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Abstract

Motivated by medical terminology applications, we investigate the decidability of an
expressive and prominent description logic (DL), SHIQ, extended with role inclu-
sion axioms of the form R◦S v̇ T . It is well-known that a naive such extension leads
to undecidability, and thus we restrict our attention to axioms of the form R◦S v̇ R

or S ◦R v̇ R, which is the most important form of axioms in the applications that
motivated this extension. Surprisingly, this extension is still undecidable. However,
it turns out that by restricting our attention further to acyclic sets of such axioms,
we regain decidability. We present a tableau-based decision procedure for this DL
and report on its implementation, which promises to behave well in practise and
provides important additional functionality in a medical terminology application.
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1 Motivation

The description logic (DL) SHIQ (Horrocks et al., 2000; Horrocks and Sat-
tler, 2002b) is an expressive knowledge representation formalism that extends
ALC (Schmidt-Schauß and Smolka, 1991) with qualifying number restrictions,
inverse roles, role inclusion axioms, and transitive roles. The development of
SHIQ was motivated and inspired by several applications, one of which was
the representation of knowledge about complex physically structured domains
found, e.g., in chemical engineering (Sattler, 2000) and medical terminology
(Rector and Horrocks, 1997).

1 This is an extended version of the conference paper (Horrocks and Sattler, 2003).
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For example, in SHIQ, we can describe fractures of the femur by the following
concept which, intuitively, denotes fractures that are located in the femur or
the neck of the femur:

FemurFracture
.
= Fracture u ∃hasLocation.(Femur t FemurNeck).

To make this definition work, we also should describe the neck of the femur,
e.g., as follows:

FemurNeck
.
= BodyPart u Proxima u ∃isDivisionOf.Femur.

SHIQ allows many important properties of application domains to be cap-
tured: e.g., we can state that hasLocation is transitive, and that LocatedIn
is the inverse of hasLocation. However, there is one extremely useful fea-
ture that SHIQ cannot express, namely the “propagation” of one property
along another property (Padgham and Lambrix, 1994; Rector, 2002; Spack-
man, 2000). Coming back to our example above, to capture that also a fracture
of the shaft of the femur is a fracture of the femur, we need to add this in-
formation explicitly the definition of FemurFracture. As such, this is easily
feasible. A more elegant approach would be to change our definition to

FemurFracture
.
= Fractureu∃hasLocation.(Femurt∃isDivisionOf.Femur).

Still, we have to have a similar disjunction in the definition of a fracture of the
tibia, and all other fractures. Thus, it would be useful if we could express, in
general, the fact that certain locative properties are transfered across certain
partonomic properties so that a fracture or trauma located in a part of a body
structure is recognised as being located in the body structure as a whole. This
would yield highly desirable inferences such as a fracture of the shaft of the
femur being inferred to be a kind of fracture of the femur, or an ulcer located
in the gastric mucosa being inferred to be a kind of stomach ulcer—without
the necessity to repeat this statement in the definition of every single such
concept.

The importance of these kinds of inferences, particularly in medical termi-
nology applications, is illustrated by the fact that three different such appli-
cations provide means to express propagation. The Grail DL (Rector et al.,
1997), which was specifically designed for use with medical terminology, is
able to represent these kinds of propagation (although it is quite weak in
other respects). In another medical terminology application using the compar-
atively inexpressive DL ALC, a rather complex “work around” is performed
in order to represent similar propagations (Schulz and Hahn, 2001): so-called
SEP-triplets are used both to compensate for the absence of transitive roles
in ALC, and to express the propagation of properties across a distinguished
“part-of” role. In a third application, use is made of so-called right-identities,
which correspond to our complex role inclusion axioms (Spackman, 2000). Fi-
nally, similar expressiveness was also provided in the CycL language by the
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transfersThro statement (Lenat and Guha, 1989). To the best of our knowl-
edge, however, there is no proof of the correct treatment of propagation in any
of these applications.

It is quite straightforward to extend SHIQ so that this kind of propagation
can be expressed: simply allow for role inclusion axioms (RIAs) of the form
R ◦ S v̇ P , which then forces all models I to interpret the composition of RI

with SI as a sub-relation of P I . E.g., the above examples translate into

hasLocation ◦ isDivisionOf v̇ hasLocation,

which implies that

Fracture u ∃hasLocation.(Neck u ∃isDivisionOf.Femur),

i.e., a concept describing fractures of the neck of the femur, is indeed subsumed
by (is a specialisation of)

Fracture u ∃hasLocation.Femur,

i.e., a concept describing fractures of the femur.

Unfortunately, this extension leads to the undecidability of interesting infer-
ence problems such as concept satisfiability and subsumption (Wessel, 2001).
This undecidability is not surprising once we observe the close relationship
between RIAs, Grammar Logics (Baldoni, 1998; Baldoni et al., 1998; Demri,
2001), and role value maps (Brachman and Schmolze, 1985; Schmidt-Schauss,
1989). This relationship is discussed in more detail in Section 2.1. Here, it
should suffice to mention that a RIA R S v̇ T can be viewed as a notational
variant of the production rule T → R S of Grammar Logics or the concept
inclusion > v̇ (R SṽT ) of a description logic allowing for role value maps.

On closer inspection of our motivating examples, we observe that only RIAs
of the form R S v̇ S or S R v̇ S are required in order to express propagation.
To the best of our knowledge, no (un)decidability results are known for similar
restrictions of the above mentioned Grammar Logics or DLs with role value
maps. In this paper, we will show that SHIQ extended with this restricted
form of RIAs is still undecidable. Due to the syntactic restrictions imposed on
RIAs, we cannot re-use techniques employed to prove undecidability of Gram-
mar Logics or DLs with role value maps. Instead, our proof is by reduction
of the undecidable domino problem (Berger, 1966), and uses a rather special
technique to ensure a grid structure.

Decidability can be regained, however, by further restricting the set of RIAs to
be regular, and the logic obtained by restricting RIAs to regular ones is called
RIQ. From a practical point of view, the restrictions imposed by regularity
do not seem to be severe: regular RIAs should suffice for many applications,
and non-regular RIAs may even be an indicator of modelling flaws (Rector,
2002).
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We prove the decidability of SHIQ with regular RIAs via a tableau-based
decision procedure for the satisfiability of concepts. We first translate regular
RIAs into non-deterministic automata, and then use these automata in the
tableau algorithm. More precisely, the tableau algorithm replaces concepts
of the form ∀R.C (where R is a role) with expressions of the form ∀BR.C,
where BR is a non-deterministic finite automaton (NFA) capturing exactly the
restrictions imposed on R by RIAs. Using these expressions, we ensure that
the concept C is indeed “pushed” to all those nodes it has to be pushed to,
even if they are far away from a node that has to satisfy ∀R.C. The algorithm
is of the same complexity as the one for SHIQ—in the size of BR and the
length of the input concept—but, unfortunately, BR can be exponential in the
“depth” of R, i.e., in the length of chains of roles depending on each other.
We also present a syntactic restriction that avoids this blow-up; investigating
whether this blow-up can be avoided in general will be part of future work.

As we have discussed above, the interaction between roles in regular RIAs
can be captured by NFAs, but we have not yet explained which RIAs are
regular. This is so because, in the presence of inverse roles, the definition of
regularity becomes slightly tricky: each “left-linear” RIA of the form R S v̇ S
is equivalent to a “right-linear” RIA S− R− v̇ S−. Thus each left-linear RIA
has consequences that are inherently a mixture of right- and left-linear RIAs.
Now it is well-known that grammars with a such a linear mixture are stronger
than right-linear grammars or left-linear grammars (Hopcroft and Ullman,
1997), and this is true also for RIAs, as our undecidability result shows. Thus,
to enable the transformation into an automaton, we impose an additional
restriction, which we have chosen to be acyclicity in a rather loose sense, i.e.,
we still allow for RIAs S S v̇ S, R S v̇ S, and S R v̇ S, but we do not allow
for combinations of RIAs such as R S v̇ S and S R v̇ R.

Finally, in order to evaluate the practicability of this algorithm, we have ex-
tended the DL system FaCT (Horrocks, 1998) to deal with RIQ. We dis-
cuss how the properties of NFAs are exploited in the implementation, and
we present some preliminary results showing that the performance of the ex-
tended system is comparable with that of the original, and that it is able to
compute inferences of the kind mentioned above w.r.t. the well-known Galen
medical terminology knowledge base (Rector and Horrocks, 1997; Horrocks,
1998).

2 Preliminaries

In this section, we introduce the DL SH+IQ. This includes the definition of
syntax, semantics, and inference problems.
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Definition 1 Let C be a set of concept names and R a set of role names.
The set of roles is R∪{R− | R ∈ R}. A role inclusion axiom is an expression
of one of the following forms:

R1 v̇ R2, R1R2 v̇ R1, or R1R2 v̇ R2,

for roles Ri (each of which can be inverse). A generalised role hierarchy is a
set of role inclusion axioms.

An interpretation I = (∆I , ·I) associates, with each role name R, a binary
relation RI ⊆ ∆I ×∆I. Inverse roles are interpreted as usual, i.e.,

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} for each role R ∈ R.

An interpretation I is a model of a generalised role hierarchy R if it satisfies
each inclusion assertion in R, i.e., if

RI
1 ⊆ RI

2 for each R1 v̇ R2 ∈ R and

RI
1 ◦RI

2 ⊆ RI
3 for each R1R2 v̇ R3 ∈ R,

where ◦ stands for the composition of binary relations.

Note that we did not introduce transitive role names since adding RR v̇ R
to the generalised role hierarchy is equivalent to saying that R is a transitive
role.

To avoid considering roles such as R−−, we define a function Inv on roles such
that Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−.

Since we will often work with a string of roles, it is convenient to extend both ·I

and Inv(·) to such strings: if w = R1 . . . Rn for Ri roles, then wI = RI
1 ◦ . . .◦R

I
n

and Inv(w) = Inv(Rn) . . . Inv(R1). It follows immediately from the definition of
the semantics that

〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .

Next, since each model satisfying w v̇ S also satisfies Inv(w) v̇ Inv(S) (and
vice versa), we can restrict generalised role hierarchies to those with role names
on their right hand side without any effect on the expressivity. For better
readability, we will not do this in the undecidability proof of SH+IQ, but we
will do it for the decidable logic RIQ since it makes the construction in the
proofs easier.

Finally, for a generalised role hierarchy R, we define the relation v* to be the
transitive-reflexive closure of v̇ over {R v̇ S, Inv(R) v̇ Inv(S) | R,S roles and R v̇
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S ∈ R}. A role R is called a sub-role (resp. super-role) of a role S if R v* S
(resp. S v* R). Two roles R and S are equivalent (R ≡ S) if R v* S and S v* R.

Now we are ready to define the syntax and semantics of SH+IQ-concepts.

Definition 2 Let R be a generalised role hierarchy. A role R is simple in R
if, for each R′ v* R, R contains no RIA of the form R1 R2 v̇ R′ or R1 R2 v̇
Inv(R′). If R is clear from the context, we often use “simple” instead of “simple
in R”.

The set of SH+IQ-concepts is the smallest set such that

• every concept name and >,⊥ are concepts, and,
• if C, D are concepts, R is a role (possibly inverse), S is a simple role

(possibly inverse) , and n is a non-negative integer, then CuD, CtD, ¬C,
∀R.C, ∃R.C, (>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C v̇ D
for two SH+IQ-concepts C and D. A terminology is a set of GCIs.

An interpretation I = (∆I , ·I) consists of a set ∆I, called the domain of I,
and a valuation ·I which maps every concept to a subset of ∆I and every role
to a subset of ∆I ×∆I such that, for all concepts C, D, roles R, S, and non-
negative integers n, the following equations are satisfied, where ]M denotes
the cardinality of a set M :

>I = ∆I ⊥I = ∅ (top and bottom)

(C uD)I = CI ∩DI (conjunction)

(C tD)I = CI ∪DI (disjunction)

(¬C)I = ∆I \ CI (negation)

(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)

(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} > n} (at least restriction)

(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n} (at most restriction)

An interpretation I is a model of a terminology T (written I |= T ) iff CI ⊆
DI for each GCI C v̇ D in T .

A concept C is called satisfiable iff there is an interpretation I with CI 6= ∅.
A concept D subsumes a concept C (written C v D) iff CI ⊆ DI holds
for each interpretation. Two concepts are equivalent (written C ≡ D) if they
are mutually subsuming. The above inference problems can be defined w.r.t. a
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generalised role hierarchy R and/or a terminology T in the usual way, i.e., by
replacing interpretation with model of R and/or T .

For an interpretation I, an element x ∈ ∆I is called an instance of a concept
C iff x ∈ CI.

Please note that number restrictions (>nR.C) and (6nR.C) are restricted to
simple roles. Intuitively, these are (possibly inverse) roles that are not implied
by the composition of other roles. The reason for this restriction is that, with-
out it, satisfiability of SHIQ-concepts is undecidable (Horrocks et al., 1999),
even for a logic without inverse roles and with only unqualifying number re-
strictions (these are number restrictions of the form (>nR.>) and (6nR.>)).

For DLs that are closed under negation, subsumption and (un)satisfiability can
be mutually reduced: C v D iff C u¬D is unsatisfiable, and C is unsatisfiable
iff C v ⊥. It is straightforward to extend these reductions to generalised role
hierarchies and terminologies. In contrast, the reduction of inference problems
w.r.t. a terminology to pure concept inference problems (possibly w.r.t. a role
hierarchy), deserves special care: in (Baader, 1991; Schild, 1991; Baader et al.,
1993), the internalisation of GCIs is introduced, a technique that realises
exactly this reduction. For SH+IQ, this technique only needs to be slightly
modified. The following Lemma shows how general concept inclusion axioms
can be internalised using a “universal” role U , that is, a transitive super-role
of all roles occurring in T or R and their respective inverses.

Lemma 3 Let C,D be concepts, T a terminology, and R a generalised role
hierarchy. We define

CT := u
Civ̇Di∈T

¬Ci tDi.

Let U be a role that does not occur in T , C, D, or R. We set

RU := R∪ {UU v̇ U} ∪ {R v̇ U, Inv(R) v̇ U | R occurs in T , C, D, or R}.

• C is satisfiable w.r.t. T and R iff C uCT u ∀U.CT is satisfiable w.r.t. RU .
• D subsumes C with respect to T and R iff C u¬D uCT u ∀U.CT is unsat-

isfiable w.r.t. RU .

The proof of Lemma 3 is similar to the ones that can be found in (Schild, 1991;
Baader, 1991). Most importantly, it must be shown that, (a) if a SH+IQ-
concept C is satisfiable with respect to a terminology T and a generalised role
hierarchy R, then C, T have a connected model, i. e., a model where any two
elements are connect by a role path over those roles occurring in C and T ,
and (b) if y is reachable from x via a role path (possibly involving inverse
roles), then 〈x, y〉 ∈ UI . These are easy consequences of the semantics and the
definition of U .
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Theorem 4 Satisfiability and subsumption of SH+IQ-concepts w.r.t. termi-
nologies and generalised role hierarchies are polynomially reducible to (un)sat-
isfiability of SH+IQ-concepts w.r.t. generalised role hierarchies.

2.1 Relationship with Grammar Logics

It is well-known that description and modal logics are closely related: for ex-
ample, ALC can be viewed as a notational variant of the multi modal logic K

(Schild, 1991; De Giacomo and Lenzerini, 1994). Related to the logics inves-
tigated here are grammar logics (Farinãs del Cerro and Penttonen, 1988), a
class of propositional multi modal logics where the accessibility relations are
“axiomatised” through a grammar. More precisely, for σi, τj modal parame-
ters, the production rule σ1 . . . σm → τ1 . . . τn can be viewed as an abbreviation
for the axioms

[σ1] . . . [σm]p⇒ [τ1] . . . [τn]p,

or as being a notational variant for the role inclusion axiom

τ1 . . . τn v̇ σ1 . . . σm.

Analogously to the description logic case, the semantics of a grammar logic
is defined by taking into account only those frames/relational structures that
“satisfy the grammar”.

Grammars are traditionally organised in (refinements of) the Chomsky hi-
erarchy (see any textbook on formal languages, e.g., (Hopcroft and Ullman,
1997)), which also induces classes of grammar logics. For example, the class
of context free grammar logics is the class of those propositional multi modal
logics where the accessibility relations are axiomatised through a context free
grammar. Unsurprisingly, the expressiveness of the grammars influences the
expressiveness of the corresponding grammar logics. It was shown that satisfi-
ability of regular grammar logics is ExpTime-complete (Demri, 2001), whereas
this problem is undecidable for context free grammar logics (Baldoni, 1998;
Baldoni et al., 1998). The latter result is closely related to the undecidability
proof in (Wessel, 2001). In this paper, we are concerned with

• grammars that are not regular, but we do not allow for arbitrary context-
free grammars (or any known normal forms thereof), and
• multi modal logics that provide a converse operator on modal parameters.

That is, for σ a modal parameter, both [σ]ϕ and [σ−]ϕ are formulae of our
logic, and we allow mixtures of converse and atomic modal parameters in the
rules of the grammar. Moreover, SH+IQ provides graded modalities that
restrict the number of accessible worlds, see, e.g., (Tobies, 2001; Kupferman
et al., 2002).
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As a consequence of the first point, we could not re-use the technique from
(Baldoni, 1998; Baldoni et al., 1998) for our undecidability proof: we could not
reduce the emptiness problem for the intersection of context-free grammars
to the satisfiability of SH+IQ-concepts because SH+IQ’s syntactic restric-
tion on role inclusion axioms means that we cannot capture all context-free
grammars. However, we can capture “some” context-freeness: our undecidabil-
ity proof in Section 3 is by a reduction of the undecidable domino problem
(Berger, 1966), and is heavily based on the language {(ab)n(cd)n | n ≥ 0} to
enforce a model with a “grid” structure. Although we were not able to con-
struct a grammar for this language directly using only productions of the form
R→ RS or R→ SR, we used a grammar G such that the language generated
by G, when intersected with (ab)∗(cd)∗, equals {(ab)n(cd)n | n ≥ 0}. This
grammar G contains the four production rules

D → AD,

A → AC,

C → BC,

B → BD, A→ a, . . . D → d

and can be found in four versions as the last axioms of RD in Figure 2, where
we use xi, yi, and their inverses instead of A, . . . , B.

2.2 Role value maps

The role inclusion axioms we investigate here are closely related to role value
maps (Brachman and Schmolze, 1985; Schmidt-Schauss, 1989), i.e., concepts
of the form R1 . . . Rm ṽ S1 . . . Sn for Ri, Si roles. The semantics of these
concepts is defined as follows:

(R1 . . . Rm ṽ S1 . . . Sn)I = {x ∈ ∆I | (R1 . . . Rm)I(x) ⊆ (S1 . . . Sn)I(x)},

where (R1 . . . Rm)I(x) denotes the set of those y ∈ ∆I that are reachable from
x via RI

1 ◦ . . . ◦RI
m.

Thus the role inclusion axiom RS v̇ T is equivalent to the general concept
inclusion axiom > v̇ (RS ṽ T ), i.e., both axioms have the same models. The
role value maps used to show the undecidability of KL-ONE (Schmidt-Schauss,
1989) are of a more general form than (RS ṽ T ), i.e., they use role chains of
unbounded length on both sides of ṽ, and there is no direct translation of the
undecidability proof in (Schmidt-Schauss, 1989) to our logic.
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Fig. 1. A staircase model and the implications of the last group of axioms in RD.

3 SH+IQ is undecidable

Due to the syntactic restriction on role inclusion axioms, neither the undecid-
ability proof for ALC with context-free or linear grammars in (Baldoni, 1998;
Baldoni et al., 1998; Demri, 2001) nor the one for ALC with role boxes (Wes-
sel, 2001) can be adapted to prove undecidability of SH+IQ satisfiability. In
the following, we reduce the (undecidable) domino problem (Berger, 1966) to
SH+IQ satisfiability. This problem asks whether, for a set of domino types,
there exists a tiling of an IN2 grid such that each point of the grid is covered
with exactly one of the domino types, and adjacent dominoes are “compatible”
with respect to some predefined criteria.

Definition 5 A domino system D = (D,H, V ) consists of a non-empty set
of domino types D = {D1, . . . , Dn}, and of sets of horizontally and vertically
matching pairs H ⊆ D ×D and V ⊆ D ×D. The problem is to determine if,
for a given D, there exists a tiling of an IN × IN grid such that each point of
the grid is covered with a domino type in D and all horizontally and vertically
adjacent pairs of domino types are in H and V respectively, i.e., a mapping

t : IN× IN→ D such that, for all m,n ∈ IN, 〈t(m,n), t(m + 1, n)〉 ∈ H and

〈t(m,n), t(m,n + 1)〉 ∈ V.

Given a domino system D, the problem of determining if there exists a tiling
for D is known to be undecidable (Berger, 1966).
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In Figure 2, for a domino system D, we define a SH+IQ-concept CD, a ter-
minology TD (that can be internalised, see Theorem 4), and a generalised role
hierarchy RD such that D has a tiling iff CD is satisfiable w.r.t. RD and TD.
For better readability, we use C ⇒ D as an abbreviation for ¬C tD.

Ensuring that a point is associated with exactly one domino type, that it has
at most one vertical and at most one horizontal successor, and that these
successors satisfy the horizontal and vertical matching conditions induced by
H and V is standard and is done in the first GCI of TD.

The next step is rather special: we do not force a grid structure, but a structure
with “staircases”, which is illustrated in Figure 1. To this purpose, we intro-
duce four sub-roles v0, . . . , v3 of v and four sub-roles h0, . . . , h3 of h (see first
line ofRD), and ensure that we only have “staircases”. For each i ∈ {0, . . . , 3},
an i-staircase is an alternating chain of vi and hi edges, without any other vj-
or hj-successors. We use concepts HI and V I for points on the x-axis and
y-axis respectively. At each point on the x-axis, two staircases start that need
not meet again, one i-staircase starting with vi and one i	1-staircase starting
with hi	1 (we use ⊕ and 	 to denote addition and subtraction modulo four);
points on the y-axis exhibit a symmetrical behaviour. The second GCI in TD
introduces the concept I for all “initial” points, and then the third GCI en-
sures the staircase structure. It contains four implications: one for the vertical
and one for the horizontal successorships, and these two implications once for
the “non-initial” points (i.e., instances of ¬I), and once for the “initial points”
(i.e., instances of HI or V I).

It remains to make sure that two elements b, b′ representing the same point
in the grid have the same domino type associated with them, where b and b′

“represent the same point” if there is an n and an instance a of I such that
each of them is reachable following a staircase starting at a for n steps, i.e., if
there is

• a vihi-path (resp. hivi-path) of length 2n from a to b, and
• a hi	1vi	1-path (resp. vi⊕1hi⊕1-path) of length 2n from a to b′.

To this purpose, we add super roles xi of hi and yi of vi (for which we use
dashed arrows in Figure 1), and the last group of role inclusion axioms in RD.
These role inclusion axioms ensure appropriate, additional role successorships
between elements, and we use the additional roles xi and yi since we only want
to have at most one vi or hi-successor. For each 2 staircases starting at the
same element on one of the axes, these role inclusions ensure that each pair of
elements representing the same point is related by yi. That is, each element
on an i⊕ 1-staircase that is an xi⊕1-successor is related via yi to the element
on the i-staircase (which is a vi-successor) representing the same point (see
Figure 1).
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TD := { >
.
= ( t

1≤i≤n
Di) u ( u

1≤i<j≤n
¬(Di uDj)) u

u
1≤i≤n

Di ⇒ ((61v.>) u (∀v. t
(Di,Dj)∈V

Dj)) u

u
1≤i≤n

Di ⇒ ((61h.>) u (∀h. t
(Di,Dj)∈H

Dj),

I
.
= HI t V I,

>
.
= u

0≤i≤3
(∃v−

i .> u ¬I)⇒
(

∃hi.¬I uu
j
∀vj.⊥ u u

j 6=i
∀hj.⊥)

)

u

(∃h−
i .> u ¬I)⇒

(

∃vi.¬I u u
j 6=i
∀vj.⊥ uu

j
∀hj.⊥)

)

u

(∃h−
i .> uHI)⇒

(

∃vi.¬I u ∃hi	1.HI u

u
j 6=i	1

∀hj.⊥ u u
j 6=i
∀vj.⊥

)

u

(∃v−
i .> u V I)⇒

(

∃hi.¬I u ∃vi⊕1.V I u

u
j 6=i⊕1

∀vj.⊥ u u
j 6=i
∀hj.⊥

)

,

>
.
= u

0≤i≤3
u

1≤j≤n
∃x−

i⊕1.> ⇒ (Dj ⇒ ∀yi.Dj) }

CD := HI u V I u ∃h0.HI u ∃v1.V I

RD := {vi v̇ v, hi v̇ h, vi v̇ yi, hi v̇ xi, | 0 ≤ i ≤ 3} ∪

{ x−
i⊕1yi v̇ yi,

x−
i⊕1xi v̇ x−

i⊕1,

y−
i⊕1xi v̇ xi,

y−
i⊕1yi v̇ y−

i⊕1 | 0 ≤ i ≤ 3}

Fig. 2. Reduction terminology, generalised role hierarchy, and concept.

To see this, start by considering the consequences of the role inclusion axioms
for elements representing the four points (1, 0), (2, 0), (1, 1) and (2, 1). The
elements representing (1, 0) and (2, 1) are related via h3v3 and v0h0, and as
we cannot force these two paths to end in the same element, we might have
two elements representing (2, 1). From the axioms h3 v̇ x3, v3 v̇ y3, v0 v̇ y0

and h0 v̇ x0, we see that (1, 0) and (2, 1) are also related via x3y3 and y0x0.
Using the axiom y−

0 x3 v̇ x3 first, then x−
0 x3 v̇ x−

0 , and finally x−
0 y3 v̇ y3,

we also see that, if there are two elements representing the point (2, 1), then
they are related via y3. Next, consider elements representing the four points
(2, 1), (2, 2), (3, 1) and (3, 2), start with the axiom y−

0 y3 v̇ y−
0 , and then

continue to work through the same role inclusion axioms as above. Repeating
this argumentation, all elements on these two staircases that represent the
same point can be seen to be related via the relation y3. From an analogous
argumentation for other pairs of staircases, using corresponding sets of role
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inclusion axioms, it follows that the last GCI in TD ensures that two elements
representing the same point in the grid do indeed have the same domino type
associated with them.

The above observations imply that the concept CD is satisfiable w.r.t. TD
and RD iff D has a solution. Hence, together with Theorem 4, we have the
following:

Theorem 6 Satisfiability of SH+IQ-concepts w.r.t. generalized role hierar-
chies is undecidable.

As mentioned above, the usage of inverse roles on the right hand side in RIAs
of RD is of no importance: we can replace these RIAs with equivalent ones
with role names on their right hand side, e.g., we can replace x−

i⊕1xi v̇ x−
i⊕1

with x−
i xi⊕1 v̇ xi⊕1. However, we have chosen the representation in Figure 2

to make the relationship with the grammar from Section 2.1 more clear.

4 RIQ is decidable

In this section, we show that SHIQ with regular role hierarchies is decidable,
where “regular” is both a restriction and a generalisation of “generalised”.
On the one hand, we restrict role hierarchies to be acyclic, where acyclic role
hierarchies still allow for RIAs of the form RS v̇ S, SR v̇ S, SS v̇ S, and
R− v̇ R. Moreover, for convenience of proofs, we restrict our attention to
RIAs with a role name on their right hand side. As mentioned above, this is
of no importance. On the other hand, we also allow for axioms of the form
R1 . . . RnS v̇ S and SR1 . . . Rn v̇ S (for SH+IQ, we restricted n to be 1).
Finally, we also allow for statements that force roles to be symmetric, i.e., in
contrast to the decidable case in (Horrocks and Sattler, 2003), regularity also
allows for RIAs of the form Inv(S) v̇ S.

We present a tableau-based algorithm that decides satisfiability of RIQ-
concepts w.r.t. regular role hierarchies, and therefore also subsumption in
RIQ and, with Theorem 4, both inferences w.r.t. terminologies. The FaCT
system (Horrocks, 1998) was extended to use the algorithm presented in this
section, and the empirical results are reported in Section 5.

The algorithm tries to construct, for a RIQ-concept C, a tableau for C, that
is, an abstraction of a model of C. Given the appropriate notion of a tableau,
it is then quite straightforward to prove that the algorithm is a decision pro-
cedure for RIQ-satisfiability. Before specifying this algorithm, we translate
the role hierarchy into non-deterministic automata which are used both in the
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definition of a tableau and in the tableau algorithm. Intuitively, an automa-
ton is used to memorise the path between an object x that has to satisfy a
concept of the form ∀R.C and other objects, and then to determine which of
these objects must satisfy C. 2

In the following definition of general role hierarchies, we use a strict partial
order ≺ (irreflexive, transitive, and antisymmetric) on roles to ensure acyclic-
ity.

Definition 7 Let ≺ be a strict partial order on role names. A RIA w v̇ R is
≺-regular if

• R is a role name,
• w = RR,
• w = R−,
• w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n,
• w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
• w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

A role hierarchy R is regular if there exists a strict partial order ≺ such
that each RIA in R is ≺-regular. The semantics is defined analogously to the
semantics of generalised role hierarchies, i.e., I satisfies a RIA w v̇ R if
wI ⊆ RI.

RIQ is obtained from SH+IQ by replacing generalised role hierarchies with
regular role hierarchies, where simple role names are inductively defined as
follows: 3

• every role name that does not occur on the right hand side of a RIA is
simple,

• a role name S is simple if, for each w v̇ S ∈ R, w = R for R a simple role
or the inverse of a simple role.

An inverse role S− is simple if S is simple.

Please note that, due to the third restriction in the definition of R-compatibility,
we also restrict v* to be acyclic. However, this is not a serious restriction since,
for R containing v* cycles, we can simply choose one role R from each cycle
and replace all other roles on this cycle with R, both in the input role hierarchy
and the input concept.

For the following considerations, it is worthwhile to recall that, for w =

2 This technique together with the relationship between automata and regular lan-
guages is the reason why we called these role hierarchies “regular”.
3 We need to re-define “simple” roles because of the more general form of RIAs.
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R1 . . . Rm and Ri roles, Inv(w) = Inv(Rm) . . . Inv(R1). The following Lemma is
a direct consequence of the definition of the semantics.

Lemma 8 If I is a model of R with S− v̇ S ∈ R and w v̇ S ∈ R, then
Inv(w)I ⊆ SI.

4.1 Translating RIAs into automata

Next, we will define, for a regular role hierarchy R and a (possibly inverse)
role S occurring in R, a non-deterministic finite automaton (NFA) BS which
captures all implications between (paths of) roles and S that are consequences
of R. To make this clear, before we define BS, we formulate the lemma which
we are going to prove for it.

Proposition 9 I is a model of R if and only if, for each (possibly inverse)
role S occurring in R, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI, we have
〈x, y〉 ∈ SI.

In (Horrocks and Sattler, 2003), to construct a similar automaton for a more
restricted logic, we first unfolded R into a set of implications between regu-
lar expressions, and then constructed the automata from these implications.
Here, we show how to build these automata directly, which yields an easier
construction.

In the following, we use NFAs with ε-transitions in a rather informal way (see,

e.g., (Hopcroft and Ullman, 1997) for more details), e.g., we use p
R
→ q to

denote that there is a transition from a state p to a state q with the letter
R instead of introducing transition relations formally. The automata BS are
defined in three steps.

Definition 10 Let C0 be a RIQ-concept and R a regular role hierarchy.

For each role name R occurring in R or C0, we first define the NFA AR as

follows: AR contains a state iR and a state fR with the transition iR
R
→ fR.

The state iR is the only initial state and fR is the only final state. Moreover,
for each w v̇ R ∈ R, AR contains the following states and transitions:

(1) if w = RR, then AR contains fR
ε
→ iR, and

(2) if w = R1 · · ·Rn and R1 6= R 6= Rn, then AR contains

iR
ε
→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn→ fn

w

ε
→ fR,
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(3) if w = RR2 · · ·Rn, then AR contains

fR
ε
→ iw

R2→ f 2
w

R3→ f 3
w

R4→ . . .
Rn→ fn

w

ε
→ fR,

(4) if w = R1 · · ·Rn−1R, then AR contains

iR
ε
→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn−1

→ fn−1
w

ε
→ iR,

where all f i
w, iw are assumed to be distinct.

In the next step, we use a mirrored copy of NFAs: this is a copy of an NFA
in which we have carried out the following modifications: we

• make final states to non-final but initial states,
• make initial states to non-initial but final states,

• replace each transition p
S
→ q for S a (possibly inverse) role S with q

Inv(S)
→ p,

and
• replace each transition p

ε
→ q with q

ε
→ p.

Secondly, we define the NFAs ÂR as follows:

• if R− v̇ R 6∈ R, then ÂR := AR,
• if R− v̇ R ∈ R, then ÂR is obtained as follows: first, take the disjoint

union 4 of AS with a mirrored copy of AS. Secondly, make iR the only
initial state, fR the only final state. Finally, for f ′

R the copy of fR and i′R
the copy of iR, add transitions iR

ε
→ f ′

R, f ′
R

ε
→ iR, i′R

ε
→ fR, and fR

ε
→ i′R.

Thirdly, the NFAs BR are defined inductively over ≺:

• if R is minimal w.r.t. ≺ (i.e., there is no R′ with R′ ≺ R), we set BR := ÂR.
• otherwise, BR is the disjoint union of ÂR with a copy B′

S of BS for each

transition p
S
→ q in ÂR with S 6= R. Moreover, for each such transition, we

add ε-transitions from p to the initial state in B′
S and from the final state

in B′
S to q, and we make iR the only initial state and fR the only final state

in BR.

Finally, the automaton BR− is a mirrored copy of BR.

Please note that the inductive definition BR is well-defined since the acyclic
relation ≺ is used to restrict the dependencies between roles.

We have kept the construction of BS as simple as possible. If one wants to
construct an equivalent NFA without ε-transitions or which is deterministic,

4 A disjoint union of two automata is the disjoint union of their states, transition
relations, etc.
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then there are well-known techniques to do this (Hopcroft and Ullman, 1997).
Recall that elimination of ε-transitions can be carried out without increasing
the number of an automaton’s states, whereas determinisation might yield an
exponential blow-up.

Lemma 11 For R a role, the size of BR is bounded exponentially in the depth

dR := max{n | there are S1 ≺ . . . ≺ Sn, ui, vi with uiSi−1vi v̇ Si ∈ R}

and thus in the size of R. Moreover, there are R and R such that the number
of states in BR is 2dR.

Proof: Obviously, the size of AR and ÂR is linear in

bR = max{|w1|+ . . . + |wk| | there is S with wi v̇ S ∈ R for all 1 ≤ i ≤ n}.

Each automaton BR is a “tree” of automata AS whose

• outdegree is bounded by bR and
• whose depth is bounded by dR.

Hence the number of BR’s states is bounded exponentially in dR and, since
dR is linear in the size of R, also bounded exponentially in the size of R.

Next, it is easily verified that, for the following regular role hierarchy Rn, the
automaton BSn

has 2n+1 states and the size of Rn is linear in n:

Rn = {Si−1Si v̇ Si, SiSi−1 v̇ Si | 1 ≤ i ≤ n} �

We will consider ways to avoid this exponential blow-up in Section 4.4, and
continue with the proof of Proposition 9. In this proof, we will use the following
lemma, which is an immediate consequence of the definition of BS and of
mirrored copies of BS.

Lemma 12 (1) S ∈ L(BS) and, if w v̇ S ∈ R, then w ∈ L(BS).
(2) If S is a simple role, then L(BS) = {R | R v* S}.

(3) If
←−
A is a mirrored copy of an NFA A, then L(

←−
A) = {Inv(w) | w ∈ L(A)}.

Proof of Proposition 9. The “if” direction is easily proved by contraposition.
If I is not a model of R, then there is some RIA w v̇ S ∈ R not satisfied
by I. Hence there are some x, y such that 〈x, y〉 ∈ wI but 〈x, y〉 6∈ SI . By
Lemma 12.1, w ∈ L(BS), and we are done.

For the “only-if” direction, let I be a model of R, S a role, w ∈ L(BS), and
〈x, y〉 ∈ wI . We prove 〈x, y〉 ∈ SI by well-founded induction on ≺. Obviously,
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we can restrict our attention to a role name S due to Lemma 12.3 and since
BS− is defined as a mirrored copy of BS.

First, we observe that w ∈ L(BS) induces a decomposition w = w1 . . . wk and
word ŵ = S1 . . . Sk such that

• Si ≺ S or Si = S for all 1 ≤ i ≤ k,
• ŵ ∈ L(ÂS), and
• wi ∈ L(BSi

).

Next, 〈x, y〉 ∈ wI implies that there are xi with x = x0, y = xk, and 〈xi, xi+1〉 ∈
wI

i+1, for each 0 ≤ i < k. By induction, 〈xi, yi〉 ∈ SI
i and thus 〈x, y〉 ∈ ŵI .

(1) If SS v̇ S 6∈ R and S− v̇ S 6∈ R, then, by construction, ŵ is of the form

ŵ = u1 . . . umxv1 . . . vn and uiS v̇ S ∈ R, for each 1 ≤ i ≤ m

x v̇ S ∈ R or x = S

Svj v̇ S ∈ R, for each 1 ≤ j ≤ n

Thus I being a model of R implies that 〈x, y〉 ∈ SI .
(2) If SS v̇ S ∈ R and S− v̇ S 6∈ R, then, by construction, ŵ is of the form

ŵ = (u
(1)
1 . . . u(1)

m1
x(1)v

(1)
1 . . . v(1)

n1
) . . . (u

(`)
1 . . . u(`)

m`
x(`)v

(`)
1 . . . v(`)

n`
) and

u
(k)
i S v̇ S ∈ R, for each 1 ≤ i ≤ m, 1 ≤ k ≤ `

x(k) v̇ S ∈ R or x(k) = S for each 1 ≤ k ≤ `

Sv
(k)
j v̇ S ∈ R, for each 1 ≤ j ≤ n, 1 ≤ k ≤ `

Again, I being a model of R implies that 〈x, y〉 ∈ SI .
(3) If SS v̇ S 6∈ R and S− v̇ S ∈ R, then BS is the disjoint union of AS

with a mirrored copy of AS and additional ε-transitions between the final
and initial state and their copies. By construction, we have

ŵ = u1 . . . umxv1 . . . vn and

uiS v̇ S ∈ R or S Inv(ui) v̇ S ∈ R for each 1 ≤ i ≤ m

x v̇ S ∈ R or Inv(x) v̇ S ∈ R or x = S or x = S−

Svj v̇ S ∈ R or Inv(vj)S v̇ S ∈ R, for each 1 ≤ j ≤ n

In both cases, I being a model of R implies that 〈x, y〉 ∈ SI .
(4) If SS v̇ S ∈ R and S− v̇ S ∈ R, then we are in a mixture of the cases

(2) and (3), i.e.,
ŵ = ŵ1 . . . ŵr
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and each ŵi is accepted by a run through BS which neither uses the ε-
transition from fS to iS nor the corresponding one in the mirrored copy
of ÂS. We can decompose each ŵi as we have decomposed ŵ in Case (3),
and conclude that I being a model of R implies that 〈x, y〉 ∈ SI . �

4.2 A Tableau for RIQ

In the following, if not stated otherwise, C,D (possibly with subscripts) denote
RIQ-concepts, R,S (possibly with subscripts) roles, and R a regular role
hierarchy.

We start by defining fclos(C0,R), the closure of a concept C w.r.t. a regu-
lar role hierarchy R. Intuitively, this contains all relevant sub-concepts of C
together with universal value restrictions over sets of role paths described by
an NFA. We use NFAs in universal value restrictions to memorise the path
between an object that has to satisfy a value restriction and other objects.
To do this, we “push” this NFA-value restriction along this path while the
NFA gets “updated” with the path taken so far. For this “update”, we use the
following definition.

Definition 13 For B an NFA and q a state of B, B(q) denotes the NFA

obtained from B by making q the (only) initial state of B, and we use q
S
→

q′ ∈ B to denote that B has a transition q
S
→ q′.

Without loss of generality, we assume all concepts to be in NNF, that is,
negation occurs in front of concept names only. Any RIQ-concept can easily
be transformed into an equivalent one in NNF by pushing negations inwards
using a combination of DeMorgan’s laws and the following equivalences:

¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

¬(6nR.C) ≡ (>(n + 1)R.C) ¬(>(n + 1)R.C) ≡ (6nR.C)

¬(>0R.C) ≡ ⊥

We use ¬̇C for the NNF of ¬C. Obviously, the length of ¬̇C is linear in the
length of C.

For a concept C0, clos(C0) is the smallest set that contains C0 and that is closed
under sub-concepts and ¬̇. The set fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪ {∀BS(q).D | ∀S.D ∈ clos(C0) and

BS has a state q}.
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It is not hard to show and well-known that the size of clos(C0) is linear in the
size of C0. For the size of fclos(C0,R), we have seen in Lemma 11 that, for a
role S, the size of BS can be exponential in the depth of R. Since there are
at most linearly many concepts ∀S.D, this yields a bound for the cardinality
of fclos(C0,R) that is exponential in the depth of R and linear in the size
of C0. Investigating whether this exponential blow-up can be avoided will be
part of future work. So far, we only define in Section 4.4 a further syntactic
restriction which avoids this exponential blow-up.

We are now ready to define tableaux as a useful abstraction of models.

Definition 14 T = (S,L,E) is a tableau for C0 w.r.t. R iff

• S is a non-empty set,
• L : S→ 2fclos(C0,R) maps each element in S to a set of concepts and
• E : RC0,R → 2S×S maps each role to a set of pairs of elements in S.

Furthermore, for all s, t ∈ S, C,C1, C2 ∈ fclos(C0,R), and R,S ∈ RC0,R, T
satisfies:

(P0) there is some s ∈ S with C0 ∈ L(s),
(P1) if C ∈ L(s), then ¬C /∈ L(s),
(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4a) if ∀B(p).C ∈ L(s), 〈s, t〉 ∈ E(S), and p
S
→ q ∈ B(p), then ∀B(q).C ∈ L(t),

(P4b) if ∀B.C ∈ L(s) and ε ∈ L(B), then C ∈ L(s),
(P5) if ∃S.C ∈ L(s), then there is some t with 〈s, t〉 ∈ E(S) and C ∈ L(t),
(P6) if ∀S.C ∈ L(s), then ∀BS.C ∈ L(s),
(P7) 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),
(P8) if (6nS.C) ∈ L(s), then ]ST (s, C) 6 n,
(P9) if (>nS.C) ∈ L(s), then ]ST (s, C) > n,

(P10) if (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S ′) for some S ′ ∈ L(BS), then C ∈ L(t)
or ¬̇C ∈ L(t),

where ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S ′) for some S ′ ∈ L(BS) and C ∈ L(t)}.

Lemma 15 A RIQ-concept C0 is satisfiable w.r.t. R iff there exists a tableau
for C0 w.r.t. R.

Proof: For the if direction, let T = (S,L,E) be a tableau for C0 w.r.t. R.
We extend the relational structure of T and then prove that this indeed gives
a model. More precisely, a model I = (∆I , ·I) of D and R can be defined
as follows: we set ∆I := S, AI := {s | A ∈ L(s)} for concept names A in
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clos(C0), and for roles names R, we set

RI := {〈s0, sn〉 ∈ (∆I)2 | there are s1, . . . , sn−1 with 〈si, si+1〉 ∈ E(Si+1)

for 0 ≤ i ≤ n− 1 and S1 · · ·Sn ∈ L(BR)}

The semantics of complex concepts is given through the definition of the RIQ
semantics. Due to Lemma 12.3 and (P7), the semantics of inverse roles can
either be given directly as for role names, or by setting (R−)I = {〈y, x〉 |
〈x, y〉 ∈ RI}.

First, we show that I is a model of R and C0. Due to Proposition 9, it suffices
to prove that, for each (possibly inverse) role S, each word w ∈ L(BS), and
each 〈x, y〉 ∈ wI , we have 〈x, y〉 ∈ SI . Let w ∈ L(BS) and 〈x, y〉 ∈ wI . For
w = S1 . . . Sn, this implies the existence of yi such that y0 = x, yn = y, and
〈yi−1, yi〉 ∈ SI

i for each 1 ≤ i ≤ n. For each i, we define a word wi as follows:

• if 〈yi−1, yi〉 ∈ E(Si), then set wi := Si.

• otherwise, there is some vi = T
(i)
1 . . . T (i)

ni
∈ L(BSi

) and there are y
(i)
j such

that yi−1 = y
(i)
0 , yi = y(i)

ni
, and 〈y

(i)
j−1, y

(i)
j 〉 ∈ E(T

(i)
j ) for each 1 ≤ j ≤ ni. In

this case, we set wi := vi.

Let ŵ := w1 . . . wn. By construction of BS from ÂS, w ∈ L(BS) implies that

ŵ ∈ L(BS). For ŵ = U1 . . . Un′ , we can thus re-name the yi and y
(i)
j to zi such

that we have z0 = x, zn = y, and 〈zi−1, zi〉 ∈ E(Ui). Hence, by definition of ·I ,
we have 〈x, y〉 ∈ SI .

Secondly, we prove that I is a model of C0. We show that C ∈ L(s) implies
s ∈ CI for each s ∈ S and each C ∈ clos(C0). Together with (P0), this
implies that I is a model of C0. This proof can be given by induction on the
length of concepts, where we count neither negation nor integers in number
restrictions. The only interesting cases are C = (6nS.E) and C = ∀S.E (for
the other cases, see (Horrocks et al., 2000; Horrocks and Sattler, 2002b)):

• If (6nS.E) ∈ L(s), then (P8) implies that #ST (s, E) ≤ n. Moreover, since
S is simple, Lemma 12.2 implies that L(BS) = {S ′ | S ′ v* S}, and thus
(P10) implies that, for all t, if 〈s, t〉 ∈ SI , then E ∈ L(t) or ¬̇E ∈ L(t). By
induction EI = {t | E ∈ L(t)}, and thus s ∈ (6nS.E)I .
• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P6) we have that ∀BS.E ∈ L(s).

By definition of SI , there are S1 . . . Sn ∈ L(BS) and si with s = s0, t = sn,
and 〈si−1, si〉 ∈ E(Si). Applying (P4a) n times, this yields ∀BS(q).E ∈ L(t)
for q a final state of BS. Thus (P4b) implies that E ∈ L(t). By induction,
t ∈ EI , and thus s ∈ (∀S.E)I .

For the converse, for I = (∆I , ·I) a model of C0 w.r.t. R, we define a tableau
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T = (S,L,E) for C0 and R as follows:

S := ∆I ,

E(R) := RI , and

L(s) := {C ∈ clos(C0) | s ∈ CI} ∪

{∀BS.C | ∀S.C ∈ clos(C0) and s ∈ (∀S.C)I} ∪

{∀BR(q).C ∈ fclos(C0,R) | for all S1 · · ·Sn ∈ L(BR(q)),

s ∈ (∀S1.∀S2. · · · ∀Sn.C)I and

if ε ∈ L(BR(q)), then s ∈ CI}

We have to show that T satisfies each (Pi). We restrict our attention to the
only new cases (P4) and (P6).

For (P6), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I and thus ∀BS.C ∈ L(s) by
definition of T .

For (P4a), let ∀B(p).C ∈ L(s) and 〈s, t〉 ∈ E(S) = SI . Assume that there is

a transition p
S
→ q in B(p) and ∀B(q).C 6∈ L(t). By definition of T , this can

have two reasons:

• there is a word S2 . . . Sn ∈ L(B(q)) and t 6∈ (∀S2. . . . ∀Sn.C)I . However, this
implies that SS2 . . . Sn ∈ L(B(p)) and thus that s ∈ (∀S.∀S2. . . . ∀Sn.C)I ,
which contradicts, together with 〈s, t〉 ∈ SI , the definition of the semantics
of RIQ concepts.
• ε ∈ L(B(q)) and t 6∈ CI . This implies that S ∈ L(B(p)) and thus contradicts

s ∈ (∀S.C)I .

Hence ∀B(q).C 6∈ L(t).

For (P4b), ε ∈ L(B(p)) implies s ∈ CI by definition of T , and thus C ∈ L(s).
�

4.3 The Tableau Algorithm

In this section, we present a tableau algorithm that tries to construct, for an
input RIQ-concept C0 and a regular role hierarchy R, a tableau for C0 w.r.t.
R. We prove that this algorithm constructs a tableau for C0 and R iff there
exists a tableau for C0 and R, and thus decides satisfiability of RIQ concepts
w.r.t. regular role hierarchies and, using Lemma 3, also w.r.t. terminologies.

This algorithm generates a completion tree, a structure that will be unravelled
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to an (infinite) tableau for the input concept. As usual, in the presence of
transitive roles, blocking is employed to ensure termination of the algorithm. In
the additional presence of inverse roles, blocking is dynamic, i.e., blocked nodes
(and their sub-branches) can be un-blocked and blocked again later. In the
further, additional presence of number restrictions, pairs of nodes are blocked
rather than single nodes (Horrocks et al., 2000). The blocking conditions as
they are presented here are, clearly, too strict. As a consequence, blocking may
occur later than necessary, and thus we end up with a search space that is
larger than necessary. In (Horrocks and Sattler, 2002b), we have shown how
to loosen the blocking condition for SHIQ while retaining correctness of the
algorithm. Here, we focus on the decidability of RIQ, and defer a similar
loosening for RIQ to future work.

Definition 16 A completion tree T for a RIQ concept C0 and a regular
role hierarchy R is a tree, where each node x is labelled with a set L(x) ⊆
fclos(C0,R) and each edge 〈x, y〉 from a node x to its successor y is labelled
with a non-empty set L(〈x, y〉) of (possibly inverse) roles occurring in C0 and
R. Finally, completion trees come with an explicit inequality relation 6

.
= on

nodes which is implicitly assumed to be symmetric.

If R ∈ L(〈x, y〉) for a node x and its successor y, then y is called an R-
successor of x and x is called an Inv(R)-predecessor of y. If y is an R-successor
or an Inv(R)-predecessor of x, then y is called an R-neighbour of x. Finally,
ancestor is the transitive closure of predecessor and descendant is the transi-
tive closure of successor.

For a role S, a concept C and a node x in T we define ST(x,C) by

ST(x,C) := {y | for some S ′ v* S, y is an S ′-neighbour of x and C ∈ L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is
directly blocked iff none of its ancestors are blocked, and it has ancestors x′,
y and y′ such that

(1) x is a successor of x′ and y is a successor of y′ and
(2) L(x) = L(y) and L(x′) = L(y′) and
(3) L(〈x′, x〉) = L(〈y′, y〉).

If there are no descendants x′′, y′′ of x′ and y′ with these properties, then we
say that y blocks x.

A node y is indirectly blocked if one of its ancestors is blocked.

For a node x, L(x) is said to contain a clash if

• ⊥ ∈ L(x) or
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• for some concept name A, {A,¬A} ⊆ L(x) or
• there is some concept (6nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ ST(x,C) with

yi 6
.
= yj for all 0 ≤ i < j ≤ n.

A completion tree is clash-free if none of its nodes contains a clash, and it is
complete if no rule from Figure 3 can be applied to it.

Given C0 (in NNF) and R, the algorithm initialises a completion tree consist-
ing only of a root node x0 labelled with {C0}. Then this tree is expanded by
repeatedly applying the expansion rules from Figure 3, stopping when a clash
occurs. The algorithm answers “C0 is satisfiable w.r.t. R” iff the expansion
rules can be applied in such a way that they yield a complete and clash-free
completion tree, and “C0 is unsatisfiable w.r.t. R” otherwise.

All but the ∀i-rules have been used before for fragments of RIQ, e.g., SHIQ
(Horrocks et al., 1999; Horrocks and Sattler, 2002b), and the three ∀i-rules are
the obvious counterparts to the tableau conditions (P4a). (P4b), and (P6).

As usual, we prove termination, soundness, and completeness of the tableau
algorithm to show that it indeed decides satisfiability of RIQ-concepts w.r.t.
regular role hierarchies.

Lemma 17 Let C0 be a RIQ-concept and R a regular role hierarchy. The
tableau algorithm terminates when started for C0 and R.

Proof: Let m = ]fclos(C0,R), n the number of roles occurring in C0 and R,
and nmax := max{n | (>nR.C) ∈ clos(C0)}. Termination is a consequence of
the following properties of the expansion rules:

(1) Nodes are labelled with subsets of fclos(C0,R) and edges with sets of
roles occurring in C0 and R, so there are at most 22mn different possible
labellings for a pair of nodes and an edge. Therefore, if a path p is of length
at least 22mn, the pair-wise blocking condition implies the existence of a
node x on p such that x is blocked. Since a path on which nodes are
blocked cannot become longer, paths are of length at most 22mn.

(2) The expansion rules never remove labels from nodes in the tree, and the
only rule that removes a node from the tree is the 6-rule.

(3) Only the ∃- or the >-rule generate new nodes, and each generation is
triggered by a concept of the form ∃R.C or (>nR.C) in the label of a
node x. Each of these concepts triggers at most once the generation of
at most nmax R-successors yi of x: note that if the 6-rule subsequently
causes an R-successor yi of x to be removed, then x will have some R-
neighbour z with L(z) ⊇ L(yi). This, together with the definition of a
clash, implies that the rule application which led to the generation of
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u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked, and

{C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked, and

{C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x is not blocked, and

x has no S-neighbour y with C ∈ L(y)

then create a new node y with

L(〈x, y〉) := {S} and L(y) := {C}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and

∀BS.C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS.C}

∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p
S
→ q in B(p),

and there is an S-neighbour y of x with ∀B(q).C /∈ L(y),

then L(y) −→ L(y) ∪ {∀B(q).C}

∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B),

and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}

X-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

there is an S ′-neighbour y of x with S ′ v* S

and {C, ¬̇C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if (>nS.C) ∈ L(x), x is not blocked, and

there are no y1, . . . , yn ∈ ST(x,C)

with yi 6
.
= yj for each 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},

L(yi) = {C}, and yi 6
.
= yj for 1 ≤ i < j ≤ n.

6-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

#ST(x,C) > n, there are y, z ∈ ST(x,C) with

not y 6
.
= z and y is not an ancestor of z,

then 1. L(z) −→ L(z) ∪ L(y) and

2. if z is an ancestor of x

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))

else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. remove y and the sub-tree below y

Fig. 3. The Expansion Rules for the RIQ Tableau Algorithm.
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yi will not be repeated. Since fclos(C0,R) contains a total of at most m
∃R.C, the out-degree of the tree is bounded by mnmax. �

Lemma 18 Let C0 be a RIQ-concept and R a regular role hierarchy. The
expansion rules can be applied to C0 and R such that they yield a complete
and clash-free completion tree if and only if C0 has a tableau w.r.t. R.

For the if direction, we can unravel a complete and clash-free completion tree
T in a standard way into a tableau T , where the same technique as for SHIQ
is used to make sure that (P9) is satisfied even if two “sibling” nodes are
blocked by the same node. It is easily seen that the ∀i expansion rules make
sure that the resulting structure indeed satisfies the new tableau condition
(P4a), (P4b), and (P6).

For the only-if direction, we take a tableau I of C0 and R and use it to steer
the application of the non-deterministic rules, i.e., the t-, the X- and the 6

-rule. To do this, while building the completion tree, we define a mapping
π from the nodes of the completion tree into the tableau which satisfies the
following three conditions:

L(x) ⊆ L(π(x)),

if y is an S-neighbour of x, then 〈π(x), π(y)〉 ∈ E(S), and

x 6
.
= y implies π(x) 6= π(y).



























(∗)

We start with π mapping the root node to some tableau element s0 with C0 in
its label, and prove that, if an expansion rule is applicable to T, then this rule
can be applied in such a way that (∗) is preserved. As a consequence of this
claim, (P1), (P8), and Lemma 17, we thus end with a complete and clash-free
completion tree. For a full proof, see (Horrocks and Sattler, 2002a).

From Theorem 4, Lemmas 15, 17 and 18, we thus have the following theorem:

Theorem 19 The tableau algorithm decides satisfiability and subsumption of
RIQ-concepts with respect to regular role hierarchies and terminologies.

4.4 Avoiding the blow-up

In the previous section, we have presented an algorithm that decides satis-
fiability and subsumption of RIQ-concepts with respect to regular role hi-
erarchies and terminologies. Unfortunately, compared to similar algorithms
that are implemented in state-of-the-art description logic reasoners (Horrocks,
1998; Patel-Schneider and Horrocks, 1999; Haarslev and Möller, 2001) and
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behave well in many cases, we have here an exponential blow-up: the closure
fclos(C0,R) is exponential in the depth of R since we have “unfolded” the reg-
ular role hierarchy R into trees of NFAs. While investigating whether and how
this exponential blow-up can be avoided, we observe that a further restriction
of the syntax of regular role hierarchies avoids this blow-up:

A regular role hierarchyR is called simple when, for all Si, Ti, n, m, 1 ≤ i ≤ n,
and 1 ≤ j ≤ m, if

(1) uiSivi v̇ Si+1 ∈ R and u′
jTjv

′
j v̇ Tj+1 ∈ R,

(2) Si 6= Si+1 and Tj 6= Tj+1,
(3) Sn = Tm and un 6= u′

m,

then Si 6= Tj.

For a simple regular role hierarchy R, the size of each NFA BR is only poly-
nomial in the size of R since each NFA BS occurs at most once in BR.

Lemma 20 For a RIQ-concept C0 and a simple regular role hierarchy R,
the size of fclos(C0,R) is polynomial in the size of C0 and R.

Thus, for simple role hierarchies, the tableau algorithm presented here is of
the same worst case complexity as for SHIQ, namely 2NExpTime. A detailed
investigation of the exact complexity will be part of future work.

5 Evaluation of the RIQ algorithm in FaCT

In order to evaluate the practicability of the above algorithm, we have ex-
tended the DL system FaCT (Horrocks, 1998) to deal with RIQ, and we
have carried out a preliminary empirical evaluation.

From a practical point of view, one potential problem with theRIQ algorithm
is that the number of states of automata, and hence the number of different
∀B.C concepts, could be very large. Moreover, many of these automata could
be equivalent (i.e., accept the same languages). As blocking depends on finding
ancestor nodes labelled with the same set of concepts, the discovery of blocks
could be unnecessarily delayed, and this can lead to a serious degradation in
performance (Horrocks and Sattler, 2002b).

The FaCT implementation addresses these possible problems by transforming
all of the initial NFAs into minimal deterministic finite automata (DFAs),
using the AT&T FSM LibraryTM for this purpose (Mohri et al., 1998). A
minimal DFA is constructed for each role, the states in each DFA are uniquely
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numbered, and the implementation uses concepts of the form ∀B.C, where B
is the number of a state in one of the DFAs. Determinising the automata
allows standard minimisation techniques to be used (Hopcroft and Ullman,
1997), and because the automata are minimal, if ∀B.C leads to the presence
of ∀B′.C in some successor node (as a result of repeated applications of the
∀2-rule), then ∀B.C is equivalent to ∀B′.C iff B = B′ (and as B and B′ are
numbers, such comparisons are very easy). Unnecessary blocking delays are
thus avoided.

The implementation is still at the “beta” stage, but it has been possible to
carry out some preliminary tests using the well-known Galen medical termi-
nology KB (Rector and Horrocks, 1997; Horrocks, 1998). This KB contains
2,740 named concepts and 413 roles, 26 of which are transitive. The roles
are arranged in a relatively complex hierarchy with a maximum depth of 10.
Classifying this KB using FaCT’s SHIQ reasoner takes 116s on an 800 MHz
Pentium III equipped Linux PC. Classifying the same KB using the new RIQ
reasoner took a total of 275s on the same machine. This result is encouraging
as it shows that, in the case of the Galen KB at least, using automata in ∀B.C
concepts does not lead to a serious degradation in performance. Moreover, the
time taken by the RIQ reasoner includes approximately 100s to compute the
minimal deterministic automata for the role box. This overhead could become
important if optimisations of the RIQ reasoner result in even better perfor-
mance, but it should be noted that (a) this is a preprocessing step that will not
need to be repeated when the remainder of the KB is extended, modified or
queried, and (b) compared to other KBs we have seen, the Galen KB involves
an unusually large and complex role box.

The KB was then extended with several role inclusion axioms that express the
propagation of location across various partonomic roles. These included

hasLocation isSolidDivisionOf v̇ hasLocation

and
hasLocation isLayerOf v̇ hasLocation.

Classifying the extended KB took 280s, an increase of only 2% (3.5% if we
exclude the NFA computation time). Subsumption queries w.r.t. this KB re-
vealed that, e.g.,

Fracture u ∃hasLocation.NeckOfFemur

was implicitly a kind of

Fracture u ∃hasLocation.Femur

(NeckOfFemur is a solid division of Femur), and

Ulcer u ∃hasLocation.GastricMucosa
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was implicitly a kind of

Ulcer u ∃hasLocation.Stomach

(GastricMucosa is a layer of Stomach). None of these subsumption relation-
ships held w.r.t. the original KB. The times taken to compute these relation-
ships w.r.t. the classified KB could not be measured accurately as they were
of the same order as a system clock tick (10ms).

6 Summary and Outlook

Motivated (primarily) by medical terminology applications, we have investi-
gated the decidability of the well-known expressive DL, SHIQ, extended with
RIAs of the form RS v̇ P . We have shown that this extension is undecidable
even when RIAs are restricted to the forms RS v̇ R or SR v̇ R, but that
decidability can be regained by further restricting sets of RIAs to regular ones.
In the presence of inverse roles, this is slightly tricky, and is realised here using
a partial order on role names to prevent cyclic dependencies between roles.
The definition of regular sets of RIAs aimed at being as general as possible,
and still allows for RIAs of the form RS v̇ S, SR v̇ S, SS v̇ S, and R− v̇ R.

We have presented a tableau algorithm for this DL and reported on its im-
plementation in the FaCT system. A preliminary evaluation suggests that the
algorithm will perform well in realistic applications and demonstrates that
it can provide important additional functionality in a medical terminology
application.
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