
Introducing Customised Datatypes and
Datatype Predicates into OWL(∗)

Jeff Z. Pan and Ian Horrocks

School of Computer Science, University of Manchester, UK

Abstract. Although OWL is rather expressive, it has a very serious limitation on
datatypes; i.e., it does not support customised datatypes. It has been pointed out
that many potential users will not adopt OWL unless this limitation is overcome,
and the W3C Semantic Web Best Practices and Deployment Working Group
has set up a task force to address this issue. This paper provides a solution for
this issue by presenting two decidable datatype extensions of OWL DL, namely
OWL-Eu and OWL-E. OWL-Eu provides a minimal extension of OWL DL to
support customised datatypes, while OWL-E extends OWL DL with both cus-
tomised datatypes and customised datatype predicates.

1 Introduction

The OWL Web Ontology Language [1] is a W3C recommendation for expressing on-
tologies in the Semantic Web. Datatype support [7, 8] is one of the key features that
OWL is expected to provide, and has prompted extensive discussions in the RDF-Logic
mailing list [10] and in the Semantic Web Best Practices mailing list [12]. Although
OWL adds considerable expressive power to the Semantic Web, the OWL datatype for-
malism (or simplyOWL datatyping) is much too weak for many applications; in partic-
ular, OWL datatyping does not provide a general framework for customised datatypes,
such as XML Schema derived datatypes.

It has been pointed out that many potential users will not adopt OWL unless this
limitation is overcome [11], as it is often necessary to enable users to define their own
datatypes and datatype predicates for their ontologies and applications. One of the most
well known type systems is W3C XML Schema Part 2 [2], which defines facilities to
allow users to define customised datatypes, such as those defined by imposing some
restrictions in the value spaces of existing datatypes.

Example 1.Customised datatypes are useful in capturing the intended meaning of some
vocabulary in ontologies. For example, users might want to use the customised datatype
‘atLeast18’ in the following definition of the class ‘Adult’:

Class(Adult complete Person

restriction(age allValuesFrom(atLeast18))),

which says that anAdult is aPerson whoseage is at least 18. The datatype constraint

(∗) This work is partially supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).

‘at least 18’ can be defined as an XML Schema user-defined datatype
<simpleType name = “atLeast18”>

<restriction base = “xsd:integer”>
<minInclusive value = “18”/>

</restriction>
</simpleType>

in which the facet ‘minInclusive’ is used to restrict the value space ofatLeast18 (a
customised datatype) to be a subset of the value space ofinteger (an XML Schema
built-in datatype).

User-defined datatypes (like the above one) cannot, however, be used in the OWL
datatyping, which (only) provides the use of somebuilt-in XML Schema datatypes and
enumerated datatypes, which are defined by explicitly specifying their instances. The
OWL datatyping does not support XML Schema customised datatypes for the following
two reasons: (i) XML Schema does not provide a standard way to access a user-defined
datatype. (ii) OWL DL does not provide a mechanism to guarantee the computability
of the kinds of customised datatypes it supports.

This paper provides a solution for this issue by presenting two decidable datatype
extensions of OWL DL, namely OWL-Eu and OWL-E. OWL-Eu provides a minimal
extension of OWL DL to support customised datatypes, while OWL-E extends OWL
DL with both customised datatypes and customised datatype predicates. The rest of the
paper is organised as follows: Section 2 further discusses the motivations of introducing
customised datatypes and datatype predicates. Section 3 extends the OWL datatyping
to unary datatype groups, which enables the use of customised datatypes. Section 4
and 5 present the OWL-Eu and the OWL-E languages, respectively; the latter one is
based on datatype groups, which are general forms of unary datatype groups. Section 6
concludes the paper and suggests some future work.

2 Motivations

Allowing users to define their own vocabulary is one of the most useful features that
ontologies can provide over other approaches, such as the Dublin Core, of providing
semantics in the Semantic Web. In the Dublin Core standard, the meaning of the set
of 15 information properties are described in English text. The main drawback of the
Dublin Core is its inflexibility; it is impossible to ‘predefine’ information properties for
all sorts of applications.

Ontologies, however, are more flexible in that users can define their own vocabu-
lary based on existing vocabularies. In ontology languages, a set of class constructors
are usually provided so that users can build class expressions based on, for example, ex-
isting class names. The intended meaning of the vocabulary, therefore, can be captured
by the axioms in the ontologies. Let us revisit Example 1 and consider the intended
meaning of theAdult class. According to its definition, anAdult is aPerson who is at
least 18 years old. As a result, programs can also understand the meaning of customised
vocabulary, with the help of ontologies.

Although OWL DL provides a set of expressive class constructors to build cus-
tomised classes, it does not provide enough expressive power to support, for example,

2

XML Schema customised datatypes. In order to capture the intended meaning ofAdult,
Example 1 has already shown the necessity of customised datatypes. In what follows,
we give some more examples to illustrate the usefulness of customised datatypes and
datatype predicates in various SW and ontology applications.

Example 2.Semantic Web Service: Matchmaking
Matchmakingis a process that takes a service requirement and a group of service

advertisements as input, and returns all the advertisements that may potentially satisfy
the requirement. In a computer sales ontology, a service requirement may ask for a PC
with memory size greater than 512Mb, unit price less than 700 pounds and delivery
date earlier than 15/03/2004.

Here ‘greater than 512’, ‘less than 700’ and ‘earlier than 15/03/2004’ are customised
datatypes of base datatypes integer, integer and date, respectively.

Example 3.Electronic Commerce: A ‘No Shipping Fee’ Rule
Electronic shops may need to classify items according to their sizes, and to reason

that an item for which the sum of height, length and width is no greater than 15cm
belongs to a class in their ontology, called ‘small-items’. Then they can have a rule
saying that for ‘small-items’ no shipping costs are charged. Accordingly, the billing
system will charge no shipping fees for all the instances of the ‘small-items’ class.

Here ‘greater than 15’ is a customised datatype, ‘sum’ is a datatype predicate, while
‘sum no greater than 15’ is a customised datatype predicate.

3 Unary Datatype Groups

The OWL datatyping is defined based on the notion of datatype maps [9]. A datatype
map is a partial mapping from supported datatype URIrefs to datatypes. In this section,
we introduce unary datatype groups, which extend the OWL datatyping with a hierarchy
of supported datatypes.

Definition 1 A unary datatype groupG is a triple (Md,B,dom), whereMd is the
datatype mapof G, B is the set ofprimitive base datatypeURI references inG and
dom is thedeclared domain function. We callS the set of supported datatype URI ref-
erences ofG, i.e., for eachu ∈ S, Md(u) is defined; we requireB ⊆ S. We assume that
there exist unary datatype URI referencerdfs:Literal, owlx:DatatypeBottom 6∈ S.
The declared domain functiondom has the following properties: for eachu ∈ S, if
u ∈ B, dom(u) = u; otherwise,dom(u) = v, wherev ∈ B. �

Definition 1 ensures that all the primitive base datatype URIrefs ofG are supported
(B ⊆ S) and that each supported datatype URIref relates to a primitive base datatype
URIref through the declared domain functiondom.

Example 4.G1 = (Md1,B1, dom1) is a unary datatype group, where

– Md1 = {xsd:integer 7→ integer, xsd:string 7→ string, xsd:nonNegativeInteger
7→≥0, xsdx:integerLessThanN 7→<N},

– B1 = {xsd:string, xsd:integer}, and

3

– dom1 = {xsd:integer 7→ xsd:integer, xsd:string 7→ xsd:string, xsd:nonNega-
tiveInteger7→ xsd:integer, xsdx:integerLessThanN 7→ xsd:integer}.

According to Md1, we haveS1 = {xsd:integer, xsd:string, xsd:nonNega-
tiveInteger,xsdx:integerLessThanN}, henceB1 ⊆ S1. ♦

Based on a unary datatype group, we can provide a formalism (called datatype ex-
pressions) for constructing customised datatypes using supported datatypes.

Definition 2 Let G be a unary datatype group. The set ofG-unary datatype expres-
sionsin abstract syntax (corresponding DL syntax can be found in Table 5 on page 8),
abbreviatedDexp(G), is inductively defined as follows:

1. atomic expressionsu ∈ Dexp(G), for a datatype URIrefu;
2. relativised negated expressionsnot (u) ∈ Dexp(G), for a datatype URIrefu;
3. enumerated expressionsoneOf (l1, . . . , ln) ∈ Dexp(G), for literalsl1, . . . , ln;
4. conjunctive expressionsand (E1, ..., En) ∈ Dexp(G), for unary datatype expressions

E1, ..., En ∈ Dexp(G);
5. disjunctive expressionsor (E1, ..., En) ∈ Dexp(G), for unary datatype expressions

E1, ..., En ∈ Dexp(G). �

Example 5.G-unary datatype expressions can be used to represent XML Schema non-
list simple types. Given the unary datatype groupG1 presented in Example 4 (page 3),

– the following XML Schema derived union simple type
<simpleType name = “cameraPrice”>

<union>
<simpleType>

<restriction base = “xsd:nonNegativeInteger”>
<maxExclusive value = “100000”/>

</restriction>
</simpleType>
<simpleType>

<restriction base = “xsd:string”>
<enumeration value = “low”/>
<enumeration value = “medium”/>
<enumeration value = “expensive”/>

</restriction>
</simpleType>

</union>
<simpleType>

can be represented by the following disjunctive expression

or (
and (xsd:nonNegativeInteger, xsdx:integerLessThan100000)
oneOf (“low”ˆˆxsd:string,“medium”ˆˆxsd:string, “expensive”ˆˆxsd:string)

).

Note that“low”ˆˆxsd:string is a typed literal, which represents a value of the
xsd:string datatype. “low”, instead, is a plain literal, where no datatype informa-
tion is provided. ♦

We now define the interpretation of a unary datatype group.

4

Abstract Syntax DL Syntax Semantics
a datatype URIrefu u uD

oneOf (l1, . . . , ln) {l1, . . . , ln} {lD1 } ∪ . . . ∪ {lDn }
not (u) u (dom(u))D \ uD if u ∈ S \B

∆D \ uD otherwise
and (E1, . . . , En) E1 ∧ . . . ∧ En ED

1 ∩ . . . ∩ ED
n

or (P, Q) E1 ∨ . . . ∨ En ED
1 ∪ . . . ∪ ED

n

Table 1.Syntax and semantics of datatype expressions (OWL-Eu data ranges)

Definition 3 A datatype interpretationID of a unary datatype groupG =
(Md,B, dom) is a pair(∆D, ·D), where∆D (the datatype domain) is a non-empty
set and·D is a datatype interpretation function, which has to satisfy the following con-
ditions:

1. (rdfs:Literal)D = ∆D and(owlx:DatatypeBottom)D = ∅;
2. for each plain literall, lD = l ∈ PL andPL ⊆ ∆D (PL is the value space for plain

literals);
3. for any two primitive base datatype URIrefsu1, u2 ∈ B: uD

1 ∩ uD
2 = ∅;

4. for each supported datatype URIrefu ∈ S, whered = Md(u):
(a) uD = V (d) ⊆ ∆D, L(u) ⊆ L(dom(u)) andL2V (u) ⊆ L2V (dom(u));
(b) if s ∈ L(d), then(“s”ˆˆu)D = L2V (d)(s); otherwise,(“s”ˆˆu)D is not defined;

5. ∀u 6∈ S, uD ⊆ ∆D, and“v”ˆˆu ∈ uD.

Moreover, we extend·D to G unary datatype expression as shown in Table 5
(page 8). LetE be aG unary datatype expression, the negation ofE is of the form
¬E, which is interpreted as∆D \ ED. �

Next, we introduce the kind of basic reasoning mechanisms required for a unary
datatype group.

Definition 4 Let V be a set of variables,G = (Md,B, dom) a unary datatype group
andu ∈ B a primitive base datatype URIref. A datatype conjunction ofu is of the form

C =

k∧
j=1

uj(vj) ∧
l∧

i=1

6=i (v
(i)
1 , v

(i)
2), (1)

where thevj are variables fromV, v
(i)
1 , v

(i)
2 are variables in

∧k
j=1 uj(vj), uj are

datatype URI references fromS such thatdom(uj) = u, and 6=i are the inequality
predicates for primitive base datatypesMd(dom(ui)) whereui appear in

∧k
j=1 uj(vj).

A datatype conjunctionC is called satisfiableiff there exists an interpretation
(∆D, ·D) of G and a functionδ mapping the variables inC to data values in∆D s.t.
δ(vj) ∈ uD

j (for all 1 ≤ j ≤ k) and{δ(v(i)
1), δ(v(i)

2)} ⊆ uD
i andδ(v(i)

1) 6= δ(v(i)
2) (for

all 1 ≤ i ≤ l). Such a functionδ is called asolutionfor C w.r.t. (∆D, ·D). �

We end this section by elaborating the conditions that computable unary datatype
groups require.

5

Definition 5 A unary datatype groupG is conformingiff

1. for anyu ∈ S \B: there existsu′ ∈ S \B such thatu′D = uD, and
2. for each primitive base datatype inG, the satisfiability problems for finite datatype

conjunctions of the form (1) is decidable. �

4 OWL-Eu

In this section, we present a small extension of OWL DL, i.e., OWL-Eu. The underpin-
ning DL of OWL-Eu isSHOIN (G1), i.e., theSHOIN DL combined with a unary
datatype groupG (1 for unary). Specifically, OWL-Eu (only) extends OWL data range
(i.e., enumerated datatypes as well as some built-in XML Schema datatypes) to OWL-
Eu data ranges defined as follows.

Definition 6 An OWL-Eu data rangeis a G unary datatype expression. Abstract (as
well as DL) syntax and model-theoretic semantics of OWL-Eu data ranges are presented
in Table 5 (page 8). �

The consequence of the extension is that customised datatypes, represented by
OWL-Eu data ranges, can be used in datatype exists restrictions (∃T.u) and datatype
value restrictions (∀T.u), whereT is a datatype property andu is an OWL-Eu data
range. Hence, this extension of OWL DL is as large as is necessary to support cus-
tomised datatypes.

Example 6.PCs with memory size greater than or equal to 512 Mb and with price
cheaper than 700 pounds can be represented in the following OWL-Eu concept descrip-
tion in DL syntax (cf. Table 5 on page 8):

PC u ∃memorySizeInMb.<512 u ∃priceInPound. <700,

where<512 is a relativised negated expression and<700 is a supported datatype inG1.
♦

It turns out that OWL-Eu (i.e., theSHOIN (G1) DL) is decidable.

Theorem 1. TheSHOIN (G1)-concept satisfiability problem w.r.t. a knowledge base
is decidable if the combined unary datatype group is conforming.

Proof: (Sketch) We will show the decidability ofSHOIN (G1)-concept satisfiability
w.r.t. TBoxes and RBoxes by reducing it to theSHOIN -concept satisfiability w.r.t.
TBoxes and RBoxes. The basic idea behind the reduction is that we can replace each
datatype group-based conceptC in T with a new atomic primitive conceptAC in T ′.
We then compute the satisfiability problem for all possible conjunctions of datatype
group-based concepts (and their negations) inT (of which there are only a finite
number), and in case a conjunctionC1 u . . . u Cn is unsatisfiable, we add an axiom
AC1 u . . . u ACn

v ⊥ to T ′. For example, unary datatype group-based concepts
∃T. >1 and∀T. ≤0 occurring inT would be replaced withA∃T.>1 andA∀T.≤0 in
T ′, andA∃T.>1 u A∀T.≤0 v ⊥ would be added toT ′ because∃T. >1 u ∀T. ≤0 is
unsatisfiable(i.e., there is no solution for the predicate conjunction>1 (v) ∧ ≤0 (v)).

6

5 OWL-E: A Step Further

In this section, we present a further extension of OWL-Eu, called OWL-E, which sup-
ports not only customised datatypes, but also customised datatype predicates.

A datatype predicate(or simply predicate) p is characterised by an aritya(p), or
a minimum arityamin(p) if p can have multiple arities, and a predicate extension (or
simply extension) E(p). The notion of predicate maps can be defined in an obvious
way. For example,=int is a (binary) predicate with aritya(=int) = 2 and extension
E(=int) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, whereV (integer) is the value space
for the datatypeinteger.

Now we can generalise unary datatype groups by the definition of datatype groups.
In fact, datatypes and datatype predicates can be unified in datatype groups. Roughly
speaking, a datatype group is a group of built-in predicate URIrefs ‘wrapped’ around a
set of primitive datatype URIrefs. Adatatype groupG is a tuple (Mp,B,dom), where
Mp is thepredicate mapof G, B is the set ofprimitive datatypeURI references inG
anddom is thedeclared domain function. We callS the set of built-in predicate URI
references ofG, i.e., for eachu ∈ S, Mp(u) is defined; we requireB ⊆ S. The declared
domain functiondom has the following properties: for eachu ∈ S,

dom(u) =



u if u ∈ B,
(v1, . . . , vn), wherev1, . . . , vn ∈ B if u ∈ S \B and

a(Mp(u)) = n,
{(v, . . . , v︸ ︷︷ ︸

i times

) | i ≥ n}, wherev ∈ B if u ∈ S \B and

amin(Mp(u)) = n.

Example 7.G2 = (Mp2,B2, dom2) is a datatype group, where

– Mp2 = {xsd:integer 7→ integer, xsd:string 7→ string, xsd:integerGreaterThanOr-
EqualToN7→ ≥N, xsdx:integerLessThanN 7→ <N, xsdx:integerEquality 7→ =int},

– B2 = {xsd:string, xsd:integer}, and
– dom2 = {xsd:integer 7→ xsd:integer, xsd:string 7→ xsd:string, xsd:integerGreater-

ThanOrEqualToN7→ xsd:integer, xsdx:integerLessThanN 7→ xsd:integer,
xsdx:integerEquality 7→ (xsd:integer, xsd:integer)}.

According to Mp2, we haveS2 = {xsd:integer, xsd:string, xsd:nonNega-
tiveInteger,xsdx:integerLessThanN, xsdx:integerEquality}, henceB2 ⊆ S2. ♦

Furthermore, based on datatype groups, we can extend unary datatype expres-
sions to general (n-ary) datatype expressions. While enumerated expressions remain
the same, relativised negated, conjunctive and disjunctive unary datatype expressions
can be easily extended to the n-nary case. There is a new kind of datatype expres-
sion calleddomain expression: domain (u1, . . . , un), whereui is eitherrdfs:Literal
or supported unary datatype predicate URIrefs, or their relativised negations. For ex-
ample, the customised predicate ‘sumNoGreaterThanOrEqualTo15’, with extension
E(sumNoGreaterThanOrEqualTo15) = {〈i0, i1, i2, i3〉 ∈ V (integer)4 | i0 =

7

Abstract Syntax DL Syntax Semantics
not (u) u ∆D \ uD if u ∈ B

(dom(u))D \ uD if u ∈ S \B⋃
n≥1(∆D)n \ uD otherwise

domain (u1, . . . , un) [u1, . . . , un] uD
1 × . . .× uD

n

Table 2.Syntax and semantics of (new) datatype expressions

i1 + i2 + i3 and¬(i0 ≥ 15)} and aritya(sumNoGreaterThanOrEqualTo15) = 4,
can be represented by

xsdx:integerAddition ∧
[xsdx:integerGreaterThanOrEqualTo15, xsd:integer, xsd:integer, xsd:integer],

which is a conjunctive expression, where the first conjunct is a predicate URIref (that
represents+int) and the second conjunct is a domain expression.

We can extend the datatype interpretationID presented in Definition 3 to give se-
mantics to datatype groups. For eachu ∈ S, uD = E(Mp(u)) ⊆ (dom(u))D, where
(dom(u))D is defined as follows: ifdom(u) = (d1, . . . , dn) anda(Mp(u)) = n, then
(dom(u))D = dD

1 × . . .× dD
n ; if dom(u) = {(d, . . . , d︸ ︷︷ ︸

i times

) | i ≥ n} andamin(Mp(u)) =

n, then(dom(u))D =
⋃

i≥n (dD)i. The abstract syntax, DL syntax and semantics of
relativised negated and domain expressions are presented in Table 5.

The following definition summarises the conditions that computable datatype
groups require.

Definition 7 (Conforming Datatype Group) A datatype groupG is conformingiff

1. for anyu ∈ S \ B with a(Mp(u)) = n ≥ 2: dom(u) = (w, . . . , w︸ ︷︷ ︸
n times

) for some

w ∈ B, and
2. for anyu ∈ S \B: there existu′ ∈ S \B such thatu′D = uD, and
3. the satisfiability problem for finite negation-free predicate conjunctions is decid-

able, and
4. for each primitive datatype URIrefui ∈ B, there existswi ∈ S, s.t.Mp(wi) =6=ui

where6=ui
is the binary inequality predicate forMp(ui). �

Finally, OWL-E extends OWL-Eu with the datatype group-related class construc-
tors presented in Table 3.

Example 8.(OWL-E classes)
Assume that electronic-shops want to define small items as items of which the sum

of height, length and width is no greater than or equal to 15cm. TheSmallItem class
can be represented by the following datatype group-based concept description:

∃Ts, Th, Tl, Tw.(+int ∧ [≥15, integer, integer, integer]),

8

New Element DL Syntax Semantics
expressive predicate
exists restriction

∃T1, . . . , Tn.E {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED}

expressive predicate
value restriction

∀T1, . . . , Tn.E {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ ED}

expressive predicate
atleast restriction

>mT1, . . . , Tn.E {x ∈ ∆I |]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≥ m}

expressive predicate
atmost restriction

6mT1, . . . , Tn.E {x ∈ ∆I |]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≤ m}

Table 3.New class constructors in OWL-E

where Ts, Th, Tl, Tw are concrete roles representing “sum in cm”, “hight
in cm”, “length in cm” and “width in cm”, respectively, and(+int ∧
[≥15, integer, integer, integer]) is a conjunctive datatype expression representing the
customised predicate “sum no larger than or equal to 15”.1 ♦

Like OWL-Eu, OWL-E (i.e., theSHOIQ(G) DL) is also a decidable extension of
OWL-DL.

Theorem 2. TheSHOIN (G)- andSHOIQ(G)-concept satisfiability and subsump-
tion problems w.r.t. TBoxes and RBoxes are decidable.

According to Tobies [13, Lemma 5.3], ifL is a DL that provides the nominal con-
structor, knowledge base satisfiability can be polynomially reduced to satisfiability of
TBoxes and RBoxes. Hence, we obtain the following theorem.

Theorem 3. The knowledge base satisfiability problems ofSHOIN (G) and
SHOIQ(G) are decidable.

6 Conclusion

In this paper, we propose OWL-Eu and OWL-E, two decidable extensions of OWL
DL that support customised datatypes and customised datatype predicates. OWL-Eu
provides a general framework for integrating OWL DL with customised datatypes, such
as XML Schema non-list simple types. OWL-E further extends OWL-Eu to support
customised datatype predicates.

We have implemented a prototype extension of the FaCT [5] DL system, called
FaCT-DG, to support TBox reasoning in both OWL-Eu and OWL-E (without nomi-
nals). As for future work, we are planning to extend the DIG1.1 interface [3] to sup-
port OWL-Eu, and to implement a Protéǵe [6] plug-in to support XML Schema non-list
simple types, i.e. users should be able to define and/or import customised XML Schema
non-list simple types based on a set of supported datatypes, and to exploit our prototype
through the extended DIG interface. Furthermore, we plan to extend the FaCT++ DL
reasoner [4] to support the full OWL-Eu and OWL-E ontology languages.

1 To save space, we use predicates instead of predicate URIrefs here.

9

Bibliography

[1] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds. OWL Web
Ontology Language Reference. http://www.w3.org/TR/owl-ref/, Feb 2004.

[2] Paul V. Biron and Ashok Malhotra. Extensible Markup Language (XML) Schema
Part 2: Datatypes – W3C Recommendation 02 May 2001. Technical report, World
Wide Web Consortium, 2001. http://www.w3.org/TR/xmlschema-2/.

[3] DIG. SourceForge DIG Interface Project. http://sourceforge.net/projects/dig/,
2004.

[4] FaCT++.http://owl.man.ac.uk/factplusplus/ , 2003.
[5] Ian Horrocks. Using an Expressive Description Logic: FaCT or Fiction? InProc.

of KR’98, pages 636–647, 1998.
[6] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen.

The Prot́eǵe OWL Plugin: An Open Development Environment for Semantic Web
Applications. InInternational Semantic Web Conference, pages 229–243, 2004.

[7] Jeff Z. Pan and Ian Horrocks. Extending Datatype Support in Web Ontology
Reasoning. InProc. of the 2002 Int. Conference on Ontologies, Databases and
Applications of SEmantics (ODBASE 2002), Oct 2002.

[8] Jeff Z. Pan and Ian Horrocks. Web Ontology Reasoning with Datatype Groups.
In Proc. of the 2003 International Semantic Web Conference (ISWC2003), pages
47–63, 2003.

[9] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web On-
tology Language Semantics and Abstract Syntax. Technical report, W3C,
Feb. 2004. W3C Recommendation, URLhttp://www.w3.org/TR/2004/
REC-owl-semantics-20040210/ .

[10] RDF-Logic Mailing List. http://lists.w3.org/archives/public/www-rdf-logic/.
W3C Mailing List, starts from 2001.

[11] Alan Rector. Re: [UNITS, OEP] FAQ : Constraints on data values range.
Discussion in [12], Apr. 2004. http://lists.w3.org/Archives/Public/public-swbp-
wg/2004Apr/0216.html.

[12] Semantic Web Best Practice and Development Working Group Mailing List.
http://lists.w3.org/archives/public/public-swbp-wg/. W3C Mailing List, starts
from 2004.

[13] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, Rheinisch-Westfälischen Technischen
Hochschule Aachen, 2001.URL http://lat.inf.tu-dresden.de/
research/phd/Tobies-PhD-2001.pdf .

