
A Proposal for an OWL Rules Language

Ian Horrocks
University of Manchester

Manchester, UK

horrocks@cs.man.ac.uk

Peter F. Patel-Schneider
Bell Labs Research
Murray Hill, NJ, USA

pfps@research.bell-labs.com

ABSTRACT
Although the OWL Web Ontology Language adds considerable ex-
pressive power to the Semantic Web it does have expressive limita-
tions, particularly with respect to what can be said about properties.
We present ORL (OWL Rules Language), a Horn clause rules ex-
tension to OWL that overcomes many of these limitations. ORL
extends OWL in a syntactically and semantically coherent manner:
the basic syntax for ORL rules is an extension of the abstract syntax
for OWL DL and OWL Lite; ORL rules are given formal meaning
via an extension of the OWL DL model-theoretic semantics; ORL
rules are given an XML syntax based on the OWL XML presenta-
tion syntax; and a mapping from ORL rules to RDF graphs is given
based on the OWL RDF/XML exchange syntax. We discuss the
expressive power of ORL, showing that the ontology consistency
problem is undecidable, provide several examples of ORL usage,
and discuss how reasoning support for ORL might be provided.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representation languages; F.4.1 [Mathematical Logic]: Model
theory.

General Terms
Languages, Theory

Keywords
Semantic Web, representation, model-theoretic semantics

1. INTRODUCTION
The OWL Web Ontology Language [23] adds considerable ex-

pressive power to the Semantic Web. However, for a variety of
reasons (see http://lists.w3.org/Archives/Public/
www-webont-wg/), including retaining the decidability of key
inference problems in OWL DL and OWL Lite, OWL has expres-
sive limitations. These restrictions can be onerous in some appli-
cation domains, for example in describing web services, where it
may be necessary to relate inputs and outputs of composite pro-
cesses to the inputs and outputs of their component processes [25],
or in medical informatics, where it may be necessary to transfer
characteristics across partitive properties [17].

Many of the limitations of OWL stem from the fact that, while
the language includes a relatively rich set of class constructors, the
language provided for talking about properties is much weaker. In

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

particular, there is no composition constructor, so it is impossible
to capture relationships between a composite property and another
(possibly composite) property. The standard example here is the
obvious relationship between the composition of the “parent” and
“brother” properties and the “uncle” property.

One way to address this problem would be to extend OWL with
a more powerful language for describing properties. For example,
a decidable extension of the description logics underlying OWL
DL to include the use of composition in subproperty axioms has
already been investigated [7]. In order to maintain decidability,
however, the usage of the constructor is limited to axioms of the
form P ◦ Q v P , i.e., axioms asserting that the composition of
two properties is a subproperty of one of the composed properties.
This means that complex relationships between composed proper-
ties cannot be captured—in fact even the relatively simple “uncle”
example cannot not be captured (because “uncle” is not one of “par-
ent” or “brother”).

An alternative way to overcome some of the expressive restric-
tions of OWL would be to extend it with some form of “rules lan-
guage” (see, e.g., [3]). In this paper we show how a simple form
of Horn-style rules can be added to the OWL language in a syn-
tactically and semantically coherent manner, the basic idea being
to add such rules as a new kind of axiom in OWL DL. We show
(in Section 3) how the OWL abstract syntax in the OWL Seman-
tics and Abstract Syntax document [15] can be extended to provide
a formal syntax for these rules, and (in Section 4) how the direct
OWL model-theoretic semantics for OWL DL can be extended to
provide a formal meaning for OWL ontologies including rules writ-
ten in this abstract syntax. We will also show (in Section 5) how
OWL’s XML presentation syntax can be modified to deal with the
proposed rules.

The extended language, which we will refer to as OWL Rules
Language (ORL), is considerably more powerful than either OWL
DL or Horn rules alone. We will show (in Section 6) that the key
inference problems (e.g., ontology consistency) for ORL are unde-
cidable, and (in Section 7) provide examples that utilise the power
of the combined languages.

In Section 8 we show how OWL’s RDF syntax can be extended to
deal with rules, and in Section 9 we discuss how reasoning support
for ORL might be provided. Finally (in Section 10), we summarise
the main features of the ORL proposal and suggest some directions
for future work.

2. OVERVIEW
The basic idea of the proposal is to extend OWL DL with a form

of rules while maintaining maximum backwards compatibility with
OWL’s existing syntax and semantics. To this end, we add a new
kind of axiom to OWL DL, namely Horn clause rules, extending

the OWL abstract syntax and the direct model-theoretic semantics
for OWL DL [15] to provide a formal semantics and syntax for
OWL ontologies including such rules.

The proposed rules are of the form of an implication between an
antecedent (body) and consequent (head). The informal meaning
of a rule can be read as: whenever (and however) the conditions
specified in the antecedent hold, then the conditions specified in
the consequent must also hold.

Both the antecedent (body) and consequent (head) of a rule con-
sist of zero or more atoms. Atoms can be of the form C(x), P(x,y),
sameAs(x,y) or differentFrom(x,y), where C is an OWL DL de-
scription, P is an OWL property, and x,y are either variables, OWL
individuals or OWL data values. Atoms are satisfied in extended in-
terpretations (to take care of variables) in the usual model-theoretic
way, i.e., the extended interpretation maps the variables to domain
elements in a way that satisfies the description, property, sameAs,
or differentFrom, just as in the regular OWL model theory.

Multiple atoms in an antecedent are treated as a conjunction. An
empty antecedent is thus treated as trivially true (i.e. satisfied by
every interpretation), so the consequent must also be satisfied by
every interpretation.

Multiple atoms in a consequent are treated as separate conse-
quences, i.e., they must all be satisfied. In keeping with the usual
treatment in rules, an empty consequent is treated as trivially false
(i.e., not satisfied by any extended interpretation). Such rules are
satisfied if and only if the antecedent is not satisfied by any ex-
tended interpretation. Note that rules with multiple atoms in the
consequent could easily be transformed (via the Lloyd-Topor trans-
formations [11]) into multiple rules each with an atomic conse-
quent.

It is easy to see that OWL DL becomes undecidable when ex-
tended in this way as rules can be used to simulate role value maps
[22] and make it easy to encode known undecidable problems as an
ORL ontology consistency problem (see Section 6).

3. ABSTRACT SYNTAX
The syntax for ORL in this section abstracts from any exchange

syntax for OWL and thus facilitates access to and evaluation of
the language. This syntax extends the abstract syntax of OWL de-
scribed in the OWL Semantics and Abstract Syntax document [15].

Like the OWL abstract syntax, we will specify the abstract syn-
tax for rules by means of a version of Extended BNF, very similar
to the Extended BNF notation used for XML [26]. In this notations,
terminals are quoted; non-terminals are bold and not quoted. Al-
ternatives are either separated by vertical bars (|) or are given in
different productions. Components that can occur at most once are
enclosed in square brackets ([. . .]); components that can occur any
number of times (including zero) are enclosed in braces ({. . .}).
Whitespace is ignored in the productions given here.

Names in the abstract syntax are RDF URI references [9]. These
names may be abbreviated into qualified names, using one of the
following namespace names:

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#

The meaning of each construct in the abstract syntax for rules is
informally described when it is introduced. The formal meaning of
these constructs is given in Section 4 via an extension of the OWL
DL model-theoretic semantics [15].

3.1 Rules

From the OWL Semantics and Abstract Syntax document [15],
an OWL ontology in the abstract syntax contains a sequence of
annotations, axioms, and facts. Axioms may be of various kinds,
for example, subClass axioms and equivalentClass axioms. This
proposal extends axioms to also allow rule axioms, by adding the
production:

axiom ::= rule

Thus an ORL ontology could contain a mixture of rules and other
OWL DL constructs, including ontology annotations, axioms about
classes and properties, and facts about OWL individuals, as well as
the rules themselves.

A rule axiom consists of an antecedent (body) and a consequent
(head), each of which consists of a (possibly empty) set of atoms.
Just as for class and property axioms, rule axioms can also have
annotations. These annotations can be used for several purposes,
including giving a label to the rule by using the rdf:label annotation
property.

rule ::= ’Implies(’ { annotation } antecedent consequent ’)’
antecedent ::= ’Antecedent(’ { atom } ’)’
consequent ::= ’Consequent(’ { atom } ’)’
Informally, a rule may be read as meaning that if the antecedent

holds (is “true”), then the consequent must also hold. An empty
antecedent is treated as trivially holding (true), and an empty con-
sequent is treated as trivially not holding (false). Non-empty an-
tecedents and consequents hold iff all of their constituent atoms
hold. As mentioned above, rules with multiple consequents could
easily transformed (via the Lloyd-Topor transformations [11] into
multiple rules each with a single atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), Q(x,z),
sameAs(x,y) or differentFrom(x,y), where C is an OWL DL de-
scription, P is an OWL DL individualvalued property, Q is an OWL
DL datavalued property, x,y are either variables or OWL individu-
als, and z is either a variable or an OWL data value. In the context
of OWL Lite, descriptions in atoms of the form C(x) may be re-
stricted to class names.

atom ::= description ’(’ i-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’

Informally, an atom C(x) holds if x is an instance of the class de-
scription C, an atom P(x,y) (resp. Q(x,z)) holds if x is related to y
(z) by property P (Q), an atom sameAs(x,y) holds if x is interpreted
as the same object as y, and an atom differentFrom(x,y) holds if x
and y are interpreted as different objects.

Atoms may refer to individuals, data literals, individual variables
or data variables. Variables are treated as universally quantified,
with their scope limited to a given rule. As usual, only variables
that occur in the antecedent of a rule may occur in the consequent
(a condition usually referred to as “safety”). As we will see in Sec-
tion 6, this safety condition does not, in fact, restrict the expressive
power of the language (because existentials can already be captured
using OWL someValuesFrom restrictions).

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

3.2 Human Readable Syntax
While the abstract Extended BNF syntax is consistent with the

OWL specification, and is useful for defining XML and RDF serial-

isations, it is rather verbose and not particularly easy to read. In the
following we will, therefore, often use a relatively informal “hu-
man readable” form similar to that used in many published works
on rules.

In this syntax, a rule has the form:

antecedent → consequent,

where both antecedent and consequent are conjunctions of atoms
written a1 ∧ . . . ∧ an. Variables are indicated using the standard
convention of prefixing them with a question mark (e.g., ?x). Us-
ing this syntax, a rule asserting that the composition of parent and
brother properties implies the uncle property would be written:

parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c). (1)

If John has Mary as a parent and Mary has Bill has a brother, then
this rule requires that John has Bill as an uncle.

4. DIRECT MODEL-THEORETIC SE-
MANTICS

The model-theoretic semantics for ORL is a straightforward ex-
tension of the semantics for OWL DL given in [15]. The basic idea
is that we define bindings—extensions of OWL interpretations that
also map variables to elements of the domain in the usual man-
ner. A rule is satisfied by an interpretation iff every binding that
satisfies the antecedent also satisfies the consequent. The seman-
tic conditions relating to axioms and ontologies are unchanged, so
an interpretation satisfies an ontology iff it satisfies every axiom
(including rules) and fact in the ontology.

4.1 Interpreting Rules
From the OWL Semantics and Abstract Syntax document [15]

we recall that an abstract OWL interpretation is a tuple of the form

I = 〈R, EC, ER, L, S, LV 〉,

where R is a set of resources, LV ⊆ R is a set of literal values, EC
is a mapping from classes and datatypes to subsets of R and LV re-
spectively, ER is a mapping from properties to binary relations on
R, L is a mapping from typed literals to elements of LV , and S is a
mapping from individual names to elements of EC(owl : Thing).

Given an abstract OWL interpretation I, a binding B(I) is an
abstract OWL interpretation that extends I such that S maps i-
variables to elements of EC(owl : Thing) and L maps d-variables
to elements of LV respectively. An atom is satisfied by a binding
B(I) under the conditions given in Table 1, where C is an OWL
DL description, P is an OWL DL individualvalued property, Q is
an OWL DL datavalued property, x, y are variables or OWL indi-
viduals, and z is a variable or an OWL data value.

Atom Condition on Interpretation
C(x) S(x) ∈ EC(C)
P (x, y) 〈S(x), S(y)〉 ∈ ER(P)
Q(x, z) 〈S(x), L(z)〉 ∈ ER(Q)
sameAs(x, y) S(x) = S(y)
differentFrom(x, y) S(x) 6= S(y)

Table 1: Interpretation Conditions

A binding B(I) satisfies an antecedent A iff A is empty or B(I)
satisfies every atom in A. A binding B(I) satisfies a consequent
C iff C is not empty and B(I) satisfies every atom in C. A rule
is satisfied by an interpretation I iff for every binding B such that
B(I) satisfies the antecedent, B(I) also satisfies the consequent.

The semantic conditions relating to axioms and ontologies are
unchanged. In particular, an interpretation satisfies an ontology iff
it satisfies every axiom (including rules) and fact in the ontology; an
ontology is consistent iff it is satisfied by at least one interpretation;
an ontology O2 is entailed by an ontology O1 iff every interpreta-
tion that satisfies O1 also satisfies O2.

4.2 Example
Consider, for example, the “uncle” rule (1) from Section 3.2. As-

suming that parent, brother and uncle are individualvaluedProper-
tyIDs, then given an interpretation I = 〈R, EC, ER, L, S, LV 〉,
a binding B(I) extends S to map the variables ?a, ?b, and ?c to
elements of EC(owl : Thing); we will use a, b, and c respectively
to denote these elements. The antecedent of the rule is satisfied by
B(I) iff (a, b) ∈ ER(parent) and (b, c) ∈ ER(brother). The
consequent of the rule is satisfied by B(I) iff (a, c) ∈ ER(uncle).
Thus the rule is satisfied by I iff for every binding B(I) such that
(a, b) ∈ ER(parent) and (b, c) ∈ ER(brother), then it is also the
case that (a, c) ∈ ER(uncle), i.e.:

∀a, b, c ∈ EC(owl : Thing).
((a, b) ∈ ER(parent) ∧ (b, c) ∈ ER(brother))
→ (a, c) ∈ ER(uncle)

5. XML CONCRETE SYNTAX
Many possible XML encodings could be imagined (e.g., a

RuleML based syntax as proposed in http://www.daml.
org/listarchive/joint-committee/1460.html),
but the most obvious solution is to extend the existing OWL Web
Ontology Language XML Presentation Syntax [6], which can be
straightforwardly modified to deal with ORL. This has several
advantages:

• arbitrary OWL classes (e.g., descriptions) can be used as
predicates in rules;

• rules and ontology axioms can be freely mixed;

• the existing XSLT stylesheet1 can easily be extended to
provide a mapping to RDF graphs that extends the OWL
RDF/XML exchange syntax (see Section 8).

In the first place, the ontology root element is extended so that
ontologies can include rule axioms and variable declarations as
well as OWL axioms, import statements etc. We then simply need
to add the relevant syntax for variables and rules. (In this document
we use the unspecified owlr namespace prefix. This prefix would
have to be bound to some appropriate namespace name, either the
OWL namespace name or some new namespace name.)

Variable declarations are statements about variables, indicating
that the given URI is to be used as a variable, and (optionally)
adding any annotations. For example:

<owlr:Variable owlr:name="x1" />,

states that the URI x1 (in the current namespace) is to be treated as
a variable.

Rule axioms are similar to OWL SubClassOf axioms, except
they have owlr:Rule as their element name. Like SubClassOf
and other axioms they may include annotations. Rule axioms have
an antecedent (owlr:antecedent) component and a consequent
(owlr:consequent) component. The antecedent and consequent

1http://www.w3.org/TR/owl-xmlsyntax/
owlxml2rdf.xsl

of a rule are both lists of atoms and are read as the conjunction of
the component atoms. Atoms can be formed from unary predicates
(classes), binary predicates (properties), equalities or inequalities.

Class atoms consist of a description and either an individual
name or a variable name, where the description in a class atom may
be a class name, or may be a complex description using boolean
combinations, restrictions, etc. For example,

<owlr:classAtom>
<owlx:Class owlx:name="Person" />
<owlr:Variable owlr:name="x1" />

</owlr:classAtom>

is a class atom using a class name (#Person), and

<owlr:classAtom>
<owlx:IntersectionOf>

<owlx:Class owlx:name="Person" />
<owlx:ObjectRestriction

owlx:property="hasParent">
<owlx:someValuesFrom

owlx:property="Physician" />
</owlx:ObjectRestriction>

</owlx:IntersectionOf>
<owlr:Variable owlr:name="x2" />

</owlr:classAtom>

is a class atom using a complex description representing Persons
having at least one parent who is a Physician.

Property atoms consist of a property name and two elements that
can be individual names, variable names or data values (as OWL
does not support complex property descriptions, a property atom
takes only a property name). Note that in the case where the second
element is an individual name the property must be an individual-
valued property, and in the case where the second element is a data
value the property must be a datavalued property. For example:

<owlr:individualPropertyAtom
owlx:property="hasParent">

<owlr:Variable owlr:name="x1" />
<owlx:Individual owlx:name="John" />

</owlr:individualPropertyAtom>

is a property atom using an individualvalued property (the second
element is an individual), and

<owlr:datavaluedPropertyAtom owlr:property="grade">
<owlr:Variable owlr:name="x1" />
<owlx:DataValue

rdf:datatype="&xsd;integer">4</owlx:DataValue>
</owlr:datavaluedPropertyAtom>

is a property atom using a datavalued property (the second element
is a data value, in this case an integer).

Finally, same (different) individual atoms assert equality (in-
equality) between sets of individual and variable names. Note that
(in)equalities can be asserted between arbitrary combinations of
variable names and individual names. For example:

<owlr:sameIndividualAtom>
<owlr:Variable owlr:name="x1" />
<owlr:Variable owlr:name="x2" />
<owlx:Individual owlx:name="Clinton" />
<owlx:Individual owlx:name="Bill Clinton" />

</owlr:sameIndividualAtom>

asserts that the variables x1, x2 and the individual names Clinton
and Bill Clinton all refer to the same individual.

5.1 Example
The example rule from Section 3.2 can be written in the XML

concrete syntax for rules as

<owlx:Rule>
<owlr:antecedent>
<owlr:individualPropertyAtom

owlr:property="parent">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="b" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="brother">
<owlr:Variable owlr:name="b" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="uncle">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

6. THE POWER OF RULES
In OWL, the only relationship that can be asserted between prop-

erties is subsumption between atomic property names, e.g., assert-
ing that hasFather is a subPropertyOf hasParent. In Section 3.2
we have already seen how a rule can be used to assert more com-
plex relationships between properties. While this increased expres-
sive power is clearly very useful, it is easy to show that it leads to
the undecidability of key inference problems, in particular ontology
consistency.

For extensions of languages such as OWL DL, the undecidabil-
ity of the consistency problem is often proved by showing that the
extension makes it possible to encode a known undecidable domino
problem [2] as an ontology consistency problem. In particular, it is
well known that such languages only need the ability to represent
an infinite 2-dimensional grid in order for consistency to become
undecidable [1, 8]. With the addition of rules, such an encoding is
trivial. For example, given two properties x-succ and y-succ, the
rule:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) ∧
y-succ(?a, ?d) ∧ x-succ(?d, ?e) → sameAs(?c, ?e),

along with the assertion that every grid node is related to exactly
one other node by each of x-succ and y-succ, allows such a grid
to be represented. This would be possible even without the use of
the sameAs atom in the consequent—it would only be necessary
to establish appropriate relationships with a “diagonal” property:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) → diagonal(?a, ?c)
y-succ(?a, ?d) ∧ x-succ(?d, ?e) → diagonal(?a, ?e),

and additionally assert that every grid node is related to exactly one
other node by diagonal.

The proposed form of OWL rules seem to go beyond basic Horn
clauses in allowing:

• conjunctive consequents;

• class descriptions as well as class names as predicates in
class atoms; and

• equalities and inequalities.

On closer examination, however, it becomes clear that most of this
is simply “syntactic sugar”, and does not add to the power of the
language.

In the case of conjunctive consequents, it is easy to see that these
could be eliminated using the standard Lloyd-Topor transformation
[11]. For example, a rule of the form

A → C1 ∧ C2

can be transformed into a semantically equivalent pair of rules

A → C1

A → C2.

In the case of class descriptions, it is easy to see that a description
d can be eliminated from a rule simply by adding an OWL axiom
that introduces a new class name and asserts that it is equivalent to
d, e.g.,

EquivalentClasses(D d).

The description can then be replaced with the name, here replacing
the description d with class name D.

In the case of equality atoms, the sameAs predicate could easily
be substituted with a “user defined” owl property called, for exam-
ple, Eq. Such a property can be given the appropriate meaning
using a rule of the form

Thing(?x) → Eq(?x, ?x)

and by asserting that it is functional.
The case of inequalities is slightly more complex. When they

occur in the consequent of a rule they can easily be eliminated. For
example, the atom

differentFrom(x, y),

where x and y are again variables or constants, can be replaced
with

C(x) ∧ D(y),

where C and D are new class names that are asserted to be disjoint.
When (in)equalities occur in antecedents, however, this elimination
does not work, because it would strengthen the conditions that must
be met in order for a binding to satisfy the antecedent.

7. EXAMPLES OF ORL
We give two further examples of ORL that serve to illustrate

some of their utility, and show how the power of ORL goes beyond
that of either OWL DL or Horn rules alone.

7.1 Transferring Characteristics
The first example is due to Guus Schreiber, and is based on on-

tologies used in an image annotation demo [5].

Artist(?x) ∧ Style(?y) ∧ artistStyle(?x, ?y) ∧ creator(?x, ?z)
→ style/period(?z, ?y)

The rule expresses the fact that, given knowledge about the Style
of certain Artists (e.g., van Gogh is an Impressionist painter), we
can derive the style/period of an art object from the value of the
creator of the art object, where Style is a term from the Art and Ar-
chitecture Thesaurus (AAT),2 Artist is a class from the Union List
2http://www.getty.edu/research/tools/
vocabulary/aat/

of Artist Names (ULAN),3 artistStyle is a property relating ULAN
Artists to AAT Styles, and both creator and style/period are proper-
ties from the Visual Resources Association catalogue (VRA),4 with
creator being a subproperty of the Dublin Core element dc:creator.5

This rule would be expressed in the XML concrete syntax as
follows (assuming appropriate entity declarations):

<owlr:Rule>
<owlr:antecedent>
<owlr:classAtom>

<owlx:Class owlx:name="&ulan;Artist" />
<owlr:Variable owlr:name="x" />

</owlr:classAtom>
<owlr:classAtom>

<owlx:Class owlx:name="&aat;Style" />
<owlr:Variable owlr:name="y" />

</owlr:classAtom>
<owlr:individualPropertyAtom

owlr:property="&aatulan;artistStyle">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="&vra;creator">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="&vra;style/period">
<owlr:Variable owlr:name="z" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

The example is interesting because it shows how rules can be
used to “transfer characteristics” from one class of individuals to
another via properties other than subClassOf—in this case, the
Style characteristic is transfered from Artists to the objects that they
create via the creator property. This idiom is much used in ontolo-
gies describing complex physical systems, such as medical termi-
nologies, where partonomies may be as important as subsumption
hierarchies, and where characteristics often need to be transfered
across various partitive properties [13, 19, 21]. For example, the
location of a trauma should be transfered across the partOf prop-
erty, so that traumas located in a partOf an anatomical structure are
also located in the structure itself [17]. This could be expressed
using a rule such as

Location(?x) ∧ Trauma(?y) ∧ isLocationOf(?x, ?y) ∧
isPartOf(?x, ?z)

→ isLocationOf(?z, ?y)

A similar technique could be used to transfer properties to compos-
ite processes from their component processes when describing web
services.

Terminology languages designed specifically for medical termi-
nology such as Grail [18] and SNOMED-RT [24] often allow this

3http://www.getty.edu/research/conducting_
research/vocabularies/ulan/
4http://www.vraweb.org/
5http://dublincore.org/

kind of idiom to be expressed, but it cannot be expressed in OWL
(not even in OWL full). Thus this kind of rule shows one way in
which ORL go beyond the expressive power of OWL DL.

7.2 Inferring the Existence of New Individuals
The second example is due to Mike Dean, and illustrates a sce-

nario in which we want to express the fact that for every Airport
there is a map Point that has the same location (latitude and longi-
tude) as the Airport and that is an object of “layer” (a map Draw-
ingLayer).6 Moreover, this map point has the Airport as an under-
lyingObject and has the Airport name as its Label. Note how the
expressive power of ORL allows “existentials” to be expressed in
the head of a rule—it is asserted that, for every airport, there must
exist such a map point (using an OWL someValuesFrom restric-
tion in a class atom). In this way ORL goes beyond the expressive
power of Horn rules.

The first part of this example is background knowledge about air-
ports and maps expressed in OWL DL. (A few liberties have been
taken with the OWL DL abstract syntax here in the interests of bet-
ter readability.) In particular, it is stated that map:location and
map:object are individualvalued properties with inverse proper-
ties map:isLocationOf and map:isObjectOf respectively; that lat-
itude and longitude are datavalued properties; that map:Location
is a class whose instances have exactly one latitude and exactly one
longitude, both being of type xsd:double; that layer is an instance
of map:DrawingLayer; that map is an instance of map:Map
whose map:name is "Airports" and whose map:layer is
layer; and that airport:GEC is an instance of airport-ont:airport
whose name is "Spokane Intl" and whose location is lati-
tude 47.6197 and longitude 117.5336.

ObjectProperty(map:location)
ObjectProperty(map:isLocationOf

inverseOf(map:location))
ObjectProperty(map:object)
ObjectProperty(map:isObjectOf

inverseOf(map:location))

DatatypeProperty(latitude)
DatatypeProperty(longitude)
Class(map:Location primitive

intersectionOf(
restriction(latitude allValuesFrom(xsd:double))
restriction(latitude minCardinality(1))
restriction(longitude allValuesFrom(xsd:double))
restriction(longitude minCardinality(1))))

Individual(layer type(map:DrawingLayer))

Individual(map type(map:Map)
value(map:name "Airports)
value(map:layer layer))

Individual(airport:GEC type(airport-ont:airport)
value(name "Spokane Intl")
value(location Individual(value(latitude 47.6197)

value(longitude 117.5336))))

The first rule in the example requires that if a map:Location is
the sameLocation as another location, then it has the same values

6http://www.daml.org/2003/06/ruletests/
translation-3.n3

for latitude and longitude.

map:Location(?maploc) ∧ sameLocation(?loc, ?maploc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)
→

latitude(?maploc, ?lat) ∧ latitude(?maploc, ?lon)

The second rule requires that wherever an airport-ont:Airport is
located, there is some map:Location that is the sameLocation as
the airport’s location, and that is the location of a map:Point that
is an object of the map:DrawingLayer “layer”.

airport-ont:Airport(?airport) ∧ location(?airport, ?loc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)
→

restriction(sameLocation

someValuesFrom(
intersectionOf(map : Location

restriction(isLocationOf

someValuesFrom(
intersectionOf(map : Point

restriction(map : isObjectOf

someValuesFrom(OneOf(layer)))))))))
(?loc)

The third rule requires that the map:Point whose map:location
is the map:Location of an airport-ont:Airport has the airport as a
map:underlyingObject and has a map:label which is the name of
the airport.

airport-ont:Airport(?airport)∧
map:location(?airport, ?loc)∧
sameLocation(?loc, ?maploc)∧
map:Location(?point, ?maploc)∧
airport-ont:name(?airport, ?name)
→

map:underlyingObject(?point, ?airport)∧
map:label(?point, ?name)

8. MAPPING TO RDF GRAPHS
Rules have variables, so treating them as a semantic extension

of RDF is very difficult. It is, however, still possible to provide an
RDF syntax for rules—it is just that the semantics of the resultant
RDF graphs may not be an extension of the RDF Semantics [4].

A mapping to RDF/XML is most easily created as an extension
to the XSLT transformation for the OWL XML Presentation syn-
tax.7 This would introduce RDF classes for ORL atoms and vari-
ables, and RDF properties to link atoms to their predicates (classes
and properties) and arguments (variables, individuals or data val-
ues).8 The example rule given in Section 7.1 (that equates the
style/period of art objects with the style of the artist that created
them) would be mapped into RDF as follows:

<owlr:Variable rdf:ID="x"/>
<owlr:Variable rdf:ID="y"/>
<owlr:Variable rdf:ID="z"/>
<owlr:Rule>

<owlr:antecedent rdf:parseType="Collection">
<owlr:classAtom>

<owlr:classPredicate
rdf:resource="&ulan;Artist"/>

7http://www.w3.org/TR/owl-xmlsyntax/
owlxml2rdf.xsl
8The result is similar to the RDF syntax for representing disjunc-
tion and quantifiers proposed in [12].

<owlr:argument1 rdf:resource="#x" />
</owlr:classAtom>
<owlr:classAtom>
<owlr:classPredicate

rdf:resource="&aat;Style"/>
<owlr:argument1 rdf:resource="#y" />

</owlr:classAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&aatulan;artistStyle"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;creator"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent rdf:parseType="Collection">

<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;style/period"/>
<owlr:argument1 rdf:resource="#z" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

where &ulan;, &aat;, &aatulan; and &vra; are assumed to expand
into the appropriate namespace names. Note that complex OWL
classes (such as OWL restrictions) as well as class names can be
used as the object of ORL’s classPredicate property.

9. REASONING SUPPORT FOR ORL
Although ORL provides a fairly minimal rule extension to OWL,

the consistency problem for ORL ontologies is still undecidable
(as we have seen in Section 6). This raises the question of how
reasoning support for ORL might be provided.

It seems likely, at least in the first instance, that many implemen-
tations will provide only partial support for ORL. For this reason,
users may want to restrict the form or expressiveness of the rules
and/or axioms they employ either to fit within a tractable or de-
cidable fragment of ORL, or so that their ORL ontologies can be
handled by existing or interim implementations.

One possible restriction in the form of the rules is to limit an-
tecedent and consequent classAtoms to be named classes, with
OWL axioms being used to assert additional constraints on the in-
stances of these classes (in the same document or in external OWL
documents). Adhering to this format should make it easier to trans-
late rules to or from existing (or future) rule systems, including
Prolog, production rules (descended from OPS5), event-condition-
action rules and SQL (where views, queries, and facts can all be
seen as rules); it may also make it easier to extend existing rule
based reasoners for OWL (such as Euler9 or FOWL10) to handle
ORL ontologies. Further, such a restriction would maximise back-
wards compatibility with OWL-speaking systems that do not sup-
port ORL. It should be pointed out, however, that there may be
some incompatibility between the first order semantics of ORL and
the Herbrand model semantics of many rule based reasoners.
9http://www.agfa.com/w3c/euler/

10http://fowl.sourceforge.net

By further restricting the form of rules and DL axioms used in
ORL ontologies it would be possible to stay within DLP, a sub-
set of the language that has been shown to be expressible in either
OWL DL or declarative logic programs (LP) alone [3]. This would
allow either OWL DL reasoners or LP reasoners to be used with
such ontologies, although there may again be some incompatibility
between the semantics of ORL and those of LP reasoners.

Another obvious strategy would be to restrict the form of rules
and DL axioms so that a “hybrid” system could be used to reason
about the resulting ontology. This approach has been used, e.g.,
in the CLASSIC [16] and CARIN systems [10], where sound and
complete reasoning is made possible mainly by focusing on query
answering, and by restricting the DL axioms to languages than are
much weaker than OWL.

Finally, an alternative way to provide reasoning support for ORL
would be to extend the translation of OWL into TPTP11 imple-
mented in the Hoolet system,12 and use a first order prover such
as Vampire to reason with the resulting first order theory [20, 27].
This technique would have several advantages: no restrictions on
the form of ORL rules or axioms would be required; the use of a
first order prover would ensure that all inferences were sound with
respect to ORL’s first order semantics; and the use of the TPTP
syntax would make it possible to use any one of a range of state of
the art first order provers.

10. DISCUSSION
In this paper we have presented ORL, a proposed extension to

OWL to include a simple form of Horn-style rules. We have pro-
vided formal syntax and semantics for ORL, shown how OWL’s
XML and RDF syntax can be extended to deal with ORL, illus-
trated the features of ORL with several examples, and discussed
how reasoning support for ORL might be provided.

The main strengths of the proposal are its simplicity and its tight
integration with the existing OWL language. As we have seen,
ORL extends owl with the most basic kind of Horn rule (sweet-
ened with a little “syntactic sugar”): predicates are limited to being
OWL classes and properties (and so have a maximum arity of 2),
there are no disjunctions or negations (of atoms), no built in predi-
cates (such as arithmetic predicates), and no nonmonotonic features
such as negation as failure or defaults. Moreover, rules are given a
standard first order semantics. This facilitates the tight integration
with OWL, with ORL being defined as a syntactic and semantic
extension of OWL DL.

While we believe that ORL defines a natural and useful level
in the hierarchy of Semantic Web languages, it is clear that some
applications would benefit from further extensions in expressive
power. In particular, the ability to express arithmetic relationships
between data values is important in many applications (e.g., to as-
sert that persons whose income at least equals their expenditure are
happy, while those whose expenditure exceeds their income are un-
happy). It is not clear, however, if this would best be achieved by
extending ORL to include rules with built in arithmetic predicates,
or by extending OWL Datatypes to include nary predicates [14].

Acknowledgements
This document has benefited from extensive discussion in the Joint
US/EU ad hoc Agent Markup Language Committee. Parts of Sec-

11A standard syntax used by many first order theorem provers—see
http://www.tptp.org

12http://www.w3.org/2003/08/owl-systems/test-
results-out

tion 9, in particular, were the result of feedback from and discus-
sions with Benjamin Grosof and Mike Dean.

11. REFERENCES
[1] F. Baader and U. Sattler. Number restrictions on complex

roles in description logics: A preliminary report. In Proc. of
the 5th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’96), pages 328–338,
1996.

[2] R. Berger. The undecidability of the dominoe problem. Mem.
Amer. Math. Soc., 66:1–72, 1966.

[3] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: Combining logic programs with
description logic. In Proc. of the Twelfth International World
Wide Web Conference (WWW 2003), pages 48–57. ACM,
2003.

[4] P. Hayes. RDF model theory. W3C Working Draft, 10
October 2003. Available at
http://www.w3.org/TR/rdf-mt/.

[5] L. Hollink, G. Schreiber, J. Wielemaker, and B. Wielinga.
Semantic annotation of image collections. In Workshop on
Knowledge Markup and Semantic Annotation, KCAP’03,
2003. Available at http://www.cs.vu.nl/˜guus/
papers/Hollink03c.pdf.

[6] M. Hori, J. Euzenat, and P. F. Patel-Schneider. OWL web
ontology language XML presentation syntax. W3C Note, 11
June 2003. Available at
http://www.w3.org/TR/owl-xmlsyntax/.

[7] I. Horrocks and U. Sattler. The effect of adding complex role
inclusion axioms in description logics. In Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages
343–348. Morgan Kaufmann, Los Altos, 2003.

[8] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial
Intelligence, pages 161–180. Springer, 1999.

[9] G. Klyne and J. J. Carroll. Resource description framework
(RDF): Concepts and abstract syntax. W3C Working Draft,
10 October 2003. Available at
http://www.w3.org/TR/rdf-concepts/.

[10] A. Y. Levy and M.-C. Rousset. Combining Horn rules and
description logics in CARIN. Artificial Intelligence,
104(1–2):165–209, 1998.

[11] J. W. Lloyd. Foundations of logic programming (second,
extended edition). Springer series in symbolic computation.
Springer-Verlag, New York, 1987.

[12] D. V. McDermott and D. Dou. Representing disjunction and
quantifiers in rdf. In Proc. of the 2002 International Semantic
Web Conference (ISWC 2002), volume 2342 of Lecture
Notes in Computer Science, pages 250–263. Springer, 2002.

[13] L. Padgham and P. Lambrix. A framework for part-of
hierarchies in terminological logics. In Proc. of the 4th Int.
Conf. on the Principles of Knowledge Representation and
Reasoning (KR’94), pages 485–496, 1994.

[14] J. Pan and I. Horrocks. Web ontology reasoning with
datatype groups. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, Proc. of the 2003 International Semantic Web
Conference (ISWC 2003), number 2870 in Lecture Notes in
Computer Science, pages 47–63. Springer, 2003.

[15] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web
ontology language semantics and abstract syntax. W3C
Candidate Recommendation, 18 August 2003. Available at
http://www.w3.org/TR/owl-semantics/.

[16] P. F. Patel-Schneider, D. L. McGuiness, R. J. Brachman,
L. A. Resnick, and A. Borgida. The CLASSIC knowledge
representation system: Guiding principles and
implementation rational. SIGART Bull., 2(3):108–113, 1991.

[17] A. Rector. Analysis of propagation along transitive roles:
Formalisation of the galen experience with medical
ontologies. In Proc. of DL 2002. CEUR
(http://ceur-ws.org/), 2002.

[18] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A.
Nowlan, and W. D. Solomon. The GRAIL concept modelling
language for medical terminology. Artificial Intelligence in
Medicine, 9:139–171, 1997.

[19] A. Rector and I. Horrocks. Experience building a large,
re-usable medical ontology using a description logic with
transitivity and concept inclusions. In Proc. of the Workshop
on Ontological Engineering, AAAI Spring Symposium
(AAAI’97), 1997.

[20] A. Riazanov and A. Voronkov. The Design and
Implementation of Vampire. AI Communications,
15(2-3):91–110, 2002.

[21] U. Sattler. Description logics for the representation of
aggregated objects. In Proc. of ECAI 2000. IOS Press, 2000.

[22] M. Schmidt-Schauß. Subsumption in KL-ONE is
undecidable. In R. J. Brachman, H. J. Levesque, and
R. Reiter, editors, Proc. of the 1st Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’89), pages
421–431. Morgan Kaufmann, Los Altos, 1989.

[23] M. K. Smith, C. Welty, and D. L. McGuinness. OWL web
ontology language guide. W3C Candidate Recommendation,
18 August 2003. Available at
http://www.w3.org/TR/owl-guide/.

[24] K. Spackman. Managing clinical terminology hierarchies
using algorithmic calculation of subsumption: Experience
with snomed-rt. J. of the Amer. Med. Informatics Ass., 2000.
Fall Symposium Special Issue.

[25] The DAML Services Coalition. Daml-s: Semantic markup
for web services, May 2003. Available at
http://www.daml.org/services/daml-
s/0.9/daml-s.html.

[26] Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation, 6 October 2000. Available at
http://www.w3.org/TR/REC-xml.

[27] D. Tsarkov and I. Horrocks. DL reasoner vs. first-order
prover. In Proc. of the 2003 Description Logic Workshop
(DL 2003), volume 81 of CEUR
(http://ceur-ws.org/), pages 152–159, 2003.

