
Description Logics as Ontology Languages for
the Semantic Web

Franz Baader1, Ian Horrocks2, and Ulrike Sattler1

1 Theoretical Computer Science, RWTH Aachen, Germany
{baader,sattler}@cs.rwth-aachen.de

2 Department of Computer Science, University of Manchester, UK
horrocks@cs.man.ac.uk

Abstract. The vision of a Semantic Web has recently drawn consider-
able attention, both from academia and industry. Description logics are
often named as one of the tools that can support the Semantic Web and
thus help to make this vision reality.
In this paper, we describe what description logics are and what they can
do for the Semantic Web. Descriptions logics are very useful for defining,
integrating, and maintaining ontologies, which provide the Semantic Web
with a common understanding of the basic semantic concepts used to
annotate Web pages. We also argue that, without the last decade of basic
research in this area, description logics could not play such an important
rôle in this domain.

1 Introduction

The goal of this introduction is to sketch, on an informal level, what the Se-
mantic Web is, why it needs ontologies, and where description logics come into
play. Regarding the last point, we will first give a brief introduction to descrip-
tion logics, and then argue why they are well-suited as ontology languages. The
remainder of this paper will then put some flesh on this skeleton by providing
more technical details.

The Semantic Web and Ontologies

For many people, the World Wide Web has become an indispensable means of
providing and searching for information. Searching the Web in its current form
is, however, often an infuriating experience since today’s search engines usually
provide a huge number of answers, many of which are completely irrelevant,
whereas some of the more interesting answers are not found. One of the rea-
sons for this unsatisfactory state of affairs is that existing Web resources are
usually only human understandable: the mark-up (HTML) only provides ren-
dering information for textual and graphical information intended for human
consumption.

The Semantic Web [15] aims for machine-understandable Web resources,
whose information can then be shared and processed both by automated tools,



2

such as search engines, and by human users. In the following we will refer to con-
sumers of Web resources, whether automated tools or human users, as agents.
This sharing of information between different agents requires semantic mark-up,
i.e., an annotation of the Web page with information on its content that is un-
derstood by the agents searching the Web. Such an annotation will be given in
some standardized, expressive language (which, e.g., provides Boolean operators
and some form of quantification) and make use of certain terms (like “Human”,
“Plant”, etc.). To make sure that different agents have a common understanding
of these terms, one needs ontologies in which these terms are described, and
which thus establish a joint terminology between the agents. Basically, an ontol-
ogy [44, 43] is a collection of definitions of concepts and the shared understanding
comes from the fact that all the agents interpret the concepts w.r.t. the same
ontology.

The use of ontologies in this context requires a well-designed, well-defined,
and Web-compatible ontology language with supporting reasoning tools. The
syntax of this language should be both intuitive to human users and compatible
with existing Web standards (such as XML, RDF, and RDFS). Its semantics
should be formally specified since otherwise it could not provide a shared un-
derstanding. Finally, its expressive power should be adequate, i.e., the language
should be expressive enough for defining the relevant concepts in enough detail,
but not too expressive to make reasoning infeasible.

Reasoning is important to ensure the quality of an ontology. It can be em-
ployed in different development phases. During ontology design, it can be used
to test whether concepts are non-contradictory and to derive implied relations.
In particular, one usually wants to compute the concept hierarchy. Information
on which concept is a specialization of another and which concepts are synonyms
can be used in the design phase to test whether the concept definitions in the
ontology have the intended consequences or not. Moreover, this information is
also useful when searching Web pages annotated with such concepts. Since it
is not reasonable to assume that there will be a single ontology for the whole
Web, interoperability and integration of different ontologies is also an important
issue. Integration can, for example, be supported by asserting inter-ontology
relationships and testing for consistency and computing the integrated concept
hierarchy. Finally, reasoning may also be used when the ontology is deployed, i.e.,
when a Web page is already annotated with its concepts. One can, for example,
determine the consistency of facts stated in the annotation with the ontology or
infer instance relationships. However, in the deployment phase, the requirements
on the efficiency of reasoning are much more stringent than in the design and
integration phases.

Before arguing why description logics are good candidates for such an on-
tology language, we provide a brief introduction to and history of description
logics.



3

Description Logics

Description logics (DLs) [7, 24] are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application domain in
a structured and formally well-understood way. The name description logics is
motivated by the fact that, on the one hand, the important notions of the do-
main are described by concept descriptions, i.e., expressions that are built from
atomic concepts (unary predicates) and atomic roles (binary predicates) using
the concept and role constructors provided by the particular DL. On the other
hand, DLs differ from their predecessors, such as semantic networks and frames,
in that they are equipped with a formal, logic-based semantics.

In this introduction, we only illustrate some typical constructors by an ex-
ample. Formal definitions are given in Section 2. Assume that we want to define
the concept of “A man that is married to a doctor and has at least five children,
all of whom are professors.” This concept can be described with the following
concept description:

Human u ¬Female u ∃married.Doctor u (≥ 5 hasChild) u ∀hasChild.Professor

This description employs the Boolean constructors conjunction (u), which is
interpreted as set intersection, and negation (¬), which is interpreted as set
complement, as well as the existential restriction constructor (∃R.C), the value
restriction constructor (∀R.C), and the number restriction constructor (≥nR).
An individual, say Bob, belongs to ∃married.Doctor iff there exists an individual
that is married to Bob (i.e., is related to Bob via the married role) and is a doctor
(i.e., belongs to the concept Doctor). Similarly, Bob belongs to (≥ 5 hasChild) iff
he has at least five children, and he belongs to ∀hasChild.Professor iff all his
children (i.e., all individuals related to Bob via the hasChild role) are professors.

In addition to this description formalism, DLs are usually equipped with a
terminological and an assertional formalism. In its simplest form, terminological
axioms can be used to introduce names (abbreviations) for complex descriptions.
For example, we could introduce the abbreviation HappyMan for the concept
description from above. More expressive terminological formalisms allow the
statement of constraints such as

∃hasChild.Human v Human,

which says that only humans can have human children. The assertional formal-
ism can be used to state properties of individuals. For example, the assertions

HappyMan(BOB), hasChild(BOB,MARY)

state that Bob belongs to the concept HappyMan and that Mary is one of his
children.

Description logic systems provide their users with various inference capabil-
ities that deduce implicit knowledge from the explicitly represented knowledge.
The subsumption algorithm determines subconcept-superconcept relationships:



4

C is subsumed by D iff all instances of C are necessarily instances of D, i.e.,
the first description is always interpreted as a subset of the second description.
For example, given the definition of HappyMan from above, HappyMan is sub-
sumed by ∃hasChild.Professor—since instances of HappyMan have at least five
children, all of whom are professors, they also have a child that is a professor.
The instance algorithm determines instance relationships: the individual i is an
instance of the concept description C iff i is always interpreted as an element of
C. For example, given the assertions from above and the definition of HappyMan,
MARY is an instance of Professor. The consistency algorithm determines whether
a knowledge base (consisting of a set of assertions and a set of terminological
axioms) is non-contradictory. For example, if we add ¬Professor(MARY) to the
two assertions from above, then the knowledge base containing these assertions
together with the definition of HappyMan from above is inconsistent.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by
the system, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the application
domain can no longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference problems has been one
of the most important issues in DL research. Roughly, the research related to
this issue can be classified into the following four phases.

Phase 1 (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [19, 61, 70, 60]. These systems em-
ployed so-called structural subsumption algorithms, which first normalize the
concept descriptions, and then recursively compare the syntactic structure of the
normalized descriptions [62]. These algorithms are usually very efficient (poly-
nomial), but they have the disadvantage that they are complete only for very
inexpressive DLs, i.e., for more expressive DLs they cannot detect all the existing
subsumption/instance relationships. At the end of this phase, early formal inves-
tigations into the complexity of reasoning in DLs showed that most DLs do not
have polynomial-time inference problems [18, 63]. As a reaction, the implemen-
tors of the Classic system (the first industrial-strength DL system) carefully
restricted the expressive power of their DL [69, 17].

Phase 2 (1990–1995) started with the introduction of a new algorithmic paradigm
into DLs, so-called tableau-based algorithms [75, 32, 48]. They work on proposi-
tionally closed DLs (i.e., DLs with full Boolean operators) and are complete also
for expressive DLs. To decide the consistency of a knowledge base, a tableau-
based algorithm tries to construct a model of it by breaking down the concepts in
the knowledge base, thus inferring new constraints on the elements of this model.
The algorithm either stops because all attempts to build a model failed with
obvious contradictions, or it stops with a “canonical” model. Since in proposi-
tionally closed DLs subsumption and satisfiability can be reduced to consistency,
a consistency algorithm can solve all inference problems mentioned above. The
first systems employing such algorithms (Kris and Crack) demonstrated that



5

optimized implementations of these algorithms lead to an acceptable behavior
of the system, though the worst-case complexity of the corresponding inference
problem is no longer in polynomial time [6, 20]. This phase also saw a thorough
analysis of the complexity of reasoning in various DLs [32–34]. Another impor-
tant observation was that DLs are very closely related to modal logics [73].

Phase 3 (1995–2000) is characterized by the development of inference procedures
for very expressive DLs, either based on the tableau-approach [56, 57] or on a
translation into modal logics [29, 30, 28, 31]. Highly optimized systems (FaCT,
Race, and Dlp [55, 45, 68]) showed that tableau-based algorithm for expres-
sive DLs lead to a good practical behavior of the system even on (some) large
knowledge bases. In this phase, the relationship to modal logics [29, 74] and to
decidable fragments of first-order logic was also studied in more detail [16, 66, 42,
40, 41], and applications in databases (like schema reasoning, query optimization,
and DB integration) were investigated [21, 22, 25, 26].

We are now at the beginning of Phase 4, where industrial strength DL systems
employing very expressive DLs and tableau-based algorithms are being devel-
oped, with applications like the Semantic Web or knowledge representation and
integration in bio-informatics in mind.

Description Logics as Ontology Languages

As already mentioned above, high quality ontologies are crucial for the Semantic
Web, and their construction, integration, and evolution greatly depends on the
availability of a well-defined semantics and powerful reasoning tools. Since DLs
provide for both, they should be ideal candidates for ontology languages. That
much was already clear ten years ago, but at that time, there was a fundamental
mismatch between the expressive power and the efficiency of reasoning that
DL systems provided, and the expressivity and the large knowledge bases that
ontologists needed [35]. Through the basic research in DLs of the last 10–15
years that we have summarized above, this gap between the needs of ontologist
and the systems that DL researchers provide has finally become narrow enough
to build stable bridges.

Regarding an ontology language for the Semantic Web, there is a joint US/EU
initiative for a W3C ontology standard, for historical reasons called DAML+OIL
[52, 27]. This language has a syntax based on RDF Schema (and thus is Web
compatible), and it is based on common ontological primitives from Frame Lan-
guages (which supports human understandability). Its semantics can be defined
by a translation into the expressive DL SHIQ [54],1 and the developers have
tried to find a good compromise between expressiveness and the complexity of
reasoning. Although reasoning in SHIQ is decidable, it has a rather high worst-
case complexity (ExpTime). Nevertheless, there is a highly optimized SHIQ
reasoner (FaCT) available, which behaves quite well in practice.

1 To be exact, the translation is into an extension of SHIQ.



6

Let us point out some of the features of SHIQ that make this DL expressive
enough to be used as an ontology language. Firstly, SHIQ provides number
restrictions that are more expressive than the ones introduced above (and em-
ployed be earlier DL systems). With the qualified number restrictions available
in SHIQ, as well as being able to say that a person has at most two children
(without mentioning the properties of these children):

(≤ 2 hasChild),

one can also specify that there is at most one son and at most one daughter:

(≤ 1 hasChild.¬Female) u (≤ 1 hasChild.Female)

Secondly, SHIQ allows the formulation of complex terminological axioms like
“humans have human parents”:

Human v ∃hasParent.Human.

Thirdly, SHIQ also allows for inverse roles, transitive roles, and subroles. For
example, in addition to hasChild one can also use its inverse hasParent, one
can specify that hasAncestor is transitive, and that hasParent is a subrole of
hasAncestor.

It has been argued in the DL and the ontology community that these features
play a central role when describing properties of aggregated objects and when
building ontologies [72, 76, 37]. The actual use of DLs providing these features
as the underlying logical formalism of the web ontology languages OIL and
DAML+OIL [36, 52] substantiates this claim [76].

2 The Expressive Description Logic SHIQ

In contrast to most of the DLs considered in the literature, which concentrate
on constructors for defining concepts, the DL SHIQ [53] also allows for rather
expressive roles. Of course, these roles can then be used in the definition of
concepts. We start with the definition of SHIQ-roles, and then continue with
the definition of SHIQ-concepts.

Definition 1 (Syntax and semantics of SHIQ-roles). Let R be a set of
role names, which is partitioned into a set R+ of transitive roles and a set RP of
normal roles. The set of all SHIQ-roles is R∪{r− | r ∈ R}, where r− is called
the inverse of the role r. A role inclusion axiom is of the form r v s, where r, s
are SHIQ-roles. A role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain of I,
and a function ·I that maps every role to a subset of ∆I ×∆I such that, for all
p ∈ R and r ∈ R+,

〈x, y〉 ∈ pI iff 〈y, x〉 ∈ (p−)I ,
if 〈x, y〉 ∈ rI and 〈y, z〉 ∈ rI then 〈x, z〉 ∈ rI .



7

An interpretation I satisfies a role hierarchy R iff rI ⊆ sI for each r v s ∈ R;
such an interpretation is called a model of R.

The unrestricted use of these roles in all of the concept constructors of SHIQ
(to be defined below) would lead to an undecidable DL [53]. Therefore, we must
first define an appropriate subset of all SHIQ-roles. This requires some more
notation.

1. The inverse relation on binary relations is symmetric, i.e., the inverse of r−

is again r. To avoid writing role expressions such as r−−, r−−−, etc., we
define a function Inv, which returns the inverse of a role:

Inv(r) :=

{
r− if r is a role name,

s if r = s− for a role name s.

2. Since set inclusion is transitive and an inclusion relation between two roles
transfers to their inverses, a given role hierarchy R implies additional inclu-
sion relationships. To account for this fact, we define v* R as the reflexive-
transitive closure of

vR := R∪ {Inv(r) v Inv(s) | r v s ∈ R}.

We use r ≡R s as an abbreviation for r v* Rs and s v* Rr. In this case, every
model of R interprets these roles as the same binary relation.

3. Obviously, a binary relation is transitive iff its inverse is transitive. Thus, if
r ≡R s and r or Inv(r) is transitive, then any model of R interprets s as a
transitive binary relation. To account for such implied transitive roles, we
define the following function Trans:

Trans(s,R) :=

{
true if r ∈ R+ or Inv(r) ∈ R+ for some r with r ≡R s

false otherwise.

4. A role r is called simple w.r.t. R iff Trans(s,R) = false for all s v* Rr.

Definition 2 (Syntax and semantics of SHIQ-concepts). Let NC be a set
of concept names. The set of SHIQ-concepts is the smallest set such that

1. every concept name A ∈ NC is a SHIQ-concept,
2. if C and D are SHIQ-concepts and r is a SHIQ-role, then C uD, C tD,
¬C, ∀r.C, and ∃r.C are SHIQ-concepts,

3. if C is a SHIQ-concept, r is a simple SHIQ-role, and n ∈ N, then (6
n r.C) and (> n r.C) are SHIQ-concepts.



8

The interpretation function ·I of an interpretation I = (∆I , ·I) maps, addition-
ally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
(∃r.C)I = {x ∈ ∆I | There is some y ∈ ∆I with 〈x, y〉 ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ rI , then y ∈ CI},

(6 n r.C)I = {x ∈ ∆I | ]rI(x,C) 6 n},
(> n r.C)I = {x ∈ ∆I | ]rI(x,C) > n},

where ]M denotes the cardinality of the set M , and rI(x,C) := {y | 〈x, y〉 ∈
rI and y ∈ CI}. If x ∈ CI , then we say that x is an instance of C in I, and if
〈x, y〉 ∈ rI , then y is called an r-successor of x in I.

Concepts can be used to describe the relevant notions of an application do-
main. The terminology (TBox) introduces abbreviations (names) for complex
concepts. In SHIQ, the TBox allows one to state also more complex constraints.

Definition 3. A general concept inclusion (GCI) is of the form C v D, where
C,D are SHIQ-concepts. A finite set of GCIs is called a TBox. An interpre-
tation I is a model of a TBox T iff it satisfies all GCIs in T , i.e., CI ⊆ DI

holds for each C v D ∈ T .

A concept definition is of the form A ≡ C, where A is a concept name. It can
be seen as an abbreviation for the two GCIs A v C and C v A.

Inference problems are defined w.r.t. a TBox and a role hierarchy.

Definition 4. The concept C is called satisfiable with respect to the role hier-
archy R and the TBox T iff there is a model I of R and T with CI 6= ∅. Such
an interpretation is called a model of C w.r.t. R and T . The concept D sub-
sumes the concept C w.r.t. 〈R, T 〉 (written C v〈R,T 〉 D) iff CI ⊆ DI holds for
all models I of R and T . Two concepts C,D are equivalent w.r.t. R (written
C ≡〈R,T 〉 D) iff they subsume each other.

By definition, equivalence can be reduced to subsumption. In addition, subsump-
tion can be reduced to satisfiability since C v〈R,T 〉 D iff C u¬D is unsatisfiable
w.r.t.R and T . Before sketching how to solve the satisfiability problem in SHIQ,
we try to give an intuition on how SHIQ can be used to define ontologies.

3 Describing Ontologies in SHIQ

In general, an ontology can be formalised in a TBox as follows. Firstly, we restrict
the possible worlds by introducing restrictions on the allowed interpretations. For
example, to express that, in our world, we want to consider humans, which are
either muggles or sorcerers, we can use the GCIs

Human v Muggle t Sorcerer and Muggle v ¬Sorcerer.



9

Next, to express that humans have exactly two parents and that all parents and
children of humans are human, we can use the following GCI:

Human v ∀hasParent.Human u (6 2 hasParent.>) u (> 2 hasParent.>) u
∀hasParent−.Human,

where > is an abbreviation for the top concept A t ¬A.
In addition, we consider the transitive role hasAncestor, and the role inclusion

hasParent v hasAncestor.

The next GCI expresses that humans having an ancestor that is a sorcerer
are themselves sorcerers:

Human u ∃hasAncestor.Sorcerer v Sorcerer.

Secondly, we can define the relevant notions of our application domain using
concept definitions. Recall that the concept definition A ≡ C stands for the two
GCIs A v C and C v A. A concept name is called defined if it occurs on the
left-hand side of a definition, and primitive otherwise.

We want our concept definitions to have definitional impact, i.e., the inter-
pretation of the primitive concept and role names should uniquely determine
the interpretation of the defined concept names. For this, the set of concept
definitions together with the additional GCIs must satisfy three conditions:

1. There are no multiple definitions, i.e., each defined concept name must occur
at most once as a left-hand side of a concept definition.

2. There are no cyclic definitions, i.e., no cyclic dependencies between the de-
fined names in the set of concept definitions.2

3. The defined names do not occur in any of the additional GCIs.

In contrast to concept definitions, the GCIs in SHIQ may well have cyclic
dependencies between concept names. An example are the above GCIs describing
humans.

As a simple example of a set of concept definitions satisfying the restrictions
from above, we define the concepts grandparent and parent:3

Parent ≡ Human u ∃hasParent−.>,
Grandparent ≡ ∃hasParent−.Parent,

The TBox consisting of the above concept definitions and GCIs, together with
the fact that hasAncestor is a transitive superrole of hasParent, implies the fol-
lowing subsumption relationship:

Grandparent u Sorcerer v ∃hasParent−.∃hasParent−.Sorcerer,

2 In order to give cyclic definitions definitional impact, one would need to use fixpoint
semantics for them [64, 2].

3 In addition to the role hasParent, which relates children to their parents, we use the
concept Parent, which describes all humans having children.



10

i.e., grandparents that are sorcerers have a grandchild that is a sorcerer. Though
this conclusion may sound reasonable given the assumptions, it requires quite
some reasoning to obtain it. In particular, one must use the fact that hasAncestor
(and thus also hasAncestor−) is transitive, that hasParent− is the inverse of
hasParent, and that we have a GCI that says that children of humans are again
humans.

To sum up, a SHIQ-TBox can, on the one hand, axiomatize the basic no-
tions of an application domain (the primitive concepts) by GCIs, transitivity
statements, and role inclusions, in the sense that these statements restrict the
possible interpretations of the basic notions. On the other hand, more complex
notions (the defined concepts) can be introduced by concept definitions. Given
an interpretation of the basic notions, the concept definitions uniquely determine
the interpretation of the defined notions.

The taxonomy of such a TBox is then given by the subsumption hierarchy
of the defined concepts. It can be computed using a subsumption algorithm for
SHIQ (see Section 5 below). The knowledge engineer can test whether the TBox
captures her intuition by checking the satisfiability of the defined concepts (since
it does not make sense to give a complex definition for the empty concept), and by
checking whether their place in the taxonomy corresponds to their intuitive place.
The expressive power of SHIQ together with the fact that one can “verify” the
TBox in the sense mentioned above is the main reason for SHIQ being well-
suited as an ontology language [72, 37, 76].

4 SHIQ and DAML+OIL

As already discussed, DAML+OIL is a semantic web ontology language whose
semantics can be defined via a translation into an expressive DL. This is not a
coincidence—it was a design goal. The mapping allows DAML+OIL to exploit
formal results from DL research (e.g., regarding the decidability and complexity
of key inference problems) and use implemented DL reasoners (e.g., FaCT [50]
and Racer [46]) in order to provide reasoning services for DAML+OIL applica-
tions.

DAML+OIL uses a syntax that is based on RDF (the Resource Description
Framework), and thus suitable for the Semantic Web. The underlying model
for RDF is a labelled directed graph where nodes are either resources or liter-
als (currently literals are just strings, but it is planed to extend the language
to support type data values, e.g., “integer 5”). The graph is defined by a set
of triples, statements of the form 〈Subject,Property,Object〉, where Subject is a
resource, Property is the edge label and Object is either a resource or a literal.

Everything describable by RDF is a resource; a resource may be named by a
URI, but some resources (we will call them anonymous resources) may not be so
named. A resource may be an entire Web page (identified by its URL), a part of a
Web page (identified by its URL and an anchor), but also an object not accessible
through the Web. A property is an attribute or relation used to describe a
resource, and is also named by a URI. In practice, triples are written using a



11

standard XML serialisation of RDF triples (see http://www.w3.org/RDF/ for
more details).

A DAML+OIL ontology can be seen to correspond to a DL TBox together
with a role hierarchy, describing the domain in terms of classes (corresponding to
concepts) and properties (corresponding to roles). An ontology consists of a set of
axioms that assert, e.g., subsumption relationships between classes or properties.
Asserting that an individual resource (a pair of resources) is an instance of a
DAML+OIL class (property) is left to RDF, a task for which it is well suited.

As in a standard DLs, DAML+OIL classes may be names or expressions
built up from simpler classes and properties using a variety of constructors. The
set of constructors supported by DAML+OIL, along with the equivalent DL
abstract syntax, is summarised in Figure 1.4 The full XML serialisation of the
RDF syntax is not shown as it is rather verbose, e.g., Human uMale would be
written as

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Human"/>
<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>
</daml:Class>

while (> 2 hasChild.Lawyer) would be written as

<daml:Restriction daml:minCardinalityQ="2">
<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClassQ rdf:resource="#Lawyer"/>

</daml:Restriction>

Prefixes such as daml: specify XML namespaces for resources, while
rdf:parseType="daml:collection" is a DAML+OIL extension to RDF
that provides a “shorthand” notation for lisp style lists defined us-
ing triples with the properties first and rest (it can be eliminated, but
with a consequent increase in verbosity). E.g., the first example above
consists of the triples 〈r1, daml : intersectionOf, r2〉, 〈r2, daml : first,Human〉,
〈r2, rdfs : type,Class〉, 〈r2, daml : rest, r3〉, etc., where ri is an anonymous re-
source, Human stands for a URI naming the resource “Human”, and
daml : intersectionOf, daml : first, daml : rest and rdfs : type stand for URIs nam-
ing the properties in question.

An important feature of DAML+OIL is that, besides “abstract” classes
defined by the ontology, one can also use XML Schema datatypes (e.g., so
called primitive datatypes such as string, decimal or float, as well as more
complex derived datatypes such as integer sub-ranges) in hasClass, hasValue,
and cardinality. E.g., the class Adult could be asserted to be equivalent to

4 In fact, there are a few additional constructors provided as “syntactic sugar”, but
all are trivially reducible to the ones described in Figure 1.



12

Constructor DL Syntax Example

intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃citizenOf.{USA}
minCardinalityQ (> n r.C) (> 2 hasChild.Lawyer)
maxCardinalityQ (6 n r.C) (6 1 hasChild.Male)
inverseOf r− hasChild−

Fig. 1. DAML+OIL constructors

Person u ∃age.over17, where over17 is an XML Schema datatype based on dec-
imal, but with the added restriction that values must be at least 18. Using a
combination of XML Schema and RDF this could be written as:

<xsd:simpleType name="over17">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="18"/>
</xsd:restriction>

</xsd:simpleType>

<daml:Class rdf:ID="Adult">
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Person"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#age"/>
<daml:hasClass rdf:resource="#over17"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

As already mentioned, a DAML+OIL ontology consists of a set of axioms.
Figure 2 summarises the axioms supported by DAML+OIL. These axioms make
it possible to assert subsumption or equivalence with respect to classes or proper-
ties, the disjointness of classes, the equivalence or non-equivalence of individuals
(resources), and various properties of properties. DAML+OIL also allows prop-
erties of properties (i.e., DL roles) to be asserted. In particular, it is possible to
assert that a property is unique (i.e., functional), unambiguous (i.e., its inverse
is functional) or transitive.

This shows that, except for individuals and datatypes, the constructors and
axioms of DAML+OIL can be translated into SHIQ. In fact, DAML+OIL is
equivalent to the extension of SHIQ with nominals (i.e., individuals) and a



13

Axiom DL Syntax Example

subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
transitiveProperty P ∈ R+ hasAncestor+ ∈ R+

uniqueProperty > v (6 1 P.>) > v (6 1 hasMother.>)
unambiguousProperty > v (6 1 P−.>) > v (6 1 isMotherOf−.>)

Fig. 2. DAML+OIL axioms

simple form of so-called concrete domains [5]. This extension will be discussed
in Section 6.

5 Reasoning in SHIQ

Reasoning in SHIQ means deciding satisfiability and subsumption of SHIQ-
concepts w.r.t. TBoxes (i.e., sets of general concept inclusions) and role hier-
archies. As shown in Section 2, subsumption can be reduced (in linear time)
to satisfiability. In addition, since SHIQ allows for both subroles and transitive
roles, TBoxes can be internalized, i.e., satisfiability w.r.t. a TBox and a role hier-
archy can be reduced to satisfiability w.r.t. the empty TBox and a role hierarchy.
In principle, this is achieved by introducing a (new) transitive superrole u of all
roles occurring in the TBox T and the concept C0 to be tested for satisfiability.
Then we extend C0 to the concept

Ĉ0 := C0 u u
CvD∈T

(¬C tD) u ∀u.(¬C tD).

We can then show that Ĉ0 is satisfiable w.r.t. the extended role hierarchy iff
the original concept C0 is satisfiable w.r.t. the TBox T and the original role
hierarchy [1, 73, 3, 53].

Consequently, it is sufficient to design an algorithm that can decide satisfiabil-
ity of SHIQ-concepts w.r.t. role hierarchies and transitive roles. This problem is
known to be ExpTime-complete [77]. In fact, ExpTime-hardness can be shown
by an easy adaptation of the ExpTime-hardness proof for satisfiability in propo-
sitional dynamic logic [38]. Using automata-based techniques, Tobies [77] shows
that satisfiability of SHIQ-concepts w.r.t. role hierarchies is indeed decidable
within exponential time.

In the remainder of this section, we sketch a tableau-based decision procedure
for this problem. This procedure, which is described in more detail in [53], runs
in worst case nondeterministic double exponential time. However, according to
the current state of the art, this procedures is more practical than the ExpTime



14

automata-based procedure in [77]. In fact, it is the basis for the highly optimised
implementation of the DL system FaCT [51].

When started with a SHIQ-concept C0, a role hierarchy R, and information
on which roles are transitive, this algorithm tries to construct a model of C0

w.r.t. R. Since SHIQ has a so-called tree model property, we can assume that
this model has the form of an infinite tree. If we want to obtain a decision
procedure, we can only construct a finite tree representing the infinite one (if a
(tree) model exists at all). This can be done such that the finite representation
can be unravelled into an infinite tree model I of C0 w.r.t. R. In the finite tree
representing this model, a node x corresponds to an individual π(x) ∈ ∆I , and
we label each node with the set of concepts L(x) that π(x) is supposed to be an
instance of. Similary, edges represent role-successor relationships, and an edge
between x and y is labelled with the roles supposed to connect x and y. The
algorithm either stops with a finite representation of a tree model, or with a
clash, i.e., an obvious inconsistency, such as {C,¬C} ⊆ L(x). It answers “C0 is
satisfiable w.r.t. R” in the former case, and “C0 is unsatisfiable w.r.t. R” in the
latter.

The algorithm is initialised with the tree consisting of a single node x labelled
with L(x) = {C0}. Then it applies so-called completion rules, which break down
the concepts in the node labels syntactically, thus inferring new constraints for
the given node, and then extend the tree according to these constraints. For
example, if C1 u C2 ∈ L(x), then the u-rule adds both C1 and C2 to L(x). The
≥-rule generates n new r-successor nodes y1, . . . , yn of x with L(yi) = {C} if
(> n r.C) ∈ L(x) and x does not yet have n distinct r-successors with C in
their label. In addition, it asserts that these new successors must remain distinct
(i.e., cannot be identified in later steps of the algorithm). Other rules are more
complicated, and a complete description of this algorithm goes beyond the scope
of this paper. However, we would like to point out two issues that make reasoning
in SHIQ considerably harder than in less expressive DLs.

First, qualified number restriction are harder to handle than the unqualified
ones used in most early DL systems. Let us illustrate this by an example. Assume
that the algorithm has generated a node x with (6 1 hasChild.>) ∈ L(x), and
that this node has two hasChild-successors y1, y2 (i.e., two edges labeled with
hasChild leading to the nodes y1, y2). In order to satisfy the number restriction
(6 1 hasChild.>) for x, the algorithm identifies node y1 with node y2 (unless
these nodes were asserted to be distinct, in which case we have a clash). Now
assume that we still have a node x with two hasChild-successors y1, y2, but the
label of x contains a qualified number restriction like (6 2 hasChild.Parent). The
naive idea [78] would be to check the labels of y1 and y2 whether they contain
Parent, and identify y1 and y2 only if both contain this concept. However, this
is not correct since, in the model I constructed from the tree, π(yi) may well
belong to ParentI even if this concept does not belong to the label of x. The first
correct algorithm that can handle qualified number restrictions was proposed
in [49]. The main idea is to introduce a so-called choose-rule. In our example,
this rule would (nondeterministically) choose whether yi is supposed to belong



15

to Parent or ¬Parent, and correspondingly extend its label. Together with the
choose rule, the above naive identification rule is in fact correct.

Second, in the presence of transitive roles, guaranteeing termination of the
algorithm is a non-trivial task [47, 71]. If ∀r.C ∈ L(x) for a transitive role r, then
not only must we add C to the label of any r-successor y of x, but also ∀r.C.
This ensures that, even over an “r-chain”

x
r→ y

r→ y1
r→ y2

r→ . . .
r→ yn

we get indeed C ∈ L(yn). This is necessary since, in the model constructed from
the tree generated by the algorithm, have

(π(x), π(y)), (π(y), π(y1)), . . . , (π(yn−1), π(yn)) ∈ rI ,

and thus the transitivity of rI requires that also (π(x), π(yn)) ∈ rI , and thus the
value restriction on x applies to yn as well. Propagating ∀r.C over r-edges makes
sure that this is taken care of. However, it also might lead to nontermination.
For example, consider the concept ∃r.A u ∀r.∃r.A where r is a transitive role.
It is easy to see that the algorithm then generates an infinite chain of nodes
with label {A,∀r.∃r.A,∃r.A}. To prevent this looping and ensure termination,
we use a cycle-detection mechanism called blocking : if the labels of a node x
and one of its ancestors coincide, we “block” the application of rules to x. The
blocking condition must be formulated such that, whenever blocking occurs, we
can “unravel” the blocked (finite) path into an infinite path in the model to
be constructed. In description logics, blocking was first employed in [8] in the
context of an algorithm that can handle GCIs, and was the improved on in [4, 23,
9]. In SHIQ, the blocking condition is rather complicated since the combination
of transitive and inverse roles r− with number restrictions requires a rather
advanced form of unravelling [53]. In fact, this combination of constructors is
responsible for the fact that, unlike most DLs considered in the literature, SHIQ
does not have the finite model property, i.e., there are satisfiable SHIQ-concepts
that are only satisfiable in infinite interpretations.

6 Extensions and variants of SHIQ

As mentioned in Section 4, the ontology language DAML+OIL is a syntactic
variant of SHIQ extended with nominals (i.e., concepts {x1} representing a
singleton set consisting of one individual) and concrete datatypes (like a con-
cept representing all integers between 4 and 17). In this section, we discuss the
consequences of these extensions on the reasoning problems in SHIQ.

Concrete datatypes, as available in DAML+OIL, are a very restricted form
of so-called concrete domains [5]. For example, using the concrete domain of
all nonnegative integers equipped with the < predicate, a (functional) role age
relating (abstract) individuals to their (concrete) age, and a (functional) subrole
father of hasParent, the following axiom states that children are younger than
their fathers:

Animal v (age < father ◦ age).



16

Extending expressive DLs with concrete domains may easily lead to undecidabil-
ity [10, 59]. However, DAML+OIL provides only a very limited form of concrete
domains. In particular, the concrete domain must not allow for predicates of
arity greater than 1 (like < in our example), and the predicate restrictions must
not contain role chains (like father ◦ age in our example). In [67], decidability of
SHIQ extended with a slightly more general type of concrete domains is shown.

Concerning nominals, things become a bit more complicated. Firstly, it can
be shown that SHIQ extended with nominals is a fragment of C2, the two-
variable fragment of first order logic with counting quantifiers [39, 65, 77]. Thus,
satisfiability and subsumption are decidable in NExpTime. This is optimal since
the problem is also NExpTime-hard [77]. Roughly speaking, the combination of
GCIs (or transitive roles and role hierarchies), inverse roles, and number restric-
tions with nominals is responsible for this leap in complexity (from ExpTime

for SHIQ to NExpTime). To the best of our knowledge, no “practicable” de-
cision procedure for SHIQ with nominals has been described until now. With
“practicable” we mean an algorithm that can be implemented with reasonable
effort and can be optimized such that it behaves well in practice (which is the
case for the algorithm for SHIQ implemented in FaCT).

7 Conclusion

The emphasis in DL research on a formal, logic-based semantics and a thorough
investigation of the basic reasoning problems, together with the availability of
highly optimized systems for very expressive DLs, makes this family of knowl-
edge representation formalisms an ideal starting point for defining ontology lan-
guages for the Semantic Web. The reasoning services required to support the
construction, integration, and evolution of high quality ontologies are provided
by state-of-the-art DL systems for very expressive languages.

To be used in practice, these languages will, however, also need DL-based
tools that further support knowledge acquisition (i.e., building ontologies), main-
tenance (i.e., evolution of ontologies), and integration and inter-operation of on-
tologies. First steps in this direction have already been taken. For example, OilEd
[14] is a tool that supports the development of OIL5 and DAML+OIL ontologies,
and ICom is a tool that supports the design and integration of entity-relationship
and UML diagrams. On a more fundamental level, so-called non-standard infer-
ences that support building and maintaining knowledge bases (like computing
least common subsumers, unification, and matching) are now an important topic
of DL research [12, 13, 11, 58]. All these efforts aim at supporting users that are
not DL-experts in building and maintaining DL knowledge bases.

5 OIL is a fragment of DAML+OIL.



17

References

1. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), 1991.

2. F. Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence, 18(2–4):175–219,
1996.

3. F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. Journal
of Logic, Language and Information, 2:1–18, 1993.

4. F. Baader, H.-J. Bürkert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept
logics. In John W. Lloyd, editor, Computational Logics, Symposium Proceedings,
pages 177–201. Springer-Verlag, 1990.

5. F. Baader and P. Hanschke. A schema for integrating concrete domains into con-
cept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, 1991.

6. F. Baader and B. Hollunder. A terminological knowledge representation system
with complete inference algorithm. In Proc. of the Workshop on Processing Declar-
ative Knowledge, PDK-91, volume 567 of Lecture Notes In Artificial Intelligence,
pages 67–86. Springer-Verlag, 1991.

7. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 2001. To appear. An abridged version appeared in Tableaux 2000,
volume 1847 of LNAI, 2000. Springer-Verlag.

8. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), 1991.

9. F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence Journal, 88(1–2):195–213, 1996.

10. F. Baader and P. Hanschke. Extensions of concept languages for a mechanical
engineering application. In Proc. of the 16th German AI-Conference, GWAI-92,
volume 671 of Lecture Notes in Computer Science, pages 132–143, Bonn, Germany,
1992. Springer-Verlag.

11. F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in description
logics. Journal of Logic and Computation, 9(3):411–447, 1999.

12. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of the 16th Int. Joint Conf.
on Artificial Intelligence (IJCAI-99), pages 96–101, 1999.

13. F. Baader and P. Narendran. Unification of concepts terms in description logics.
J. of Symbolic Computation, 31(3):277–305, 2001.

14. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontol-
ogy editor for the semantic web. In Proc. of the 2001 Description Logic Work-
shop (DL 2001), pages 1–9. CEUR (http://SunSITE.Informatik.RWTH-Aachen.
DE/Publications/CEUR-WS/), 2001.

15. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5):34–43, 2001.

16. A. Borgida. On the relative expressive power of Description Logics and Predicate
Calculus. To appear in Artificial Intelligence, 1996.

17. R. J. Brachman. “reducing” CLASSIC to practice: Knowledge representation meets
reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-92), pages 247–258. Morgan Kaufmann, Los Altos, 1992.



18

18. R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI-84), pages 34–37, 1984.

19. R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, 1985.

20. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: Preliminary report. In Proc. of the 1995 Description Logic
Workshop (DL’95), pages 131–139, 1995.

21. M. Buchheit, F. M. Donini, W. Nutt, and A. Schaerf. Terminological systems
revisited: Terminology = schema + views. In Proc. of the 12th Nat. Conf. on
Artificial Intelligence (AAAI-94), pages 199–204, Seattle (USA), 1994.

22. M. Buchheit, F. M. Donini, W. Nutt, and A. Schaerf. A refined architecture for
terminological systems: Terminology = schema + views. Artificial Intelligence
Journal, 99(2):209–260, 1998.

23. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminologi-
cal knowledge representation systems. Journal of Artificial Intelligence Research,
1:109–138, 1993.

24. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-
sive description logics. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning. Elsevier Science Publishers (North-Holland), Amsterdam,
1999.

25. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query con-
tainment under constraints. In Proc. of the Seventeenth ACM SIGACT SIGMOD
Sym. on Principles of Database Systems (PODS-98), pages 149–158, 1998.

26. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-98), pages 2–13, 1998.

27. DAML language home page (http://www.daml.org/language/).
28. G. De Giacomo. Decidability of Class-Based Knowledge Representation For-

malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, 1995.

29. G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. In Proc. of the 12th Nat. Conf. on Artificial
Intelligence (AAAI-94), pages 205–212. AAAI Press/The MIT Press, 1994.

30. G. De Giacomo and M. Lenzerini. Concept language with number restrictions and
fixpoints, and its relationship with µ-calculus. In Proc. of the 11th European Conf.
on Artificial Intelligence (ECAI-94), pages 411–415, 1994.

31. G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive descrip-
tion logics. In Luigia C. Aiello, John Doyle, and Stuart C. Shapiro, editors, Proc.
of the 5th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-96), pages 316–327. Morgan Kaufmann, Los Altos, 1996.

32. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR-91), Boston, MA, USA, 1991.

33. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept languages.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages
458–463, Sydney, 1991.

34. F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W.
Nutt. The complexity of existential quantification in concept languages. Artificial
Intelligence Journal, 2–3:309–327, 1992.



19

35. J. Doyle and R. S. Patil. Two theses of knowledge representation: Language restric-
tions, taxonomic classification, and the utility of representation services. Artificial
Intelligence Journal, 48:261–297, 1991.

36. D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

37. D. Fensel, F. van Harmelen, M. Klein, H. Akkermans, J. Broekstra, C. Fluit,
J. van der Meer, H.-P. Schnurr, R. Studer, J. Hughes, U. Krohn, J. Davies, R. En-
gels, B. Bremdal, F. Ygge, T. Lau, B. Novotny, U. Reimer, and I. Horrocks. On-
To-Knowledge: Ontology-based tools for knowledge management. In Proceedings
of the eBusiness and eWork 2000 (eBeW’00) Conference, 2000.

38. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Science, 18:194–211, 1979.

39. E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In
Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science (LICS-97), 1997.
Available via http://speedy.informatik.rwth-aachen.de/WWW/papers.html.

40. E. Grädel. Guarded fragments of first-order logic: A perspective for new description
logics? In Proc. of the 1998 Description Logic Workshop (DL’98). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

41. E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719–
1742, 1999.

42. E. Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

43. T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

44. N. Guarino. Formal ontology, conceptual analysis and knowledge representation.
Int. Journal of Human-Computer Studies, 43(5/6):625–640, 1995.

45. V. Haarslev and R. Möller. RACE system description. In P. Lambrix, A. Borgida,
M. Lenzerini, R. Möller, and P. Patel-Schneider, editors, Proceedings of the Inter-
national Workshop on Description Logics, Linköping, Sweden, 1999. CEUR.

46. V. Haarslev and R. Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR-01), volume 2083 of Lecture Notes
In Artificial Intelligence. Springer-Verlag, 2001.

47. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logic of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

48. B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption algorithms for
concept description languages. In ECAI-90, Pitman Publishing, London, 1990.

49. B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-91), pages 335–346, 1991.

50. I. Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the
Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-98), volume 1397 of Lecture Notes In Artificial Intelligence, pages
307–312. Springer-Verlag, 1998.

51. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98), 1998.



20

52. I. Horrocks and P. Patel-Schneider. The generation of DAML+OIL. In Proc.
of the 2001 Description Logic Workshop (DL 2001), pages 30–35. CEUR (http:
//ceur-ws.org/), volume 49, 2001.

53. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes In Artificial Intelligence, pages 161–180. Springer-
Verlag, 1999.

54. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic shiq. In D. MacAllester, editor, Proc. of the 17th Conf. on Automated
Deduction (CADE-17), number 1831 in Lecture Notes in Computer Science, Ger-
many, 2000. Springer-Verlag.

55. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98), pages 636–647, 1998.

56. I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

57. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors,
Proc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes In Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

58. R. Küsters. Non-Standard Inferences in Description Logics, volume 2100 of Lecture
Notes In Artificial Intelligence. Springer-Verlag, 2001.

59. C. Lutz. NExpTime-complete description logics with concrete domains. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR-01), number 2083 in Lecture Notes In Artificial Intelligence,
pages 45–60. Springer-Verlag, 2001.

60. R. MacGregor. The evolving technology of classification-based knowledge repre-
sentation systems. In John F. Sowa, editor, Principles of Semantic Networks, pages
385–400. Morgan Kaufmann, Los Altos, 1991.

61. E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bulletin,
2(3), 1991.

62. B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture
Notes In Artificial Intelligence. Springer-Verlag, 1990.

63. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence
Journal, 43:235–249, 1990.

64. B. Nebel. Terminological cycles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Networks, pages 331–361. Morgan
Kaufmann, Los Altos, 1991.

65. L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with
counting. In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science
(LICS-97), 1997.

66. L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with
counting. In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science
(LICS-97), pages 318–327. IEEE Computer Society Press, 1997.

67. J. Z. Pan. Web ontology reasoning in the SHOQ(D) description logic. In Proceed-
ings of the Workshop on Methods for Modalities 2001 (M4M-2001), Amsterdam,
2001. ILLC.



21

68. P. F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Work-
shop (DL’99), pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-22/, 1999.

69. P. F. Patel-Schneider, D. L. McGuiness, R. J. Brachman, L. A. Resnick, and A.
Borgida. The CLASSIC knowledge representation system: Guiding principles and
implementation rational. SIGART Bulletin, 2(3):108–113, 1991.

70. C. Peltason. The BACK system — an overview. SIGART Bulletin, 2(3):114–119,
1991.

71. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, volume 1137 of Lecture Notes In Artificial Intelligence. Springer-Verlag,
1996.

72. U. Sattler. Description logics for the representation of aggregated objects. In
W.Horn, editor, Proceedings of the 14th European Conference on Artificial Intelli-
gence. IOS Press, Amsterdam, 2000.

73. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages
466–471, Sydney, 1991.

74. K. Schild. Querying Knowledge and Data Bases by a Universal Description Logic
with Recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

75. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence Journal, 48(1):1–26, 1991.

76. R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer. Building a reason-able bioin-
formatics ontology using OIL. In Proceedings of the IJCAI-2001 Workshop on
Ontologies and Information Sharing, pages 81–90, 2001.

77. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001. electronically available at
http://www.bth.rwth-aachen.de/ediss/ediss.html.

78. W. van der Hoek and M. De Rijke. Counting objects. Journal of Logic and
Computation, 5(3):325–345, 1995.


