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Abstract

It has long been realised that the web could benefit from having its content under-

standable and available in a machine processable form, and it is widely agreed that

ontologies will play a key role in providing much enabling infrastructure to support

this goal. In this chapter we review briefly a selected history of description logics in

web-based information systems, and the more recent developments related to OIL,

DAML+OIL and the semantic web. OIL and DAML+OIL are ontology languages

specifically designed for use on the web; they exploit existing web standards (XML,

RDF and RDFS), adding the formal rigor of a description logic and the ontological

primitives of object oriented and frame based systems.

14.1 Background and History

The research world as well as the general public are unified in their agreement that

the web would benefit from some structure and explicit semantics for at least some

of its content. Numerous companies exist today whose entire business model is

based on providing some semblance of structure and conceptual search (i.e. yellow

pages and search).

To paraphrase A.A. Milne, “Providing structure is one of the things description

logics do best!” [Milne, 1928]. In this chapter we review briefly the history of

description logics in web-based information systems, and the more recent develop-

ments related to OIL (the Ontology Inference Layer), DAML (the DARPA Agent

Markup Language), DAML+OIL and the “semantic web”.

The web has been a compelling place for research activity in the last few years,

and as we can not cover all the many efforts we will choose a few exemplar efforts

that illustrate some of the key issues related to description logics on the web.
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14.1.1 Untangle

The relationship between hypertext and semantic networks has long been realized,

but one of the earliest description logic systems to realize this relationship was the

Untangle system [Welty and Jenkins, 2000], a description-logic system for represent-

ing bibliographic (card-catalog) information. The Untangle Project began as a bit

of exploratory research in using description logics for digital libraries [Welty, 1994],

but out of sheer temporal coincidence with the rise of the web, a web interface was

added and the first web-based description logic system was born.

The original Untangle web interface was developed in 1994 [Welty, 1996a], and

combined Lisp-Classic and the Common-Lisp Hypermedia Server (CL-HTTP)
[Mallery, 1994] to implement a hypertext view of the ABox and TBox semantic

networks, and used nested bullet lists to view the concept taxonomy, with in-page

cross references for concepts having multiple parents. The interface was interest-

ing in some respects as a tool to visualize description logic and semantic network

information, though this aspect was never fully developed.

The research in the Untangle project was to apply description logics to prob-

lems in digital libraries, specifically the classification and retrieval of card catalog

information. In the early days of description logic applications, researchers scoured

the world for taxonomies. One place with well-developed taxonomies are library

subject classifications schemes, such as the Dewey Decimal System. The Untangle

project sought to utilize description logics to formally represent the established and

well-documented processes by which books are classified by subject, with the goal of

providing a tool to improve accuracy and increase the throughput of classification.

The promise of digital libraries clearly seemed to imply that the entirely human-

based system of subject classification would become backlogged and a hindrance to

publication.

While the main contribution of the work was actually in the area of digital library

ontologies, it had several useful implications for description logics. For conceptual

modeling, the system made clear the very practical uses for primitive and defined

concepts as basic ontological notions. Primitive concepts can be used in a model

to represent classes of individuals that users are expected to be able to classify

naturally. Defined concepts can be used in a model to represent subclasses of the

primitive ones that the system will be able to classify if needed. For example,

in libraries we expect a librarian to be responsible for recognizing the difference

between a book and a journal. Such a distinction is trivial. On the other hand,

they are not responsible for classifying a biography (though they can, of course): a

biography is simply a book whose subject is a person.

As the World Wide Web (WWW) became the primary means of dissemination

of computer science research, the goals of the Untangle project shifted in 1995 to
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cataloging and classifying pages on the web [Welty, 1996b], which was viewed as

a massive and unstructured digital library [Welty, 1998]. A similar project began

at roughly that time at AT&T, whose goal was to utilize Classic to represent a

taxonomy of web bookmarks. While never published, this early work by Tom Kirk

was part of the information manifold project [Levy et al., 1995]. Kirk’s visualisation

tools were also used internally to provide additional visualisation support to the

Classic system.

This new work exposed some of the limitations of using description logics for mod-

eling [Welty, 1998]. One must trade-off utilizing automated support for subsumption

with the need to reify the concepts themselves. For example, the work started with

the motivation that library classification schemes were well-developed taxonomies

that would be appropriate for use in description logics. To utilize the power of

subsumption reasoning, the elements of the subject taxonomy must obviously be

concepts. Some subjects, however, are also useful to consider as individuals. For

example, Ernest Hemingway is a person, an author of several books, and therefore

best represented as an individual. Hemingway is also, however, the subject of his

(many) biographies, and therefore he must be represented as a concept in the sub-

ject taxonomy. This is a simple example of precisely the kind of representation that

is difficult for a description logic, without inventing some special purpose “hack”.

Similar notions have also been reported in the knowledge engineering community
[Wielinga et al., 2001].

14.1.2 FindUR

Another early project using description logics for the web was the FindUR system

at AT&T. FindUR [McGuinness, 1998; McGuinness et al., 1997] was an excellent

example of picking “low hanging fruit” for description logic applications. The basic

notion of FindUR was query expansion,1 that is, taking synonyms or hyponyms

(more specific terms) and including them in the input terms, thereby expanding the

query.

Information retrieval, especially as it is available on the web, rates itself by two

independent criteria, precision and recall. Precision refers to the ratio of desired to

undesired pages returned by a search, and recall refers to the ratio of desired pages

missed to the total number of desired pages. Alternate terms for these notions are

false-positives and false-negatives.

One of the main causes of false negatives in statistically-based keyword searches

1 Sometimes other correlated terms are also used in query expansion. In a later piece of work [Rousset,
1999b], similar because it considered a description logic-based approach for query expansion, more of the
formal issues are addressed in evaluating the soundness and completeness of a particular approach. There
have also been others who have considered description-logic approaches (or dl-inspired approaches) to
retrieval, for example [Meghini et al., 1997].
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is the use of synonymous or hyponymous search terms. For example, on the (then)

AT&T Bell Labs research site, short project descriptions existed about description

logics. These never referred to the phrase “artificial intelligence”. Thus, a search

for the general topic “artificial intelligence” would miss the description logic project

pages even though description logics is a sub-area of artificial intelligence. If the

page referred to “AI” instead of “artificial intelligence” precisely, a keyword search

would also miss this clear reference to the same thing. This is a well recognized

failure of shallow surface search techniques that significantly impacts recall.

The FindUR system represented a simple background knowledge base containing

mostly thesaurus information built in a description logic (Classic) using the most

basic notions of Wordnet (synsets and hyper/hyponyms) [Miller, 1995]. Concepts

corresponding to sets of synonyms (synsets) were arranged in a taxonomy. These

synsets also contained an informal list of related terms. Site specific search engines

(built on Verity—a commercial search engine) were hooked up to the knowledge

base. Any search term would first be checked in the knowledge base, and if contained

in any synset, a new query would be constructed consisting of the disjunction of all

the synonymous terms, as well as all the more specific terms (hyponyms).

The background knowledge was represented in Classic, however the description

logic was not itself part of the on-line system. Instead, the information used by

the search engine was statically generated on a regular basis and used to populate

the search engine. The true power of using a description logic as the underlying

substrate for the knowledge base was realized mainly in the maintenance task. The

DL allowed the maintainer of the knowledge base to maintain some amount of

consistency, such as discovering cycles in the taxonomy and disjoint synsets. These

simple constraints proved effective tools for maintaining the knowledge since the

knowledge itself was very simple.

The FindUR system was deployed on the web to support the AT&T research web

site and a number of other application areas. Although the initial deployments were

as very simple query expansion, some later deployments included more structure.

For example, the FindUR applications on newspaper sites and calendar applications

(such as the Summit calendar1) included searches that could specify a date range,

date ordered returns, and a few other search areas including region or topic area.

These searches included use of metatagging information on dates, location, topics,

sometimes author, etc. This functioned as a structured search similar in nature

to the later developed SHOE Search [Heflin and Hendler, 2001] for the semantic

web, and was also similar to what Forrester reported as being required for search

that would support eCommerce [Hagen et al., 1999]. The FindUR applications for

medical information retrieval [McGuinness, 1999] also included more sophisticated

1 http://www.quintillion.com/summit/calendar/
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mechanisms that allowed users to search in order of quality of study method used

(such as randomized control trial study). Applications of FindUR ranged in the end

to include very simple query expansion, such as those deployed on WorldNet and

Quintillion (see Directory Westfield2), as well as more complicated markup search

such as those on the AT&T competitive intelligence site and the P-CHIP primary

care literature search.

14.1.3 From SGML to the Semantic Web

Independent of description logics, and dating back to the mid 1980s, researchers in

other areas of digital libraries were using SGML1 (Standard Generalized Markup

Language) as a tool to mark up a variety of elements of electronic texts, such

as identifying the characters in novels, cities, etc., in order to differentiate them

in search. For example, a reference to Washington the person in some text may

appear as <person>Washington</person> whereas a reference to the U.S. State

may be <state>Washington</state>. See, for example, the 1986 Text Encoding

Initiative [Mylonas and Renear, 1999]. Clearly, a search tool capable of recognizing

these tags would be more precise when searching for “Washington the person”. This

work may be viewed as establishing some of the ground work for the vision of the

semantic-web that Tim Berners-Lee and colleagues have more recently popularized.

As the SGML communities proceeded in their efforts to create large repositories

of “semantically” marked-up electronic documents, research in using these growing

resources sprang up the the database and description logics communities, with some

early results making it clear that description logics were powerful tools for handling

semi-structured data [Calvanese et al., 1998; 1999b].

In the mid 1990s, work in SGML gained some attention mainly because HTML2

(HyperText Markup Language) was an SGML technology, and it became clear that

the same sort of “semantic” markup (as opposed to “rendering” markup) could be

applied to web pages, with the same potential gains. The main syntax specification

properties of SGML were combined with the text rendering properties of HTML to

generate XML3 (Extensible Markup Language), and with it came the promise of a

new sort of web, a web in which “meta data” would become the primary consumer

of bandwidth. These connections made it reasonable to consider the existing work

on semi-structured data in description logics a web application.

In an attempt to prevent the web community from repeating the same mistakes

made in knowledge representation in the 1970s, in particular using informal “pic-

ture” systems with no understood semantics and without decidable reasoning, the

2 http://www.ataclick.com/westfield/
1 http://www.w3.org/MarkUp/SGML/
2 http://www.w3c.org/MarkUp/
3 http://www.w3c.org/XML/



6

description logics community became very active in offering languages for the new

semantic web. The community was already well-positioned to influence the future

of semantic web standards, due in part to (a) the strong history that description

logics bring, with well researched and articulated languages providing clear seman-

tics (as well as complexity analyses), (b) the existing work on the web described

here, including web applications like Untangle and FindUR, and (c) description

logic languages designed for web use such as OIL.

14.2 Enabling the Semantic Web: DAML

The web, while wildly successful in growth, may be viewed as being limited by its

reliance on languages like HTML that are focused on presentation of information

(i.e. text formatting). Languages such as XML do add some support for capturing

the meaning of terms (instead of simply how to render a term in a browser), however

it is widely perceived that more is needed. The DARPA Agent Markup Language

(DAML) program1 was one of the programs initiated in order to provide the foun-

dation for the next generation of the web which, it is anticipated, will increasingly

utilize agents and programs rather than relying so heavily on human interpretation

of web information [Hendler and McGuinness, 2000]. In order for this evolution

to occur, agents and programs must understand how to interact with information

and services available on the web. They must understand what the information

means that they are manipulating and also must understand what services can be

provided from applications. Thus, meaning of information and services must be

captured. Languages and environments existing today are making a start at pro-

viding the required infrastructure. The DAML program exists in order to provide

funding for research on languages, tools, and techniques for making the web machine

understandable.

The groundwork for the DAML program was being laid in 1999 with the approval

for the broad area announcement in November and a web semantics language work-

shop in December 1999. A strawman language proposal effort was begun out of

that work and the major initial emphasis began with a web-centric view. A web-

oriented strawman proposal was worked on but not widely announced. One of the

early widely-distributed contributions of the DAML program was DAML-ONT2—

a proposal for an ontology language for the web [Hendler and McGuinness, 2000;

McGuinness et al., 2002]. This language began with the requirement to build on

the best practice in web languages of the time and took the strawman proposal

as the motivating starting point. That meant beginning with XML, RDF3 (Re-

1 http://www.daml.org/
2 http://www.daml.org/2000/10/daml-ont.html
3 http://www.w3c.org/RDF/
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source Description Framework), and RDFS4 (RDF Schema). These languages were

not expressive enough to capture the meaning required to support machine under-

standability, however, so one requirement was additional expressive power. The

goal in choosing the language elements was to include the commonly used modeling

primitives from object-oriented systems and frame-based systems. Finally, the com-

munity recognized the importance of a strong formal foundation for the language.

Description logics as a field has had a long history of providing a formal founda-

tion for a family of frame languages. Description logic languages add constructors

into a language only after researchers specify and analyze the meaning of the terms

and their computational effect on systems built to reason with them. The DAML

community wanted to include the strong formal foundations of description logics in

order to provide a web language that could be understood and extended.

The initial DAML web ontology language (DAML-ONT) was released publicly in

October 2000. While the language design attempted to meet all of the design goals,

beginning with the web-centric vision and later incorporating some description logic

aspects, the decision was made that a timely release of the initial language was

more critical than a timely integration of a description logic language with the web

language. Thus the initial release focused more on the goals of web language com-

patibility and mainstream object-oriented and frame system constructor inclusion.

Although some notions of description logic languages and systems were integrated,

the major integration happened in the next language release (DAML+OIL).

Another important effort began at about the same time (in 1999) and pro-

duced a distributed language specification prior1 to DAML-ONT called OIL. The

aims of OIL’s developers were similar to those of the DAML group, i.e., to pro-

vide a foundation for the next generation of the web. Their initial objective was

to create a web ontology language that combined the formal rigor of a descrip-

tion logic with the ontological primitives of object oriented and frame based sys-

tems. Like DAML-ONT, OIL had an RDFS based syntax (as well as an XML

syntax). However, the developers of OIL placed a stronger emphasis on formal

foundations, and the language was explicitly designed so that its semantics could

be specified via a mapping to the description logic SHIQ [Fensel et al., 2001;

Horrocks et al., 1999].

It became obvious to both groups that their objectives could best be served by

combining their efforts, the result being the merging of DAML-ONT and OIL to

produce DAML+OIL. The merged language has a formal (model theoretic) seman-

tics that provides machine and human understandability, an axiomatization [Fikes

and McGuinness, 2001] that provides machine operationalization with a specifica-

4 http://www.w3c.org/TR/2000/CR-rdf-schema-20000327/
1 Presentations of the language were made, for example, at the Dagstuhl Seminar on Semantics for the

Web—see http://www.semanticweb.org/events/dagstuhl2000/.
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tion of valid inference “rules” in the form of axioms, and a reconciliation of the

language constructors from the two languages.

14.3 OIL and DAML+OIL

14.3.1 OIL

The OIL language is designed to combine frame-like modelling primitives with the

increased (in some respects) expressive power, formal rigor and automated reasoning

services of an expressive description logic [Fensel et al., 2000]. OIL also comes “web

enabled” by having both XML and RDFS based serialisations (as well as a formally

specified “human readable” form, which we will use here). The frame structure

of OIL is based on XOL [Karp et al., 1999], an XML serialisation of the OKBC-

lite knowledge model [Chaudhri et al., 1998]. In these languages classes (concepts)

are described by frames, whose main components consist of a list of super-classes

and a list of slot-filler pairs. A slot corresponds to a role in a DL, and a slot-

filler pair corresponds to either a value restriction (a concept of the form ∀R.C)

or an existential quantification (a concept of the form ∃R.C)—one of the criticisms

leveled at frame languages is that they are often unclear as to exactly which of these

is intended by a slot-filler pair.

OIL extends this basic frame syntax so that it can capture the full power of an

expressive description logic. These extensions include:

• Arbitrary boolean combinations of classes (called class expressions) can be formed,

and used anywhere that a class name can be used. In particular, class expres-

sions can be used as slot fillers, whereas in typical frame languages slot fillers are

restricted to being class (or individual) names.

• A slot-filler pair (called a slot constraint) can itself be treated as a class: it can

be used anywhere that a class name can be used, and can be combined with other

classes in class expressions.

• Class definitions (frames) have an (optional) additional field that specifies whether

the class definition is primitive (a subsumption axiom) or non-primitive (an equiv-

alence axiom). If omitted, this defaults to primitive.

• Different types of slot constraint are provided, specifying value restriction, exis-

tential quantification and various kinds of cardinality constraint.1

• Global slot definitions are extended to allow the specification of superslots (sub-

suming slots) and of properties such as transitive and symmetrical.

• Unlike many frame languages, there is no restriction on the ordering of class and

slot definitions, so classes and slots can be used before they are “defined”. This

means that OIL ontologies can contain cycles.
1 Some frame languages also provide this feature, referring to such slot constraints as facets [Chaudhri et

al., 1998; Grosso et al., 1999].
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• In addition to standard class definitions (frames), which can be seen as DL axioms

of the form CN v C and CN ≡ C where CN is a concept name, OIL also provides

axioms for asserting disjointness, equivalence and coverings with respect to class

expressions. This is equivalent to providing general inclusion (or equivalence)

axioms, i.e., axioms of the form C v D (C ≡ D), where both C and D may be

non-atomic concepts.

Many of these points are standard for a DL (i.e., treating ∀R.C and ∃R.C as classes),

but are novel for a frame language.

OIL is also more restrictive than typical frame languages in some respects. In par-

ticular, it does not support collection types other than sets (e.g., lists or bags), and

it does not support the specification of default fillers. These restrictions are neces-

sary in order to maintain the formal properties of the language (e.g., monotonicity)

and the correspondence with description logics (see Chapter ??).

In order to allow users to choose the expressive power appropriate to their ap-

plication, and to allow for future extensions, a layered family of OIL languages has

been described. The base layer, called “Core OIL” [Bechhofer et al., 2000], is a cut

down version of the language that closely corresponds with RDFS (i.e., it includes

only class and slot inclusion axioms, and slot range and domain constraints1). The

standard language, as described here, is called “Standard OIL”, and when extended

with ABox axioms (i.e., the ability to assert that individuals and tuples are, respec-

tively, instances of classes and slots), is called “Instance OIL”. Finally, “Heavy OIL”

is the name given to a further layer that will include as yet unspecified language

extensions.

We will only consider Standard OIL in this chapter: Core OIL is too weak to be

of much interest, Heavy OIL has yet to be specified, and Instance OIL adds nothing

but ABox axioms. Moreover, it is unclear if adding ABox axioms to OIL would

be particularly useful as RDF already provides the means to assert relationships

between (pairs of) web resources and the slots and classes defined in OIL ontologies.

Figure 14.1 illustrates an OIL ontology (using the human readable serialisation)

corresponding to an example terminology from Chapter ??. The structure of the

language will be described in detail in Section 14.3.1.1. A full specification of OIL,

including DTDs for the XML and RDFS serialisations, can be found in [Horrocks

et al., 2000] and on the OIL web site.2

14.3.1.1 OIL Syntax and Semantics

OIL can be seen as a syntactic variant of the description logic SHIQ [Horrocks

et al., 1999] extended with simple concrete datatypes [Baader and Hanschke, 1991;

1 Constraining the range (respectively domain) of a slot SN to class C is equivalent to a DL axiom of the
form > v ∀SN .C (respectively ∃SN .> v C).

2 http://www.ontoknowledge.org/oil/
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name “Family”
documentation “Example ontology describing family relationships”
definitions
slot-def has-child
inverse is-child-of

class-def defined Woman
subclass-of Person Female

class-def defined Man
subclass-of Person not Woman

class-def defined Mother
subclass-of Woman
slot-constraint has-child
has-value Person

class-def defined Father
subclass-of Man
slot-constraint has-child
has-value Person

class-def defined Parent
subclass-of or Father Mother

class-def defined Grandmother
subclass-of Mother
slot-constraint has-child
has-value Parent

class-def defined MotherWithManyChildren
subclass-of Mother
slot-constraint has-child
min-cardinality 3

class-def defined MotherWithoutDaughter
subclass-of Mother
slot-constraint has-child
value-type not Woman

Fig. 14.1. OIL “family” ontology

Horrocks and Sattler, 2001]; we will call this DL SHIQ(D). Rather than providing

the usual model theoretic semantics, OIL defines a translation σ(·) that maps an

OIL ontology into an equivalent SHIQ(D) terminology. From this mapping, OIL

derives both a clear semantics and a means to exploit the reasoning services of DL

systems such as FaCT [Horrocks, 1998] and Racer [Haarslev and Möller, 2001]

that implement (most of) SHIQ(D).

The translation is quite straightforward and follows directly from the syntax and

informal specification of OIL. The single exception is in the treatment of OIL’s

one-of constructor. This is not treated like the DL one-of constructor described

in Chapter ??, but is mapped to a disjunction of specially introduced disjoint prim-
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itive concepts corresponding to the individual names in the one-of construct, i.e.,

individuals are treated as primitive concepts, and there is an implicit unique name

assumption. This was a pragmatic decision based on the fact that reasoning with

individuals in concept descriptions is known to be of very high complexity (for a DL

as expressive as OIL), and is beyond the scope of any implemented DL system—

in fact a practical algorithm for such a DL has yet to be described [Horrocks and

Sattler, 2001]. This treatment of the one-of constructor is not without precedent

in DL systems: a similar approach was taken in the Classic system [Borgida and

Patel-Schneider, 1994].

An OIL ontology consists of a container followed by a list of definitions. The

container consists of Dublin Core compliant documentation fields specifying, e.g.,

the title and subject of the ontology. It is ignored by the translation, and wont be

considered here. Definitions can be either class definitions, axioms, slot definitions

or import statements, the latter simply specifying (by URI) other ontologies whose

definitions should be teated as being lexically included in the current one. We will,

therefore, treat an OIL ontology as a list A1, . . . , An, where each Ai is either a class

definition, an axiom or a slot definition. This list of definitions/axioms is translated

into a SHIQ(D) terminology T (a set of axioms) as follows:

σ(A1, . . . , An) = {σ(A1), . . . , σ(A1)} ∪
⋃

16j<n

⋃

j<k6n

{Pj v ¬Pk}

where i1, . . . , in are the individuals used in the ontology, and Pi is the SHIQ(D)

primitive concept used to represent i.

Class definitions An OIL class definition (class-def) consists of an optional

keyword K followed by a class name CN , an optional documentation string, and a

class description D. If K = primitive, or if K is omitted, then the class definition

corresponds to a DL axiom of the form CN v D. If K = defined, then the class

definition corresponds to a DL axiom of the form CN ≡ D.

A class description consists of an optional subclass-of component, with a list of

one or more class expressions, followed by a list of zero or more slot-constraints.

Each slot constraint can specify a list of constraints that apply to the given slot,

e.g., value restrictions and existential quantifications. The set of class expressions

and slot constraints is treated as an implicit conjunction.

The complete mapping from OIL class definitions to SHIQ(D) axioms is given

in Figure 14.2, where CN is a class or concept name and C is a class expression.

Slot constraints A slot-constraint consists of a slot name followed by a list of

one or more constraints that apply to the slot. A constraint can be either:



12

OIL SHIQ(D)

class-def (primitive | defined) CN CN (v | ≡) >
subclass-of C1 . . . Cn u σ(C1) u . . . u σ(Cn)
slot-constraint1 u σ(slot-constraint1)
...

...
slot-constraintm u σ(slot-constraintm)

Fig. 14.2. OIL to SHIQ(D) mapping (class definitions)

• A has-value constraint with a list of one or more class-expressions or datatype

expressions.

• A value-type constraint with a list of one or more class-expressions or datatype

expressions.

• A max-cardinality, min-cardinality or cardinality constraint with a non-

negative integer followed (optionally) by either a class expression or a datatype

expression.

• A has-filler constraint with a list of one or more individual names or data

values.

OIL has-value and value-type constraints correspond to DL existential quan-

tifications and value restrictions respectively. OIL cardinality constraints corre-

spond to DL qualified number restrictions, where the qualifying concept is taken

to be > if the class expression is omitted. In order to maintain the decidability of

the language, cardinality constraints can only be applied to simple slots, a simple

slot being one that is neither transitive nor has any transitive subslots [Horrocks

et al., 1999] (note that the transitivity of a slot can be inferred, e.g., from the fact

that the inverse of the slot is a transitive slot). An OIL has-filler constraint is

equivalent to a set of has-value constraints where each individual i is transformed

into a class expression of the form one-of i and each data value d is transformed

into a datatype of the form equal d.

The complete mapping from OIL slot constraints to SHIQ(D) concepts is given

in Figure 14.3, where SN is a slot or role name, C is a class expression or datatype,

i is an individual and d is a data value (i.e., a string or an integer).

Class expressions One of the key features of OIL is that, in contrast to standard

frame languages, class expressions are used instead of class names, e.g., in the list

of super-classes, or in slot constraints. A class-expression is either a class name

CN , an enumerated-class, a slot-constraint, a conjunction of class expressions

(written and C1 . . . Cn), a disjunction of class expressions (written or C1 . . . Cn) or

a negated class expression (written not C).

The class names top, thing and bottom have pre-defined interpretations: top
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OIL SHIQ(D)

slot-constraint SN >
has-value C1 . . . Cn u ∃SN .σ(C1) u . . . u ∃SN .σ(Cn)
value-type C1 . . . Cn u ∀SN .σ(C1) u . . . u ∀SN .σ(Cn)
max-cardinality n C u 6nSN .σ(C)
min-cardinality n C u >nSN .σ(C)
cardinality n C u >nSN .σ(C) u 6nSN .σ(C)
has-filler i1 . . . dn u ∃SN .σ(one-of i1) u . . . u ∃SN .σ(equal dn)

Fig. 14.3. OIL to SHIQ(D) mapping (slot constraints)

OIL SHIQ(D)

top >
thing >
bottom ⊥
and C1 . . . Cn σ(C1) u . . . u σ(Cn)
or C1 . . . Cn σ(C1) t . . . t σ(Cn)
not C ¬σ(C)
one-of i1 . . . in Pi1

t . . . t Pin

Fig. 14.4. OIL to SHIQ(D) mapping (class expressions)

and thing are interpreted as the most general class (>), while bottom is interpreted

as the inconsistent class (⊥). Note that top and bottom can just be considered

as abbreviations for the class expressions (or C (not C)) and (and (C not C))

respectively (for some arbitrary class C).

An enumerated-class consists of a list of individual names, written one-of C1 . . . Cn.

As already noted, this is not treated like the DL one-of constructor described in

Chapter ??, but is mapped to a disjunction of disjoint primitive concepts corre-

sponding to the individual names.

The complete mapping from OIL class expressions to SHIQ(D) concepts is given

in Figure 14.4, where C is a class expression, i is an individual and Pi is the primitive

concept corresponding to the individual i.

Datatypes In OIL slot constraints, datatypes and values can be used as well as

or instead of class expressions and individuals. Datatypes can be either integer

(i.e., the entire range of integer values), string (i.e., the entire range of string

values), a subrange defined by a unary predicate such as less-than 10 or a boolean

combination of datatypes [Horrocks and Sattler, 2001].

The complete mapping from OIL datatypes to SHIQ(D) concepts is given in

Figure 14.5, where d is a data value (an integer or a string), C is a datatype and

>d (respectively 6d, >d, <d) is a unary predicate that returns true for all integers
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OIL SHIQ(D)

min d >d

max d 6d

greater-than d >d

less-than d <d

equal d >d u 6d

range d1 d2 >d1
u 6d2

and C1 . . . Cn σ(C1) u . . . u σ(Cn)
or C1 . . . Cn σ(C1) t . . . t σ(Cn)
not C ¬σ(C)

Fig. 14.5. OIL to SHIQ(D) mapping (datatypes)

OIL SHIQ(D)

disjoint C1 . . . Cn σ(C1) v ¬(σ(C2) t . . . t σ(Cn))
...
σ(Cn−1) v ¬σ(Cn)

covered C by C1 . . . Cn σ(C) v σ(C1) t . . . t σ(Cn)
disjoint-covered C by C1 . . . Cn σ(C) v σ(C1) t . . . t σ(Cn)

σ(C1) v ¬(σ(C2) t . . . t σ(Cn))
...
σ(Cn−1) v ¬σ(Cn)

equivalent C1 . . . Cn σ(C1) ≡ σ(C2), . . . , σ(Cn−1) ≡ σ(Cn)

Fig. 14.6. OIL to SHIQ(D) mapping (axioms)

greater than or equal to (respectively less than or equal to, greater than, less than)

d.

Axioms In addition to class definitions, OIL includes four kinds of axiom:

disjoint C1 . . . Cn asserts that the class expressions C1 . . . Cn are pairwise disjoint.

covered C by C1 . . . Cn asserts that the class expression C is covered (subsumed)

by the union of class expressions C1 . . . Cn.

disjoint-covered C by C1 . . . Cn asserts that the class expression C is covered

(subsumed) by the union of class expressions C1 . . . Cn, and that C1 . . . Cn

are pairwise disjoint.

equivalent C1 . . . Cn asserts that the class expressions C1 . . . Cn are equivalent.

The complete mapping from OIL axioms to SHIQ(D) axioms is given in Fig-

ure 14.6, where C is a class expression.

Slot definitions An OIL slot definition (slot-def) consists of a slot name SN

followed by an optional documentation string and a slot description. A slot descrip-

tion consists of an optional subslot-of component, with a list of one or more slot
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OIL SHIQ(D)

slot-def SN
subslot-of RN 1 . . .RN n SN v RN 1, . . . ,SN v RN n

domain C1 . . . Cn ∃SN .> v σ(C1) u . . . u σ(Cn)
range C1 . . . Cn > v ∀SN .σ(C1) u . . . u σ(Cn)
inverse RN SN− v RN , RN− v SN
properties transitive SN ∈ R+

properties symmetric SN v SN −, SN− v SN
properties functional > v 6 1SN

Fig. 14.7. OIL to SHIQ(D) mapping (slot definitions)

has-child− v is-child-of

is-child-of− v has-child

Woman ≡ Person u Female

Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃has-child.Person

Father ≡ Man u ∃has-child.Person

Parent ≡ Father t Mother

Grandmother ≡ Mother u ∃has-child.Parent

MotherWithManyChildren ≡ Mother u > 3 has-child

MotherWithoutDaughter ≡ Mother u ∀has-child.¬Woman

Fig. 14.8. SHIQ(D) equivalent of the “family” ontology

names, followed by a list of zero or more global slot constraints (e.g., domain and

range constraints) and properties (e.g., transitive and functional).

The complete mapping from OIL class definitions to SHIQ(D) axioms is given

in Figure 14.7, where SN and RN are slot or role names, C is a class expression

and R+ is the set of SHIQ(D) transitive role names.

The mapping from OIL to SHIQ(D) has now been fully specified and we can

illustrate, in Figure 14.8, the SHIQ(D) ontology corresponding to the OIL ontology

from Figure 14.1.

14.3.1.2 XML and RDFS serialisations for OIL

The above language description uses OIL’s “human readable” serialisation. This

aids readability, but is not suitable for publishing ontologies on the web. For this

purpose OIL is also provided with both XML and RDFS serialisations.

OIL’s XML serialisation directly corresponds with the human readable form: Fig-

ure 14.9 illustrates the XML serialisation of a fragment of the “family” ontology. A

full specification and XML DTD can found in [Horrocks et al., 2000].
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<ontology>
<ontology-definitions>

<slot-def>
<slot name="has-child"/>
<inverse>

<slot name="is-child-of"/>
</inverse>

</slot-def>

<class-def type="defined">
<class name="Woman"/>
<subclass-of>

<class name="Person"/>
<class name="Female"/>

</subclass-of>
</class-def>

<class-def type="defined">
<class name="Man"/>
<subclass-of>

<class name="Person"/>
<NOT>

<class name="Woman"/>
</NOT>

</subclass-of>
</class-def>

<class-def type="defined">
<class name="Mother"/>
<subclass-of>

<class name="Woman"/>
</subclass-of>
<slot-constraint>

<slot name="has-child"/>
<has-value>

<class name="Person"/>
</has-value>

</slot-constraint>
</class-def>

</ontology-definitions>
</ontology>

Fig. 14.9. OIL XML serialisation

The RDFS serialisation is more interesting as it uses the features of RDFS both

to capture as much as possible of OIL ontologies and to define a “meta-ontology”

describing the structure of the OIL language itself. Figure 14.10 shows part of

the RDFS description of OIL. The second and third lines contain XML namespace
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definitions that make the external RDF and RDFS definitions available for local

use by preceding them with rdf: and rdfs: respectively. There then follows a

“meta-ontology” describing (part of) the structure of OIL slot constraints.

The “meta-ontology” defines hasPropertyRestriction as an instance of RDFS

ConstraintProperty1 that connects an RDFS class (the property’s domain) to an

OIL property restriction (the property’s range). A PropertyRestriction (slot

constraint) is then defined as a kind of ClassExpression, with HasValue (an exis-

tential quantification) being a kind of PropertyRestriction. Properties onProperty

and toClass are then defined as “meta-slots” of PropertyRestriction whose fillers

will be the name of the property (slot) to be restricted and the restriction class ex-

pression. The complete description of OIL in RDFS, as well as a more detailed

description of RDF and RDFS, can be found in [Horrocks et al., 2000].

Figure 14.11 illustrates the RDFS serialisation of a fragment of the “family”

ontology. Note that most of the ontology consists of standard RDFS. For example, in

the definition of Woman RDFS is used to specify that it is a subClassOf both Person

and Female. Additional OIL specific vocabulary is only used where necessary, e.g.,

to specify that Woman is a defined class. The advantage of this is that much of the

ontology’s meaning would still be accessible to software that was “RDFS aware”

but not “OIL aware”.

14.3.2 DAML+OIL

DAML+OIL is similar to OIL in many respects, but is more tightly integrated with

RDFS, which provides the only specification of the language and its only serialisa-

tion. While the dependence on RDFS has some advantages in terms of the re-use of

existing RDFS infrastructure and the portability of DAML+OIL ontologies, using

RDFS to completely define the structure of DAML+OIL is quite difficult as, unlike

XML, RDFS is not designed for the precise specification of syntactic structure. For

example, there is no way in RDFS to state that a restriction (slot constraint) should

consist of exactly one property (slot) and one class.

The solution to this problem adopted by DAML+OIL is to define the semantics

of the language in such a way that they give a meaning to any (parts of) ontologies

that conform to the RDFS specification, including “strange” constructs such as

slot constraints with multiple slots and classes. This is made easier by the fact

that, unlike OIL, the semantics of DAML+OIL are directly defined in both a model

theoretic and an axiomatic form (using KIF [Genesereth and Fikes, 1992]). The

meaning given to strange constructs may, however, include strange “side effects”.

For example, in the case of a slot constraint with multiple slots and classes, the

semantics interpret this in the same way as a conjunction of all the constraints that

1 Property is the RDF name for a binary relation like a slot or role.
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<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Property rdf:ID="hasPropertyRestriction">
<rdf:type rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#ConstraintProperty"/>
<rdfs:domain rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:range rdf:resource="#PropertyRestriction"/>

</rdf:Property>

<rdfs:Class rdf:ID="PropertyRestriction">
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="HasValue">
<rdfs:subClassOf rdf:resource="#PropertyRestriction"/>

</rdfs:Class>

<rdf:Property rdf:ID="onProperty">
<rdfs:domain rdf:resource="#PropertyRestriction"/>
<rdfs:range rdf:resource=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property rdf:ID="toClass">
<rdfs:domain rdf:resource="#PropertyRestriction"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

</rdf:RDF>

Fig. 14.10. Definition of OIL in RDFS

would result from taking the cross product of the specified slots and classes, but with

the added (and possibly unexpected) effect that all these slot constraints must have

the same interpretation (i.e., are equivalent). Although OIL’s RDFS based syntax

would seem to be susceptible to the same difficulties, in the case of OIL there

does not seem to be an assumption that any ontology conforming to the RDFS

meta-description would be a valid OIL ontology—presumably ontologies containing

unexpected usages of the meta-properties would be rejected by OIL processors as

the semantics do not specify how these could be translated into SHIQ(D).

DAML+OIL’s dependence on RDFS also has consequences for the decidability

of the language. In OIL, the language specification states that the slots used in

cardinality constraints can only be applied to simple slots (slots that are neither

transitive nor have transitive subslots). There is no way to capture this constraint
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<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oil="http://www.ontoknolwedge.org/oil/rdfschema">

<rdf:Property rdf:ID="has-child">
<oil:inverseRelationOf rdf:resource="#is-child-of"/>

</rdf:Property>
<rdf:Property rdf:ID="is-child-of"/>

<rdfs:Class rdf:ID="Woman">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClassOf rdf:resource="#Female"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Man">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClassOf>

<oil:Not>
<oil:hasOperand rdf:resource="#Woman"/>

</oil:Not>
</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:ID="Mother">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#Woman"/>
<oil:hasPropertyRestriction>

<oil:HasValue>
<oil:onProperty rdf:resource="#has-child"/>
<oil:toClass rdf:resource="#Person"/>

</oil:HasValue>
</oil:hasPropertyRestriction>

</rdfs:Class>

</rdf:RDF>

Fig. 14.11. OIL RDFS serialisation

in RDFS (although the language specification does include a warning about the

problem), so DAML+OIL is theoretically undecidable. In practice, however, this

may not be a very serious problem as it would be easy for a DAML+OIL processor

to detect the occurrence of such a constraint and warn the user of the consequences.

Another effect of DAML+OIL’s tight integration with RDFS is that the frame
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<daml:ObjectProperty rdf:ID="has-child">
<daml:inverseOf rdf:resource="#is-child-of"/>

</daml:ObjectProperty>
<daml:Class rdf:ID="Woman">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Person"/>
<daml:Class rdf:about="#Female"/>

</daml:intersectionOf>
</daml:Class>
<daml:Class rdf:ID="Man">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Person"/>
<daml:Class>
<daml:complementOf rdf:resource="#Woman"/>

</daml:Class>
</daml:intersectionOf>

</daml:Class>
<daml:Class rdf:ID="Mother">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Woman"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#has-child"/>
<daml:hasClass rdf:resource="#Person"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

Fig. 14.12. DAML+OIL ontology serialisation

structure of OIL’s syntax is much less evident: a DAML+OIL ontology is more DL-

like in that it consists largely of a relatively unstructured collection of subsumption

and equality axioms. This can make it more difficult to use DAML+OIL with

frame based tools such as Protégé [Grosso et al., 1999] or OilEd [Bechhofer et al.,

2001b] because the axioms may be susceptible to many different frame-like groupings
[Bechhofer et al., 2001a].

From the point of view of language constructs, the differences between OIL and

DAML+OIL are relatively trivial. Although there is some difference in “keyword”

vocabulary, there is usually a one to one mapping of constructors, and in the cases

where the constructors are not completely equivalent, simple translations are pos-

sible. For example, DAML+OIL restrictions (slot constraints) use has-class and

to-class where OIL uses ValueType and HasValue, and while DAML+OIL has no

direct equivalent to OIL’s covering axioms, the same effects can be achieved using a

combination of (disjoint) union and subClass. The similarities can clearly be seen

in Figure 14.12, which illustrates the DAML+OIL version of the “family” ontology

fragment from Figure 14.9.

The treatment of individuals in DAML+OIL is, however, very different from that
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in OIL. In the first place, DAML+OIL relies wholly on RDF for ABox assertions,

i.e., axioms asserting the type (class) of an individual or a relationship between a

pair of individuals. In the second place, DAML+OIL treats individuals occurring

in the ontology (in oneOf constructs or hasValue restrictions) as true individuals

(i.e., interpreted as single elements in the domain of discourse) and not as primitive

concepts as is the case in OIL (see Chapter ??). Moreover, there is no unique name

assumption: in DAML+OIL it is possible to explicitly assert that two individuals

are the same or different, or to leave their relationship unspecified.

This treatment of individuals is very powerful, and justifies intuitive inferences

that would not be valid for OIL, e.g., that persons all of whose countries of residence

are Italy are kinds of person that have at most one country of residence:

Person u ∀residence.{Italy} v 6 1 residence

Unfortunately, the combination of individuals with inverse roles is so powerful

that no “practical” decision procedure (for satisfiability/subsumption) is currently

known, and there is no implemented system that can provide sound and complete

reasoning for the whole DAML+OIL language. In the absence of inverse roles,

however, a tableaux algorithm has been devised [Horrocks and Sattler, 2001], and

in the absence of individuals DAML+OIL ontologies can exploit implemented DL

systems via a translation into SHIQ similar to the one described for OIL. It would,

of course, also be possible to translate DAML+OIL ontologies into SHIQ using

the disjoint primitive concept interpretation of individuals adopted by OIL, but in

this case reasoning with individuals would not be sound and complete with respect

to the semantics of the language.

14.3.2.1 DAML+OIL datatypes

The initial release of DAML+OIL did not include any specification of datatypes.

However, in the March 2001 release,1 the language was extended with arbitrary

datatypes from the XML Schema type system,2 which can be used in restrictions

(slot constraints) and range constraints. As in SHOQ(D) [Horrocks and Sattler,

2001], a clean separation is maintained between instances of “object” classes (de-

fined using the ontology language) and instances of datatypes (defined using the

XML Schema type system). In particular, it is assumed that that the domain

of interpretation of object classes is disjoint from the domain of interpretation of

datatypes, so that an instance of an object class (e.g., the individual Italy) can never

have the same interpretation as a value of a datatype (e.g., the integer 5), and that

the set of object properties (which map individuals to individuals) is disjoint from

the set of datatype properties (which map individuals to datatype values).

1 http://www.daml.org/2001/03/daml+oil-index.html
2 http://www.w3.org/TR/xmlschema-2/#typesystem
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The disjointness of object and datatype domains was motivated by both philo-

sophical and pragmatic considerations:

• Datatypes are considered to be already sufficiently structured by the built-in

predicates, and it is, therefore, not appropriate to form new classes of datatype

values using the ontology language [Hollunder and Baader, 1991].

• The simplicity and compactness of the ontology language are not compromised—

even enumerating all the XML Schema datatypes would add greatly to its com-

plexity, while adding a theory for each datatype, even if it were possible, would

lead to a language of monumental proportions.

• The semantic integrity of the language is not compromised—defining theories for

all the XML Schema datatypes would be difficult or impossible without extending

the language in directions whose semantics may be difficult to capture in the

existing framework.

• The “implementability” of the language is not compromised—a hybrid reasoner

can easily be implemented by combining a reasoner for the “object” language

with one capable of deciding satisfiability questions with respect to conjunctions

of (possibly negated) datatypes [Horrocks and Sattler, 2001].

From a theoretical point of view, this design means that the ontology language can

specify constraints on data values, but as data values can never be instances of object

classes they cannot apply additional constraints to elements of the object domain.

This allows the type system to be extended without having any impact on the

object class (ontology) language, and vice versa. Similarly, reasoning components

can be independently developed and trivially combined to give a hybrid reasoner

whose properties are determined by those of the two components; in particular, the

combined reasoner will be sound and complete if both components are sound and

complete.

From a practical point of view, DAML+OIL implementations can choose to sup-

port some or all of the XML Schema datatypes. For supported data types, they can

either implement their own type checker/validater or rely on some external com-

ponent (non-supported data types could either be trapped as an error or ignored).

The job of a type checker/validater is simply to take zero or more data values and

one or more datatypes, and determine if there exists any data value that is equal to

every one of the specified data values and is an instance of every one of the specified

data types.

14.4 Summary

It has long been realised that the web would benefit from more structure, and it is

widely agreed that ontologies will play a key role in providing this structure. De-
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scription logics have made important contributions to research in this area, ranging

from formal foundations and early web applications through to the development of

description logic based languages designed to facilitate the development and deploy-

ment of web ontologies. OIL and its successor DAML+OIL are two such ontology

languages, specifically designed for use on the web; they exploit existing web stan-

dards (XML, RDF and RDFS), adding the formal rigor of a description logic and

the ontological primitives of object oriented and frame based systems.

This combination of features has proved very attractive, and DAML+OIL has al-

ready been widely adopted. At the time of writing, the DAML ontology library con-

tains over 175 ontologies, and DAML crawlers have found millions of DAML+OIL

markup statements in documents. Possibly more important, however, is that some

major efforts have committed to encoding their ontologies in DAML+OIL. This

has been particularly evident in the bio-ontology domain, where the Bio-Ontology

Consortium has specified DAML+OIL as their ontology exchange language, and

the Gene Ontology [The Gene Ontology Consortium, 2000] is being migrated to

DAML+OIL in a project partially funded by GlaxoSmithKline Pharmaceuticals in

cooperation with the Gene Ontology Consortium.

There has also been significant progress in the development of tools support-

ing DAML+OIL. Several DAML+OIL ontology editors are now available including

Manchester University’s OilEd (which incorporates reasoning support from the

FaCT system) [Bechhofer et al., 2001b], Protégé [Grosso et al., 1999] and OntoEdit
[Staab and Maedche, 2000]. At Stanford University, a combination of Ontolingua,

Chimaera and JTP (Java Theorem Prover) are being used to provide editing, evo-

lution, maintenance, and reasoning services for DAML+OIL ontologies [McGuin-

ness et al., 2000b; 2000a]. Commercial endeavors are also supporting DAML+OIL.

Network Inference Limited, for example, have developed a DAML+OIL reasoning

engine based on their own implementation of a DL reasoner.

What of the future? The development of the semantic web, and of web ontology

languages, presents many opportunities and challenges for description logic research.

A “practical” (satisfiability/subsumption) algorithm for the full DAML+OIL lan-

guage has yet to be developed, and even for OIL, it is not yet clear that sound

and complete DL reasoners can provide adequate performance for typical web ap-

plications. It is also unclear how a DL system would cope with the very large

ABoxes that could result from the use of ontologies to add semantic markup to

(large numbers of) web pages. DL researchers are also beginning to address new

inference problems that may be important in providing reasoning services for the

semantic web, e.g., querying [Rousset, 1999a; Calvanese et al., 1999a; Horrocks and

Tessaris, 2000], matching [Baader et al., 1999a] and computing least common sub-
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sumers and most specific concepts [Cohen et al., 1992; Baader and Küsters, 1998;

Baader et al., 1999b].

Finally, the developers of both OIL and DAML+OIL always understood that

a single language would not be adequate for all semantic web applications—OIL

even gave a name (Heavy OIL) to an as yet undefined extension of the language—

and extensions up to (at least) full first order logic are already being discussed.

Clearly, most of these extended languages will be undecidable. Description Logics

research can, however, still make important contributions, e.g., by investigating the

boundaries of decidability, identifying decidable subsets of extended languages and

developing decision procedures. DL implementations can also play a key role, both

as reasoning engines for the core language and as efficient components of hybrid

reasoners dealing with a variety of language extensions.
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In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.

[Hagen et al., 1999] Paul Hagen, David Weisman, Harley Manning, and Randy Souza.
Guided search for eCommerce. In The Forrester Report, Cambridge, Mass., January
1999.

[Heflin and Hendler, 2001] J. Heflin and J. Hendler. A portrait of the semantic web in action.
IEEE Intelligent Systems, 16(2):54–59, 2001.

[Hendler and McGuinness, 2000] James Hendler and Deborah L. McGuinness. The darpa
agent markup language”. IEEE Intelligent Systems, 15(6):67–73, 2000.

[Hollunder and Baader, 1991] Bernhard Hollunder and Franz Baader. Qualifying number
restrictions in concept languages. In Proc. of the 2nd Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’91), pages 335–346, 1991.

[Horrocks and Sattler, 2001] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the
SHOQ(D) description logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001). Morgan Kaufmann, Los Altos, 2001.

[Horrocks and Tessaris, 2000] I. Horrocks and S. Tessaris. A conjunctive query language
for description logic aboxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), pages 399–404, 2000.

[Horrocks et al., 1999] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning
for expressive description logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages
161–180. Springer-Verlag, 1999.

[Horrocks et al., 2000] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann,
C. Goble, F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The
Ontology Inference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Fac-
ulty of Sciences, September 2000.

[Horrocks, 1998] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In
Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636–647, 1998.

[Karp et al., 1999] P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based



Digital Libraries and Web-Based Information Systems 27

ontology exchange language. Version 0.3, July 1999.
[Levy et al., 1995] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and

query evaluation in global information systems. J. of Intelligent Information Systems,
5:121–143, 1995.

[Mallery, 1994] John Mallery. A common lisp hypermedia server. In Proc. of
the 1st Int. Conf. on The World-Wide Web. CERN, 1994. Available at
http://www.ai.mit.edu/projects/iiip/doc/cl-http/server-abstract.html.

[McGuinness et al., 1997] Deborah L. McGuinness, Harley Manning, and Tom Beattie.
Knowledge augmented intranet search. In In Proc. of Sixth World Wide Web Conference
CDROM version, Santa Clara, California,, April 1997.

[McGuinness et al., 2000a] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve
Wilder. The Chimaera ontology environment. In Proc. of the 17th Nat. Conf. on Artificial
Intelligence (AAAI 2000), 2000.

[McGuinness et al., 2000b] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve
Wilder. An environment for merging and testing large ontologies. In Proc. of the 7th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’2000), pages
483–493, 2000.

[McGuinness et al., 2002] Deborah L. McGuinness, Richard Fikes, Lynn A. Stein, and James
Hendler. DAML-ONT: An ontology language for the semantic web. In Dieter Fensel,
Hendler, Henry Lieberman, and Wolfgang Wahlster, editors, The Semantic Web: Why,
What, and How. MITPress, 2002.

[McGuinness, 1998] Deborah L. McGuinness. Ontological issues for knowledge-enhanced
search. In Proceedings of Formal Ontology in Information Systems., 1998. Also published
in Frontiers in Artificial Intelligence and Applications, IOS-Press, 1998.

[McGuinness, 1999] Deborah L. McGuinness. Ontology-enhanced search for pri-
mary care medical literature. In Proc. of the International Medical Informat-
ics Association Working Group 6- Medical Concept Representation and Natural
Language Processing Conference (IMIA’99), Phoenix, Arizona, December, 1999.
http://www.ksl.stanford.edu/people/dlm/papers/imia99-abstract.html, 1999.

[Meghini et al., 1997] Carlo Meghini, Fabrizio Sebastiani, and Umberto Straccia. Modelling
the retrieval of structured documents containing texts and images. In Costantino Thanos,
editor, Proceedings of ECDL-97, the First European Conference on Research and Ad-
vanced Technology for Digital Libraries, number 1324 in Lecture Notes in Computer
Science, Pisa, September 1997. Springer Verlag, Heidelberg, FRG.

[Miller, 1995] George A. Miller. WordNet: A lexical database for English. Communications
of the ACM, 38(11):39–41, 1995.

[Milne, 1928] A.A. Milne. The House at Pooh Corner. Dutton, 1928.
[Mylonas and Renear, 1999] Elli Mylonas and Allen Renear. The text encoding initiative at

10. Computers and the Humanities, 33(1–2):1–10, 1999.
[Rousset, 1999a] Marie-Christine Rousset. Backward reasoning in ABoxes for query answer-

ing. In Proc. of the 1999 Description Logic Workshop (DL’99), pages 18–22. CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.

[Rousset, 1999b] Marie-Christine Rousset. Query expansion in description logics and carin.
In Proceedings of the AAAI Fall Symposium on Question Answering Systems, Cape Cod,
November 1999.

[Staab and Maedche, 2000] S. Staab and A. Maedche. Ontology engineering beyond the
modeling of concepts and relations. In Proc. of the ECAI’00 workshop on applications
of ontologies and problem-solving methods, August 2000.



28

[The Gene Ontology Consortium, 2000] The Gene Ontology Consortium. Gene ontolgy: tool
for the unification of biology. Nature Genetics, 25(1):25–29, 2000.

[Welty and Jenkins, 2000] Christopher Welty and Jessica Jenkins. Untangle: a new ontol-
ogy for card catalog systems. In Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), pages 1137–1138. AAAI Press/The MIT Press, 2000.

[Welty, 1994] Christopher Welty. A knowledge-based email distribution system. In Proc. of
the 1994 Florida AI Research Symposium. AAAI Press/The MIT Press, May 1994.

[Welty, 1996a] Christopher Welty. An HTML interface for Classic. In Proc. of the 1996
Description Logic Workshop (DL’96), number WS-96-05 in AAAI Technical Report.
AAAI Press/The MIT Press, 1996.

[Welty, 1996b] Christopher Welty. Intelligent assistance for navigating the web. In Proc. of
the 1996 Florida AI Research Symposium. AAAI Press/The MIT Press, May 1996.

[Welty, 1998] Christopher Welty. The ontological nature of subject taxonomies. In Proc. of
the Formal Ontology in Information Systems (FOIS’98), June 1998, Frontiers in Artificial
Intelligence. IOS-Press, 1998.

[Wielinga et al., 2001] B. J. Wielinga, A. Th. Schreiber, J. Wielemaker, and J. A. C. Sand-
berg. From thesaurus to ontology. In Proc. of the 1st Int. Conf. on Knowledge Capture
(K-CAP 2001), 2001.



Index

Chimeaera, 22
Classic, 2–4, 10

DAML, 1, 5, 6, 22
DAML+OIL, 7, 15–20, 22
DAML-ONT, 6, 7
domain, 8, 15

FaCT, 10, 22
FindUR, 3, 4
frame, 7

HTML, 5

JTP, 22

OIL, 1, 6–15, 17–20, 22
OilEd, 19, 22
OKBC, 7
OntoEdit, 22
Ontolingua, 22

Protégé, 19, 22

Racer, 10
range, 8, 15
RDF, 6, 8, 15, 22
RDFS, 6–9, 15–19, 22

SGML, 4, 5
SHIQ, 7, 9, 20
SHIQ(D), 9–14, 18
SHOE, 4
SHOQ(D), 21
slot, 7
slot constraint, 7

Untangle, 1, 2

XML, 5–7, 9, 15, 16, 20–22
XOL, 7

29


