
Framework For an Automated Comparison of
Description Logic Reasoners

Tom Gardiner, Dmitry Tsarkov, Ian Horrocks

University of Manchester
Manchester, UK

{gardiner|tsarkov|horrocks}@cs.man.ac.uk

Abstract. OWL is an ontology language developed by the W3C, and
although initially developed for the Semantic Web, OWL has rapidly
become a de facto standard for ontology development in general. The
design of OWL was heavily influenced by research in description logics,
and the specification includes a formal semantics. One of the goals of this
formal approach was to provide interoperability: different OWL reasoners
should provide the same results when processing the same ontologies. In
this paper we present a system that allows users: (a) to test and compare
OWL reasoners using an extensible library of real-life ontologies; (b) to
check the “correctness” of the reasoners by comparing the computed
class hierarchy; (c) to compare the performance of the reasoners when
performing this task; and (d) to use SQL queries to analyse and present
the results in any way they see fit.

1 Introduction

OWL is an ontology language (or rather a family of three languages) developed
by the World Wide Web Consortium (W3C) [21]. Although initially developed
in order to satisfy requirements deriving from Semantic Web research [13], OWL
has rapidly become a de facto standard for ontology development in general, and
OWL ontologies are now under development and/or in use in areas as diverse as
e-Science, medicine, biology, geography, astronomy, defence, and the automotive
and aerospace industries.

The design of OWL was heavily influenced by research in description logics
(DLs); investigations of (combinations of) DL language constructors provided a
detailed understanding of the semantics and computational properties of, and
reasoning techniques for, various ontology language designs [1, 10, 14, 15]; this un-
derstanding was used to ensure that, for two of the three OWL dialects (OWL
DL and OWL Lite), key reasoning problems would be decidable. Basing the
language on a suitable DL also allowed for the exploitation of existing DL im-
plementations in order to provide reasoning services for OWL applications [11,
20, 7].

The standardisation of OWL has led to the development and adaption of a
wide range of tools and services, including reasoners such as FaCT++ [26], Racer-
Pro [7], Pellet [24] and KAON2 (http://kaon2.semanticweb.org/). Reasoners

are often used with editing tools, e.g., Protégé [23] and Swoop [17], in order
to compute the class hierarchy and alert users to problems such as inconsistent
classes.

One of the key benefits that a formal language standard provides to users
of web-based technologies is interoperability. In the case of OWL, this should
mean that users can load ontologies from the internet and use them in applica-
tions, possibly answering queries against them using one of the available OWL
reasoners. One of the goals of standardisation is that the result of this process
is independent of the chosen reasoner. Up to now, however, relatively little at-
tention has been given to checking if this goal is indeed satisfied by available
OWL reasoners—the OWL standard includes a test suite [4], but this mainly
focuses on small tests that isolate some particular language feature; it does not
include many complex cases that involve interactions between different features,
nor tests that use realistic ontologies.

This kind of comparison is also of great value to implementors of DL reason-
ing systems, who typically use testing in order to check the correctness of their
implementations. This may be relatively easy for small examples, where man-
ual checking is possible, but will usually not be feasible for realistic ontologies.
In such cases, the best (perhaps the only) way to check the correctness of an
implementation may be by checking for consistency with the reasoning of other
systems.

Once we have confirmed that some or all reasoners are correct (or at least
consistent), we may also want to compare their performance. Reasoning with
expressive DLs (like those underlying OWL-DL) has high worst case complexity,
and this means that, in general, reasoning is highly intractable for these logics.
The hope/claim is, however, that modern highly optimised systems perform
well in “realistic” ontology applications. To check the validity of this claim it
is necessary to test the performance of these systems with (the widest possible
range of) ontologies derived from applications.

Real-world ontologies vary considerably in their size and expressivity. While
they are all valuable test cases, it is still important to understand each ontology’s
properties in order to provide efficient and relevant testing. For example, a user
(or potential user) of OWL may have some particular application in mind, and
might like to know which of the available OWL reasoners is most suitable. In
this case, it would be useful if they could compare the performance of reasoners
with ontologies having similar characteristics to those that will be used in their
application. System developers might also find this kind of testing useful, as it
can help them to identify weaknesses in their systems and to devise and test new
optimisations.

In this paper we present a system that allows users:

– to test and compare OWL reasoners using an extensible library of real-life
ontologies;

– to check the “correctness” of the reasoners by comparing the computed class
hierarchy;

– to compare the performance of the reasoners when performing this task;

– to use SQL queries to analyse and present the results in any way they see
fit.

2 Background and Related Work

There is extensive existing work on benchmarking DL (as well as modal logic)
reasoners. E.g., the TANCS comparisons and benchmark suites [18], the DL com-
parisons and benchmark suite [12], the OWL benchmark suite and test results,
and various test results from papers describing systems such as M-SPASS [16],
FaCT and DLP [9, 8], FaCT++ [25], KAON2, Pellet [24], Racer [6], Vampire [27],
etc.

Due to the fact that relatively few (large and/or interesting) ontologies were
available, earlier tests often used artificially generated test data. For some tests
of this kind (e.g. the DL-98 tests, [12]) are hand crafted, or constructed according
to a pattern, in such a way that a correct answer is known; in this case they can
be used both to test correctness and to measure the performance of reasoners
on a certain class of tasks. Other artificial benchmarks (like [22]) are randomly
generated, so no correct answer is known for them; in this case they can only
be used for performance testing (or for comparing results from more than one
reasoner). The Lehigh University Benchmark [5] has been developed specifically
for testing OWL reasoners, and uses a synthetic ontology and randomly gener-
ated data to test their capabilities using specific weightings to compare systems
on characteristics of interest. Results from such tests are, however, of doubtful
relevance when gauging performance on real-life ontologies. The popularity of
OWL means that many more real-life ontologies are now available, and recent
benchmarking work has focused on testing performance with such ontologies.

One such example involved benchmarking of a number of reasoners against
a broad range of realistic ontologies [19]. Note that only performance was tested
in that work; no results regarding any comparison of the outputs of the reasoner
are known. Additionally, not all reasoners used in that comparison supported
OWL as an input language, so quantitative comparison of performance would
have been difficult/un-justified. This latter problem is eased by the popular-
ity of the DIG (DL Implementation Group) interface [2], which is widely used
by application developers and has thus been implemented in most modern DL
Reasoners.

Our work builds on these earlier efforts, taking advantage of the DIG stan-
dard to provide a generic benchmarking suite that allows the automatic quan-
titative testing and comparison of DL Reasoners on real-world ontologies with
a wide range of different characteristics, e.g., with respect to size and the sub-
set of OWL actually used in the ontology. We aim to make the testing process
as automatic as possible, taking care, for example, of (re)starting and stopping
reasoners as necessary, to make the results available as and when required by
storing them in a database, and to make the analysis of results as easy and flex-
ible as possible by allowing for arbitrary SQL queries against the collected data.
We also aim to provide (in the form of a publicly available resource) a library of

test ontologies where each ontology has been checked for expressivity (i.e., the
subset of OWL actually used) and syntactic conformance, translated into DIG
syntax (which is much easier to work with for the benchmarking purposes than
OWL’s RDF/XML syntax), and includes (where possible) results (such as the
class hierarchy) that can be used for testing the correctness of reasoning systems.

3 Methodology

The system we present here has three main functions. The first is to collect real-
world OWL ontologies (e.g., from the Web), process them and add them to a
library of ontologies which can be used as a test suite. The second is to auto-
matically run benchmarking tests for one or more reasoners, using the ontology
library and storing the results (both performance data and reasoning results) in
a database. The third is to allow users to analyse and compare saved results for
one or more reasoners.

When processing ontologies, the system takes as an input a list of OWL
ontology URIs. Before they can be used in testing, some preprocessing of these
ontologies is required. The process involves generating of valuable meta-data
about each ontology, as well as converting each of the OWL ontologies into DIG.

The meta-data is generated using code written for SWOOP [17], and specifies
some details w.r.t. the expressivity (i.e. the constructs present in the ontology)
together with the number of classes, object properties, data properties, individ-
uals, class axioms, property axioms and individual axioms present. This is in-
valuable information in helping to understand and analyse the results obtained
through testing; it can be used, e.g., to study the strengths and weaknesses of
particular systems, or to identify ontologies with similar characteristics to those
that will be used in a given application.

The OWL-to-DIG conversion uses the OWL-API (http://sourceforge.
net/projects/owlapi). This process is far from being trivial as OWL’s RDF
syntax is complex, and it is easy to (inadvertently) cause ontologies to fall outside
OWL-DL, e.g., by simply forgetting to explicitly type every object. Moreover,
the current DIG interface supports only the most basic of datatypes, such as
<xsd:string> and <xsd:integer>.1 The result is that many of the available
OWL ontologies we found could not be successfully converted to DIG, due to ei-
ther being OWL-Full or to using more expressive data types than those that are
allowed in DIG. In the former case, i.e., OWL-Full ontologies, it is almost always
the case that they are OWL-Full only as the result of some trivial syntax error;
usually missing typing information. Such ontologies can easily be “repaired” and
added to the library.

Local copies of both the OWL ontology and the DIG version are stored in
a database. This is done not only for efficiency during the testing, but also to
ensure consistency (as online ontologies rarely remain static). Moreover, this
allows us to fix trivial errors (like missing type information for an object) in
1 A new DIG standard, DIG 2.0, is currently under development, and will provide

support for all OWL compatible datatypes.

OWL ontologies in order to ensure that they are in OWL-DL. This can be
done by using a technique described in [3]. Such “repaired” ontologies can be
successfully translated into DIG, and thus can be used for testing purposes.
These files, together with their properties/meta-data, are stored as database
entries for easy access and manipulation.

The main function of the benchmark suite itself is to gather the classification
information for each ontology and each reasoner. This information includes the
time spent by a reasoner in performing certain queries, and the query answer
returned by the reasoner.

To promote fairness, each reasoner is terminated and then restarted before
loading each ontology. This ensures that every reasoner is in the same “state”
when working on a given ontology, regardless of how successful previous attempts
were. This also simplifies the management of cases for which the time-out limit
was exceeded.

One problem that arises when trying to compare the performance of different
reasoners is that they may perform reasoning tasks in different ways. For exam-
ple, some may take an “eager” approach, fully classifying the whole ontology and
caching the results as soon as it is received; others may take a “lazy” approach,
only performing reasoning tasks as required in order to answer queries. To try
to get around this problem, we use a five step test, for each ontology, that forces
reasoners to fully classify the ontology, whether eagerly or lazily. The steps are
as follows:

1. Load the ontology into the reasoner;
2. Query the reasoner for all the named (atomic) classes in the ontology;
3. Query the reasoner for the consistency of the ontology by checking the sat-

isfiability of the class owl:Thing;
4. Query the reasoner for the satisfiability of each of the named classes in the

ontology;
5. Query the reasoner for the ontology taxonomy (i.e., the parents and children

of all named classes).

Each of these individual steps is timed, providing interesting information
about when different reasoners do their work. It is, however, the total time for
this complete (classification) test that is probably of most interest.

Each test can end in one of three ways. It can either complete successfully,
fail due to lack of resources (either time or memory), or fail because the reasoner
could not parse/process the ontology and/or query successfully. In case of suc-
cess, the answers given by the reasoner are saved in the database. These answers
can be used for testing the correctness of reasoning (or at least comparing results
with those obtained from other reasoners).

The benchmarking process is fully automatic, dealing with most errors au-
tonomously, meaning that the testing can be left to run over-night or over a
week-end (which may be necessary when using a large time-out). All data is
recorded in a database, making it easy for the user to view and analyse the data
in a variety of ways.

As discussed in Section 1, in order to get a clearer indication of how DL
Reasoners perform in the real world, we aim to build a large library of OWL
ontologies from those that are publicly available. Currently, our library contains
over 300 OWL ontologies, but so far only 172 of these have been successfully
converted to DIG. This has, however, provided us with a total of just under
72,000 classes and over 30,000 individuals in a DIG format. Only 18% of the
ontologies had the expressivity corresponding to the DL ALC or higher, which
suggests that the majority of real-world ontologies are not, in fact, very complex,
but it also means that we have a useful number of “interesting” examples.

4 Data storage

As we have mentioned on several occasions, the database is used to store all
processed data. We have used a database as it provides persistence, and allows
the user to quickly summarize data and to analyse it in any way that is deemed
appropriate. The database contains a wealth of information about both the on-
tologies and the behaviour of the reasoners, allowing users to produce high level
summaries or to focus on and investigate results of particular interest.

Moreover, the database is designed so that any data obtained through our
tests is stored with a normalised layout. For example, the responses to the queries
in our 5 step test are returned by the reasoners as large XML documents (in DIG
format) which can represent the same information in a number of different ways.
Our system parses these responses and records them as simple class names, along
with information such as satisfiability status (i.e., satisfiable or not), parents
(i.e., named classes that are direct subsumers) and children (i.e., named classes
that are direct subsumees). This makes it easy to use SQL queries to look for
similarities or differences between different reasoner’s responses.

The advantages of our approach are demonstrated in Section 5 below, where
we show examples of the kind of query that we could issue and the resulting
information that would be extracted from the database.

5 Testing

Our system as it stands is fully automatic and runs the classification tests suc-
cessfully through our whole library. The times taken by each reasoner, for each
step and for each ontology are recorded, together with the parsed and normalised
version of the responses returned by each reasoner.

We have performed tests using our system with several state-of-the-art DIG
reasoners, and we provide here some examples of the kinds of information that
the system can produce. It is important to note that we simply set up our
benchmarking system to run overnight for each ontology with each reasoner.
All the information described in the following sub-sections was then obtained
by querying the resulting database to extract the information that we were
interested in.

FaCT++ v1.1.3, KAON2, Pellet v1.3 and RacerPro v1.8.1 are four of the
most widely used OWL/DIG reasoners, and we therefore decided to use these to
test the current capabilities of our system. The tests were performed using an
Intel Pentium-M Processor 1.60 GHz and 1Gb of main memory on Windows XP.
The time-out period was set to 10 minutes (in real time). Pellet and KAON2
are Java applications, and for these tests were run with a maximum heap space
of 200Mb. RacerPro and FaCT++ were left to run at their default settings. Our
system does not try to optimise the performance of the reasoners for particular
ontologies, as we believe this is the job of the reasoners themselves: users of
OWL reasoners cannot be expected to be experts in how to tune them in order
to optimise their performance.

5.1 Correctness

Every step of our benchmarking is timed to allow performance comparison of the
reasoners in question. However, this data only becomes relevant if we can confirm
the correctness of the responses returned by these systems when answering the
queries we put to them (test steps 2-5): a reasoner that quickly but incorrectly
answers queries is of little use (or at least cannot be fairly compared to one that
gives correct answers).

When reasoner implementors test the correctness of their systems, they typi-
cally use small artificially generated examples and manually check the correctness
of their system’s responses. Due to the shear size of the ontologies in our library,
it is not feasible to check responses by hand, so we needed a way of automating
this task.

It is impossible to say any one reasoner is universally correct, and we are
therefore unable to base correctness on any one reasoner’s answers. Our solu-
tion was to base our measure of correctness on tests of consistency of different
reasoner’s answers. Our claim is that consistency between multiple reasoners im-
plies a high probability of correctness, especially when the reasoners have been
designed and implemented independently, and in some cases even use different
reasoning techniques.2

With normalised entries of the parsed responses stored in our database, check-
ing for consistency was a simple matter of writing a few short SQL queries to
see if each reasoner had symmetrical entries for each of the DIG queries. Nat-
urally, this required that at least two reasoners had successfully completed the
5-step classification test. Of our 172 DIG ontologies, 148 had this property; of
the remaining 24 ontologies, more than half were not successfully classified by
any of the reasoners.

We started by checking for 100% consistency on each of the classification
steps, where 100% consistency meant that all reasoners that successfully com-
pleted the test gave the same answers w.r.t. the class hierarchy. Where there

2 KAON2 uses a resolution based technique; the other reasoners tested here use a
tableaux based technique.

were conflicts, we used more specific SQL queries to analyse the reason in detail,
allowing us to see exactly how big the differences were.

Our findings were surprisingly impressive, with only 7 of the 148 ontologies
(that were fully classified by at least two reasoners) not being 100% consistent
on all tests. This reflects very positively on the OWL standardisation process
(and on the developers of these reasoners), and shows that the OWL standard
really does result in a high degree of interoperability.

The inconsistencies between reasoners on the seven aforementioned ontologies
raised some interesting issues.

Starting with step 2 (querying for the list of classes in each ontology), there
were only three ontologies on which there were inconsistencies. The reason for the
inconsistencies was due to the existence of nominals (i.e., extensionally defined
classes resulting, e.g., from the use of the OWL oneOf or hasValue construc-
tors). RacerPro was actually returning nominals as classes, while the other three
reasoners were not. (These three ontologies were also the only three ontologies
containing nominals that RacerPro successfully classified). We assume that this
happens because RacerPro does not claim to be sound and complete in the
presence of nominals, but instead tries to approximate them using classes to
represent them.

Step 3 (querying for the satisfiability of owl:Thing) was 100% consistent for
all ontologies. This is, however, not surprising as owl:Thing is satisfiable for all
of the ontologies in the library.

Step 4 (querying for the satisfiability of each named class in the ontology)
found only two ontologies with inconsistent answers. Interestingly, they were
both only successfully classified by FaCT++ and Pellet, and on one of the on-
tologies they disagreed about the satisfiability of over 2/3 of the classes present.

The first ontology was in SHIN (Tambis) and the other was in DL-Lite with
Datatypes and Inverse roles. Other properties of these ontologies suggested no
obvious challenges. We therefore selected a few of the classes on which there was
disagreement, and used SWOOP to analyse them. Using this tool we found that
FaCT++ was clearly inconsistent in its reasoning w.r.t. these classes.

Taking one class as an example: FaCT++ answered that the class RNA was
satisfiable, while Pellet disagreed. SWOOP showed that the definition of RNA
consisted of the intersection of the class Macromolecular-compound and a num-
ber of other classes. However, FaCT++ and Pellet both agreed that Macromolecular-
compound was not satisfiable, hence implying that RNA was definitely unsat-
isfiable. As a result of this investigation, a bug in FaCT++ has been identified
and is now in the process of being fixed. This demonstrates how valuable the
information provided by our system can be to system developers as well as to
users of OWL reasoners.

As hoped, step 5 (querying for the parents and children of each named class
in the ontology) found that the taxonomies defined by the parent and children
relations were consistent in the vast majority of cases, and there were only three
ontologies on which the reasoners were not in agreement. In each of these cases,
FaCT++ was not in agreement with the other reasoners. Due to the detailed

information recorded by our system holds, we are easily able to identify the
classes that are causing this problem, and thus investigate it more closely. In
this way we can not only find bugs that have not been discovered before, but
the detailed analysis allows a system implementor to quickly find exactly what
is causing the bug, and hopefully to fix it.

5.2 Efficiency

Table 1. Sample of Overall Performance for 100% Consistent Ontologies

Type Status FaCT++ KAON2 Pellet RacerPro

All Success 137 43 143 105

All CouldNotProcess 24 119 20 60

All ResourcesExceeded 4 3 2 0

Nominals Success 4 0 2 0

Nominals CouldNotProcess 0 5 3 5

Nominals ResourcesExceeded 1 0 0 0

TransRoles Success 9 5 9 6

TransRoles CouldNotProcess 2 6 3 7

TransRoles ResourcesExceeded 2 2 1 0

Datatypes Success 91 0 98 62

Datatypes CouldNotProcess 19 112 14 50

Datatypes ResourcesExceeded 2 0 0 0

OWL-Lite Success 43 41 42 43

OWL-Lite CouldNotProcess 5 6 6 7

OWL-Lite ResourcesExceeded 2 3 2 0

We present here some examples of the kinds of performance related informa-
tion that can be extracted from the database using suitable SQL queries. Table
1 provides an overview of the performance of the four reasoners: it shows how
many of the test ontologies they were able to classify within the specified time
limit, and then breaks this information down by focussing on sets of ontologies
using particular language features. Finally, it also shows their performance on
OWL-Lite ontologies, i.e., all those with expressivity up to and including SHIF .
Note that only 100% consistent ontologies are compared here; as we mentioned
before, the performance analysis is of doubtful value when different reasoners do
not agree on query results.

It is important to note that “Could not process” most often means that the
reasoner does not support the constructs present within that particular ontology
(and does not claim to either).

The SQL statement below shows how easily we filled the transitive-roles part
of Table 1. Here, “name” refers to the name of the reasoner, “status” is a choice
of “Succes”, “CouldNotProcess” or “ResourcesExceeded” and the COUNT func-
tion returns a count of the number of ontologies that meet the given criteria.

SELECT name, status, COUNT(status)
FROM resultsview
WHERE rplus
AND ontology IN
(
/*Get the list of ontologies that had full consistency on all steps*/
SELECT ontology
FROM consistency
WHERE clist AND topsat AND allsat AND parents

)
GROUP BY name, status;

Fig. 1. Comparison of Reasoners on the Top 10 Most Challenging Ontologies

Table 2 presents some information describing the features of the the 10 most
“challenging” (w.r.t. reasoning) ontologies in the library. We did this by selecting
all those ontologies that were successfully classified by at least two reasoners,
and then ordering these ontologies by the average classification time for those
reasoners that successfully classified them. Note that this is just an example of
the way in which the data can be analysed, and we do not claim this to be the
“correct” way to select challenging ontologies.

This table is useful in helping us understand what makes these particular
Ontologies so time-consuming to reason over. In the case of the NCI and Gene
Ontologies (1st and 2nd), it can be clearly seen that it is their shear size that pro-
vides the challenge. The Hydrolic Units ontologies (7th and 10th) have very few
classes (only 5 and 6 respectively), but relatively large numbers of individuals.

Table 2. Properties of Top 10 Most Challenging Ontologies

Expressivity nClass nIndiv Ontology

1 DLLite 27652 0 NCI

2 ALR+ 20526 0 GeneOntology

3 SHF 2749 0 Galen

4 RDFS(DL) 1108 3635 WorldFactBook

5 RDFS(DL) 1514 0 DataCenter

6 SHIF 37 0 DolceLite

7 ALR+HI(D) 5 2744 HydrolicUnits2003

8 RDFS(DL) 382 1872 Tambis

9 RDFS(DL) 98 0 MovieDatabase

10 RDFS(DL) 6 2744 HydrolicUnits

The world-fact-book ontology (4th) uses only a minimal subset of the ontology
language (no more than the DL subset of RDFS), but has a reasonably large
number of both classes and individuals. Finally, the Galen ontology (2nd) has
a moderately large number of classes, and also uses a relatively rich subset of
OWL. This demonstrates the kinds of insight that can be achieved using suitable
queries. In this case we examined just three properties (specifically expressivity,
number of classes and number of individuals) of our chosen ontologies; we could
easily have extended our analysis to include available information such as the
number of object/data properties, kinds of axiom occurring, etc.

In Figure 1, we present a graphical view of the amount of time each Reasoner
took to classify the 10 most challenging ontologies according to the above men-
tioned measure (where negative time represents unsuccessful classification). It is
interesting to note that there is no clear “winner” here; for example, FaCT++
performs well on the ontologies with very large numbers of classes (the NCI and
Gene Ontologies), but relatively poorly on some ontologies with large numbers
of individuals (e.g., the world-fact-book ontology).

Regarding the ontologies that include large numbers of individuals, it is im-
portant to note that our testing procedure (the 5-step classification) does not
yet include any ABox queries (adding this kind of testing will be part of fu-
ture work). This is clearly disadvantageous to systems such as KAON2 that are
mainly designed to optimise ABox query answering rather than classification.

Table 3. Average Division of Task Time

Reasoner Load ClassList SatofTop SatOfClasses Hierarchy

FaCT++ 16% 26% 16% 21% 21%

KAON2 48% 44% 1% 2% 5%

Pellet 69% 21% 1% 2% 7%

RacerPro 57% 10% 4% 9% 19%

Finally, in Table 3, we present the average proportion of the classification time
that the reasoners spent on each of the five steps. This shows, for example, that
Pellet performs a lot of work as soon as it receives the Ontology (the Load step),
while FaCT++ does relatively little work until the first query (the ClassList
step).

Note that the reason for the Load step taking such a large proportion of
the total time may be the result of the relatively high overhead of loading an
ontology into a reasoner via the DIG interface; it is not necessarily due to time
taken performing “eager” reasoning.

6 Discussion

As we mentioned in Section 1, testing is useful for reasoner and tool developers
as well as for application users. Building on existing work, we have developed a
system for testing reasoners with real-life ontologies. The benefits of our approach
include autonomous testing, flexible analysis of results, correctness/consistency
checking and the development of a test library that should be a valuable resource
for both the DL and ontology community. We will continue to extend the library,
and will publish the computed class hierarchy in case a consistent answer is
obtained. We will also continue to analyse the reasons for the inconsistencies we
have found, and would eventually like to analyse which implementation strategies
and optimisations seem to be most effective for particular kinds of ontology and
reasoning problems.

While there are an increasingly large array of OWL ontologies available for
public use, other Ontology formats (e.g. OBO: the Open Biomedical Ontologies,
http://obo.sourceforge.net) are still in widespread use, and would make a
valuable addition to our test examples. It is also the case, as described in [3], that
a large proportion of the available OWL-Full ontologies, could relatively easily
be “repaired” so as to be OWL-DL; adding a few extra typing statements is all
that is typically required. In the future we hope to use semi-automated repair
of OWL-Full ontologies and translation from formats such as OBO to increase
the size and scope of our ontology library.

So far we have focused on testing TBox reasoning (classification). Although
the use of nominals in OWL-DL blurs the separation between TBox and ABox,
it would still be useful to explicitly test ABox reasoning, e.g., by asking for the
instances of some query class. In fact, for ontologies that include far more indi-
viduals than classes (such as the world-fact-book, Tambis and Hydrolic Units on-
tologies), it makes little sense to test classification and not to test query answer-
ing. Focusing on classification also fails to give a fair picture of the performance
of systems such as KAON2 that aim to optimise query answering. Extending
the testing regime to include querying will be part of our future work.

Apart from the future work described above, there are a number of extensions
to our benchmarking system that would enhance its utility. Allowing users to
define their own customised tests would help reasoner developers to test specific

optimisations and implementations as they are developed. It would also be useful
to be able to investigate how multiple concurrent queries affect reasoner perfor-
mance, and whether reasoners perform better or worse if they are not restarted
between tests.

Both the testing system and the ontology library are publicly available re-
sources, and can be downloaded from http://www.cs.man.ac.uk/∼horrocks/
testing/.

References

1. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, October 2001.

2. Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG description logic
interface. In Proceedings of DL2003 International Workshop on Description Logics,
September 2003.

3. Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the semantic web with
the OWL API. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,
Proc. of the 2003 International Semantic Web Conference (ISWC 2003), number
2870 in Lecture Notes in Computer Science. Springer, 2003.

4. Jeremy J. Carroll and Jos De Roo. OWL web ontology language test cases.
W3C Recommendation, 10 February 2004. Available at http://www.w3.org/TR/

owl-test/.
5. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. An evaluation of knowledge base

systems for large OWL datasets. In Sheila A. McIlraith, Dimitris Plexousakis,
and Frank van Harmelen, editors, Proc. of the 2004 International Semantic Web
Conference (ISWC 2004), number 3298 in Lecture Notes in Computer Science,
pages 274–288. Springer, 2004.

6. Volker Haarslev and Ralf Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), pages 161–168, 2001.

7. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence, pages 701–705. Springer, 2001.

8. I. Horrocks. Benchmark analysis with FaCT. In Proc. of the 4th Int. Conf. on An-
alytic Tableaux and Related Methods (TABLEAUX 2000), number 1847 in Lecture
Notes in Artificial Intelligence, pages 62–66. Springer-Verlag, 2000.

9. I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. of Tableaux’98,
pages 27–30, 1998.

10. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer,
1999.

11. Ian Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397
of Lecture Notes in Artificial Intelligence, pages 307–312. Springer, 1998.

12. Ian Horrocks and Peter F. Patel-Schneider. DL systems comparison. In Proc.
of the 1998 Description Logic Workshop (DL’98), pages 55–57. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

13. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7–26, 2003.

14. Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204, 2001.

15. Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
448–453, 2005.

16. U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability
and building models. In I. P. Gent, H. van Maaren, and T. Walsh, editors, SAT
2000: Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2000. Also to
appear in a special issue of Journal of Automated Reasoning.

17. A. Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and James
Hendler. SWOOP: a web ontology editing browser. J. of Web Semantics, 4(2),
2005.

18. Fabio Massacci and Francesco M. Donini. Design and results of TANCS-00. In
R. Dyckhoff, editor, Proc. of the 4th Int. Conf. on Analytic Tableaux and Related
Methods (TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelli-
gence. Springer, 2000.

19. Zhengxiang Pan. Benchmarking DL reasoners using realistic ontologies. In Proc.
of the First OWL Experiences and Directions Workshop, 2005.

20. P. F. Patel-Schneider. DLP system description. In Proc. of the 1998 Description
Logic Workshop (DL’98), pages 87–89. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/, 1998.

21. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/owl-semantics/.

22. Peter F. Patel-Schneider and Roberto Sebastiani. A new general method to gen-
erate random modal formulae for testing decision procedures. J. of Artificial In-
telligence Research, 18:351–389, 2003.

23. Protégé. http://protege.stanford.edu/, 2003.
24. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical

OWL-DL reasoner. Submitted for publication to Journal of Web Semantics, 2005.
25. Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description logic reason-

ing. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 609–614, 2005.

26. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
2006. To Appear.

27. Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using
Vampire to reason with OWL. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, Proc. of the 2004 International Semantic Web Con-
ference (ISWC 2004), number 3298 in Lecture Notes in Computer Science, pages
471–485. Springer, 2004.

