
The Even More Irresistible SROIQ

Ian Horrocks and Oliver Kutz and Ulrike Sattler
School of Computer Science, The University of Manchester
Kilburn Building, Oxford Road, Manchester M13 9PL, UK

{Horrocks, Kutz, Sattler}@cs.man.ac.uk

Abstract

We describe an extension of the description logic under-
lying OWL-DL, SHOIN , with a number of expressive
means that we believe will make it more useful in prac-
tice. Roughly speaking, we extend SHOIN with all
expressive means that were suggested to us by ontology
developers as useful additions to OWL-DL, and which,
additionally, do not affect its decidability and practica-
bility. We consider complex role inclusion axioms of
the form R ◦ S v̇ R or S ◦ R v̇ R to express prop-
agation of one property along another one, which have
proven useful in medical terminologies. Furthermore,
we extend SHOIN with reflexive, antisymmetric, and
irreflexive roles, disjoint roles, a universal role, and con-
structs ∃R.Self, allowing, for instance, the definition
of concepts such as a “narcist”. Finally, we consider
negated role assertions in Aboxes and qualified number
restrictions. The resulting logic is called SROIQ.
We present a rather elegant tableau-based reasoning al-
gorithm: it combines the use of automata to keep track
of universal value restrictions with the techniques de-
veloped for SHOIQ. The logic SROIQ has been
adopted as the logical basis for the next iteration of
OWL, OWL 1.1.

Introduction
We describe an extension, called SROIQ, of the descrip-
tion logics (DLs) SHOIN (Horrocks, Sattler, & Tobies,
1999) underlying OWL-DL (Horrocks, Patel-Schneider, &
van Harmelen, 2003)1 andRIQ (Horrocks & Sattler, 2004).
SHOIN provides most expressive means that one could
reasonably expect from the description-logical basis of an
ontology language, and was designed to constitute a good
compromise between expressive power and computational
complexity/practicability of reasoning. It lacks, however,
e.g. qualified number restrictions which are present in the
DL considered here since they are required in various appli-
cations (Wolstencroft et al., 2005) and do not pose problems

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1OWL also includes datatypes, a simple form of concrete do-
main (Baader & Hanschke, 1991). These can, however, be treated
exactly as in SHOQ(D)/SHOQ(Dn) (Horrocks & Sattler, 2001;
Pan & Horrocks, 2003), so we will not complicate our presentation
by considering them here.

(Horrocks & Sattler, 2005). That is, we extend SHOIQ—
which is SHOIN with qualified number restrictions—and
extend the work begun in Horrocks, Kutz, & Sattler (2005).

Since OWL-DL is becoming more widely used, it turns
out that it lacks a number of expressive means which—
when considered carefully—can be added without causing
too much difficulties for automated reasoning. We extend
SHOIQ with these expressive means and, although they
are not completely independent in that some of them can
be expressed using others, first present them together with
some examples. Recall that, in SHOIQ, we can already
state that a role is transitive or the subrole or the inverse of
another one (and therefore also that it is symmetric).

In addition, SROIQ allows for the following:
1. disjoint roles. Most DLs can be said to be “unbalanced”

since they allow to express disjointness on concepts but
not on roles, despite the fact that role disjointness is quite
natural and can generate new subsumptions or inconsis-
tencies in the presence of role hierarchies and number re-
strictions. E.g., the roles sister and mother should be
declared as being disjoint.

2. reflexive, irreflexive, and antisymmetric roles. These fea-
tures are of minor interest when considering only TBoxes
not using nominals, yet they add some useful constraints
if we also refer to individuals, either by using nominals or
ABoxes, especially in the presence of number restrictions.
E.g., the roles knows, hasSibling, and properPartOf,
should be declared as, respectively, reflexive, irreflexive,
and antisymmetric.

3. negated role assertions. Most Abox formalisms only al-
low for positive role assertions (with few exceptions (Are-
ces et al., 2003; Baader et al., 2005)), whereas SROIQ
also allows for statements like (John, Mary) : ¬likes.
In the presence of complex role inclusions, negated role
assertions can be quite useful and, like disjoint roles, they
overcome a certain asymmetry in expressivity.

4. SROIQ provides complex role inclusion axioms of the
form R ◦ S v̇ R and S ◦ R v̇ R that were first intro-
duced in RIQ. For example, w.r.t. the axiom owns ◦
hasPart v̇ owns, and the fact that each car contains an
engine Car v̇ ∃hasPart.Engine, an owner of a car is
also an owner of an engine, i.e., the following subsump-
tion holds: ∃owns.Car v ∃owns.Engine.



5. SROIQ provides the universal role U . Together with
nominals (which are also provided by SHOIQ), this
role is a prominent feature of hybrid logics (Blackburn &
Seligman, 1995). Nominals can be viewed as a powerful
generalisation of ABox individuals (Schaerf, 1994; Hor-
rocks & Sattler, 2001), and they occur naturally in ontolo-
gies, e.g., when describing a class such as EUCountries
by enumerating its members.

6. Finally, SROIQ allows for concepts of the form ∃R.Self
which can be used to express “local reflexivity” of a role
R, e.g., to define the concept “narcist” as ∃likes.Self.

Besides a Tbox and an Abox, SROIQ provides a so-called
Rbox to gather all statements concerning roles.
SROIQ is designed to be of similar practicability as

SHOIQ. The tableau algorithm for SROIQ presented
here is essentially a combination of the algorithms for RIQ
and SHOIQ. In particular, it employs the same technique
using finite automata as in Horrocks & Sattler (2004) to han-
dle role inclusions R ◦ S v̇ R and S ◦ R v̇ R. Even
though the additional expressive means require certain ad-
justments, these adjustments do not add new sources of non-
determinism and, subject to empirical verification, are be-
lieved to be “harmless” in the sense of not significantly de-
grading typical performance as compared with the SHOIQ
algorithm. Moreover, the algorithm for SROIQ has, simi-
lar to the one for SHOIQ, excellent “pay as you go” char-
acteristics. For instance, in case only expressive means of
SHIQ are used, the new algorithm will behave just like the
algorithm for SHIQ.

We believe that the combination of properties described
above makes SROIQ a very useful basis for future exten-
sions of OWL DL.

The Logic SROIQ
In this section, we introduce the DL SROIQ. This includes
the definition of syntax, semantics, and inference problems.

Roles, Role Hierarchies, and Role Assertions
Definition 1 Let C be a set of concept names including a
subset N of nominals, R a set of role names including the
universal role U , and I = {a, b, c . . .} a set of individual
names. The set of roles is R∪ {R− | R ∈ R}, where a role
R− is called the inverse role of R.

As usual, an interpretation I = (∆I , ·I) consists of a
set ∆I , called the domain of I, and a valuation ·I which
associates, with each role name R, a binary relation RI ⊆
∆I × ∆I , with the universal role U the universal relation
∆I × ∆I , with each concept name C a subset CI ⊆ ∆I ,
where CI is a singleton set if C ∈ N, and, with each in-
dividual name a, an element aI ∈ ∆I . Inverse roles are
interpreted as usual, i.e., for each role R ∈ R, we have

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

Obviously, (U−)I = (U)I . Note that, unlike in the cases
of SHIQ or SHOIQ, we did not introduce transitive role
names. This is because, as will become apparent below, role
box assertions can be used to force roles to be transitive.

To avoid considering roles such as R−−, we define a func-
tion Inv on roles such that Inv(R) = R− if R ∈ R is a role
name, and Inv(R) = S ∈ R if R = S−.

Since we will often work with finite strings of roles it is
convenient to extend both ·I and Inv(·) to such strings: if
w = R1 . . . Rn is a string of roles Ri (1 ≤ i ≤ n), we set
Inv(w) = Inv(Rn) . . . Inv(R1) and wI = RI

1 ◦ . . . ◦ RI
n,

where ◦ denotes composition of binary relations.
A role box R consists of two components. The first com-

ponent is a role hierarchy Rh which consists of (gener-
alised) role inclusion axioms. The second component is a
set Ra of role assertions stating, for instance, that a role R
must be interpreted as an irreflexive relation.

We start with the definition of a (regular) role hierarchy
whose definition involves a certain ordering on roles, called
regular. A strict partial order ≺ on a set A is an irreflexive
and transitive relation on A. A strict partial order ≺ on the
set of roles R ∪ {R− | R ∈ R} is called a regular order
if ≺ satisfies, additionally, S ≺ R ⇐⇒ S− ≺ R, for all
roles R and S. Note, in particular, that the irreflexivity of ≺
ensures that neither S− ≺ S nor S ≺ S− hold.

Definition 2 ((Regular) Role Inclusion Axioms) Let ≺ be
a regular order on roles. A role inclusion axiom (RIA for
short) is an expression of the form w v̇ R, where w is a
finite string of roles not including the universal role U , and
R 6= U is a role name. A role hierarchy Rh is a finite set
of RIAs. An interpretation I satisfies a role inclusion axiom
w v̇ R, written I |= w v̇ R, if wI ⊆ RI . An interpretation
is a model of a role hierarchy Rh if it satisfies all RIAs in
Rh, written I |= Rh.

A RIA w v̇ R is ≺-regular if R is a role name, and

1. w = RR, or
2. w = R−, or
3. w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
4. w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
5. w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is regular if there exists a reg-
ular order ≺ such that each RIA in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing
cyclic dependencies. For instance, the role hierarchy

{RS v̇ S, RT v̇ R, V T v̇ T, V S v̇ V }

is not regular because it would require≺ to satisfy S ≺ V ≺
T ≺ R ≺ S, which would imply S ≺ S, thus contradicting
the irreflexivity of ≺. Such cyclic dependencies are known
to lead to undecidability (Horrocks & Sattler, 2004).

Also, note that RIAs of the form RR− v̇ R, which would
imply (a weak form of) reflexivity of R, are not regular
according to the definition of regular orderings. However,
the same condition on R can be imposed by using the GCI
∃R.> v̇ ∃R.Self; see below.

From the definition of the semantics of inverse roles, it
follows immediately that 〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .
Hence, each model satisfying w v̇ S also satisfies Inv(w) v̇
Inv(S) (and vice versa), and thus the restriction to those



RIAs with only role names on their right hand side does not
have any effect on expressivity.

Given a role hierarchyRh, we define the relation v* to be
the transitive-reflexive closure of v̇ over {R v̇ S, Inv(R) v̇
Inv(S) | R v̇ S ∈ Rh}. A role R is called a sub-role
(super-role) of a role S if R v* S (S v* R). Two roles R and
S are equivalent (R ≡ S) if R v* S and S v* R.

Note that, due to restriction (3) in the definition of ≺-
regularity, we also restrict v* to be acyclic, and thus regular
role hierarchies never contain two equivalent roles.2

Next, let us turn to the second component of Rboxes, the
role assertions. For an interpretation I, we define DiagI

to be the set {〈x, x〉 | x ∈ ∆I}. Note that, since the
interpretation of the universal role U is fixed in any given
model (as the universal relation on ∆I × ∆I which is, by
definition, reflexive, symmetric, and transitive), we disallow
the universal role to appear in role assertions.

Definition 3 (Role Assertions) For roles R,S 6= U , we
call the assertions Ref(R), Irr(R), Sym(R), Asy(R),
Tra(R), and Dis(R,S), role assertions, where, for each in-
terpretation I and all x, y, z ∈ ∆I , we have:

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;
I |= Asy(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 /∈ RI

I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI

imply 〈x, z〉 ∈ RI ;
I |= Ref(R) if DiagI ⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R,S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial
move since both of these expressive means can be replaced
with complex role inclusion axioms as follows: Sym(R) is
equivalent to R− v̇ R and Tra(R) is equivalent to RR v̇ R.

Thus, as far as expressivity is concerned, we can assume,
for convenience, that no role assertions of the form Tra(R)
or Sym(R) appear in Ra, but that transitive and/or symmet-
ric roles will be handled by the RIAs alone. In particular,
notice that regularity of a role hierarchy is preserved when
replacing such role assertions with the corresponding RIAs.

The situation is different, however, for the other Rbox as-
sertions. None of reflexivity, irreflexivity, antisymmetry or
disjointness of roles can be enforced by role inclusion ax-
ioms. However, as we shall see later, reflexivity and irreflex-
ivity of roles are closely related to the new concept ∃R.Self.

Note that the version of antisymmetry introduced above is
strict in the sense that it also implies irreflexivity as opposed
to the more widely used notion of antisymmetry which al-
lows for reflexive points. For instance, in mereology, the
relation PartOf is usually assumed to be ‘reflexive antisym-
metric’ (i.e., reflexivity, plus xRy and yRx implies x = y),
while the relation properPartOf is assumed to be ‘irreflex-
ive antisymmetric’ (defined just as antisymmetry above) (Si-
mons, 1987; Casati & Varzi, 1999). The more general ver-

2This is not a serious restriction for, if R contains v* cycles,
we can simply choose one role R from each cycle and replace all
other roles in this cycle with R in the input Rbox, Tbox, and Abox.

sion of antisymmetry is more difficult to handle algorithmi-
cally, and we leave this to future work.

In SHIQ (and SHOIQ), the application of qualified
number restrictions has to be restricted to certain roles,
called simple roles, to preserve decidability (Horrocks, Sat-
tler, & Tobies, 1999). In the context of SROIQ, the defi-
nition of simple role has to be slightly modified, and simple
roles figure not only in qualified number restrictions, but in
several other constructs as well. Intuitively, non-simple roles
are those that are implied by the composition of roles.

Given a role hierarchy Rh and a set of role assertions Ra

(without transitivity or symmetry assertions), the set of roles
that are simple in R = Rh ∪ Ra is inductively defined as
follows:

• a role name is simple if it does not occur on the right hand
side of a RIA in Rh,

• an inverse role R− is simple if R is, and

• if R occurs on the right hand side of a RIA in Rh, then R
is simple if, for each w v̇ R ∈ Rh, w = S for a simple
role S.

A set of role assertions Ra is called simple if all roles R,S
appearing in role assertions of the form Irr(R), Asy(R), or
Dis(R,S), are simple in R. If R is clear from the context,
we often use “simple” instead of “simple in R”.

Definition 4 (Role Box) A SROIQ-role box (Rbox for
short) is a set R = Rh ∪ Ra, where Rh is a regular role
hierarchy and Ra is a finite, simple set of role assertions.

An interpretation satisfies a role box R (written I |= R)
if I |= Rh and I |= φ for all role assertions φ ∈ Ra. Such
an interpretation is called a model of R.

Concepts and Inference Problems for SROIQ
Definition 5 (SROIQ Concepts, Tboxes, and Aboxes)
The set of SROIQ-concepts is the smallest set such that

• every concept name (including nominals) and >,⊥ are
concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is
a simple role (possibly inverse), and n is a non-negative
integer, then C uD, C tD, ¬C, ∀R.C, ∃R.C, ∃S.Self,
(>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expres-
sion of the form C v̇ D for two SROIQ-concepts C and
D. A Tbox T is a finite set of GCIs.

An individual assertion is of one of the following forms:
a : C, (a, b) : R, (a, b) : ¬R, or a 6 .= b, for a, b ∈ I (the
set of individual names), a (possibly inverse) role R, and a
SROIQ-concept C. A SROIQ-Abox A is a finite set of
individual assertions.

It is part of future work to determine which of the restric-
tions to simple roles in role assertions Dis(R,S), Asy(R),
and Irr(R), as well as the concept expression ∃S.Self, are
strictly necessary in order to preserve decidability or practi-
cability. These restrictions, however, allow a rather smooth
integration of the new constructs into existing algorithms.



Definition 6 (Semantics and Inference Problems) Given
an interpretation I = (∆I , ·I), concepts C, D, roles R,
S, and non-negative integers n, the extension of complex
concepts is defined inductively by the following equa-
tions, where ]M denotes the cardinality of a set M , and
concept names, roles, and nominals are interpreted as in
Definition 1:

>I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI

(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
(∃R.Self)I = {x | 〈x, x〉 ∈ RI}

(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} > n}
(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n}
I is a model of a Tbox T (written I |= T ) if CI ⊆ DI

for each GCI C v̇ D in T . A concept C is called satisfiable
if there is an interpretation I with CI 6= ∅. A concept D
subsumes a concept C (written C v D) if CI ⊆ DI holds
for each interpretation. For an interpretation I, an element
x ∈ ∆I is called an instance of a concept C if x ∈ CI .
I satisfies (is a model of) an Abox A (I |= A) if for all

individual assertions φ ∈ A we have I |= φ, where

I |= a :C if aI ∈ CI ;
I |= a 6 .= b if aI 6= bI ;
I |= (a, b) :R if 〈aI , bI〉 ∈ RI ;
I |= (a, b) :¬R if 〈aI , bI〉 /∈ RI .

An Abox A is consistent with respect to an Rbox R and a
Tbox T if there is a model I for R and T such that I |= A.

The above inference problems can be defined w.r.t. a role
box R and/or a Tbox T in the usual way, i.e., by replacing
interpretation with model of R and/or T .

Reduction of Inference Problems
For DLs that are closed under negation, subsumption and
(un)satisfiability of concepts can be mutually reduced: C v
D iff C u¬D is unsatisfiable, and C is unsatisfiable iff C v
⊥. Furthermore, a concept C is satisfiable iff the Abox {a :
C} (a a ‘new’ individual name) is consistent.

It is straightforward to extend these reductions to Rboxes
and Tboxes. In contrast, the reduction of inference prob-
lems w.r.t. a Tbox to pure concept inference problems (pos-
sibly w.r.t. a role hierarchy), deserves special care: in Baader
(1991); Schild (1991); Baader et al. (1993), the internalisa-
tion of GCIs is introduced, a technique that realises exactly
this reduction. For SROIQ, this technique only needs to
be slightly modified. We will show in a series of steps that,
in SROIQ, satisfiability of a concept C with respect to a
triple 〈A,R, T 〉 of, respectively, a SROIQ Abox, Rbox,
and Tbox, can be reduced to concept satisfiability of a con-
cept C ′ with respect to an Rbox R′, where the Rbox R′

only contains role assertions of the form Dis(R,S), Ref(R),
or Asy(R), and the universal role U does not appear in C ′.

While nominals can be used to ‘internalise’ the Abox, in
order to eliminate the universal role, we use a ‘simulated’
universal role U ′, i.e., a reflexive, symmetric, and transi-
tive super-role of all roles and their inverses appearing in

〈A,R, T 〉, and which, additionally, connects all nominals
appearing in the input.

Thus, let C and 〈A,R, T 〉 be a SROIQ concept and
Abox, Rbox, and Tbox, respectively. In a first step, we re-
place the Abox A with an Abox A′ such that A′ only con-
tains individual assertions of the form a :C. To this purpose,
we associate with every individual a ∈ I appearing in A a
new nominal oa not appearing in T or C. Next, A′ is the re-
sult of replacing every individual assertion in A of the form
(a, b) : R with a : ∃R.ob, every (a, b) :¬R with a : ∀R.¬ob,
and every a 6 .= b with a : ¬ob. Now, given C and A′, define
C ′ as follows:

C ′ := C u u
a:D∈A′

∃U.(oa uD),

where U is the universal role. It should be clear that C is
satisfiable with respect to 〈A,R, T 〉 if and only if C ′ is sat-
isfiable with respect to 〈R, T 〉.

Lemma 7 (Abox Elimination) SROIQ concept satisfia-
bility with respect to Aboxes, Rboxes, and Tboxes is poly-
nomially reducible to SROIQ concept satisfiability with
respect to Rboxes and Tboxes only.

Hence, in the following we will assume that Aboxes have
been eliminated. Next, although we have the ‘real’ universal
role U present in the language, the following lemma shows
how general concept inclusion axioms can be internalised
while at the same time eliminating occurrences of the uni-
versal role U , using a simulated “universal” role U ′, that is,
a transitive super-role of all roles (except U ) occurring in T
or R and their respective inverses. Recall that the universal
role U is not allowed to appear in Rboxes.

Lemma 8 (Tbox and Universal Role Elimination) Let C,
D be concepts, T a Tbox, and R = Rh ∪ Ra an Rbox. Let
U ′ 6= U be a role that does not occur in C, D, T , orR, and,
for X a Tbox or a concept, let X ′ result from X by replacing
every occurrence of U with U ′. We define

CT ′ := ∀U ′.
( u
C′

iv̇D′
i∈T ′

¬C ′
i tD′

i

)
u

( u
N3o∈T ∪C∪D

∃U ′.o
)
,

RU ′

h := Rh ∪ {R v̇ U ′ | R occurs in C ′, D′, T ′, or R},

RU ′

a := Ra ∪ {Tra(U ′),Sym(U ′),Ref(U ′)}, and

RU ′ := RU ′

h ∪RU ′

a . Then

• C is satisfiable w.r.t. T and R iff C ′ u CT ′ is satisfiable
w.r.t. RU ′ .

• D subsumes C with respect to T andR iff C ′u¬D′uCT ′

is unsatisfiable w.r.t. RU ′ .

The proof of Lemma 8 is similar to the ones that can be
found in Schild (1991) and Baader (1991). Most impor-
tantly, it must be shown that (a): if a SROIQ-concept C
is satisfiable with respect to a Tbox T and an Rbox R, then
C, T ,R have a nominal connected model, i.e., a model
which is a union of connected components, where each such
component contains a nominal, and where any two elements



of a connected component are connected by a role path over
those roles occurring in C, T orR, and (b): if y is reachable
from x via a role path (possibly involving inverse roles), then
〈x, y〉 ∈ U ′I . These are easy consequences of the semantics
and the definition of U ′ and CT ′ , which guarantees that all
nominals are connected by U ′ links.

Now, note also that, instead of having a role assertion
Irr(R) ∈ Ra, we can add, equivalently, the GCI > v̇
¬∃R.Self to T , which can in turn be internalised. Likewise,
instead of asserting Ref(R), we can, equivalently, add the
GCI > v̇ ∃R.Self to T . However, in the case of Ref(R)
this replacement is only admissible for simple roles R and
thus not possible (syntactically) in general.

Thus, using these equivalences (including the replace-
ment of Rbox assertions of the form Sym(R) and Tra(R))
and Lemmas 7 and 8, we arrive at the following theorem:

Theorem 9 (Reduction)
1. Satisfiability and subsumption of SROIQ-concepts w.r.t.

Tboxes, Aboxes, and Rboxes, are polynomially reducible
to (un)satisfiability of SROIQ-concepts w.r.t. Rboxes.

2. W.l.o.g., we can assume that Rboxes do not contain role
assertions of the form Irr(R), Tra(R), or Sym(R), and
that the universal role is not used.

With Theorem 9, all standard inference problems for
SROIQ-concepts and Aboxes can be reduced to the prob-
lem of determining the consistency of a SROIQ-concept
w.r.t. to an Rbox (both not containing the universal role),
where we can assume w.l.o.g. that all role assertions in the
Rbox are of the form Ref(R), Asy(R), or Dis(R,S)—we
call such an Rbox reduced.

SROIQ is Decidable
In this section, we show that SROIQ is decidable. We
present a tableau-based algorithm that decides the consis-
tency of a SROIQ concept w.r.t. a reduced Rbox, and
therefore also all standard inference problems as discussed
above, see Theorem 9. Therefore, in the following, by Rbox
we always mean reduced Rbox.

The algorithm tries to construct, for a SROIQ-concept
C and an RboxR, a tableau for C andR, that is, an abstrac-
tion of a model of C and R.

For a regular role hierarchy Rh and a (possibly inverse)
role S occurring inRh, a non-deterministic finite automaton
(NFA) BS is defined. The construction of these automata is
identical to the one presented in Horrocks & Sattler (2004),
and we therefore refer to this paper for detailed definitions
and proofs of the automata related results below.

The following proposition states that BS indeed captures
all implications between (paths of) roles and S that are con-
sequences of the role hierarchy Rh, where L(BS) denotes
the language (a set of strings of roles) accepted by BS .

Proposition 10 I is a model of Rh if and only if, for each
(possibly inverse) role S occurring in Rh, each word w ∈
L(BS), and each 〈x, y〉 ∈ wI , we have 〈x, y〉 ∈ SI .

Unfortunately, as shown in Horrocks & Sattler (2004), the
size of BR can be exponential in the size of R. Horrocks &
Sattler (2004) consider certain further syntactic restrictions
of role hierarchies (there called simple role hierarchies) that
avoid this exponential blow-up. We conjecture that, without
some such further restriction, this blow-up is unavoidable.
The following technical Lemma from Horrocks & Sattler
(2004) will be needed later on.

Lemma 11
1. S ∈ L(BS) and, if w v̇ S ∈ R, then w ∈ L(BS).
2. If S is a simple role, then L(BS) = {R | R v* S}.
3. L(BInv(S)) = {Inv(w) | w ∈ L(BS)}.

A Tableau for SROIQ
In the following, if not stated otherwise, C,D (possibly
with subscripts) denote SROIQ-concepts (not using the
universal role), R,S (possibly with subscripts) roles, R =
Rh ∪ Ra an Rbox, and RC the set of roles occurring in C
and R together with their inverses. Furthermore, as noted in
Theorem 9, we can (and will from now on) assume w.l.o.g.
that all role assertions appearing in Ra are of the form
Dis(R,S), Asy(R), or Ref(R).

We start by defining fclos(C0,R), the closure of a concept
C0 w.r.t. a regular role hierarchyR. Intuitively, this contains
all relevant sub-concepts of C0 together with universal value
restrictions over sets of role paths described by an NFA. We
use NFAs in universal value restrictions to memorise the
path between an object that has to satisfy a value restriction
and other objects. To do this, we “push” this NFA-value re-
striction along all paths while the NFA gets “updated” with
the path taken so far. For this “update”, we use the following
definition.

Definition 12 For B an NFA and q a state of B, B(q) de-
notes the NFA obtained from B by making q the (only) initial
state of B, and we use q

S→ q′ ∈ B to denote that B has a
transition q

S→ q′.

Without loss of generality, we assume all concepts to be
in negation normal form (NNF), that is, negation occurs
only in front of concept names or in front of ∃R.Self. Any
SROIQ-concept can easily be transformed into an equiv-
alent one in NNF by pushing negations inwards using a
combination of De Morgan’s laws and equivalences such as
¬(∃R.C) ≡ (∀R.¬C), ¬(6nR.C) ≡ (>(n + 1)R.C), etc.
We use ¬̇C for the NNF of ¬C. Obviously, the length of
¬̇C is linear in the length of C.

For a concept C0, clos(C0) is the smallest set that contains
C0 and that is closed under sub-concepts and ¬̇. The set
fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪ {∀BS(q).D |
∀S.D ∈ clos(C0) and BS has a state q}.

It is not hard to show and well-known that the size of
clos(C0) is linear in the size of C0. For the size of
fclos(C0,R), we have mentioned above that, for a role S,



the size of BS can be exponential in the depth of R. Since
there are at most linearly many concepts ∀S.D, this yields a
bound for the cardinality of fclos(C0,R) that is exponential
in the depth of R and linear in the size of C0.

Definition 13 (Tableau) T = (S,L,E) is a tableau for C0

w.r.t. R if
• S is a non-empty set;
• L : S → 2fclos(C0,R) maps each element in S to a set of

concepts;
• E : RC0 → 2S×S maps each role to a set of pairs of

elements in S;
• C0 ∈ L(s) for some s ∈ S.

Furthermore, for all s, t ∈ S, C,C1, C2 ∈ fclos(C0,R),
o ∈ N ∩ fclos(C0,R), R,S ∈ RC0 , and

ST (s, C) := {r ∈ S | 〈s, r〉 ∈ E(S) and C ∈ L(r)},

the tableau T satisfies:

(P1) C ∈ L(s) =⇒ ¬C /∈ L(s),
(C atomic or ∃R.Self);

(P2) > ∈ L(s), and ⊥ /∈ L(s);
(P3) ∃R.Self ∈ L(s) =⇒ 〈s, s〉 ∈ E(R);
(P4) ¬∃R.Self ∈ L(s) =⇒ 〈s, s〉 /∈ E(R);
(P5) C1 u C2 ∈ L(s) =⇒ C1, C2 ∈ L(s);
(P6) C1tC2 ∈ L(s) =⇒ C1 ∈ L(s) or C2 ∈ L(s);
(P7) ∀B(p).C ∈ L(s), 〈s, t〉 ∈ E(S),

and p
S→ q ∈ B(p) =⇒ ∀B(q).C ∈ L(t);

(P8) ∀B.C ∈ L(s) and ε ∈ L(B) =⇒ C ∈ L(s);
(P9) ∀S.C ∈ L(s) =⇒ ∀BS .C ∈ L(s);

(P10) ∃S.C ∈ L(s) =⇒ there is some r ∈ S with
〈s, r〉 ∈ E(S) and C ∈ L(r);

(P11) 〈s, t〉 ∈ E(R) ⇐⇒ 〈t, s〉 ∈ E(Inv(R));
(P12) 〈s, t〉 ∈ E(R) and R v* S =⇒ 〈s, t〉 ∈ E(S);
(P13) (6nS.C) ∈ L(s) =⇒ ]ST (s, C) 6 n;
(P14) (>nS.C) ∈ L(s) =⇒ ]ST (s, C) > n;
(P15) (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S) =⇒

C ∈ L(t) or ¬̇C ∈ L(t);
(P16) Dis(R,S) ∈ Ra =⇒ E(R) ∩ E(S) = ∅;
(P17) Ref(R) ∈ Ra =⇒ 〈s, s〉 ∈ E(R);
(P18) Asy(R) ∈ Ra =⇒ 〈s, t〉 ∈ E(R)

implies 〈t, s〉 /∈ E(R);
(P19) o ∈ L(r) for some r ∈ S;
(P20) o ∈ L(s) ∩ L(t) =⇒ s = t.

Theorem 14 (Tableau) A SROIQ-concept C0 is satisfi-
able w.r.t. a reduced Rbox R iff there exists a tableau for
C0 w.r.t. R.

Proof: For the if direction, let T = (S,L,E) be a tableau
for C0 w.r.t. R. We extend the relational structure of T and
then prove that this indeed gives a model.

More precisely, a model I = (∆I , ·I) of C0 and R can
be defined as follows: we set ∆I := S, CI := {s | C ∈
L(s)} for concept names C in fclos(C0,R), where (P19)

and (P20) guarantee that nominals are indeed interpreted as
singleton sets, and, for roles names R ∈ RC0 , we set

RI := {〈s0, sn〉 ∈ (∆I)2 | exists s1, . . . , sn−1 with
〈si, si+1〉 ∈ E(Si+1) and S1 · · ·Sn ∈ L(BR)}

The semantics of complex concepts is given through the def-
inition of the SROIQ-semantics. Due to Lemma 11.3 and
(P11), the semantics of inverse roles can either be given di-
rectly as for role names, or by setting (R−)I := {〈y, x〉 |
〈x, y〉 ∈ RI}. Moreover, we have, by definition of I,
Lemma 11.2, (P11), and (P12) that, for T a simple role,
T I = E(T ).

We have to show that I is a model ofR and C0. We begin
by showing that I |= R. Since R is reduced, we only have
to deal with role assertions of the form Dis(R,S), Ref(R),
and Asy(R).

Consider an assertion Dis(R,S) ∈ R. By definition of
SROIQ-Rboxes, both R and S are simple roles, and thus
RI = E(R) and SI = E(S). Moreover, (P16) implies
E(R)∩E(S) = ∅, and thus RI ∩SI = ∅. Next, if Ref(R) ∈
Ra, (P17) and R ∈ L(BR) (Lemma 11.1) imply DiagI ⊆
RI . Finally, if Asy(R) ∈ Ra then RI = E(R) since R
is simple, and so 〈s, t〉 ∈ RI implies 〈s, t〉 ∈ E(R) and
so 〈t, s〉 /∈ E(R) by (P18), whence 〈t, s〉 /∈ RI . Thus I
satisfies each role assertion in Ra.

Next, we have to show that I |= Rh. Due to Proposi-
tion 10, it suffices to prove that, for each (possibly inverse)
role S, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI , we
have 〈x, y〉 ∈ SI . The proof of this is identical to the case
of RIQ and can be found in Horrocks & Sattler (2004).

Secondly, we prove that I is a model of C0. We show
that C ∈ L(s) implies s ∈ CI for each s ∈ S and each
C ∈ fclos(A,R). This proof can be given by induction on
the length of concepts, where we count neither negation nor
integers in number restrictions. The only interesting cases
are C = (6nS.E), C = ∀S.E, and C = (¬)∃R.Self (for
the other cases, see Horrocks, Sattler, & Tobies (2000); Hor-
rocks & Sattler (2002)):

• If (6nS.E) ∈ L(s), then (P13) implies that
#ST (s,E) ≤ n. Moreover, since S is simple,
Lemma 11.2 implies that L(BS) = {S′ | S′ v* S},
and (P12) implies that SI = E(S). Hence (P15) im-
plies that, for all t, if 〈s, t〉 ∈ SI , then E ∈ L(t) or
¬̇E ∈ L(t). By induction EI = {t | E ∈ L(t)}, and
thus s ∈ (6nS.E)I .

• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P9) we
have that ∀BS .E ∈ L(s). By definition of SI , there are
S1 . . . Sn ∈ L(BS) and si with s = s0, t = sn, and
〈si−1, si〉 ∈ E(Si). Applying (P7) n times, this yields
∀BS(q).E ∈ L(t) for q a final state of BS . Thus (P8)
implies that E ∈ L(t). By induction, t ∈ EI , and thus
s ∈ (∀S.E)I .

• Let ∃R.Self ∈ L(s). Then, by (P3), 〈s, s〉 ∈ E(R) and,
since R ∈ L(BR) and by definition of I, we have 〈s, s〉 ∈
RI . It follows that s ∈ (∃R.Self)I .



• Let ¬∃R.Self ∈ L(s). Then, by (P4), 〈s, s〉 /∈ E(R).
Since R is a simple role, RI = E(R). Hence 〈s, s〉 /∈ RI ,
and so s ∈ (¬∃R.Self)I .

For the converse, suppose I = (∆I , ·I) is a model of C0

w.r.t. R. We define a tableau T = (S,L,E) for C0 and R as
follows:

S := ∆I ;

E(R) := RI ; and

L(s) := {C ∈ fclos(C0,R) | s ∈ CI}
∪ {∀BS .C | ∀S.C ∈ fclos(C0,R) and s ∈ (∀S.C)I}
∪ {∀BR(q).C ∈ fclos(C0,R) | S1 · · ·Sn ∈ L(BR(q)) ⇒
s ∈ (∀S1.∀S2. · · · ∀Sn.C)I , ε ∈ L(BR(q)) ⇒ s ∈ CI}

We have to show that T satisfies (P1)–(P20), and restrict
our attention to the only new cases.

For (P9), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I and thus
∀BS .C ∈ L(s) by definition of T .

For (P7), let ∀B(p).C ∈ L(s) and 〈s, t〉 ∈ E(S). Assume
that there is a transition p

S→ q in B(p) and ∀B(q).C 6∈ L(t).
By definition of T , this can have two reasons:

1. there is a word S2 . . . Sn ∈ L(B(q)) and
t 6∈ (∀S2. . . .∀Sn.C)I . However, this implies
that SS2 . . . Sn ∈ L(B(p)) and thus that we have
s ∈ (∀S.∀S2. . . .∀Sn.C)I , which contradicts, together
with 〈s, t〉 ∈ SI , the definition of the semantics of
SROIQ concepts.

2. ε ∈ L(B(q)) and t 6∈ CI . This implies that S ∈ L(B(p))
and thus contradicts s ∈ (∀S.C)I .

For (P8), ε ∈ L(B(p)) implies s ∈ CI by definition of
T , and thus C ∈ L(s).

Finally, (P16)–(P20) follow immediately from the defi-
nition of the semantics.

�

The Tableau Algorithm
In this section, we present a terminating, sound, and
complete tableau algorithm that decides consistency of
SROIQ-concepts not using the universal role w.r.t. reduced
Rboxes, and thus, using Theorem 9, also concept satisfiabil-
ity w.r.t. Rboxes, Tboxes and Aboxes.

We first define the underlying data structures and corre-
sponding operations. For more detailed explanations con-
cerning the intuitions underlying these definitions, consult
Horrocks & Sattler (2005).

The algorithm generates a completion graph, a structure
that, if complete and clash-free, can be unravelled to a (pos-
sibly infinite) tableau for the input concept and Rbox. More-
over, it is shown that the algorithm returns a complete and
clash-free completion graph for C0 andR if and only if there
exists a tableau for C0 and R, and thus with Lemma 14, if
and only if the concept C0 is satisfiable w.r.t. R.

As usual, in the presence of transitive roles, blocking is
employed to ensure termination of the algorithm (Horrocks,
Sattler, & Tobies, 2000).

Definition 15 (Completion Graph) Let R be a reduced
Rbox, let C0 be a SROIQ-concept in NNF not using the
universal role, and let N be the set of nominals. A com-
pletion graph for C0 with respect to R is a directed graph
G = (V,E,L, 6 .=) where each node x ∈ V is labelled with
a set

L(x) ⊆ fclos(C0,R) ∪N ∪ {(6mR.C) |
(6nR.C) ∈ fclos(C0,R) and m ≤ n}

and each edge 〈x, y〉 ∈ E is labelled with a set of role
names L(〈x, y〉) containing (possibly inverse) roles occur-
ring in C0 or R. Additionally, we keep track of inequalities
between nodes of the graph with a symmetric binary relation
6 .= between the nodes of G.

In the following, we often use R ∈ L(〈x, y〉) as an abbre-
viation for 〈x, y〉 ∈ E and R ∈ L(〈x, y〉).

If 〈x, y〉 ∈ E, then y is called a successor of x and x is
called a predecessor of y. Ancestor is the transitive closure
of predecessor, and descendant is the transitive closure of
successor. A node y is called an R-successor of a node x if,
for some R′ with R′ v* R, R′ ∈ L(〈x, y〉). A node y is called
a neighbour (R-neighbour) of a node x if y is a successor
(R-successor) of x or if x is a successor (Inv(R)-successor)
of y.

For a role S and a node x in G, we define the set of x’s
S-neighbours with C in their label, SG(x,C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if there are nodes x and y
such that

1. ⊥ ∈ L(x), or
2. for some concept name A, {A,¬A} ⊆ L(x), or
3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or
4. there is some Dis(R,S) ∈ Ra and y is an R- and an

S-neighbour of x, or
5. there is some Asy(R) ∈ Ra and y is an R-neighbour of x

and x is an R-neighbour of y, or
6. there is some concept (6nS.C) ∈ L(x) and
{y0, . . . , yn} ⊆ SG(x, C) with yi 6

.= yj for all 0 ≤ i <
j ≤ n, or

7. for some o ∈ N, x 6 .= y and o ∈ L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring in C0 then the
tableau algorithm is initialised with the completion graph
G = ({r0, r1 . . . , r`}, ∅,L, ∅) with L(r0) = {C0} and
L(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by
repeatedly applying the expansion rules given in Figure 1,
stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we
define some terms and operations used in the (application of
the) expansion rules:

Nominal Nodes and Blockable Nodes A node x is a
nominal node if L(x) contains a nominal. A node that is
not a nominal node is a blockable node. A nominal o ∈ N
is said to be new in G if no node in G has o in its label.



Blocking A node x is label blocked if it has ancestors x′,
y and y′ such that

1. x is a successor of x′ and y is a successor of y′,
2. y, x and all nodes on the path from y to x are blockable,
3. L(x) = L(y) and L(x′) = L(y′), and
4. L(〈x′, x〉) = L(〈y′, y〉).
In this case, we say that y blocks x. A node is blocked if
either it is label blocked or it is blockable and its predeces-
sor is blocked; if the predecessor of a blockable node x is
blocked, then we say that x is indirectly blocked.
Generating and Shrinking Rules and Safe Neighbours
The >-, ∃- and NN-rules are called generating rules, and
the 6- and the o-rule are called shrinking rules. An R-
neighbour y of a node x is safe if (i) x is blockable or if (ii)
x is a nominal node and y is not blocked.
Pruning When a node y is merged into a node x, we
“prune” the completion graph by removing y and, recur-
sively, all blockable successors of y. More precisely, prun-
ing a node y (written Prune(y)) in G = (V,E,L, 6 .=) yields
a graph that is obtained from G as follows:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is
blockable, Prune(z);

2. remove y from V .

Merging In some rules, we “merge” one node into another
node. Intuitively, when we merge a node y into a node x, we
add L(y) to L(x), “move” all the edges leading to y so that
they lead to x and “move” all the edges leading from y to
nominal nodes so that they lead from x to the same nominal
nodes; we then remove y (and blockable sub-trees below y)
from the completion graph. More precisely, merging a node
y into a node x (written Merge(y, x)) in G = (V,E,L, 6 .=)
yields a graph that is obtained from G as follows:

1. for all nodes z such that 〈z, y〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈z, x〉 to E and set
L(〈z, x〉) = L(〈z, y〉),

(b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪
L(〈z, y〉),

(c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪
{Inv(S) | S ∈ L(〈z, y〉)}, and

(d) remove 〈z, y〉 from E;
2. for all nominal nodes z such that 〈y, z〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈x, z〉 to E and set
L(〈x, z〉) = L(〈y, z〉),

(b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪
L(〈y, z〉),

(c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪
{Inv(S) | S ∈ L(〈y, z〉)}, and

(d) remove 〈y, z〉 from E;
3. set L(x) = L(x) ∪ L(y);
4. add x 6 .= z for all z such that y 6 .= z; and
5. Prune(y).
If y was merged into x, we call x a direct heir of y, and we
use being an heir of another node for the transitive closure
of being a “direct heir”.

Level (of Nominal Nodes) Let o1, . . . , o` be all the nom-
inals occurring in the input concept D. We define the level
of a node inductively as follows:

• each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ `, is
of level 0, and

• a nominal node x is of level i if x is not of some level
j < i and x has a neighbour that is of level i− 1.

Strategy (of Rule Application) The expansion rules in
Figure 1 are applied according to the following strategy:

1. the o-rule is applied with highest priority,

2. next, the 6- and the NN-rule are applied, and they are ap-
plied first to nominal nodes with lower levels (before they
are applied to nodes with higher levels). In case they are
both applicable to the same node, the NN-rule is applied
first.

3. all other rules are applied with a lower priority.

We are now ready to finish the description of the tableau
algorithm. A completion graph is complete if it contains a
clash, or when none of the rules is applicable. If the expan-
sion rules can be applied to C0 and R in such a way that
they yield a complete, clash-free completion graph, then the
algorithm returns “C0 is satisfiable w.r.t. R”, and “C0 is un-
satisfiable w.r.t. R” otherwise.

Termination, Soundness, and Completeness
All but the Self–Ref-rule have been used before for frag-
ments of SROIQ, see Horrocks, Sattler, & Tobies (1999);
Horrocks & Sattler (2002, 2004), and the three ∀i-rules are
the obvious counterparts to the tableau conditions (P7)–
(P9).

As usual, we prove termination, soundness, and complete-
ness of the tableau algorithm to show that it indeed decides
satisfiability of SROIQ-concepts w.r.t. Rboxes.

Theorem 16 (Termination, Soundness, and Completeness)

Let C0 be a SROIQ-concept in NNF and R a reduced
Rbox.

1. The tableau algorithm terminates when started with C0

and R.
2. The expansion rules can be applied to C0 andR such that

they yield a complete and clash-free completion graph if
and only if there is a tableau for C0 w.r.t. R.

Proof: (1): The algorithm constructs a graph that consists of
a set of arbitrarily interconnected nominal nodes, and “trees”
of blockable nodes with each tree rooted in r0 or in a nomi-
nal node, and where branches of these trees might end in an
edge leading to a nominal node.

Termination is a consequence of the usual SHIQ condi-
tions with respect to the blockable tree parts of the graph,
plus the fact that there is a bound on the number of new
nominal nodes that can be added to G by the NN-rule.

The termination proof for the SROIQ tableaux is virtu-
ally identical to the one for SHOIQ, whence we omit the



u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked,
and {C1, C2} 6⊆ L(x),

then L(x) −→ L(x) ∪ {C1, C2}
t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked,

and {C1, C2} ∩ L(x) = ∅
then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x is not blocked, and
x has no S-neighbour y with C ∈ L(y)

then create a new node y with
L(〈x, y〉) := {S} and L(y) := {C}

Self–Ref-rule: if ∃S.Self ∈ L(x) or Ref(S) ∈ Ra,
x is not blocked, and S /∈ L(〈x, x〉)

then add an edge 〈x, x〉 if it does not yet exist, and
set L(〈x, x〉) −→ L(〈x, x〉) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked,
and ∀BS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS .C}
∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked,

p
S→ q in B(p), and there is an S-neighbour

y of x with ∀B(q).C /∈ L(y),
then L(y) −→ L(y) ∪ {∀B(q).C}

∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked,
ε ∈ L(B) and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked,

and there is an S-neighbour y of x
with {C, ¬̇C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}
>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked

2. there are not n safe S-neighbours
y1, . . . , yn of x with C ∈ L(yi)
and yi 6

.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with
L(〈x, yi〉) = {S}, L(yi) = {C},
and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked
2. ]SG(z, C) > n and there are two S-neighbours

x, y of z with C ∈ L(x) ∩ L(y), and not x 6 .= y
then 1. if x is a nominal node then Merge(y, x)

2. else, if y is a nominal node or an
ancestor of x then Merge(x, y)
3. else Merge(y, x)

o-rule: if for some o ∈ NI there are 2 nodes x, y
with o ∈ L(x) ∩ L(y) and not x 6 .= y

then Merge(x, y)
NN-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and

there is a blockable S-neighbour y of x such
that C ∈ L(y) and x is a successor of y,

2. there is no m such that 1 6 m 6 n,
(6mS.C) ∈ L(x), and there exist m nominal
S-neighbours z1, . . . , zm of x with C ∈ L(zi)
and zi 6

.
= zj for all 1 ≤ i < j ≤ m.

then 1. guess m with 1 6 m 6 n,
and set L(x) = L(x) ∪ {(6mS.C)}

2. create m new nodes y1, . . . , ym with
L(〈x, yi〉) = {S}, L(yi) = {C, oi},
for each oi ∈ NI new in G,
and yi 6

.
= yj for 1 ≤ i < j ≤ m.

Figure 1: The Expansion Rules for the SROIQ Tableau
Algorithm.

details and refer the reader to Horrocks & Sattler (2005).
To see this, note first that the blocking technique employed
for SROIQ is identical to the one for SHOIQ. Next,
the closure fclos(C0,R) is defined differently, comprising
concepts of the form ∀BS(q).C, generally yielding a size of
fclos(C0,R) that can be exponential in the depth of the role
hierarchy. However, the construction of the automata can
also be considered a pre-processing step and part of the in-
put, in that case keeping the polynomial bound on the size
of the closure relative to the input. Furthermore, it should be
clear that the new Self–Ref-rule (only adding new reflexive
edges) as well as the new clash conditions do not affect the
termination of the algorithm.
(2): For the “if” direction, we can obtain a tableau T =
(S,L′,E) from a complete and clash-free completion graph
G by unravelling blockable “tree” parts of the graph as usual
(these are the only parts where blocking can apply).

More precisely, paths are defined as follows. For a label
blocked node x, let b(x) denote a node that blocks x.

A path is a sequence of pairs of blockable nodes of
G of the form p = 〈(x0, x

′
0), . . . , (xn, x′n)〉. For such a

path, we define Tail(p) := xn and Tail′(p) := x′n. With
〈p|(xn+1, x

′
n+1)〉 we denote the path

〈(x0, x
′
0), . . . , (xn, x′n), (xn+1, x

′
n+1)〉.

The set Paths(G) is defined inductively as follows:
• For each blockable node x of G that is a successor of a

nominal node or a root node, 〈(x, x)〉 ∈ Paths(G), and
• For a path p ∈ Paths(G) and a blockable node y in G:

– if y is a successor of Tail(p) and y is not blocked, then
〈p|(y, y)〉 ∈ Paths(G), and

– if y is a successor of Tail(p) and y is blocked, then
〈p|(b(y), y)〉 ∈ Paths(G).

Please note that, due to the construction of Paths, all nodes
occurring in a path are blockable and, for p ∈ Paths(G)
with p = 〈p′|(x, x′)〉, x is not blocked, x′ is blocked iff
x 6= x′, and x′ is never indirectly blocked. Furthermore, the
blocking condition implies L(x) = L(x′).

Next, we use Nom(G) for the set of nominal nodes in G,
and define a tableau T = (S,L′,E) from G as follows.

S=Nom(G) ∪ Paths(G)

L′(p) =
{

L(Tail(p)) if p ∈ Paths(G)
L(p) if p ∈ Nom(G)

E(R) =E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = {〈p, q〉 ∈ Paths(G)× Paths(G) |
q = 〈p|(x, x′)〉 and x′ is an R-successor of Tail(p), or

p = 〈q|(x, x′)〉 and x′ is an Inv(R)-successor of Tail(q)}
E2 = {〈p, x〉 ∈ Paths(G)× Nom(G) |

x is an R-neighbour of Tail(p)}
E3 = {〈x, p〉 ∈ Nom(G)× Paths(G) |

Tail(p) is an R-neighbour of x}
E4 = {〈x, y〉 ∈ Nom(G)× Nom(G) |

y is an R-neighbour of x}



We already commented above on S, and L′ is straightfor-
ward. Unfortunately, E is slightly cumbersome because we
must distinguish between blockable and nominal nodes.
CLAIM: T is a tableau for C0 with respect to R.

Firstly, by definition of the algorithm, there is an heir x0

of r0 with C0 ∈ L(x0). By the 6-rule, x0 is either a root
node or a nominal node, and thus cannot be blocked. Hence
there is some s ∈ S with C0 ∈ L′(s). Next, we prove that
T satisfies each (Pi).
• (P1), (P2), (P5) and (P6) are trivially implied by the def-

inition of L′ and completeness of G.
• (P3) and (P17) follow from the construction of E and

completeness of G, and (P4) follows from clash-freeness.
• for (P7), consider a tuple 〈s, t〉 ∈ E(R) with ∀B(p).C ∈

L′(s) and p
R→ q ∈ B(p). We have to show that

∀B(q).C ∈ L′(t) and distinguish four different cases:
– if 〈s, t〉 ∈ Paths(G) × Paths(G), then ∀B(p).C ∈

L(Tail(s)) and
∗ either Tail′(t) is an R-successor of Tail(s). Hence

completeness implies ∀B(q).C ∈ L(Tail′(t)), and by
definition of Paths(G), either Tail′(t) = Tail(t), or
Tail(t) blocks Tail′(t) and the blocking condition im-
plies L(Tail′(t)) = L(Tail(t)).

∗ or Tail′(s) is an Inv(R)-successor of Tail(t). Again,
either Tail′(s) = Tail(s), or Tail(s) blocks Tail′(s)
in which case the blocking condition implies that
∀B(p).C ∈ L(Tail′(s)), and thus completeness im-
plies that ∀B(q).C ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Nom(G)×Nom(G), then ∀B(p).C ∈ L(s)
and t is an R-neighbour of s. Hence completeness im-
plies ∀B(q).C ∈ L(t).

– if 〈s, t〉 ∈ Nom(G)×Paths(G), then ∀B(p).C ∈ L(s)
and Tail(t) is an R-neighbour of s. Hence complete-
ness implies ∀B(q).C ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Paths(G) × Nom(G), then ∀B(p).C ∈
L(Tail(s)) and t is an R-neighbour of Tail(s). Hence
completeness implies ∀B(q).C ∈ L(t).

In all four cases, by definition of L′, we have ∀B(q).C ∈
L′(t).

• (P8) and (P9) follow from completeness of G.
• for (P10), consider some s ∈ S with ∃R.C ∈ L′(s).

– If s ∈ Paths(G), then ∃R.C ∈ L(Tail(s)), Tail(s) is
not blocked, and completeness of T implies the exis-
tence of an R-neighbour y of Tail(s) with C ∈ L(y).
∗ If y is a nominal node, then y ∈ S, C ∈ L′(y), and
〈s, y〉 ∈ E(R).

∗ If y is blockable and a successor of Tail(s), then
〈s|(ỹ, y)〉 ∈ S, for ỹ = y or ỹ = b(y), C ∈
L′(〈s|(ỹ, y)〉), and 〈s, 〈s|(ỹ, y)〉〉 ∈ E(R).

∗ If y is blockable and a predecessor of Tail(s), then
s = 〈p|(y, y)|(Tail(s),Tail′(s))〉, C ∈ L′(〈p|(y, y)〉),
and
〈s, 〈p|(y, y)〉〉 ∈ E(R).

– If s ∈ Nom(G), then completeness implies the exis-
tence of some R-successor x of s with C ∈ L(x).

∗ If x is a nominal node, then 〈s, x〉 ∈ E(R) and C ∈
L′(x).

∗ If x is a blockable node, then x is a safe R-neighbour
of s and thus not blocked. Hence there is a path p ∈
Paths(G) with Tail(p) = x, 〈s, p〉 ∈ E(R) and C ∈
L′(p).

• (P11) and (P12) are immediate consequences of the def-
inition of “R-successor” and “R-neighbour”, as well as
the definition of E.

• for (P13), consider some s ∈ S with (6nR.C) ∈ L′(s).
Clash-freeness implies the existence of at most n R-
neighbours yi of s with C ∈ L(yi). By construction, each
t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-neighbour
yi of s or Tail(s), and none of these R-neighbours gives
rise to more than one such yi. Moreover, since L′(t) =
L(yi), (P13) is satisfied.

• for (P14), consider some s ∈ S with (>nR.C) ∈ L′(s).

– if s ∈ Nom(G), then completeness implies the exis-
tence of n safe R-neighbours y1, . . . , yn of s with and
yj 6= yj , for each i 6= j, and C ∈ L(yi), for each
1 ≤ i ≤ n. By construction, each yi corresponds to a
ti ∈ S with ti 6= tj , for each i 6= j:
∗ if yi is blockable, then it cannot be blocked since it

is a safe R-neighbour of s. Hence there is a path
〈p|(yi, yi)〉 ∈ S and 〈s, 〈p|(yi, yi)〉〉 ∈ E(R).

∗ if yi is a nominal node, then 〈s, yi〉 ∈ E(R).
– if s ∈ Paths(G), then completeness implies the ex-

istence of n R-neighbours y1, . . . , yn of Tail(s) with
yj 6= yj , for each i 6= j, and C ∈ L(yi), for each
1 ≤ i ≤ n. By construction, each yi corresponds to a
ti ∈ S with ti 6= tj , for each i 6= j:
∗ if yi is safe, then it can be blocked if it is a succes-

sor of Tail(s). In this case, the “pair” construction
in our definition of paths ensure that, even if b(yi) =
b(yj), for some i 6= j, we still have 〈p|(b(yi), yi)〉 6=
〈p|(b(yj), bj)〉.

∗ if yi is unsafe, then 〈s, yi〉 ∈ E(R).
Hence all ti are different and, by construction, C ∈
L′(ti), for each 1 ≤ i ≤ n.

• (P15) is satisfied due to completeness of G and the fact
that each t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-
neighbour of s (in case s ∈ Nom(G)) or of Tail(s) (in
case s ∈ Paths(G)).

• (P16) and (P18) follow from clash-freeness and defini-
tion of E, (P19) follows trivially from the initialisation of
G, and (P20) is due to completeness of G and the fact
that nominal nodes are not “unravelled”.

For the “only if” direction, given a tableau T = (S,L′,E)
for C0 w.r.t. R, we can apply the non-deterministic rules,
i.e., the t-, choose-, 6-, and NN-rule, in such a way that we
obtain a complete and clash-free graph: inductively with the
generation of new nodes, we define a mapping π from nodes
in the completion graph to individuals in S of the tableau in
such a way that,



1. for each node x, L(x) ⊆ L′(π(x)),
2. for each pair of nodes x, y and each role R, if y is an R-

successor of x, then 〈π(x), π(y)〉 ∈ E(R), and
3. x 6 .= y implies π(x) 6= π(y).

This is analogous to the proof in Horrocks, Sattler, &
Tobies (1999) with the additional observation that, due to
(P20), application of the o-rule does not lead to a clash of
the form (7) as given in Definition 15. Similarly, an appli-
cation of the Self–Ref-rule does not lead to a clash of the
form (3) due to Condition (P4), a clash of the form (4) can
not occur due to (P16), and a clash of the form (5) can not
occur due to (P18).

�

From Theorems 9, 14 and 16, we thus arrive at the fol-
lowing theorem:

Theorem 17 (Decidability) The tableau algorithm decides
satisfiability and subsumption of SROIQ-concepts with re-
spect to Aboxes, Rboxes, and Tboxes.

Outlook and Future Work
We introduced a description logic, SROIQ, that overcomes
certain shortcomings in expressiveness of other DLs. We
have used SHOIQ and RIQ as a starting point, extended
them with “useful-yet-harmless” expressive means, and ex-
tended the tableau algorithm accordingly. SROIQ is in-
tended to be a basis for future extensions of OWL, and has
already been adopted as the logical basis of OWL 1.1.

It is left for future work to determine whether the restric-
tions to simple roles can be relaxed, to pinpoint the exact
computational complexity of SROIQ, and to include fur-
ther role assertions such as the more general version of an-
tisymmetry to allow a better modeling of mereological no-
tions (Goodwin, 2005).

A further line of investigation concerns concrete datatypes
with inverse functional datatype properties: these are of in-
terest since they allow to express simple key constraints. For
instance, we might want to use a datatype property SSN for
social security number as a key for US citizen.

References
Areces, C.; Blackburn, P.; Hernandez, B.; and Marx, M.

2003. Handling Boolean Aboxes. In Proc. of DL 2003.
Baader, F., and Hanschke, P. 1991. A Schema for Integrating

Concrete Domains into Concept Languages. In Proc. of
IJCAI-12, 452–457.

Baader, F.; Bürckert, H.-J.; Nebel, B.; Nutt, W.; and Smolka,
G. 1993. On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort Equations.
Journal of Logic, Language and Information 2:1–18.

Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter,
F. 2005. Integrating Description Logics and Action For-
malisms: First Results. In Proc. of AAAI-20. AAAI Press.

Baader, F. 1991. Augmenting Concept Languages by Tran-
sitive Closure of Roles: An Alternative to Terminological
Cycles. In Proc. of IJCAI-12.

Blackburn, P., and Seligman, J. 1995. Hybrid languages. J.
of Logic, Language and Information 4:251–272.

Casati, R., and Varzi, A. 1999. Parts and Places. The Struc-
ture of Spatial Representation. Cambridge, MA: MIT
Press.

Goodwin, J. 2005. Experiences of Using OWL at the Ord-
nance Survey. In Proc. of OWL: Experiences and Direc-
tions.

Horrocks, I., and Sattler, U. 2001. Ontology reasoning in
the SHOQ(D) description logic. In Proc. of IJCAI-17,
199–204.

Horrocks, I., and Sattler, U. 2002. Optimised reasoning for
SHIQ. In Proc. of ECAI-15.

Horrocks, I., and Sattler, U. 2004. Decidability of SHIQ
with complex role inclusion axioms. Artificial Intelli-
gence 160:79–104.

Horrocks, I., and Sattler, U. 2005. A Tableaux Decision
Procedure for SHOIQ. In Proc. of IJCAI-19. Morgan
Kaufmann, Los Altos.

Horrocks, I.; Kutz, O.; and Sattler, U. 2005. The Irresistible
SRIQ. In Proc. of OWL: Experiences and Directions.

Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. From SHIQ and RDF to OWL: The Making of a
Web Ontology Language. J. of Web Semantics 1(1):7–26.

Horrocks, I.; Sattler, U.; and Tobies, S. 1999. Practical Rea-
soning for Expressive Description Logics. In Ganzinger,
H.; McAllester, D.; and Voronkov, A., eds., Proc. of
LPAR-6, volume 1705 of LNAI, 161–180. Springer.

Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Reason-
ing with individuals for the description logic SHIQ. In
MacAllester, D., ed., Proc. of CADE-17, volume 1831 of
LNCS. Germany: Springer.

Pan, J., and Horrocks, I. 2003. Web ontology reasoning with
datatype groups. In Fensel, D.; Sycara, K.; and Mylopou-
los, J., eds., Proc. of ISWC 2003, number 2870 in LNCS,
47–63. Springer.

Schaerf, A. 1994. Reasoning with individuals in concept
languages. Data and Knowledge Engineering 13(2):141–
176.

Schild, K. 1991. A Correspondence Theory for Termino-
logical Logics: Preliminary Report. In Proc. of IJCAI-12,
466–471.

Simons, P. 1987. Parts: A Study in Ontology. Oxford:
Clarendon Press.

Wolstencroft, K.; Brass, A.; Horrocks, I.; Lord, P.; Sattler,
U.; Turi, D.; and Stevens, R. 2005. A Little Semantic
Web Goes a Long Way in Biology. In Proc. of ISWC-4,
number 3729 in LNCS, 786–800. Springer.


