
Web Ontology Reasoning with Datatype Groups

Jeff Z. Pan and Ian Horrocks

Department of Computer Science,
University of Manchester, UK M13 9PL

{pan,horrocks}@cs.man.ac.uk

Abstract. When providing reasoning services for ontology languages
such as DAML+OIL and OWL, it is necessary for description logics to
deal with “concrete” datatypes (strings, integers, etc.) as well as “ab-
stract” concepts and relationships. In this paper, we present a new ap-
proach, the datatype group approach, to integrating DLs with multiple
datatypes. We discuss the advantages of such approach over the exist-
ing ones and show how a tableaux algorithm for the description logic
SHOQ(Dn) can be modified in order to reason with datatype groups.

1 Introduction

Datatypes are important in the Semantic Web ontologies and applications, be-
cause most of which need to represent, in some way, various “real world” prop-
erties such as size, weight and duration, and some other complex user defined
datatypes. Reasoning and querying over datatype properties are important and
necessary if these properties are to be understood by machines.

For instance, e-shops may need to classify items according to their sizes, and
to reason that an item which has height less than 5cm and the sum of length
and width less than 10cm belongs to a class, called “small-items”, for which
no shipping costs are charged. Accordingly the billing system will charge no
shipping fees for all the instances of the “small-items”class.

Various Web ontology languages, such as RDF(S) [4], OIL [5],
DAML+OIL1 [7] and OWL2, have witnessed the importance of datatypes in the
Semantic Web. All of them support datatypes. For instance, the DAML+OIL
language supports unary datatype predicates and qualified number restrictions
on unary datatype predicates, e.g. a “less than 21” predicate could be used with
the datatype property age to describe objects having age less than 21.3

Description Logics (DLs)[1], a family of logical formalisms for the representa-
tion of and reasoning about conceptual knowledge, are of crucial importance to

1 http://www.daml.org/
2 http://www.w3.org/2001/sw/WebOnt/
3 It is important to distinguish between a unary predicate such as “less than 21”,

which is true of any number x that is less than 21, and a binary predicate such as
“less than”, which is true of any pair of numbers x, y where x is less than y.

the development of the Semantic Web. Their role is to provide formal underpin-
nings and automated reasoning services for Semantic Web ontology languages
such as OIL, DAML+OIL and OWL.

Using datatypes within Semantic Web ontology languages presents new re-
quirements for DL reasoning services. Firstly, such reasoning services should
be compatible with the XML Schema type system[3], and may need to support
many different datatypes. Furthermore, they should be easy to extend when new
datatypes are required.

DL researchers have been working on combining DLs and datatypes for quite
a long time. Baader and Hanschke [2] first presented the concrete domain ap-
proach, Lutz [10] studied the effect on complexity of adding concrete domains
to a range of DLs, Horrocks and Sattler [8] proposed the SHOQ(D) DL which
combines DLs and type systems (e.g. the XML Schema type system), and more
recently Pan and Horrocks [12] presented the SHOQ(Dn) DL, which extends
SHOQ(D) with n-ary datatype predicates and qualified number restrictions.

To reason with SHOQ(D) and SHOQ(Dn), type checkers are introduced
to work with DL “concept reasoners”. By using a separate type checker, we
can deal with an arbitrary conforming set of datatypes and predicates with-
out compromising the compactness of the concept language or the soundness
and completeness of the decision procedure [8]. Whenever new datatypes are re-
quired, only the type checkers need to be updated and the DL concept reasoner
can be reused. The result is a framework that is both robust and flexible.

To support type systems and type checkers, in this paper, we present the
datatype group approach, which extends existing approaches in order to over-
come problems and limitations such as counter-intuitive negation, disjointness
of different datatypes and mixed datatype predicates. We then describe an al-
gorithm for reasoning with SHOQ(Dn), which improves on the one presented
in [12] by allowing simpler “deterministic” type checkers to be used.

Next section, we will show the expressive power of the SHOQ(Dn) DL by
an example of using n-ary datatype predicates.

2 An Example: Using Datatypes

Maybe you still remember the “small-items” example presented in last section,
in which the sum of ... less than 10cm is an n-ary datatype predicate. In
this section, we give another example of using n-ary (this time n=2) datatype
predicates to support unit mapping.
Example 1 Miles and Kilometers4 Unit mapping is important because of the va-
riety of units. For instance, you can find more than one hundred and sixty length units
in http://www.chemie.de/5. This example concerns the mapping between the units of
mile and kilometer.

4 This example is inspired by a discussion about datatypes in the www-rdf-logic mail-
ing list: http://lists.w3.org/Archives/Public/www-rdf-logic/2003Mar/0048.

html.
5 http://www.chemie.de/tools/units.php3?language=e\&property=m

Firstly, we define two datatypes to represent the units of mile and kilometer. Since
the positive float is not a built-in XML Schema datatype, we define two derived XML
Schema datatypes6 lengthInMile and lengthInKMtr, as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.example.org/length-units.xsd">
<xsd:simpleType name="lengthInMile">

<xsd:restriction base="xsd:float">
<xsd:minInclusive value="0"/>

</xsd:restriction base="xsd:float">
</xsd:simpleType>
<xsd:simpleType name="lengthInKMtr">

<xsd:restriction base="xsd:float">
<xsd:minInclusive value="0"/>

</xsd:restriction base="xsd:float">
</xsd:simpleType>

</xsd:schema>
We can then make use of these datatypes in DAML+OIL ontologies.7 E.g., if we have
datatype properties “length-mile” and “length-kmtr” defined in a river ontology:

<rdf:RDF

xmlns="http://www.example.org/river#"

...

xmlns:unit="http://www.example.org/length-units.xsd">
<owl:DataTypeProperty rdf:ID="length">

<rdfs:range rdf:resource="xsd:float"/>
</owl:DataTypeProperty>
<owl:Class rdf:ID="River"/>
<owl:DataTypeProperty rdf:ID="length-mile">

<rdfs:subPropertyOf rdf:resource="#length"/>
<rdfs:domain rdf:resource="#River"/>
<rdfs:range rdf:resource="unit:lengthInMile"/>

</owl:DataTypeProperty>
<owl:DataTypeProperty rdf:ID="length-kmtr">

<rdfs:subPropertyOf rdf:resource="#length"/>
<rdfs:domain rdf:resource="#River"/>
<rdfs:range rdf:resource="unit:lengthInKMtr"/>

</owl:DataTypeProperty>
we can describe the length of the Yangtze river as 3937.5 miles and 6300 kilometers:

<River rdf:ID="Yangtze">
<length-mile rdf:datatype="unit:lengthInMile">3937.5</length>

</River>
<River rdf:ID="Yangtze">

<length-kmtr rdf:datatype="unit:lengthInKMtr">6300</length>
</River>

We can specify the mapping between miles and kilometers using a binary datatype
predicate. Sadly, XML Schema does not support n-ary datatype predicates. We have

6 When we talk about XML Schema datatype in this paper, we mean XML Schema
simple types.

7 OWL currently does not support the use of derived datatypes.

used an XML style syntax to present this predicate in http://www.example.org/

length-units.xsd as follows:8

<predicate name="kmtrsPerMile" arity="2">
<par var="i" base="lengthInKMtr">
<par var="j" base="lengthInMile">
<constraint val="i=1.6*j">

</predicate>
The binary (with arity = 2) datatype predicate “kmtrsPerMile” is defined over the
datatypes “lengthInKMtr” and “lengthInMile”.

Now we can add a restriction to the “River” class and require that the value of
the “length-kmtr” property be 1.6 times that of the “length-mile” property. Again, we
could imagine an extension of a language such as OWL to support the use of n-ary
datatype predicates:

<owl:Class rdf:about="River">
<rdfs:subClassOf>

<owl:NaryRestriction>
<owl:onProperties rdf:parseType="Collection">

<owl:DatatypeProperty rdf:ID="length-kmtr">
<owl:DatatypeProperty rdf:ID="length-mile">

</owl:onProperties>
<owl:allTuplesSatisfy rdf:resource="unit:kmtrsPerMile"/>

</owl:NaryRestriction>
</rdfs:subClassOf>

</owl:Class>

Note that, in the above restriction, the order of the properties in the onProperties

list is significant, and “kmtrsPerMile” is a datatype predicate whose arity must match
the number of properties in the onProperties list. Such restriction is expressible in
the SHOQ(Dn) DL (see section 4).

One example of reasoning with the above ontology and datatypes is to check
whether a large set of instances of the ontology class River are consistent with the
above restriction of the River class. ♦

As we hope the above example shows, n-ary datatype predicates would be
very useful in Semantic Web ontologies and applications. In next section, we
will start to investigate how to provide DL reasoning services for ontologies and
datatypes.

3 Concrete Domains and Datatype Groups

As mentioned in Section 1, Description Logic researchers have been working on
combining DLs and datatypes for quite a long time, although they might not
always have used the term “datatype”. It was Baader and Hanschke [2] who
first presented a rigorous treatment of datatypes, which they called “concrete
domains”. Lutz [9] presents a survey of DLs with concrete domains, concentrat-
ing on the effect on complexity and decidability of adding concrete domains to
8 Currently we are also working on extending the common DL Interface DIG/1.1 to

support n-ary datatype predicates in a similar manner.

various DLs. More recently, Horrocks and Sattler [8] proposed a new approach to
cope with datatypes structured by a type system. In the rest of this section, we
will briefly describe the above two approaches, explaining their advantages and
disadvantages in coping with multiple datatypes, then extend these approaches
and present the datatype group approach.

3.1 The Concrete Domain Approach

A “concrete domain” is formally defined as followed:

Definition 1 (Concrete Domain) A concrete domain D consists of a pair (∆D,ΦD),
where ∆D is the domain of D and ΦD is a set of predicate names. Each predicate name
P is associated with an arity n, and an n-ary predicate PD ⊆ ∆n

D. Let V be a set of
variables. A predicate conjunction of the form

c =

k∧
j=1

Pj(v
(j)
1 , . . . , v(j)

nj
), (1)

where Pj is an nj-ary predicate and the v
(j)
i are variables from V, is called satisfi-

able iff there exists a function δ mapping the variables in c to data values in ∆D s.t.
(δ(v

(j)
1), . . . , δ(v

(j)
nj)) ∈ PD

j for 1 ≤ j ≤ k. Such a function δ is called a solution for c. A
concrete domain D is called admissible iff

1. ΦD is closed under negation9 and contains a name >D for ∆D and
2. the satisfiability problem for finite conjunctions of predicates is decidable.

By P , we denote the name for the negation of the predicate P , i.e., if the arity of P is

n, then P
D

= ∆n
D \ PD. �

Here is an example of a concrete domain.
Example 2 The Concrete Domain N = (∆N , ΦN), where ∆N is the set of non-
negative integers and ΦN = {≥,≥n}.10 N is not admissible since ΦN doesn’t satisfy
condition 1 of admissible in Definition 1; in order to make it admissible we would have
to extend ΦN to {>N ,⊥N } ∪ {<,≥, <n,≥n}. ♦

The introduction of concrete domains in Baader and Hanschke [2] gives a firm
basis for integrating DLs with datatypes. More examples of admissible concrete
domains can be found in Section 2.4 of [10]. We can integrate an arbitrary
concrete domain D into the ALC DL and give the ALC(D) DL. The syntax and
semantics of this DL are described in [2, 10]. The new concept expression (about
datatypes) of ALC(D) is the predicate restriction P (u1, . . . , un), where P is a
predicate name in ΦD and u1, . . . , un are feature chains.11

Although the concrete domain approach does a very good job in combining
DLs with one concrete domain, there are some problems when combining DLs
with more than one concrete domain, especially in the context of Web ontology
reasoning.
9 Closed under negation requires that if P ∈ ΦD, then P ∈ ΦD.

10 Note that ≥ is a binary predicate and ≥n is a unary predicate.
11 See [2, 10] for more about feature chains.

Fig. 1. The >5 and ≤5 Datatype Predicates

Negated Datatypes In the concrete domain approach, when two admissible
concrete domains D1 and D2 are combined to form a new concrete domain
D1 ⊕ D2, the interpretation of the negation of each predicate name Pj ∈ ΦD1

will be modified from Pj
D1 = ∆

nj

D1
\ PD1

j to Pj
D1⊕D2 = (∆D1 ∪ ∆D2)

nj \ PD1
j .

We can see that Pj
D1⊕D2 equals to Pj

D1 union a set of nj-ary tuples involving
type errors, where at least one of the variables of Pj is mapped to a data value in
D2 instead of D1. Counting type errors in the negations of datatype predicates
may be counter-intuition. Let’s see an example.

Example 3 The >5 and ≤5 Datatype Predicates We first only consider the con-
crete domains INT, where datatype predicates >5,≤5∈ ΦINT . We have >5

INT =≤INT
5

(see figure 1). When we consider two concrete domain INT and STRING, we might
still expect that >5

INT⊕STRING only include the integers that are not in >INT
5 , e.g.,

the integer 3. However, since >5
INT⊕STRING = (∆INT ∪∆STRING)\ >INT

5 , the string
“Fred” is also in >5

INT⊕STRING. ♦

As well as being counter-intuitive, the change in the interpretation of Pj does
not fit well with the idea of using type checkers to work with DL reasoner. We
will come back to this in Section 3.3.

Disjoint Domains The concrete domain approach requires that two concrete
domains be disjoint with each other if they are to be combined to form a new
concrete domain. This does not accord with XML Schema datatypes, where some
datatypes can be sub-types of other datatypes.

Mixed Datatype Predicates The “kmtrsPerMile” example illustrates an-
other limitation of the concrete domain approach: all of the arguments to a
predicate must be from the same concrete domain. The example shows that in
some cases it may be useful to have predicates taking arguments of different
datatypes.

3.2 The Type System Approach

To solve the “disjoint domains” problem mentioned in the previous section,
Horrocks and Sattler [8] proposed a new approach to combine DLs and type
systems (e.g. XML Schema type system). A type system typically defines a set
of “base datatypes”, such as integer or string, and provides a mechanism for
deriving new datatypes from existing ones. In this approach, multiple datatypes
may be defined over a universal concrete domain.

Definition 2 (Universal Concrete Domain) The universal concrete domain D con-
sists of a pair (∆D,Φ1), where ∆D is the domain of all datatypes and Φ1 is a set of
datatype (unary datatype predicate) names. Each datatype name d is associated with a
unary datatype predicate dD ⊆ ∆D. Let V be a set of variables, a datatype conjunction
of the form

c1 =

k∧
j=1

dj(v
(j)), (2)

where dj is a (possibly negated) datatype from Φ1 and the v(j) are variables from V, is
called satisfiable iff there exists a function δ mapping the variables in c1 to data values
in ∆D s.t. δ(v(j)) ∈ dD for 1 ≤ j ≤ k. Such a function δ is called a solution for c1. By

d, we denote the name for the negation of the datatype d, and d
D

= ∆D \ dD.
A set of datatypes Φ1 is called conforming iff ∆D is disjoint with the abstract

domain ∆I and the satisfiability problem for finite conjunctions of datatypes over Φ1

is decidable. �
In this approach, the universal concrete domain D is treated as the only

concrete domain,12 with datatypes being unary predicates over D. Datatypes
are considered to be sufficiently structured by type systems, which may include
a derivation mechanism and built-in ordering relation. The satisfiability problem
(2) is, therefore, much easier than that of the concrete domain approach (1).
Example 4 Miles and Kilometers (cont.) As shown in Example 1, lengthInMile
and lengthInKMtr can be defined as derived XML Schema datatypes of FLOAT. In
D, lengthInMile, lengthInKMtr and FLOAT are datatype names of Φ1. Since there
are no n-ary datatype predicate names in Φ1, it is not possible to represent the binary
datatype predicate kilosPerMile using this approach. ♦

The type system approach provides an easy way to combine DLs with XML
Schema datatypes. Horrocks and Sattler [8] integrated the universal concrete
domain (D) as well as nominals (O) into the SHQ DL to give the SHOQ(D)
DL. In order to make SHOQ(D) decidable, feature chains are not allowed. In
addition, roles are divided into disjoint sets of abstract roles and concrete roles.
The datatype constructs included in SHOQ(D) are datatype exists ∃T.d and
datatype value ∀T.d, where T is a concrete role and d is a datatype name in Φ1.
Detailed discussions on the differences in datatype handling between SHOQ(D)
and ALC(D) can be found in [11].

The main disadvantage of the type system approach is that it doesn’t support
n-ary datatype predicates. Furthermore, since the interpretation of d is defined
as ∆D \dD, the negated datatypes problem mentioned in Section 3.1 still exists.

12 In [8]’s notation, D refers to Φ1 the set of datatypes. We call it Φ1 in order to make
it more consistent with ΦD in Definition 1.

Example 5 The >5 and ≤5 Datatype Predicates (cont.) Let us revisit Figure 1
in the type system approach. Now INT, >5,≤5, STRING are datatype names in Φ1.

Although the interpretation of INT is fine (the integer 3 is not in INT
D

and the string
“Fred” is), the interpretation of >5 is still quite “strange”: both the integer 3 and the
string “Fred” are in >5

D. ♦

This example suggests that we might want to deal with base datatypes and
derived datatypes in different manners.

3.3 The Datatype Group Approach

In this section we describe an extension of the type system approach which we call
the datatype group approach. Our motivation is to provide an easy and intuitive
way to cope with datatypes structured by type systems, and to support n-ary
datatype predicates such that (i) the interpretations of negations of datatype
predicates does not change when new datatypes are introduced into a datatype
group, and (ii) it is possible to reuse existing concrete domain algorithms for
the satisfiability problem of predicate conjunctions (1). A “datatype group” is
formally defined as follows.

Definition 3 (Datatype Group) A datatype group G is a tuple (∆D,DG ,Φ1
G ,ΦG),

where ∆D, which is disjoint with the abstract domain ∆I , is the datatype domain
covering all datatypes, DG is a set of base datatype names, Φ1

G is a set of derived
datatype names and ΦG is a set of predicate names. Each base datatype name d ∈ DG
is associated with a base datatype dD ⊆ ∆D, each derived datatype name d′ ∈ Φ1

G

is associated with a derived datatype d′
D ⊆ dD, where d ∈ DG , and each predicate

name P ∈ ΦG is associated with an arity n (n > 1) and a n-ary predicate PD ⊆
dD
1 × . . .× dD

n ⊆ ∆n
D, where d1 . . . dn ∈ DG ∪ Φ1

G .

The domain function dom(p, i) returns the domain of the i-th argument of the
(possibly unary) predicate p, where datatypes can be regarded as unary predicates.
According to the above definition, dom(p, i) is defined as

1. for each d ∈ DG , dom(d, 1) = ∆D;

2. for each d′ ∈ Φ1
G , dom(d′, 1) = dD;

3. for each P ∈ ΦG , dom(P, i) = dD
i (1 < i ≤ n) if the arity of P is n.

Let V be a set of variables. We will consider predicate conjunctions over G of the
form

C =

k∧
j=1

pj(v
(j)
1 , . . . , v(j)

nj
), (3)

where pj is an nj-ary predicate in DG ∪Φ1
G ∪ΦG , and the v

(j)
i are variables from V. A

predicate conjunction C is called satisfiable iff there exists a function δ mapping the
variables in C to data values in ∆D s.t. 〈δ(v(j)

1), . . . , δ(v
(j)
nj)〉 ∈ pD

j for 1 ≤ j ≤ k. Such
a function δ is called a solution for C . A datatype group G is conforming iff

1. DG , Φ1
G and ΦG are closed under negation,

2. a binary inequality predicate 6=i∈ ΦG is defined for each datatype di ∈ DG , and

3. the satisfiability problem for finite predicate conjunctions over G is decidable.

By p, we denote the negation of the (possibly unary) predicate p, if the arity of p is
n (n ≥ 1), then dom(p, 1) = dom(p, 1), . . . , dom(p, n) = dom(p, n) and pD = dom(p, 1)×
. . .× dom(p, n) \ pD.

For convenience, we use >D as the name of ∆D and ⊥D as the name of the negation
of >D. �

A datatype group G is a natural n-ary predicate extension (introducing ΦG) of
the universal concrete domain D, where the set Φ1 of datatype names is divided
into the set DG of base datatype names and the set Φ1

G of derived datatype
names. The division is motivated by having different interpretation settings for
their negations. The domain function dom(p, i) is defined for this purpose, so
that the interpretation of the negation of datatypes and datatype predicates can
be more intuitive, and do not change when new datatypes are introduced. Here
is an example.
Example 6 The >5 and ≤5 Datatype Predicates (cont.) A datatype group G
can be defined as

(∆D,

DG := {INT, INT , STRING, STRING},
Φ1
G := {>5,≤5},

ΦG := {6=INT , =INT , 6=STRING, =STRING}),

where INT
D

= dom(INT, 1) \ INTD = ∆D \ INTD, and >5
D = dom(>5, 1)\ >D

5 =

INTD\ >D
5 =≤D

5 . Therefore the integer 3 is in >5
D but not in INT

D
, while the string

“Fred” is in INT
D

but not in >5
D. ♦

Since the datatype group approach supports n-ary datatype predicates, we
can now present the binary predicate kilosPerMile in the miles and kilometers
example.

Example 7 Miles and Kilometers (cont.) A datatype group G2 can be defined as

(∆D,

DG2 := {FLOAT, FLOAT},
Φ1
G2 := {lengthInMile, lengthInMile, lengthInKMtr, lengthInKMtr},

ΦG2 := {kmtrsPerMile, kmtrsPerMile, 6=FLOAT , =FLOAT }),

where kmtrsPerMile
D

= dom(kmtrsPerMile, 1) × dom(kmtrsPerMile, 2) \
kmtrsPerMileD = lengthInKmtrD × lengthInMileD \ kmtrsPerMileD. ♦

There is a close relationship between a conforming datatype group with only
one base datatype and an admissible concrete domain.

Lemma 4 An admissible concrete domain (∆D, ΦD) is a conforming datatype group
G = (∆D, DG := {D}, Φ1

G , ΦG), where Φ1
G is the set of unary predicate names in ΦD

and ΦG is set of n-ary (n > 1) predicate names in ΦD, if there exists a binary inequality
predicate 6=D∈ ΦD.

Proof. Immediate consequence of Definition 1 and 3. ut

Now we show how two conforming datatype groups G1 and G2 can be com-
bined to form a new datatype groups G1 ⊕ G2. It turns out (Lemma 6 and 7)
that the combination is also conforming in many cases.

Definition 5 Assume that G1 and G2 are conforming datatype groups. Then G1 ⊕ G2

can be constructed as (∆D, DG1⊕G2 := DG1 ∪DG2 , Φ1
G1⊕G2 := Φ1

G1 ∪ Φ1
G2 , ΦG1⊕G2 :=

ΦG1 ∪ ΦG2). �

Note that for a predicate p in either G1 or G2 pD doesn’t changed after the
combination.

Lemma 6 If G1 and G2 are conforming datatype groups where DG1 ∩DG2 = ∅, then
G1 ⊕ G2 is also a conforming datatype group.

Proof. Obviously G1 ⊕ G2 satisfies the first two conditions of a conforming datatype
group. Now we only focus on the third condition. Assume that a predicate conjunction

C =

k∧
j=1

Pj(v
(j)
1 , . . . , v(j)

nj
)

is given, where Pj are predicates of G1 ⊕ G2.

1. If a variable v occurs as an argument of (possibly unary) predicates from both
datatype groups, then C is not satisfiable, because DG1 and DG2 are disjoint.

2. Otherwise, C can be split into two predicate conjunctions C1 and C2 such that
they are predicate conjunctions in G1 and G2 respectively and no variable occurs in
both conjunctions. Therefore, we observe that C is satisfiable iff the satisfiability
tests of the respective datatype groups succeed for C1 and C2. ut

Note that we don’t need to cope with disjunctions in the combination, while
in the corresponding Lemma for D1 ⊕ D2 (Lemma 2.4 in [2]) in the concrete
domain approach, disjunctions must be handled because of type errors.

If the set of datatypes and predicates in a conforming datatype group G1 is
a sub-set of the set of datatypes and predicates in another conforming datatype
group G2, then trivially G1 ⊕ G2 is also conforming.

Lemma 7 If G1 and G2 are conforming datatype group where DG1 ∪ Φ1
G1 ∪ ΦG1 ⊆

DG2 ∪ Φ1
G2 ∪ ΦG2 , then G1 ⊕ G2 is also a conforming datatype group.

Proof. Immediate consequence of Definition 5, obviously G1 ⊕ G2 is equivalent to G2.
ut

Lemma 6 and 7 give guidelines on how to build complex conforming datatype
groups from simple ones. Based on the definition of a datatype group, we can
define a type checker which works with a DL reasoner to answer datatype queries.

Definition 8 A type checker is a program that takes as input a finite predicate con-
junction C over (one of) the conforming datatype group(s) it supports, and answers
satisfiable if C is satisfiable and unsatisfiable otherwise. �

It is possible for a DL reasoner to work with many type checkers. Firstly,
in the datatype group approach, the interpretation of p (p ∈ DG ∪ Φ1

G ∪ ΦG)
doesn’t change when new datatypes are introduced, so the interpretation of
each p supported by a type checker won’t be affected by the existence of other
type checkers. Secondly, assuming that the set of base datatypes of the conform-
ing datatype group supported by each type checker is disjoint from each other,
Lemma 6 shows that the combined datatype group of all these datatype groups
supported by the type checkers is also conforming.

4 SHOQ(Dn)

In this section, we give the definition of the SHOQ(Dn) DL that supports rea-
soning with datatype groups. Note that in DLs we talk about concepts and roles
where in Web ontology languages we usually talk about classes and properties.
Definition 9 (SHOQ(Dn) Syntax and Semantics) Let C, R = RA] RD, I be
disjoint sets of concept, abstract and concrete role and individual names.

For R and S roles, a role axiom is either a role inclusion, which is of the form R v S
for R, S ∈ RA or R, S ∈ RD, or a transitivity axiom, which is of the form Trans(R)
for R ∈ RA. A role box R is a finite set of role axioms. A role R is called simple if,
for v* the transitive reflexive closure of v on R and for each role S, S v* R implies
Trans(S) 6∈ R.

The set of concept terms of SHOQ(Dn) is inductively defined. As a starting point
of the induction, any element A of C is a concept term (atomic terms). Now let C
and D be concept terms, o be an individual, R be a abstract role name, T1, . . . , Tn be
concrete role names, S be a simple role name, P be an n-ary datatype predicate name.
Then complex concepts can be built using the operators shown in Figure 2.

The semantics is defined in terms of an interpretation I = (∆I , ·I), where ∆I

(the abstract domain) is a nonempty set and and ·I (the interpretation function) maps
atomic and complex concepts, roles and nominals according to Figure 2. Note that
] denotes set cardinality, ∆D is the datatype domain and dom(P, i) is the domain
function in a datatype group.

An interpretation I = (∆I , ·I) satisfies a role inclusion axiom R1 v R2 iff RI
1 ⊆ RI

2 ,
and it satisfies a transitivity axiom Trans(R) iff RI = (RI)+. An interpretation satisfies
a role box R iff it satisfies each axiom in R. A SHOQ(Dn)-concept C is satisfiable
w.r.t. a role box R iff there is an interpretation I with CI 6= ∅ that satisfies R. Such an
interpretation is called a model of C w.r.t. R. A concept C is subsumed by a concept
D w.r.t. R iff CI v DI for each interpretation I satisfying R. Two concepts are said
to be equivalent (w.r.t. R) iff they mutually subsume each other (w.r.t. R). �

Note that the use of domain function dom(P, i) in the semantics of datatype
constructs in SHOQ(Dn) is to ensure that every SHOQ(Dn)-concept can be
converted into an equivalent one in negation normal form (NNF), i.e., with nega-
tions only applying to concept names. This is important for tableau algorithms,
which typically operate only on concepts in NNF.

Example 8 Miles and Kilometers (cont.) The River concept can be defined as a
sub-concept of the SHOQ(Dn)-concept ∀length-kmtr,length-mile.kmtrsPerMile, that
is, River v ∀length-kmtr,length-mile.kmtrsPerMile. ♦

5 A Tableaux Algorithm for SHOQ(Dn)

A key feature of DLs is the provision of reasoning services. These services can be
used to support the design and deployment of ontologies using DL based ontology
languages such as DAML+OIL and OWL. In common with other expressive
DLs, we can use a tableau algorithm that checks concept satisfiability w.r.t.
a role box in order to provide reasoning services for SHOQ(Dn): a range of
reasoning problems, including subsumption and satisfiability w.r.t. a terminology

Construct Name Syntax Semantics

atomic concept A AI ⊆ ∆I

abstract role R RI ⊆ ∆I ×∆I

concrete role T T I ⊆ ∆I ×∆D

nominals {o} {o}I ⊆ ∆I ,]{o}I = 1

conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
atleast restriction >nS.C (>nS.C)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}
atmost restriction 6nS.C (6nS.C)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
datatype exists ∃T1, · · · , Tn.Pn (∃T1, · · · , Tn.Pn)I = {x ∈ ∆I | ∃y1 · · · yn.yi ∈ dom(Pn, i)

∧〈x, yi〉 ∈ T Ii (for 1 ≤ i ≤ n) ∧ 〈y1, · · · yn〉 ∈ PD
n }

datatype value ∀T1, · · · , Tn.Pn (∀T1, · · · , Tn.Pn)I = {x ∈ ∆I | ∀y1 · · · yn.yi ∈ dom(Pn, i)
∧〈x, yi〉 ∈ T Ii (for 1 ≤ i ≤ n) → 〈y1, · · · yn〉 ∈ PD

n }
datatype atleast >mT1, . . . , Tn.Pn (>mT1, . . . , Tn.Pn)I = {x ∈ ∆I |]{〈y1 · · · yn〉 | yi ∈ dom(Pn, i)

∧〈x, yi〉 ∈ T Ii (for 1 ≤ i ≤ n) ∧ 〈y1, · · · yn〉 ∈ PD
n } ≥ m}

datatype atmost 6mT1, . . . , Tn.Pn (6mT1, . . . , Tn.Pn)I = {x ∈ ∆I |]{〈y1 · · · yn〉 | yi ∈ dom(Pn, i)
∧〈x, yi〉 ∈ T Ii (for 1 ≤ i ≤ n) ∧ 〈y1, · · · yn〉 ∈ PD

n } ≤ m}

Fig. 2. Syntax and Semantics of SHOQ(Dn)

(ontology) can be reduced to concept satisfiability [8]. As space is limited, and
as the algorithm is similar to those presented in [8, 12], we will not describe it
in detail here. Instead, we will sketch some of its more interesting features, and
in particular those related to reasoning with datatype groups. The interested
reader is referred to the online technical report13 [13] for full details and proofs
of the algorithm’s soundness and completeness.

As with any tableau algorithm, the basic idea is to try to prove the satisfi-
ability of a concept C (w.r.t. a role box R) by building a model of C, i.e., (a
structure that closely corresponds to) an interpretation I that satisfies R and in
which CI is not empty. The algorithm works on a (set of) tree(s), where nodes
are labeled with sets of sub-concepts of C, and edges are labeled with sets of
roles occurring in C. Nodes (edges) in the tree correspond to elements (tuples) in
the interpretation of the concepts (roles) with which they are labeled. Normally,
a single tree is initialised with a root node labeled {C}.

The algorithm exhaustively applies tableau rules that decompose the syntac-
tic structure of the concepts in node labels, either expanding node labels, adding
new edges and nodes to the tree(s), or merging edges and nodes. The application
of a rule effectively explicates constraints on the interpretation implied by the
concepts to which the rule was applied. E.g., if A u B is in the label of a node
x then the u-rule adds both A and B to the label, explicating the fact that if
x ∈ (AuB)I , then both x ∈ AI and x ∈ BI . Similarly, if ∃R.A is in the label of
a node x, then the ∃-rule adds a new node y labelled {A} with an edge between

13 http://DL-Web.man.ac.uk/Doc/shoqdn-proofs.pdf

x and y labeled {R}, explicating the fact that if x ∈ (∃R.A)I , then there must
exist a node y such that 〈x, y〉 ∈ RI and y ∈ AI .

An attempt to build a model fails if an obvious contradiction, often called a
clash, is generated, e.g., if the label of some node contains both D and ¬D for
some concept D; it is successful if no more rules can be applied, and there are
no clashes. It is relatively straightforward to prove that a concept is satisfiable
if and only if the rules can be applied in such a way that a model is successfully
constructed. The computational complexity of the algorithm stems from the fact
that some rules are non-deterministic (e.g., the rule dealing with disjunctions);
in practice this is dealt with by backtracking when a clash is detected, and trying
a different non-deterministic rule application.

Various refinements of this basic technique are required in order to deal with
a logic as expressive as SHOQ(Dn). In the first place, the algorithm operates on
a forest of trees, as an additional tree must be constructed for each nominal in
C (see Figure 2); a form of cycle check called blocking must also be used in order
to guarantee termination [6]. In the second place, the algorithm needs to use a
type checker to check constraints on the interpretation derived from datatype
exists, value, atleast and atmost concepts.

5.1 Datatype Reasoning

Logics like SHOQ(D) and SHOQ(Dn) are designed so that reasoning about
datatypes and values can be separated from reasoning about concepts and roles—
this is the reason for the strict separation of the domains and of abstract and
concrete roles. The result of the separation is that node labels can contain either
concepts or datatypes and values, but never a mixture. This allows node labels
containing datatypes and values to be checked using a separate type checker,
with inconsistencies in such labels being treated as an additional clash condition.
E.g., if a node label includes the concepts ∃T.string and ∀T.real, then a new
concrete node will be generated labeled {string, real}, and when checked with
the type checker this would (presumably) return a clash on the grounds that
there is no element that is in the interpretation of both string and real.

With SHOQ(Dn) the situation is more complex because it is necessary to
deal with both n-ary predicates and datatype cardinality constraints that may
be qualified with n-ary predicates. The algorithm deals with n-ary predicates by
keeping track of tuples of concrete nodes that must satisfy datatype predicates,
and it deals with datatype cardinality constraints by keeping track of inequalities
between tuples of concrete nodes that were generated by the datatype >P -rule
in order to explicate datatype atleast concepts (merging such tuples could lead
to non-termination as the >P -rule might be applied again and cause new tuples
to be generated).

The predicate relationships between (the values represented by) concrete
nodes are taken into consideration by the type checker, which can check predicate
conjunctions (see Definition 8). In the algorithm described in [12], the type
checker must also ensure that the solution is consistent with inequalities between

tuples of concrete nodes. This means that it must be extended to deal with non-
deterministic reasoning, because 〈tj1, . . . , tjn〉 ˙6=〈tk1, . . . , tkn〉 is equivalent to

(tj1 ˙6=tk1) ∪ . . . ∪ (tjn
˙6=tkn). (4)

In the new algorithm, this non-deterministic reasoning is pushed back into
the tableau reasoner, which is already able to cope with non-determinism arising,
e.g., from disjunction concepts. This is done by adding concepts “equivalent” to
(4) to the node labels containing the relevant datatype atleast concept. For this
purpose, we use concepts of the form

(∀TCj1
1 , TCk1

1 . 6=dPn,i
) t . . . t (∀TCjn

n , TCkn
n . 6=dPn,i

), (5)

where C = >mT1, . . . , Tn.Pn, is the datatype atleast concept in question,
T

Cj1
1 , TCk1

1 , . . . , T
Cjn
n , TCkn

n are superscripted concrete roles and 6=dPn,i
is the

inequality predicate for the datatype dom(Pn, i) (recall that each datatype in
a datatype group must be equipped with an inequality predicate). The super-
scripted concrete roles are generated by the >P -rule and used to link the node
x containing C to the new concrete nodes that the rule generates. The form of
the superscript means that a superscripted role acts as a unique (w.r.t. the node
x) name for a given concrete node. The result is that if ever two tuples created
by applying the >P -rule to C are merged, then the type checker will return a
clash. This is because, whichever way the t-rule is applied to the disjunction
(5), the predicate relationships will include x 6= x for some concrete node x.

6 Discussion

As we have seen, using datatypes within Semantic Web ontology languages (such
as DAML+OIL and OWL) presents new requirements for DL reasoning services.
We have presented the datatype group approach, which extends the type system
approach with n-ary predicates and a new treatment of predicate negation, so
as to make it possible to use type checkers with DL reasoners. We have also
sketched an improved algorithm for reasoning with SHOQ(Dn) using datatype
groups. Type checkers for datatype groups should be easy to implement as we do
not have to deal with disjunctions of predicate terms. Moreover, the similarity of
conforming datatype groups and admissible concrete domains can be exploited
in order to identify suitable datatype groups.

The resulting framework is both robust and extensible. On the one hand,
most complex reasoning tasks take place within the well understood and provably
correct tableau algorithm. On the other hand, it is relatively easy to add support
for new datatypes and predicates, and this does not require any changes to
the tableaux algorithm itself. An implementation of the algorithm along with
a simple type checker (supporting integers and strings) is currently underway
(based on the FaCT system), and will be used to evaluate empirical performance.

Although existing Web ontology languages such as DAML+OIL and OWL
do not support n-ary predicates, we believe that they are useful/essential in

many realistic applications, and will be a prime candidate for inclusion in future
extensions of these languages. The algorithm we have presented could be used
to provide reasoning support for such extended Web ontology languages.

Acknowledgements

We would like to thank Ulrike Sattler, since the work presented here extends the
original work on SHOQ(D). Thanks are also due to Carsten Lutz for his helpful
discussion on inequality predicates.

Bibliography

[1] F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider, editors. De-
scription Logic Handbook: Theory, implementation and applications. Cam-
bridge University Press, 2002.

[2] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete
Domains into Concept Languages. In Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI’91), pages 452–457, 1991.

[3] Paul V. Biron and Ashok Malhotra. Extensible Markup Language (XML)
Schema Part 2: Datatypes – W3C Recommendation 02 May 2001. Technical
report, World Wide Web Consortium, 2001. Available at http://www.w3.
org/TR/xmlschema-2/.

[4] Dan Brickley and R.V. Guha. Resource Description Framework (RDF)
Schema Specification 1.0. W3C Recommentdation, URL http://www.w3.
org/TR/rdf-schema, Mar. 2000.

[5] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness,
and Peter F. Patel-Schneider. OIL: An ontology infrastructure for the se-
mantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.

[6] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive
Description Logics. In H. Ganzinger, D. McAllester, and A. Voronkov, edi-
tors, Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99), pages 161–180, 1999.

[7] Ian Horrocks and Peter F. Patel-Schneider. The generation of DAML+OIL.
In Proc. of the 2001 Description Logic Workshop (DL 2001), pages 30–35.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-49/,
2001.

[8] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) de-
scription logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 199–204, 2001.

[9] C. Lutz. Description logics with concrete domains—a survey. In Advances
in Modal Logics Volume 4. World Scientific Publishing Co. Pte. Ltd., 2002.

[10] Carsten Lutz. The Complexity of Reasoning with Concrete Domains. PhD
thesis, Teaching and Research Area for Theoretical Computer Science,
RWTH Aachen, 2001.

[11] Jeff Z. Pan. Web Ontology Reasoning in the SHOQ(Dn) Description Logic.
In Carlos Areces and Maartin de Rijke, editors,Proceedings of the Methods
for Modalities 2 (M4M-2), Nov 2001. ILLC, University of Amsterdam.

[12] Jeff Z. Pan and Ian Horrocks. Reasoning in the SHOQ(Dn) Description
Logic. In Ian Horrocks and Sergio Tessaris, editors, Proc. of the 2002 Int.
Workshop on Description Logics (DL-2002), Apr. 2002.

[13] Jeff Z. Pan and Ian Horrocks. Reasoning in the SHOQ(Dn) Descrip-
tion Logic (Online Proofs), 2003. URL http://DL-Web.man.ac.uk/Doc/
shoqdn-proofs.pdf.

