
The OWL Instance Store: System Description

Sean Bechhofer, Ian Horrocks, Daniele Turi

Information Management Group
School of Computer Science
The University of Manchester

Manchester, UK
<lastname>@cs.manchester.ac.uk

Proceedings CADE-20, Lecture Notes in Computer Science, 2005.c©Springer-Verlag

Abstract. We describe the instance store, a system for reasoning about indi-
viduals (i.e., instances of classes) in OWL ontologies. By using a hybrid rea-
soner/database architecture, our system is able to perform efficient reasoning over
large volumes of instance data, as required by many real world applications.

1 Introduction

Ontologies, with their intuitive taxonomic structure and class based semantics, are
widely used in domains like bio- and medical-informatics, where there is a tradition
in establishing taxonomies of terms. The recent W3C recommendation ofOWL [8] as
the language of choice for web ontologies also underlines the long term vision that on-
tologies will play a central role in the semantic web. Most importantly, as shown in [9],
most of the available OWL ontologies can be captured inOWL-DL—a subset of OWL
for which highly optimised Description Logic [5] reasoners can be used to support on-
tology design and deployment.

Unfortunately, existing reasoners (and tools), while successful in dealing with the
(relatively small and static)classlevel information in ontologies, fail when presented
with the large volumes ofinstancelevel data often required by realistic applications,
hampering the use of reasoning over ontologies beyond the class level.

The system we present—theinstance Store(iS )—addresses this problem using a
hybrid database/reasoner architecture: a relational database is used to persist instances,
while a class level (i.e. ‘TBox’) reasoner is used to infer ontological information about
the classes they belong to; moreover, part of this ontological information is also per-
sisted in the database. TheiS only supports a very limited form of reasoning about
individuals, i.e., answering instance retrieval queries w.r.t. an ontology and a set of ax-
ioms asserting class-instance relationships, and it is clear that from a theoretical point of
view this could be reduced to pure TBox reasoning. TheiS is, however, able to process
muchlarger numbers of individuals than it is currently possible using standard Descrip-
tion Logic reasoners. Moreover, this kind of reasoning turns out to be useful in a wide
range of applications, in particular those where domain models are used to structure and
investigate large data sets.



2

2 Architecture and Interface

There is a long tradition of coupling databases to knowledge representation systems in
order to perform reasoning, most notably the work in [10]. However, in our architecture
we do not use the standard approach of associating a table (or view) with each class
and property. Instead, we have a fixed and relatively simple schema that is independent
of the structure of the ontology and of the instance data. TheiS is, therefore, agnostic
about the provenance of data, and uses a new, dedicated database for each ontology
(although the schema is always the same).

The basic functionality and the database schema of theiS system are illustrated
in Figure 1 and Figure 2 respectively. At start-up, theinitialise method is called w.r.t.

initialise(database: Database, reasoner: OWLReasoner, ontology: OWLOntology)
addAssertion(instance: URI, class: OWLDescription)
retrieve(query: OWLDescription): Set〈URI〉

Fig. 1.TheiS API

a relational database, an OWL class reasoner, and a class level (i.e., not containing
instances) OWL ontology. The method creates the schema fordatabase if needed (ie if
theiS is new), parsesontology and loads it into the reasoner.

To populate theiS, one calls theaddAssertion method repeatedly. Each assertion
states thatinstance (a URI) belongs toclass, which is an arbitrary OWL description (not
involving other instances). Once one has populated theiS with some—possibly millions
of—instances, one can query it using theretrieve method. A query again consists of an
arbitrary OWL class description, and the result is the set of all instances belonging to
the query class.

Fig. 2.Database Schema foriS



3

3 Implementation

We have implemented our system in Java1. The communication with the reasoner is
implemented using the DIG interface [7]. This allows theiS system to be, again, fully
agnostic of the actual reasoner used; indeed, we have used FaCT [14], Racer [12], and
FaCT++ [1] in our applications, sometimes using all of them at different times for the
sameiS. As for the database system, we have usedMySQL, Oracle andHypersonic,
accessed either throughJDBCor throughHibernate

The key algorithms in the Java code itself are those foraddAssertion andretrieve.
Our starting point is the ‘semantic indexing’ of [15], taking the atomic classes in the
ontology as indexing concepts. In order to improve performance we also cache addi-
tional information about descriptions: for every descriptionD used in a class-instance
assertion or query, we storeD in theDescriptions table, compute (using a TBox
reasoner) the location ofD in the class hierarchy, and cache all named (atomic) con-
cepts that

– subsumeD (storing them in theSubsumers table);
– are equivalent toD (storing them in theEquivalents table);
– are parents (direct subsumers) ofD (storing them in theParents table); or
– are children (direct subsumees) ofD (storing them in theChildren table).

Caching this information avoids the need to traverse the class hierarchy (and issue
many DB queries) when answering instance retrieval queries. With this data in place,
the speed of retrieval for a queryQ depends on whether:

1. Q is referenced inEquivalents (⇒ virtually immediate answer);
2. Q subsumes the conjunction of its parents2 (⇒ fast answer);
3. there is a setI of individuals, each of which is an instance ofall of the parents of

Q and not an instance ofanychild of Q (⇒ speed of answer depends on size ofI).

Note that almost all the reasoning needed in retrieval is performed by means of (single)
SQL queries, with the exception of the last case where the reasoner is needed for as
many subsumption tests as the size ofI. For more details visit theiS website [4].

Clearly, the performance gains obtained by caching classified descriptions come at
the expenses of maintenance: changes at the class level of the ontology require costly
updates to theiS. The whole system, however, is geared towards scalability and fast
retrieval times, and the applications below demonstrate that this is useful in realistic
scenarios.

4 Applications and Performance

The first application we describe illustrates the performance of theiS w.r.t. a real world
problem with more that half a million instances. The Gene Ontology (GO) consortium
publishes every month a database [2] of gene products referring to terms in a large
(tens of thousands of classes) ontology. The structural simplicity of the ontology (little

1 Source code, binaries, GUI, and test suites are publicly available from SourceForge [3].
2 Every concept is always subsumed by the conjunction of its parents, hence this effectively

checks whetherQ is equivalent to the conjunction of its parents.



4

more than a taxonomy of classes) means that its transitive closure can be precomputed
and stored in the database so that, when a client searches for the gene products whose
descriptions are subsumed by a set of terms, the answer can be returned without using
any reasoner. Together with other functionality provided by the database, this provides
biologists with a service which is highly valued and widely used.

To test theiS, we mined (the SWISS-PROT fragment of) the Gene Ontology database
extracting 653,762 gene product descriptions which we loaded in theiS using thead-
dAssertion method (in 23,750 seconds using FaCT++). In our mining we exploited the
fact that gene terms form three more or less separate taxonomies of ‘processes’, ‘com-
ponents’ and ‘functions’. We therefore added three corresponding new properties (also
known asroles) to the gene ontology and described gene products using them. For
instance, we asserted that1433 CANALis an instance of the class of gene products
that take part in intracellular signalling cascade, arepart of chloroplast, and have
the function of protein domain specific binding activity. (We denote roles in bold and
classes in italics.)

This does not take into account annotations and other information present in the
GO database, but our aim was simply to test a large set of realistic and interesting data.
Extensions in the structure of the ontology (as envisaged in GONG [17]) would allow
more complex assertions to be made and more complex queries to be asked .

Our results are very encouraging. We have tested our GOiS against various queries
formulated by domain experts. Their descriptions are similar in structure to the descrip-
tion of the assertion for the above gene product1433 CANAL, i.e. a conjunction of
processes, components and functions (each conjunct possibly empty), and the retrieval
times range between less than a second and few seconds depending on the factors dis-
cussed in Section 3. The queries cover all three cases mentioned in the previous section,
thus including run-time calls to the reasoner for subsumption checks.

More bioinformatics applications of theiS include its use to guide gene annota-
tion [6] and, more recently, to investigate the structure of data mined from the InterPro
database of protein families [16].

We also built another example [11] ofiS within the proof-of-concept projectMONET,
where mathematical web-services are envisaged to register to a broker using theiS to
perform service matching. A typical service description specifies the ‘GAMS’ classi-
fication of the service, the problem it solves, input and output formats, the directives
it accepts, the software used to implement it, and the algorithm it implements. All this
involves several classes and roles in nested conjunctions from an ontology containing
thousands of classes interconnected by means of tens of roles. The structural richness
of the ontology means that services can then be matched using, e.g., a bibliographic ref-
erence to their implemented algorithm. The MONETiS contains too few instances for
its performance to be significant, however it illustrates the expressivity of our approach.

5 Conclusions and Future Work

The architectural choices made in the implementation ofiS ensure that we use appro-
priate technologies for appropriate tasks. It is clear that at some point the reasoner must
be used in order to retrieve individuals, but in our approach it is only used when neces-



5

sary. Databases are well suited to handling large volumes of data and are optimised for
the performance of operations such as joins and intersections.

The functionality of theiS is limited, but is sufficient to support several interesting
applications, and allows us to deal with volumes of instance data that cannot, to the best
of our knowledge, be handled by any other reasoner.

In the presentiS, roles are allowed to appear at class level as in the GO roletake
part in , but no role assertion between instances is allowed, i.e., we cannot assert that
instancex is related via roler to instancey. We are currently working on an extension of
theiS that uses theprecompletiontechnique [13] to overcome this limitation (although
at the cost of some restrictions on the structure of the ontology).

References

1. FaCT++.http://owl.man.ac.uk/factplusplus .
2. Gene Ontology Database.http://www.godatabase.org/dev/database .
3. Instance Store API.http://sourceforge.net/projects/instancestore .
4. Instance Store website.http://instancestore.man.ac.uk .
5. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-

Schneider, editors.The Description Logic Handbook — Theory, Implementation and Ap-
plications. Cambridge University Press, 2003.

6. M. Bada, D. Turi, R. McEntire, and R. Stevens. Using Reasoning to Guide Annotation with
Gene Ontology Terms in GOAT.SIGMOD Record (special issue on data engineering for
the life sciences), June 2004.

7. Sean Bechhofer. The DIG description logic interface: DIG/1.1. InProceedings of the 2003
Description Logic Workshop (DL 2003), 2003.

8. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness,
Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language Reference.
Technical Report REC-owl-ref-20040210, The Worldwide Web Consortium, February 2004.

9. Sean Bechhofer and Raphael Volz. Patching Syntax in OWL Ontologies. InProceedings of
3rd International Semantic Web Conference (ISWC’04), Hiroshima, Japan, 2004.

10. Alexander Borgida and Ronald J. Brachman. Loading data into description reasoners. In
Procs ACM SIGMOD Int’l Conf. on Management of Data, pages 217–226, 1993.

11. Olga Caprotti, Mike Dewar, and Daniele Turi. Mathematical service matching using De-
scription Logic and OWL. InProceedings of 3rd International Conference on Mathematical
Knowledge Management (MKM’04), volume 3119 ofLNCS. Springer-Verlag, 2004.

12. V. Haarslev and R. Moller. Description of the RACER system and its applications. In
R. Gore, A. Leitsch, and T. Nipkow, editors,Procs of IJCAR 2001, volume 2083 ofLecture
Notes in Artificial Intelligence. Springer-Verlag Inc., 2001.

13. Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts in termino-
logical systems. 18(2–4):133–157, 1996.

14. I. Horrocks. Using an expressive description logic: FaCT or fiction? InProcs 6th Int’l Conf.
on Principles of Knowledge Representation and Reasoning (KR’98), pages 636–647, 1998.

15. A. Schmiedel. Semantic indexing based on description logics. In F. Baader, M. Buchheit,
M.A. Jeusfeld, and W. Nutt, editors,Reasoning about structured objects: knowledge repre-
sentation meets databases. Proceedings of the KI’94 Workshop KRDB’94, September 1994.

16. K. Wolstencroft, P. Lord, L. Tabernero, A. Brass, and R. Stevens. Intelligent classification of
proteins using an ontology. Submitted for publication, 2005.

17. Chris J. Wroe, Robert D. Stevens, Carole A. Goble, and Michael Ashburner. A method-
ology to migrate the gene ontology to a description logic environment using daml+oil. In
Proceedings of the 8th Pacific Symposium on Biocomputing (PSB), Hawaii, January 2003.


