running experi-
ments over TPTP containing mainly problems with relatively small ax-
iomatisations. A question arises whether such theorem provers can be
used to reason in real time with large axiomatisations used in expres-
sive ontologies such as SUMO. In this paper we answer this question
affirmatively by showing that a carefully engineered theorem prover can
answer queries to ontologies having over 15,000 first-order axioms with
equality. Ontologies used in our experiments are based on the language
KIF, whose expressive power goes far beyond the description logic based
languages currently used in the Semantic Web.

State-of-the-art theorem provers for first-order logic (FOL) are highly sophis-
ticated and efficient programs. Moreover, they are very flexible tools and can be
tuned to a number of applications. For example, Vampire [35] provides a large
collection of parameters that can be used to give better performance for various
classes of applications. In addition, Vampire implements a number of literal se-
lection functions and internally contains a library for defining such functions in
a simple way; this makes it possible to simulate various proof-search algorithms
and even provide decision procedures for decidable classes of first-order logic
(see, e.g., [23]).

However, there was a common belief that provers like Vampire cannot di-
rectly be used for efficient reasoning with very large ontologies using expressive
languages such as KIF [14] for two reasons. Firstly, these provers are optimised
for reasoning with relatively small axiomatisations. Secondly, they do not sup-
port some extensions of FOL required in KIF.

In this paper we describe an adaptation of Vampire to support reasoning
for expressive ontology languages and present experimental results which show
that it can be used for efficient reasoning with large ontologies using extensions
of the first-order language.

? The authors are partially supported by grants from EPSRC.

This paper is structured as follows. In Section 1 we briefly overview expres-
sive languages for ontologies, including the language KIF, and FO provers. In
Section 2 we describe the adaptation of Vampire for reasoning with large ontolo-
gies. For our experiments we selected ontologies implemented in KIF since they
offer a high degree of sophistication compared to ontologies using Description
Logic (DL) based languages, and there are publicly available KIF-based ontolo-
gies containing thousands of FO formulas with equality. However, our adaptation
is quite general, and could be used for other expressive ontology languages.

Note that there is no way to compare Vampire with description logic provers
on these ontologies, since their subsets corresponding to description logic lan-
guages and hardly interesting and not representative.

Section 3 contains a summary and a description of future work. Finally, in
the appendix we demonstrate the efficiency and advanced features of Vampire

by showing two (out of a large number of) inconsistency proofs found by it in
SUMO and a terrorism ontology.

1 Introduction

Expressive Languages for Ontologies Ontologies play a major role in the
Semantic Web where they are widely used in, e.g., bio-informatics, medical ter-
minologies and other knowledge management applications [5, 44, 47, 41, 34, 40].
They are also of increasing importance in the Grid, where they may be used, e.g.,
to support semantic based discovery, execution and monitoring of Grid services
[9, 46, 11].

State of the art ontology languages, such as DAML+OIL [48] and OWL
[3], are based on expressive description logics (DLs). This establishes a firm
formal foundation for the language, e.g., by providing well-defined semantics
and a broad understanding of the computational properties of key inference
problems; it also allows applications to exploit the reasoning services provided
by highly optimised DL reasoners such as FaCT and Racer [19, 15, 13]. It is widely
recognised, however, that the expressive power of such languages is inadequate
in some applications, and in particular applications related to the discovery
and composition of Web and Grid services. This has led to efforts to develop
languages based on more expressive logics up to and including full first-order
predicate logic [17, 38, 6, 4].

Motivation The availability of efficient reasoners has proved to be important
in both the design and deployment of ontologies. Designing ontologies is an ex-
tremely complex task, and modern ontology design tools typically use reasoners
to support the ontologist by highlighting inconsistencies in the design and allow-
ing them to compare their intuitions about implicit subsumption relationships
between classes with those computed by the reasoner [2, 31]. This kind of rea-
soning support is, for example, provided by both OilEd and the ProtégéOWL
plugin, tools which are increasingly used for ontology development in e-Science.

Applications of ontologies typically involve querying, and this again means us-
ing a reasoner, e.g., to determine when an individual (or a tuple of individuals)
satisfies a query expression, or to retrieve all individuals (or tuples) satisfying a
given query [22, 10]. For example, a biologist may want to answer queries about
gene product data annotated with terms from the Gene Ontology, with a rea-
soner being used to determine which gene products are instances of complex
descriptions that also use terms from the ontology [16].

The known decidability of key reasoning problems (such as satisfiability, sub-
sumption and instance retrieval), and the availability of efficient reasoners based
on highly optimised tableau decision procedures, were crucial factors in motivat-
ing the DL based design of DAML+OIL and OWL [19, 20]. Decidability comes,
however, at a cost in terms of restricted expressive power. In particular, while
such languages are generally equipped with a relatively rich set of constructors
for use with classes (unary predicates), they only provide a very limited set of
constructors for use with properties (binary predicates). These limitations can
be onerous in some applications, in particular those where aggregation plays a
prominent role. For example, in complex physically structured domains such as
biology and medicine it is often important to describe structures that are exactly
equivalent to the aggregation of their parts, and to have properties of the com-
ponent parts transfer to the whole (a femur with a fractured shaft is a fractured
femur) [32]. The importance of this kind of knowledge can be gauged from the
fact that it can invariably be expressed in ontology languages designed specifi-
cally for medicine, even those that are otherwise relatively weak [33, 40]; various
“work-arounds” have also been described for use with ontology languages that
cannot express this kind of knowledge directly [37].

Similarly, in grid and web services applications, it may be necessary to de-
scribe composite processes in terms of their component parts, and to express
relationships between the properties of the various components and those of
the composite process. For example, in a sequential composition of processes
it may be useful to express a relationship between the inputs and outputs of
the composite and those of the first and last component respectively, as well as
relationships between the outputs and inputs of successive components [44].

These limitations can be overcome to some extent by extending the DL lan-
guage with a so-called role-box [21], but in order to maintain decidability it is
necessary to impose severe restrictions on what can be expressed. For example,
this framework would not allow the expression of simple family relationships
such as the fact that “uncle” is equivalent to the composition of “parent” and
“brother”.

In addition to these problems with domain ontologies, many richly axioma-
tised foundational ontologies, such as SUMO1 and DOLCE [29], are based on
full FOL with relations of arbitrary arity, and even on extensions of FOL using
relations with variable arities. This makes it impossible for DL based tools to
exploit these foundational ontologies in order to structure or validate domain
ontologies, and to improve interoperability between ontologies.

1 See http://suo.ieee.org/

A recognition of the limitations of DL based ontology languages, in par-
ticular in web services applications, has led to proposals to extend them with,
e.g., Horn-clause axioms [17, 18], or even axioms supporting arbitrary use of first
order quantification [6, 4, 38]. These extended languages are based on larger frag-
ments (than the DL fragment) of FOL, and may even be equivalent to full FOL;
as a consequence, computing class consistency and subsumption is no longer
decidable in general.

The utility of such languages, and the applications that use them, will cru-
cially depend on the provision of reasoning support: there is little point in build-
ing complex models of web services without any means of manipulating or query-
ing them.

First-Order Theorem Provers First-order theorem provers have tradition-
ally been used for the same purpose as DL-based ontology reasoners: providing
reasoning services. They have a long history: indeed, some first-order theorem
provers had already been implemented in the 1960s. There are, however, many
important differences between FO provers and DL reasoners which explain why
FO provers have not yet achieved widespread use in the Semantic Web.

FO provers deal with an undecidable logic. They are highly optimised for
general-purpose reasoning, and are especially optimised for reasoning with equal-
ity. For example, they can often find very complex combinatorial proofs of identi-
ties in algebras. FO provers are based on a highly advanced theory of saturation
algorithms with redundancy. This theory is very flexible—for example, com-
pleteness theorems in it have been proven for inference systems using arbitrary
literal selection functions that can simulate various proof-search strategies, such
as bottom-up or top-down reasoning.

Recently, there have been papers showing how FO provers can be used to
reason in theories with a rich definitional structure [8, 12]. Experiments into their
use for classifying DL-based ontologies, using a naive translation of DL formulas
into first-order formulas, have also shown encouraging results [45].

Nonetheless, [45] also shows that on DL-based ontologies using simple lan-
guages DL reasoners are much faster than a straightforwardly used FO prover.
However, the use of DL reasoners for more expressive languages faces a num-
ber of obstacles. For example, different languages need different reasoning al-
gorithms, and an efficient implementation of a new inference algorithm may
require the re-implementation of data structures supporting efficient inference
procedures. In contrast, FO provers use a well-established uniform inference
mechanism with thoroughly investigated implementation techniques and data
structures (see, e.g., [39, 35, 36]); tuning them for new applications usually re-
quires only implementation of new preprocessing algorithms, and finding the
best settings for a wide range of already available parameters.

Traditionally, FO provers have been used for proving theorems in mathe-
matics, and for software and hardware verification. For these applications the
axiomatisation is normally relatively small, and also has a small number of func-
tion and predicate symbols. In contrast, ontologies may contain a very large

number of axioms and predicate symbols. Moreover, axiomatisations of differ-
ent theories in FOL offer a great variety of different constructs, while ontologies
typically contain many similarly-structured “definitions”.

The experimental results in [49] show that the inverse method (a non-tableau
method based on a saturation algorithm) can be implemented just as efficiently
as tableau-based DL provers. The implementation reported in this paper required
less than one second to answer queries to the SUMO ontology, which contains
about 5,000 first-order axioms with equality. Moreover, it took only a few seconds
to to find a large number of non-trivial inconsistencies in various versions of
SUMO and in an even larger terrorism ontology.

The KIF Language KIF is a language for expressing knowledge that contains
full first-order logic, and extends it with several features. First, it supports some
datatypes, for example real numbers, and evaluable functions on these datatypes.
Second, it can use arbitrary terms, including variables, as function and predicate
symbols. Third, it has row variables which range over sequences of terms of
arbitrary finite lengths. As a consequence, KIF allows for functions and relations
of variable arities. The semantics of KIF is described in [14].

Support for datatypes seems to be crucial for many applications, and there
are numerous proposals to include datatypes in Semantic Web languages. Full
support of datatypes in first-order logic is impossible: having a datatype of in-
tegers with simple operations on it means that one can express arithmetic, and
therefore there is no hope for the automation of reasoning in first-order logic
with datatypes.

The second feature of KIF—variables as function and predicate symbols—is
not well-understood. Indeed, it was believed that one could translate this feature
in first-order logic by adding a (meta) predicate holds , and replacing formulas
like x(t) by holds(x, t), but [25] have shown that this is not so.

Concerning row variables, [14] note that they are not first-order, but their full
expressive power should be further investigated. The following theorem shows
that one can express arithmetic in first-order logic with row variables.

Theorem 1. There exists a polynomial-time translation τ of arithmetic into

predicate logic with row variables such that for every sentence F or arithmetic, F

holds in the standard model of arithmetic if and only if τ(F) is valid in predicate

logic with row variables.

This theorem shows that there is no hope for the automation of reasoning in
first-order with arbitrary row variables; in particular, the set of theorems of
first-order logic with row variables is not recursively enumerable.

2 Adapting Vampire for Large Ontologies

Query Answering Query answering requires retrieving individuals which sat-
isfy a given formula. That is, given a query Q(x̄) with free variables x̄, one has

to find (all, or a given number of) vectors of terms t̄ such that Q(t̄) is a logical
consequence of formulas in the ontology. To implement query answering, one
needs to modify inference algorithms to return individuals satisfying the query.
To implement it efficiently against large knowledge bases, one has to, in addition,
be able to answer a sequence of queries without reloading the ontology.

Query answering requires retrieving individuals which satisfy a given formula.
For example, one can ask the following query to find all individuals who published
a paper at FoIKS

has_paper(X,’FoIKS’)

To implement query answering, one needs to modify inference algorithms to
return individuals satisfying the formula.

Returning Individuals Database systems perform query answering but not the-
orem proving. DL reasoners were originally designed for theorem proving, but
some of them can now perform restricted forms of query answering as well. For
FO provers, query answering is not very different from theorem proving and
can be implemented essentially at no extra cost. The standard way of providing
query answering is via an answer predicate. For example, for the above query
with one variable X we introduce a unary answer predicate answer, replace the
query by the formula

has_paper(X,’FoIKS’) -> answer(X)

and run a standard saturation algorithm with one difference: instead of searching
for a derivation of the empty clause (to signal that a refutation is found) we
search for derivations of clauses whose only predicate symbol is answer. For
example, if one derives

answer(’Andrei’),

then ’Andrei’ is an answer to the query. Answer predicates are a very powerful
mechanism. They can be used for finding multiple answers, disjunctive answers,
or general answers with variables. For example, a derivation of

answer(’Andrei’) \/ answer(’Ian’),

means that either ’Andrei’ or ’Ian’ satisfy the query (but there may be not
enough information for a definite answer). Likewise, having derived answer(Y),
where Y is a variable, means that every object satisfies the query (which may
signal that something is wrong with the ontology or with the query).

Answer predicates are implemented in a number of theorem provers, includ-
ing Vampire, Otter [28] and Gandalf [43]. For Vampire, one can also specify
that only definite answers should be considered. To implement definite answers,
Vampire replaces any clause a(s1, . . . , sn) ∨ a(t1, . . . , tn) ∨ C, where a is the
answer predicate, by the clause s1 6= t1 ∨ . . . ∨ sn 6= tn ∨ a(t1, . . . , tn) ∨ C.
Completeness of resolution with answer predicates was studied in [42].

Answering Sequences of Queries One essential difference between theorem provers
and query answering systems is that the former are normally invoked to solve a
single problem. If another problem has to be solved, the theorem prover has to
be called again. The cost of activating a query answering system working with
a large ontology may be prohibitive. For example, Vampire implements sophis-
ticated preprocessing algorithms for first-order formulas, and the collection of
clauses obtained from them can be further processed for simplifications. It is
better to have a system which can answer a sequence of queries to an ontol-
ogy or collection of ontologies without restarts. Vampire solves this problem by
implementing pre-compiled knowledge bases.

Figure 1 shows a part of Vampire’s bag file2 that uses pre-compiled knowl-
edge bases in Vampire. The command kb_load reads an ontology or a knowl-
edge base from a file and compiles it. This is done by preprocessing formulas in
the ontology, converting them to CNF, and applying various simplification rules
to the CNF. The resulting set of clauses is then stored internally, along with
some information that allows one to quickly retrieve only a part of the ontology
that is relevant to a particular query. The command kb_status can be used to
enable or disable loaded ontologies (disabled ontologies are not used for query
answering but remain stored and pre-compiled). The formulas in the enabled
knowledge bases can be used for query answering. Answering some queries may
require information from several knowledge bases. As far as we know, Vampire

is the only first-order prover implementing pre-compiled knowledge bases.

Goal-Oriented Proof-Search for Query Answering When answering queries to
large ontologies, it is of paramount importance that query answering be goal-
oriented. One can use the modern theory of resolution (see [1]) to make resolution
proof-search goal-oriented. For example, one can use literal selection functions
and term orderings that prefer literals and terms coming from the goal. Another
possibility is to use the set-of-support strategy, in which inferences involving only
clauses not derived from the query are prohibited. The use of the set of support
strategy together with selection functions is incomplete, so we used the following
modification of this strategy: we select all literals in clauses not derived from the
query. Experimental results have shown that this variant of the set-of-support
strategy works very well: a typical query response time for queries to SUMO
falls within one second.

We believe that in future one can improve goal-oriented proof search by also
providing relevance filters, which will allow one to focus on a small part of the
ontology. This seems to be especially promising for ontologies, in which the ma-
jority of knowledge is represented as definitions of predicates. Such a filtering
technique proved indispensable in the use of theorem provers for classifying on-
tologies based on the subsumption relation (see [45]).

2 A bag file may contain any kind of information for Vampire, including commands,
options, and queries.

<!-- load the terrorism ontology -->

<kb_load kb="terrorism" syntax="kif"

file="SemWeb/terrorism.kif" />

<!-- answer the following query to the terrorism ontology -->

<query max_answers="10" time_limit="5">

(instance ?X ?Y)

</query>

<!-- load SUMO and disable the terrorism ontology -->

<kb_load kb="sumo" syntax="kif"

file="SemWeb/sumo139.kif" />

<kb_status kb="terrorism" enabled="no" />

<!-- answer the following query to SUMO -->

<query max_answers="10" time_limit="5">

(instance ?X ?Y)

</query>

<!-- enable the terrorism ontology -->

<kb_status kb="terrorism" enabled="yes" />

<!-- answer the same query using formulas from both SUMO

and the terrorism ontology -->

<query max_answers="10" time_limit="5">

(instance ?X ?Y)

</query>

<!-- assert two new facts about the instance relation -->

<assert syntax="kif">

(instance a b)

(instance b c)

</assert>

<!-- answer the same query using formulas from SUMO,

the terrorism ontology and newly asserted facts -->

<query max_answers="10" time_limit="5">

(instance ?X ?Y)

</query>

Fig. 1. Pre-compiled Knowledge Bases

Consistency Checking For DL-based ontologies, consistency (of the ontology
as a whole) is usually not an issue. For ontologies and knowledge bases using ex-
pressive languages, such as FOL, consistency may be a problem. Such ontologies
may be created by people using the same symbols with a different meaning, peo-
ple who do not know logic well, or people who understand the ontology domain
differently. Our experiments with several versions of SUMO [30] have shown that
all of them had numerous axioms creating inconsistency. Two examples (one of
them for a terrorism ontology) are given in the appendix.

Checking consistency of ontologies is a more difficult problem than query an-
swering. For query answering one can focus on the query and formulas derived
from it. For consistency-checking, there is no query to focus on. Consistency
checking in Vampire was implemented by a standard saturation algorithm. How-
ever it turned out that the standard options used for theorem proving did not
perform well for large ontologies. (This may be one of the reasons for the rel-
atively slow performance of Vampire reported in [45].) By turning off some
simplification rules (backward subsumption, backward demodulation, forward
subsumption resolution) and fine-tuning some other options, we were able to
increase the speed by a factor of 12.

Beyond First-Order Logic Even relatively simple extensions of both DLs
and FOL can be very difficult to implement or even lead to theories for which
no complete algorithms exist. For example, it is not hard to achieve the full
expressive power of arithmetic by adding integers as a datatype and using this
datatype in an unrestricted way. Nonetheless, extensions of first-order logic may
turn out to be crucial for applications, and in this case one has to find a com-
promise between the expressive power of such extensions and the possibility of
implementing them efficiently on top of existing implementations. In this section
we describe a light-weight implementation in Vampire of some features taking
the system beyond first-order logic. We illustrate the utility of such extensions
by showing inconsistency proofs for ontologies using these features.

Support for Datatypes Theorem provers are not able to deal with datatypes
(such as integers and strings) other than via complex axiomatisations that would
severely degrade performance. Typical ontologies, particularly in web services
applications, will contain many datatypes and data values recording knowledge
about names, addresses, prices and so on. Full support of these datatypes in
a prover is impossible since first-order logic with datatypes is not recursively
enumerable. However, a limited form of reasoning with datatypes can be imple-
mented.

Vampire supports three datatypes: integers, real numbers and strings. It
can understand constants of these datatypes occurring in the input ontology, for
example it knows that 1 is an integer constant and ”one” is a string constant. It
also implements a number of built-in functions and relations on these datatypes,
such as comparison operators on numeric datatypes or concatenation of strings.
Vampire can evaluate simple expressions. For example, it can evaluate 2+3 < 6

to true. It cannot do more complex reasoning tasks with the datatypes, for
example, it cannot to derive a contradiction from the facts c < 2 and 3 < c, but
will be able derive a contradiction from them if the input contains the transitivity
axiom for <.

Moreover, Vampire has a mechanism that allows one to define new func-
tions and relations on the datatypes using recursive definitions, so in a way it
contains a small functional programming language inside. Such definitions can
be implemented using pre-oriented equalities and pre-selected literals. The abil-
ity to define new functions and relations on datatypes can become standard in
future expressive ontology languages.

Since there is no standard convention on the names for built-in functions
and relations on datatypes, Vampire also provides an interface for mapping the
input ontology names to the internal names for these functions and relations.

Meta-Predicates It is non-trivial to implement variables and functions as pred-
icate symbols, as there is no proof theory for this feature of KIF. If Vampire

finds such variables in the input, it transforms the input using the predicate
symbol holds , as mentioned in Section 1, and the function symbol apply . This
style of reasoning is incomplete, since Vampire does not implement reflection,
that is, the rule replacing holds(r , t1 , . . . , tn) by r(t1, . . . , tn) or vice versa. Even
the current lightweight implementation using holds was strong enough to answer
some queries related to transitive relations axiomatised by

transitive(u) ↔ ∀x∀y∀z(u(x, y) ∧ u(y, z) → u(x, z))

and to discover inconsistencies in SUMO, see the appendix.

Row Variables Theorem 1 implies the impossibility of reasoning with row vari-
ables. If all row variables are bound by essentially universal quantifiers (that is,
positively occurring universal or negatively occurring existential ones), then the
set of provable formulas is still recursively enumerable but one has to implement
reasoning modulo associativity, see [14]. Implementing reasoning modulo asso-
ciativity is very difficult, for example, two terms may have an infinite number of
minimal unifiers modulo associativity. It is pointed out in [14] that one can use
a weaker class of formulas with row variables in which a row variable may occur
only as the last argument. In this case it is enough to implement only sequence

variables [26].
However, one can note that the main use of row variables in SUMO is for

relations or relatively small arities. For this reason, Vampire only substitutes
for row variable sequences of variables of a bounded length. The default upper
bound on the length is 2 but it can be changed by the user.

If the input contains row variables, Vampire does the following:

1. Reject formulas that contain row variables bound by essentially existential
quantifiers;

2. Substitute every remaining row variable @ by sequences or ordinary vari-
ables x1, . . . , xi, such that i ranges over 0, . . . , n where n is the upper bound
specified by the user. This rule is called row variable expansion.

Appendix A gives an example involving reasoning with row variables. The latest
version of SUMO contains only two formulas rejected by Vampire.

Other issues

Proof Output It is important that an answer to a query comes with an expla-
nation. Likewise, when inconsistency is discovered, one needs an explanation to
find a source of inconsistency. One can also require that the answers provided
by an ontology reasoner could be checked by a proof checker. To this end, one
needs a system able to produce proofs. Most of the currently available theorem
provers produce a proof in some form. Vampire can produce proofs in several
formats, including XML. Our experiments on checking consistency of SUMO
have shown that the proof should be understandable by humans. Indeed, when
an inconsistency is discovered, one should find the axioms that cause inconsis-
tency and repair the ontology to remove all sources of inconsistency. We have
found that the proof format in which each inference is displayed separately is
easier to read and understand. Moreover, an ASCII proof is not very readable,
so we included an option to output proofs in LATEX. Both proofs in the appendix
have been generated by Vampire automatically and slightly edited to fit in the
paper size.

The output proof format of Vampire is still far from perfect. We believe that
further research should be done to improve presentation of complex computer-
generated proofs in a human-friendly form.

We are currently working on producing proofs checkable in O(n log n) time.
These proofs will be more detailed than the human-readable proofs but the abil-
ity to check proofs by using a proof-checker is indispensable both in debugging
the theorem prover, the use of the prover for safety-critical applications and
automatic analysis of proofs.

3 Future Work

The techniques we have described greatly improve the performance of Vampire

when answering queries to and checking the consistency of ontologies. Like other
resolution theorem provers, however, it is not very effective at proving satisfi-
ability, and hence at proving non-subsumption. This is a problem if Vampire

is to be used for general purpose ontology reasoning: in typical ontologies, for
example, most classes are satisfiable and most pairs of concepts are not in a
subsumption relationship.

Future work will, therefore, include investigations of a number of strategies
for addressing this problem. Firstly, we will investigate improved literal selec-
tion strategies (that exploit the structure of ontology axioms) to improve the
performance of Vampire on satisfiable problems. Secondly, we will investigate
the enhancement of existing model building methods (see, e.g., [24, 27, 7]), which
are designed to prove satisfiability in FOL. The idea here is to use similar tech-
niques to those we have already successfully employed in Vampire, in particular

using relevance filters to reduce the effective size of the ontology and exploiting
the special structure of ontology axioms (in this case to try to minimise the
problem of exponential explosion in model size). Finally, for suitable undecid-
able extensions of DLs (e.g., the proposed SWRL Horn-clause extension to OWL
[17, 18]), we will investigate the development of model building algorithms based
on existing tableaux decision procedures for DLs. Such an algorithm would still
be sound for satisfiability (i.e., it would only succeed in building a model if the
problem is satisfiable), but it will no longer be guaranteed to terminate.

We believe that a combination of some or all of these satisfiability testing
techniques with a suitably optimised resolution prover (such as Vampire) will
be able to solve the vast majority of problems encountered when reasoning with
ontologies.

References

1. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

2. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able ontology
editor for the semantic web. In F. Baader, G. Brewka, and T. Eiter, editors, KI
2001: Advances in Artificial Intelligence, volume 2174 of Lecture Notes in Computer
Science, pages 396–408. Springer Verlag, 2001.

3. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology language 1.0 reference. W3C
Recommendation, 10 February 2004. Available at http://www.w3.org/TR/owl-
ref/.

4. D. Berardi, M. Grüninger, R. Hull, and S. McIlraith. Towards a first-order ontology
for semantic web services. http://www.w3.org/2004/08/ws-cc/mci-20040904, sep
2004.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5):34–43, 2001.

6. H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, and G. Wagner.
First-Order-Logic RuleML. http://www.ruleml.org/fol/, 2004.

7. K. Claessen and N. Sörensson. New techniques that improve mace-style model
finding. In Proceedings of the Workshop Model Computation 2003, 2003.

8. A. Degtyarev, R. Nieuwenhuis, and A. Voronkov. Stratified resolution. Journal of
Symbolic Computations, 36(1-2):79–99, 2003.

9. A. Emmen. The grid needs ontologies—onto-what?, 2002.
http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.html.

10. R. Fikes, P. Hayes, and I. Horrocks. OWL-QL—a language for deductive query
answering on the Semantic Web. Journal of Web Semantics, 2004. To Appear.

11. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:
An open grid services architecture for distributed systems integration, 2002.
http://www.globus.org/research/papers/ogsa.pdf.

12. H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and de-
layed clause normal form transformation. In F. Baader, editor, 19th International
Conference on Automated Deduction (CADE-19), volume 2741 of Lecture Notes in
Computer Science, pages 335–349. Springer Verlag, 2003.

13. V. Haarslev and R. Möller. RACER User’s Guide and Reference Manual. Version
1.7.7, Sept. 2003.

14. P. Hayes and C. Menzel. A semantics for the knowledge interchange format. In
IJCAI 2001 Workshop on the IEEE Standard Upper Ontology, 2001.

15. I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. Cohn,
L. Schubert, and S. Shapiro, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Conference (KR’98), pages 636–
647, San Francisco, CA, June 1998. Morgan Kaufmann.

16. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: DL reasoning
with large numbers of individuals. In Proc. of the 2004 Description Logic Workshop
(DL 2004), pages 31–40, 2004.

17. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
pages 723–731. ACM, 2004.

18. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining owl and ruleml. W3C Note, 21
May 2004. Available at http://www.w3.org/Submission/SWRL/.

19. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design
of DAML+OIL: An ontology language for the semantic web. In Proc. of the 18th
National Conference on Artificial Intelligence (AAAI 2002), pages 792–797. AAAI
Press, 2002.

20. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

21. I. Horrocks and U. Sattler. The effect of adding complex role inclusion axioms in
description logics. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2003), pages 343–348. Morgan Kaufmann, 2003.

22. I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In
I. Horrocks and J. Hendler, editors, First International Semantic Web Conference
(ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages 177–191.
Springer Verlag, 2002.

23. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic
prover. In M. R. D.A. Basin, editor, Automated Reasoning - Second International
Joint Conference, IJCAR 2004, volume 3097 of Lecture Notes in Computer Science,
pages 326–330. Springer Verlag, 2004.

24. U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability
and building models. In I. P. Gent, H. van Maaren, and T. Walsh, editors, SAT
2000: Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2000. Also to
appear in a special issue of Journal of Automated Reasoning.

25. P. P.-S. I. Horrocks. Three theses of representation in the semantic web. In
Proceedings of the Twelfth International World Wide Web Conference, WWW2003,
pages 39–47, Budapest, Hungary, Jan. 2003. ACM.

26. T. Kutsia. Theorem proving with sequence variables and flexible arity symbols.
In M.Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR 2002), volume 2514 of Lecture Notes in Artificial
Intelligence, pages 278–291, Tbilisi, Georgia, 2002.

27. W. McCune. Mace4 reference manual and guide. Technical Memorandum 264,
Argonne National Laboratory, Aug. 2003.

28. W. McCune. OTTER 3.3 reference manual. Technical Memorandum 263, Argonne
National Laboratory, Aug. 2003.

29. P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for service ontologies:
Aligning OWL-S dolce. In S. Feldman, M. Uretsky, M. Najork, and C. Wills,
editors, WWW 2004, Proceedings of the 13th international conference on World
Wide Web, pages 563–572. ACM, 2004.

30. A. Pease, I. Niles, and J. Li. The Suggested Upper Merged Ontology: A large
ontology for the Semantic Web and its applications. In Working Notes of the
AAAI-2002 Workshop on Ontologies and the Semantic Web, Edmonton, Canada,
2002.

31. Protégé. http://protege.stanford.edu/, 2003.
32. A. Rector. Analysis of propagation along transitive roles: Formalisation of the

galen experience with medical ontologies. In Proc. of DL 2002. CEUR (http://ceur-
ws.org/), 2002.

33. A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W. D.
Solomon. The Grail concept modelling language for medical terminology. Artifi-
cial Intelligence in Medicine, 9:139–171, 1997.

34. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proc. of the
13th Nat. Conf. on Artificial Intelligence (AAAI 97), 1997.

35. A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

36. A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem
proving. Journal of Symbolic Computations, 36(1-2):101–115, 2003.

37. S. Schulz and U. Hahn. Parts, locations, and holes - formal reasoning about
anatomical structures. In Proc. of AIME 2001, volume 2101 of Lecture Notes
in Artificial Intelligence. Springer Verlag, 2001.

38. Common Logic Standard. http://cl.tamu.edu/.
39. R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexing. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 26,
pages 1853–1964. Elsevier Science, 2001.

40. K. Spackman. Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with snomed-rt. J. of the Amer. Med. Informatics
Ass., 2000. Fall Symposium Special Issue.

41. R. Stevens, C. Goble, I. Horrocks, and S. Bechhofer. Building a bioinformatics on-
tology using OIL. IEEE Transactions on Information Technology in Biomedicine,
6(2):135–141, 2002.

42. T. Tammet. Completeness of resolution for definite answers. Journal of Logic and
Computation, 5(4):449–471, 1995.

43. T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, 1997.
44. The DAML Services Coalition. DAML-S: Web service description for the semantic

web. In Proc. of the 2003 International Semantic Web Conference (ISWC 2003),
number 2870 in Lecture Notes in Computer Science. Springer Verlag, 2003.

45. D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks. Using Vampire to reason
with OWL. In Semantic Web 2004. Springer Verlag, 2004. to appear.

46. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, and P. Van-
derbilt. Grid service specification (draft). GWD-I draft , GGF Open Grid Services
Infrastructure Working Group, 2002.

47. M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology. Knowl-
edge Engineering Review, 13, 1998.

48. F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. Reference description of
the DAML+OIL (March 2001) ontology markup langauge, Mar. 2001.

49. A. Voronkov. k

K

: a theorem prover for K. In H. Ganzinger, editor, Automated
Deduction—CADE-16. 16th International Conference on Automated Deduction,
volume 1632 of Lecture Notes in Artificial Intelligence, pages 383–387, Trento,
Italy, July 1999.

A Appendix

In this appendix we give two inconsistency proofs found by Vampire. Each of the
proofs is explained in a separate section. We have not changed the formulation
of the problems but do not present them in the KIF syntax. The proofs were
produced using the LATEX output facility of Vampire. We had to edit them
slightly to fit in the paper size. We also renamed several functions and relations in
SUMO for a better readability using the renaming feature provided by Vampire.
For example, we write x : y instead of instance(x, y). A proof consists of a
sequence of inferences. Each inference infers a formula, called the conclusion of
an inference from zero or more formulas, called the premises of the inference. All
formulas occurring in the proof are numbered. Each inference is annotated by
the numbers of the premises, the number of conclusion, and inference rules used
in the inference. For example, the annotation of last inference in the first proof
means that formula 9 was obtained from formulas 1,2 and 8 using the resolution
and forward subsumption resolution inference rules. The symbol 2 denotes the
empty clause, which is logically equivalent to contradiction.

We have many examples of inconsistency proofs found by Vampire in the
latest versions of SUMO and the ontology of terrorism from the Sumo Web page
http://ontology.teknowledge.com. A typical proof occupies at least two pages,
so we cannot give them here in detail.

We give a very brief account of one (very short) proof of inconsistency of the
ontology of terrorism. This ontology has about 18,000 first-order axioms. This
example illustrates why most (if not all) of the previous provers would not be
able to find this inconsistency. Although the proof is relatively short, Vampire

generates over 60,000 formulas to find it.

Essentially, the proof is based on three axioms in the ontology. Two of the
axioms are facts asserting information about the number of victims of two Hamas
attacks. The problem with the axiomatisation of these attacks comes from the
fact that they were given the same name.

victimDeathCount (HAMAS -KnifeAttack -25 -Jun-92 , 0);
victimDeathCount (HAMAS -KnifeAttack -25 -Jun-92 , 2).

These two axioms look contradictory, but they do not contradict each other in
FOL. However, the ontology also contains the following axiom

victimDeathCount (x0, x3) ⊃
x3 = CardinalityFn(KappaFn(x4, and (patient(x0, x4),

holdsDuring(ImmediateFutureFn(x0),
attribute(x4,Dead))))).

This axiom looks quite complex, nonetheless it is easy to see that it implies
that in the relation victimDeathCount the second argument is a function of the
first argument. This and the two facts given above imply that 0 = 2. Since
Vampire knows simple arithmetic, it immediately derives contradiction. The
proof is found in 1.7 seconds on a computer with a 1GHz Intel processor and
2GB of RAM.

The proof is neither long nor very sophisticated. However, to find it one has to
apply the equality rule paramodulation to rather complex terms used in the last
formula. This would make it very difficult if possible at all to find it for a prover
not having efficient built-in equality reasoning or a prover using a translation of
logic with equality into logic without equality. In addition, knowledge of simple
arithmetic is needed to derive contradiction from 0 = 2, and as far as we know
the most efficient FO provers do not have built-in arithmetic in any form.

We have a large collection of proofs of inconsistency of several versions of
SUMO found by Vampire; some of them, if translated into human proofs, use
very refined argument, for example showing problems with a careless use in
SUMO of row variables and relations of arbitrary arity. We are planning to
analyse these proofs in a separate paper.

A Proof of Inconsistency of SUMO Here we give a proof demonstrating
inconsistency of the Suggested Upper Merger Ontology version of July 2004.
This proof is generated by the auto-mode of Vampire in 34.5 seconds. Vam-

pire can also find the inconsistency proof in 3 seconds with a time limit of 4
seconds.3 Using the optimal settings for ontology reasoning Vampire can prove
inconsistency in 2.7 seconds, and also in 0.7 second with a time limit of 1 second.
If incomplete strategies are used, the proof can be found in 0.2 seconds. Note
that consistency checking is much harder than query answering, since there is
no goal to focus on, so a theorem prover must perform a brute force non-goal-
oriented search from the initial set of about 5,000 FO formulas with equality.
This proof derives contradiction from a formula containing a row variable and
uses the row variable expansion rule. A row variables occurs, for example, in the
atomic subformula holds(x, @1, w) of input formula 5.

The proof is written in a rather condensed form. For example, the CNF
transformation rule in the proof consists of a number of smaller steps, including
skolemisation introducing the skolem function σ.

Proof.

[1, input]

ListFn : TotalValuedRelation

[2, input]

ListFn : VariableArityRelation

3
Vampire may work much faster when a time limit is given, for details see [36].

[3, input]

x : VariableArityRelation ⊃ ¬(∃y)valence(x, y)

[3 → 4, cnf transformation]

x : VariableArityRelation ⊃ ¬(∃y)valence(x, y)
¬valence(x, y) ∨ ¬x : VariableArityRelation

[5, input]

x : TotalValuedRelation ≡

(∃y)(x : Relation ∧ valence(x, y)∧
((∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u = nth(ListFn(@1), z) ⊃ u : v) ⊃
(∃w)holds(x, @1, w)))

[5 → 6, row variable expansion]

x : TotalValuedRelation ≡

(∃y)(x : Relation ∧ valence(x, y)∧
((∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u = nth(ListFn(@1), z) ⊃ u : v) ⊃
(∃w)holds(x, @1, w)))

x : TotalValuedRelation ≡

(∃y)(x : Relation ∧ valence(x, y)∧
((∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u = nth(ListFn(w), z) ⊃ u : v) ⊃
(∃x6)holds(x, w, x6)))

[6 → 7, cnf transformation]

x : TotalValuedRelation ≡

(∃y)(x : Relation ∧ valence(x, y)∧
((∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u = nth(ListFn(w), z) ⊃ u : v) ⊃
(∃x6)holds(x, w, x6)))

valence(y, σ(x, y)) ∨ ¬y : TotalValuedRelation

[4, 7 → 8, resolution]

¬valence(x, y) ∨ ¬x : VariableArityRelation

valence(y, σ(x, y)) ∨ ¬y : TotalValuedRelation

¬y : VariableArityRelation ∨ ¬y : TotalValuedRelation

[1, 2, 8 → 9, resolution, forward subsumption resolution]

ListFn : TotalValuedRelation

ListFn : VariableArityRelation

¬y : VariableArityRelation ∨ ¬y : TotalValuedRelation

2

A Proof of Inconsistency of the Terrorism Ontology Here we give a
proof of inconsistency of the ontology of terrorism from the Sumo Web page
http://ontology.teknowledge.com. This ontology has about 18,000 first-order
axioms. The proof is rather short but requires knowledge of the datatype of
integers. Namely, at the last inference step it uses the fact 0 6= 2. In addition,

the proof uses built-in equality reasoning. The proof is found in 7 seconds using
the standard mode and in 1.7 seconds using the optimal settings for ontology
reasoning. Note that the proof uses applications of equality to large terms, so it
is unlikely to be found quickly by a prover without built-in equality reasoning.

Proof.

[1, input]

victimDeathCount(x, y) ⊃
y = CardinalityFn(KappaFn(z, and(patient(x, z),

holdsDuring(ImmediateFutureFn(x),
attribute(z,Dead)))))

[1 → 2, cnf transformation]

victimDeathCount(x, y) ⊃
y = CardinalityFn(KappaFn(z, and(patient(x, z),

holdsDuring(ImmediateFutureFn(x),
attribute(z,Dead)))))

y = CardinalityFn(KappaFn(x, and (patient(z, x),
holdsDuring(ImmediateFutureFn(z),

attribute(x,Dead))))) ∨

¬victimDeathCount(z, y)

[3, input]

victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 0)

[2, 3 → 4, resolution]

y = CardinalityFn(KappaFn(x, and (patient(z, x),
holdsDuring(ImmediateFutureFn(z),

attribute(x,Dead))))) ∨

¬victimDeathCount(z, y)
victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 0)

CardinalityFn(KappaFn(y, and(patient(HAMAS-KnifeAttack-25 -Jun-92 , y),
holdsDuring(ImmediateFutureFn(HAMAS-KnifeAttack-25 -Jun-92),

attribute(y,Dead))))) = 0

[5, input]

victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 2)

[4, 2, 5 → 6, resolution, forward demodulation, evaluation]

CardinalityFn(KappaFn(y, and(patient(HAMAS-KnifeAttack-25 -Jun-92 , y),
holdsDuring(ImmediateFutureFn(HAMAS-KnifeAttack-25 -Jun-92),

attribute(y,Dead))))) = 0
y = CardinalityFn(KappaFn(x, and (patient(z, x),

holdsDuring(ImmediateFutureFn(z),
attribute(x,Dead))))) ∨

¬victimDeathCount(z, y)
victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 2)

2

