
Reasoning in the SHOQ(Dn) Description Logic

Jeff Z. Pan and Ian Horrocks

Information Management Group

Department of Computer Science

University of Manchester

Oxford Road, Manchester M13 9PL, UK

{pan,horrocks}@cs.man.ac.uk

Abstract

Description Logics (DLs) are of crucial importance to the development of the Seman-
tic Web, where their role is to provide formal underpinnings and automated reasoning
services for Semantic Web ontology languages such as DAML+OIL. In this paper1 we
show how the description logic SHOQ(D), which has been designed to provide such
services, can be extended with n-ary datatype predicates as well as datatype number re-
strictions, to give SHOQ(Dn), and we present an algorithm for deciding the satisfiability
of SHOQ(Dn) concepts, along with a proof of its soundness and completeness. The work
is motivated by the requirement for n-ary datatype predicates in relation to “real world”
properties such as size, weight and duration, in the Semantic Web applications.

1 Introduction

Description Logics (DLs) are of crucial importance to the development of the so-called “Se-
mantic Web” [2], where their role is to provide formal underpinnings and automated reasoning
services for Semantic Web ontology languages [3, 10], such as DAML+OIL [6]. Significant ef-
fort has already been devoted to the investigation of suitable DLs—in particular, Horrocks
and Sattler [7] have presented the SHOQ(D) DL, along with a sound and complete algorithm
for deciding concept satisfiability, a basic reasoning service for DLs and ontologies. A key
feature of SHOQ(D) is that, like DAML+OIL, it supports datatypes [1] (e.g., string, integer)
as well as the usual abstract concepts (e.g., animal, plant).

SHOQ(D), however, supports a very restricted form of datatypes, i.e., it can only deal with
unary datatype predicates. While this is enough for the current version of the DAML+OIL
language, it may not be adequate for some Semantic Web applications and for possible future
extensions of DAML+OIL. E.g., ontologies used in e-commerce may want to classify different
items according to their sizes, and to reason that an item which has height less than 5cm and
the sum of its length and width less than 10cm is a kind of item for which no shipping costs
are charged. Here “less than 5cm(height)” is a unary datatype predicate, and “the sum less
than 10cm(length,width)” is a binary predicate (see also the according SHOQ(Dn)-concept
in Section 2). As shown above, unary predicates are not enough in the example, while n-
ary datatype predicates are often necessary for “real world” properties, such as size, weight,
duration etc., in the ontology applications.

1Also available at http://www.cs.man.ac.uk/∼panz/Zhilin/download/Paper/Pan-Horrocks-shoqdn-
2002.pdf

An approach of extending DL with datatypes was first introduced by Baader and Hanschke
[1], who described a datatype (D) extension of the well known ALC DL. Baader and Hanschke
[1] have shown that although the satisfiability of ALC(D) is decidable, if ALC(D) is extended
with transitive closure of features, the satisfiability problem is undecidable. Lutz [8] proved
that reasoning with ALC(D) and general TBoxes is undecidable. In order to extend expres-
sive DLs with concrete domains, Horrocks and Sattler [7] proposed a simplified approach on
concrete domain and applied this approach on the SHOQ(D) DL. Pan [9] investigated the
simplifying constraints of SHOQ(D) w.r.t. datatypes, and showed how these could be relaxed
in order to extend SHOQ(D) with n-ary datatype predicates. We should mention that, sim-
ilar to Baader and Hanschke [1]’s approach, Haarslev et al. [4] extended the SHN DL with
restricted concert domain (D)− and gave the SHN (D)− DL, which supports n-ary datatype.

In this paper, we extend our work in [9] and add datatype number restrictions to give the
SHOQ(Dn) DL, and present a sound and complete decision procedure for concept satisfiability
and subsumption. The rest of the paper is organized as follows. In Section 2, we give the
definition of the SHOQ(Dn) DL. In Section 3, we define a tableau for SHOQ(Dn). In
Section 4, we give an algorithm and its decidability proof. Section 5 is a brief discussion on
future works of SHOQ(Dn).

2 SHOQ(Dn)

Definition 1 ∆Dis the datatype domain covering all concrete datatypes.

Definition 2 Let C, R = RA]RD, I be disjoint sets of concept, abstract and concrete role
and individual names. For R and S roles, a role axiom is either a role inclusion, which is
of the form R v S for R,S ∈ RA or R,S ∈ RD, or a transitivity axiom, which is of the
form Trans(R) for R ∈ RA. A role box R is a finite set of role axioms. A role R is called
simple if, for v* the transitive reflexive closure of v on R and for each role S, S v* R implies
Trans(S) 6∈ R.

The set of concept terms of SHOQ(Dn) is inductively defined. As a starting point of the
induction, any element of C is a concept term (atomic terms). Now let C and D be concept
terms, o be an individual, R be a abstract role name, T1, . . . , Tn be concrete role names, P be
an n-ary predicate name. Then the following expressions are also concept terms:

1. > (universal concept) and >D (universal datatype),

2. C t D (disjunction), C u D (conjunction), ¬C (negation), and {o} (nominals),

3. ∃R.C (exists-in restriction) and ∀R.C (value restriction),

4. >mR.C (atleast restriction) and 6mR.C (atmost restriction),

5. ∃T1, · · · , Tn.Pn (datatype exists) and ∀T1, · · · , Tn.Pn (datatype value),

6. >mT1, . . . , Tn.Pn (datatype atleast) and 6mT1, . . . , Tn.Pn (datatype atmost),

7. >mT , 6mT (number restrictions on concrete roles).

SHOQ(Dn) extends SHOQ(D) by supporting n-ary datatype predicates Pn, the inter-
pretation PD

n of which is
PD

n ⊆ dD

1 × · · · × dD

n ⊆ ∆n
D

where dD

i ∈ ∆D are datatypes. The interpretation of the projection of Pn is defined as

Pn(i)D ⊆ dD

i ⊆ ∆D

Construct Name Syntax Semantics

universal datatype >D >D

D = ∆D

datatype predicate Pn PD

n ⊆ dD

1 × · · · × dD

n ⊆ ∆n
D

datatype exists ∃T1, · · · , Tn.Pn (∃T1, · · · , Tn.Pn)I = {x ∈ ∆I | ∃y1 · · · yn.
〈x, y1〉 ∈ T I

1 ∧ · · · ∧ 〈x, yn〉 ∈ T I
n ∧ 〈y1, · · · yn〉 ∈ PD

n }

datatype value ∀T1, · · · , Tn.Pn (∀T1, · · · , Tn.Pn)I = {x ∈ ∆I | ∀y1 · · · yn.
〈x, y1〉 ∈ T I

1 ∧ · · · ∧ 〈x, yn〉 ∈ T I
n → 〈y1, · · · yn〉 ∈ PD

n }

datatype atleast >mT1, . . . , Tn.Pn (>mT1, . . . , Tn.Pn)I = {x ∈ ∆I |]{〈y1 · · · yn〉 |
〈x, y1〉 ∈ T I

1 ∧ · · · ∧ 〈x, yn〉 ∈ T I
n ∧ 〈y1, · · · yn〉 ∈ PD

n } ≥ m}

datatype atmost 6mT1, . . . , Tn.Pn (6mT1, . . . , Tn.Pn)I = {x ∈ ∆I |]{〈y1 · · · yn〉 |
〈x, y1〉 ∈ T I

1 ∧ · · · ∧ 〈x, yn〉 ∈ T I
n ∧ 〈y1, · · · yn〉 ∈ PD

n } ≤ m}

concrete role atleast >mT (>mT)I = {x ∈ ∆I |]{y ∈ ∆D | 〈x, y〉 ∈ T} ≥ m}

concrete role atmost 6mT (6mT)I = {x ∈ ∆I |]{y ∈ ∆D | 〈x, y〉 ∈ T} ≤ m}

Figure 1: Datatype constructs in SHOQ(Dn)

and note that when we say
〈y1, . . . , yn〉 ∈ PD

n

we mean: (i) yi ∈ Pn(i)D for 1 ≤ i ≤ n, and (ii) y1, . . . , yn satisfy datatype predicate Pn. The
interpretations of other datatype constructs are listed in Figure 1. Note that concrete role
atleast (atmost) is only a special form of datatype atleast (atmost, respectively) where n = 1
and Pn = >D.

To illustrate the use of SHOQ(Dn)-concept, let’s go back to the example we used in
Section 1. Items with height less than 5cm, and the sum of their length and width less that
10cm can be defined as a SHOQ(Dn)-concept

item u = 1height.<5cm u = 1length u = 1width u ∀length, width.sum <10cm

where “=1” is a shortcut for “6 1 u > 1”, and height, length and width are concrete roles,
<5cm is a unary datatype predicate and sum <10cm is a binary predicate. Note that <5cm and
sum <10cm are datatype predicates, rather than datatype number restrictions.

Datatypes and predicates are considered to be already sufficiently structured by the type
system, which may includes a derivation mechanism and built-in ordering relations, so that it
can be used to define datatypes d and predicates Pn, as well as negation of predicates ¬Pn, it
can be used to check if a tuple of values t1, . . . , tn satisfy a predicate Pn, if a set of tuples of
values satisfy a set of predicates simultaneously etc. With the type system, we can deal with an
arbitrary conforming set of datatypes and predicates without compromising the compactness
of the concept language or the soundness and completeness of our decision procedure [7].

3 A Tableau for SHOQ(Dn)

In this section, we define a tableau for SHOQ(Dn). For ease of presentation, we assume
all concepts to be in negation normal form (NNF). We use ∼ C to denote the NNF of ¬C.
Moreover, for a concept D, we use cl(D) to denote the set of all sub-concepts of D, the
NNF of these sub-concepts, and the (possibly negated) datatypes occurring in these (NNF of)
sub-concepts.

Definition 3 If D is a SHOQ(Dn)-concept in NNF, R a role box, and RD
A , RD

D
are the sets

of abstract and concrete roles occurring in D or R, a tableau T for D w.r.t. R is defined
as a quadruple (S,L,EA,ED) such that: S is a set of individuals, L : S → 2cl(D) maps each
individual to a set of concepts which is a subset of cl(D), EA : RD

A → 2S×S maps each abstract

role in RD
A to a set of pairs of individuals, ED : RD

D
→ 2S×∆D maps each concrete role in RD

D

to a set of pairs of individuals and concrete values, and there is some individual s ∈ S such
that D ∈ L(s). For all s, t ∈ S, C,C1, C2 ∈ cl(D), R,S ∈ RD

A , T, T ′, T1, . . . , Tn ∈ RD
D

, n-ary
predicate Pn and

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ EA(S) and C ∈ L(t)},

T1T2 . . . T T
n (s, Pn) := {〈y1, . . . , yn〉 ∈ PD

n | 〈s, y1〉 ∈ ED(T1), . . . , 〈s, yn〉 ∈ ED(Tn)},

DCT (s, T1, . . . , Tn, y1, . . . , yn, Pn) :=







true if 〈s, yi〉 ∈ ED(Tn)(1 ≤ i ≤ n) and
〈y1, . . . , yn〉 ∈ PD

n

false otherwise

it holds that:

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4) if 〈s, t〉 ∈ EA(R) and R v* S, then 〈s, t〉 ∈ EA(S),
if 〈s, t〉 ∈ ED(T) and T v* T ′, then 〈s, t〉 ∈ ED(T ′),

(P5) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ EA(R), then C ∈ L(t),

(P6) if ∃R.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ EA(R) and C ∈ L(t),

(P7) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ EA(R) for some R v* S with Trans(R), then ∀R.C ∈ L(t),

(P8) if >nS.C ∈ L(s), then]ST (s, C) > n,

(P9) if 6nS.C ∈ L(s), then]ST (s, C) 6 n,

(P10) if {6nS.C, >nS.C} ∩ L(s) 6= ∅ and 〈s, t〉 ∈ EA(S), then {C,∼C} ∩ L(t) 6= ∅,

(P11) if {o} ∈ L(s) ∩ L(t), then s = t,

(P12) if ∀T1, · · · , Tn.Pn ∈ L(s) and 〈s, t1〉 ∈ ED(T1), · · · , 〈s, tn〉 ∈ ED(Tn), then DCT (s, T1, . . . , Tn,
t1, . . . , tn, Pn) = true,

(P13) if ∃T1, · · · , Tn.Pn ∈ L(s), then there is some t1, · · · , tn ∈ ∆D such that 〈s, t1〉 ∈ ED(T1), · · · ,
〈s, tn〉 ∈ ED(Tn), DCT (s, T1, . . . , Tn, t1, . . . , tn, Pn) = true,

(P14) if >mT1, . . . , Tn.Pn ∈ L(s), then]T1T2 . . . T T
n (s, Pn) > m,

(P15) if 6mT1, . . . , Tn.Pn ∈ L(s), then]T1T2 . . . T T
n (s, Pn) 6 m,

(P16) if {6mT1, . . . , Tn.Pn, >mT1, . . . , Tn.Pn} ∩L(s) 6= ∅ and 〈s, t1〉∈ ED(T1), . . . , 〈s, tn〉∈ ED(Tn),
then for 1 ≤ i ≤ n, we have either DCT (s, T1, . . . , Tn, t1, . . . , tn, Pn) = true, or DCT (s, T1, . . . , Tn

, t1, . . . , tn,¬Pn) = true.

Lemma 4 A SHOQ(Dn)-concept D in NNF is satisfiable w.r.t. a role box R iff D has a
tableau w.r.t. R.

Proof: For the if direction, if T = (S,L,EA,ED) is a tableau for D, a model I = (∆I , ·I)
of D can be defined as: ∆I = S, CN

I = {s | CN ∈ L(s)} for all concept names CN in cl(D), if R ∈
R+,RI

A = EA(R)+, otherwise RI
A = EA(R) ∪

⋃

P v* R,P 6=R

P I , RI
D = ED(R), where EA(R)+ denotes

the transitive closure of EA(R). DI 6= ∅ because s0 ∈ DI . Here we only concentrate on (P14)
to (P15); the remainder is similar to the proofs found in [9]2.

2Note that in this paper, we mainly focus on the proof of the number restriction on concrete roles, the
remainder is similar to the proofs found in [9].

1. E = >mT1, . . . , Tn.Pn. According to (P14), E ∈ L(s) implies that]T1T2 . . . T T
n (s, Pn) >

m. By the definition of T1T2 . . . T T
n (s, Pn), we have s ∈ {x ∈ ∆I |]{〈t1, . . . , tn〉 | 〈x, t1〉 ∈

ED(T1) ∧ . . . ∧ 〈x, tn〉 ∈ ED(Tn) ∧ 〈t1, . . . , tn〉 ∈ PD

n } ≥ m}, Since ED(Ti) = T I
i , we have

s ∈ (>mT1, . . . , Tn.Pn)I . Similarly, if E = 6mT1, . . . , Tn.Pn, we have s ∈ (6mT1, . . . , Tn.Pn)I .

For the converse, if I = (∆I , ·I) is a model of D, then a tableau T = (S,L,EA,ED) for D

can be defined as: S = ∆I , EA(R) = RI
A, ED(R) = RI

D, L(s) = {C ∈ cl(D) | s ∈ CI}. It
only remains to demonstrate that T is a tableau for D: T satisfies (P14) to (P16) as a direct
consequence of the semantics of datatype constructs.

4 A Tableau Algorithm for SHOQ(Dn)

Form Lemma 4, an algorithm which constructs a tableau for a SHOQ(Dn)-concept D can be
used as a decision procedure for the satisfiability of D with respect to a role box R.

Definition 5 Let R be a role box, D a SHOQ(Dn)-concept in NNF, RD
A the set of abstract

roles occurring in D or R, and ID the set of nominal occurring in D. A tableaux algorithm
works on a completion forest for D w.r.t. R, which is a set of trees F. Each node x of the
forest is labelled with a set

L(x) ⊆ cl(D) ∪ {↑ (R, {o}) | R ∈ RD
A and {o} ∈ ID},

and each edge 〈x, y〉 is labelled with a set of role names L(〈x, y〉) containing roles occurring
in cl(D) or R. Concrete values are represented by concrete nodes, which are always leaves
of F. Additionally, we keep track of inequalities between nodes of the tree with a symmetric
binary relation 6= between the nodes of F. For each {o} ∈ ID there is a distinguished node
x{o} in F such that {o} ∈ L(x). The algorithm expands the forest either by extending L(x)
for some node x or by adding new leaf nodes.

Given a completion forest, a node y is called an R-successor of a node x if, for some R
′

with
R

′

v* R, either y is a successor of x and R
′

∈ L(〈x, y〉), or ↑ (R
′

, {o}) ∈ L(x) and y = x{o}.
Ancestors and roots are defined as usual. For an abstract role S and a node x in F we define
SF(x,C) by

SF(x, C) := {y | y is an S-successor of x and C ∈ L(y)}.

Given a completion forest, concrete nodes t1, . . . , tn are called T1T2 . . . Tn-successors of a
node x if, for some concrete roles T

′

1, . . . , T
′

n with T
′

i v* Ti, t1, . . . , tn are successors of x and

T
′

i ∈ L(〈x, ti〉), 1 ≤ i ≤ n. For a node x, its T1T2 . . . Tn-successors 〈t1, . . . , tn〉, n-ary datatype
predicate Pn, we define a set DCF by

DCF = {< DCelement >}

where DCF is a set of DCelements, which have the form

< DCelement >= {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn}

DCF is initialised as an empty set. DCFis is satisfied iff. there exists value : NC → ∆D,
where NC is the set of all concrete nodes, s.t. for all {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn} ∈ DCF,
〈value(t1), . . . , value(tn)〉 ∈ PD

n are true. In order to retrieve the set of all the T1T2 . . . Tn-
successors of x, which satisfy a certain predicate Pn, we define DCSuccessorsF(x, Pn) by

DCSuccessorsF(x, T1, . . . , Tn, Pn) := {〈t1, . . . , tn〉 | {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn} ∈ DCF}

In order to retrieve the set of datatype predicates, which are satisfied by T1T2 . . . Tn-successors
t1, . . . , tn of x, we define DCPredicatesF(x, T1, . . . , Tn, t1, . . . , tn)by

DCPredicatesF(x, T1, . . . , Tn, t1, . . . , tn) := {Pn | {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn} ∈ DCF}

∀P -rule: if 1.∀T1, · · · , Tn.Pn ∈ L(x) , x is not blocked, and
2.there are T1T2 . . . Tn-successors 〈t1, . . . , tn〉 of x

with Pn 6∈ DCPredicatesF(x, T1, . . . , Tn, t1, . . . , tn),
then DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn}.

∃P -rule: if 1.∃T1, · · · , Tn.Pn ∈ L(x), x is not blocked, and
2.there are no T1T2 . . . Tn-successors 〈t1, . . . , tn〉 of x,

with Pn ∈ DCPredicatesF(x, T1, . . . , Tn, t1, . . . , tn),
then 1. create T1T2 . . . Tn-successors 〈t1, · · · , tn〉 with L(〈x, ti〉) = {T i}

for 1 ≤ i ≤ n and
2. DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn}.

>P -rule: if 1.>mT1, · · · , Tn.Pn ∈ L(x), x is not blocked, and
2.]DCSuccessorsF(x, T1, . . . , Tn, Pn) < m,

then 1. create m T1T2 . . . Tn-successors 〈t11, . . . , t1n〉, · · · , 〈tm1, . . . , tmn〉,
with L(〈x, tji〉) −→ {T i}, and

2. DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈tj1, . . . , tjn〉, Pn} and

3. set 〈tj1, . . . , tjn〉 ˙6=〈tk1, . . . , tkn〉, for all 1 ≤ i ≤ n, 1 ≤ j < k ≤ m.
6P -rule: if 1.6mT1, · · · , Tn.Pn ∈ L(x), x is not blocked, and

2.]DCSuccessorsF(x, T1, . . . , Tn, Pn) > m and
3.there exist j 6= k, s.t. 〈tj1, . . . , tjn〉, 〈tk1, . . . , tkn〉 ∈ DCSuccessorsF(x,

T1, . . . , Tn, Pn) but not 〈tj1, . . . , tjn〉 ˙6=〈tk1, . . . , tkn〉, 1 ≤ j < k ≤ m + 1,
then 1. L(〈x, tki〉) −→ L(〈x, tki〉) ∪ L(〈x, tji〉), and

2. DCF −→ DCF[〈tj1, . . . , tjn〉/〈tk1, . . . , tkn〉] |x,T1,...,Tn,Pn
, and

3. add u ˙6=〈tk1, . . . , tkn〉 for each tuple u with u ˙6=〈tj1, . . . , tjn〉, and
4. remove all tji where tji isn’t in any tuples ofDCSuccessorsF(x, ∗, ∗) and

remove all edges leading to these tji from F.
chooseP -rule: if 1.{6mT1, · · · , Tn.Pn, >mT1, · · · , Tn.Pn} ∩ L(x) 6= ∅, x is not blocked, and

2.〈t1, . . . , tn〉 are T1T2 . . . Tn-successors of x, and
then either DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn},

or DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉,¬Pn}.

Figure 2: The Tableaux Expansion Rules for SHOQ(Dn) (I)

Note that we can use * as parameter in DCSuccessorsF and DCPredicatesF, e.g. DCSuccess−
orsF(x, ∗, ∗) means all the concrete successors of node x.

A node x is directly blocked if none of its ancestors are blocked, and it has an ancestor x
′

that is not distinguished such that L(x) ⊆ L(x
′

). We call x
′

blocks x. A node is blocked if it
is directly blocks or if its predecessor is blocked.

If {o1}, · · · , {ol} are all individuals occurring in D, the algorithm initialises the completion
forest F to contain l + 1 root nodes x0, x{o1}, · · · , x{ol} with L(x0) = {D} and L(x{oi}) =

{{oi}}. The inequality relation ˙6= is initialised with the empty relation. F is then expended
by repeatedly applying the expansion rules, listed in Figure 23, stopping if a clash occurs in
one of its nodes.

For a node x, L(x) is said to contain a clash if:

1. for some concept name A ∈ NC , {A,¬A} ⊆ L(x), or

2. for some role S, 6 S.C ∈ L(x) and there are n + 1 S-successors y0, · · · , yn of x with
C ∈ L(yi) for each 0 ≤ i ≤ n and yi 6= yj for each 0 ≤ i < j ≤ n, or

3. DCF isn’t satisfied;

4. for some concrete roles T1, . . . , Tn, n-ary datatype predicate Pn, 6mT1, . . . , Tn.Pn ∈
L(x), we have]T1T2 . . . T F

n(x, Pn) ≥ m + 1, or
3Figure 2 only lists the rules about datatypes, other rules can be found in [9].

5. for some {o} ∈ L(x), x ˙6= x{o}.

The completion forest is complete when, for some node x, L(x) contains a clash, or when
none of the expansion rules is applicable. If the expansion rules can be applied in such a
way that they yield a complete, clash-free completion forest, then the algorithm returns “D
is satisfiable w.r.t. R”, and “D is unsatisfiable w.r.t. R” otherwise.

Lemma 6 (Termination) When started with a SHOQ(Dn)-concept D in NNF, the tableau
algorithm terminates.

Proof: Let d = |cl(D)|, k = |RD
A |, nmax the maximal number in atleast number restrictions

as well as datatype atleast, and ` = |ID|. Here we mainly concentrate on rules about number
restriction on concrete roles. Termination is a consequence of the following properties of the
expansion rules:

1. Each rule but the 6-, 6P - or the O-rule strictly extends the completion forest, by extending
node labels or adding nodes, while removing neither nodes nor elements from node.

2. New nodes are only generated by the ∃-, ∃P -, >-rule or the >P -rule as successors of a node x for
concepts of the form ∃R.C, ∃T1, · · · , Tn.Pn, >nS.C and >mT1, · · · , Tn.Pn in L(x). For a node
x, each of these concepts can trigger the generation of successors at most once—even though
the node(s) generated was later removed by either the 6-, 6P - or the O-rule. For the >P -rule:
If T1T2 . . . Tn-successors 〈t11, · · · , t1n〉, · · · , 〈tm1, · · · , tmn〉 were generated by an application of
the >P -rule for a concept (> mT1, · · · , Tn.Pn), then 〈tj1, · · · , tjn〉 6

.
= 〈tk1, · · · , tkn〉 holds for all

1 ≤ i ≤ n and 1 ≤ j < k ≤ m. This implies there will always be m T1T2 . . . Tn-successors
〈t11, · · · , t1n〉, · · · , 〈tm1, · · · , tmn〉 of x with Pn(i) ∈ L(ti) and 〈tj1, · · · , tjn〉 6

.
= 〈tk1, · · · , tkn〉 holds

for all 1 ≤ i ≤ n and 1 ≤ j < k ≤ m, since the 6-, O- and 6P -rule can never merge them,
and, whenever an application of the 6P -rule sets some L(tji) to ∅, then there will be some
T1T2 . . . Tn-successors 〈tk1, · · · , tkn〉 of x with Pn(i) ∈ L(tki) and 〈tk1, · · · , tkn〉 “inherits” all
inequalities from 〈tj1, · · · , tjn〉. Hence the out-degree of the forest is bounded by d · nmax.

3. Nodes are labelled with subsets of cl(D)∪{↑(R, {o}) | R ∈ RD
A and {o} ∈ ID}, and the concrete

value nodes are always leaves, so there are at most 2d+k` different node labellings. Therefore, if
a path p is of length at least 2d+k`, then, from the blocking condition above, there are two nodes
x, y on p such that x is directly blocked by y. Hence paths are of length at most 2d+k`.

Lemma 7 (Soundness) If the expansion rules can be applied to a SHOQ(Dn)-concept D

in NNF and a role box R such that they yield a complete and clash-free completion forest,
then D has a tableau w.r.t. R.

Proof: Let F be the complete and clash-free completion forest constructed by the tableaux
algorithm for D. To cope with cycle, an individual in S corresponds to a path in F. Due to
qualifying number restrictions, we must distinguish different nodes that are blocked by the
same node. We refer the readers to [9] for the definitions of path and related concepts. We
can define a tableau T = (S,L,EA,ED) with: S = Paths(F), L(p) = L(Tail(p)), EA(RA) =
{〈p, q〉 ∈ S × S | q = [p|(x, x′)] and x′ is an RA-successor of Tail(p), } ED(RD) = {〈p, t〉 ∈
S × ∆D | t is an RD-successor of Tail(p)}.

We have to show that T satisfies (P14) to (P17) from Definition 3.

• (P14): Assume >mT1, . . . , Tn.Pn ∈ L(p). This implies that in F there exist m T1T2 . . . Tn-
successors 〈t11, . . . , t1n〉, . . . , 〈tm1, . . . , tmn〉 of Tail(p) and Pn(i) ∈ L(tji) for all 1 ≤ i ≤
n, 1 ≤ j ≤ m. We claim that , for each of these concrete nodes, according to the con-
struction of ED above, we have 〈p, tji〉 ∈ ED(Ti), and 〈tj1, · · · , tjn〉 6

.
= 〈tk1, · · · , tkn〉 and

{p, 〈T1, . . . , Tn〉, 〈tj1, . . . , tjn〉, Pn} ∈ DCF for all 1 ≤ i ≤ n and 1 ≤ j < k ≤ m (otherwise,
>P -rule was still applicable). According to the definition of DCFand T1T2 . . . T T

n (p, Pn), this
implies]T1T2 . . . T T

n (p, Pn) > m.

• (P15): Assume (P15) doesn’t hold. Hence there is some p ∈ S with (6mT1, . . . , Tn.Pn) ∈ L(p)
and]T1T2 . . . T T

n (p, Pn) > m. According to the definition of T1T2 . . . T T
n (p, Pn), let value(tji)

be the value of node tji, this implies that there exist 〈t11, . . . , t1n〉, . . . , 〈tm+1,1, . . . , tm+1,n〉 such
that 〈p, value(tji)〉 ∈ ED(Ti), and {p, 〈T1, . . . , Tn〉, 〈tj1, . . . , tjn〉, Pn} ∈ DCF, for all 1 ≤ i ≤ n
and 1 ≤ j < k ≤ m + 1. Therefore the 6-rule is still applicable, which is a contradiction
to the completeness of F. Thus the assumption]T1T2 . . . T T

n (p, Pn) > m is false. So we have
]T1T2 . . . T T

n (p, Pn) 6 m.

• (P16): Assume {6mT1, · · · , Tn.Pn, >mT1, · · · , Tn.Pn} ∩ L(p) 6= ∅, 〈p, ti〉 ∈ ED(Ti), 1 ≤ i ≤ n,
thus 〈t1, . . . , tn〉 is a T1T2 . . . Tn-successors of Tail(p). Let value(ti) be the value of ti: (1) if
{p, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉, Pn} ∈ DCF, we have DCT (p, T1, . . . , Tn, value(t1), . . . , value(tn),
Pn) = true; (2) if {p, 〈T1, . . . , Tn〉, 〈t1, . . . , tn〉,¬Pn} ∈ DCF, we have DCT (p, T1, . . . , Tn, value(t1)
, . . . , value(tn),¬Pn) = true.

Lemma 8 (Completeness) If a SHOQ(Dn)-concept D in NNF has a tableau w.r.t. R, then
the expansion rules can be applied to D and R such that they yield a complete, clash-free
completion forest.

Proof: Let T = (S,L,EA,ED) be a tableau for D w.r.t. a role box R. We use T to guide
the application of the non-deterministic rules. We define a function π, mapping the nodes of
the forest F to S ∪ ∆D such that L(x) ⊆ L(π(x)); 〈π(x), π(y)〉 ∈ EA if: 1. π(y) ∈ S and y

is an RA-successor of x, or 2. ↑ (R, {o}) ∈ L(x) and y = x{o}; 〈π(x), π(y)〉 ∈ ED if π(y) 6∈

S and y is an RD-successor of x; x 6
.
= y implies π(x) 6= π(y); 〈yj1, . . . , yjn〉 ˙6= 〈yk1, . . . , ykn〉

implies 〈π(yj1), . . . , π(yjn)〉 ˙6= 〈π(yk1), . . . , π(ykn)〉 for yj1, . . . , yjn, yk1, . . . , ykn 6∈ S. (∗)
We only have to consider the various rules about number restriction on concrete roles.

• The >P -rule: If >mT1, . . . , Tn.Pn ∈ L(x), then >mT1, . . . , Tn.Pn ∈ L(π(x)). Since T is a
tableau, (P14) of Definition 3 implies that]T1T2 . . . T T

n (π(x), Pn) > m. Hence there are m tuples
〈t11, . . . , t1n〉, . . . , 〈tm1, . . . , tmn〉, such that 〈π(x), tji〉 ∈ ED, 〈tj1, . . . , tjn〉 6

.
= 〈tk1, . . . , tkn〉, and

DCT (π(x), T1, . . . , Tn, tj1, . . . , tjn, Pn) = true, for 1 ≤ i ≤ n and 1 ≤ j < k ≤ m. The
>P -rule generates m new T1T2 . . . Tn-successors 〈y11, . . . , y1n〉, . . . , 〈ym1, . . . , ymn〉. By setting
π′ := π[yji 7→ tji](1 ≤ i ≤ n, 1 ≤ j < k ≤ m), one obtains a function π′ that satisfies (∗) for the
modified forest.

• The 6P -rule: If 6mT1, . . . , Tn.Pn ∈ L(x), then 6mT1, . . . , Tn.Pn ∈ L(π(x)). Since T is a
tableau, (P15) of Definition 3 implies]T1T2 . . . T T

n (π(x), Pn) 6 m. If the 6P -rule is applicable,
we have]DCSuccessorsF(x, T1, . . . , Tn, Pn) > m, which implies that there are at least m + 1
T1T2 . . . Tn-successors 〈y11, . . . , y1n〉, . . . , 〈ym+1,1, . . . , ym+1,n〉 such that {x, 〈T1, . . . , Tn〉, 〈yj1,
. . . , yjn〉, Pn} ∈ DCF, for 1 ≤ j ≤ m + 1. Thus, there must be two 〈yj1, . . . , yjn〉 and
〈yk1, . . . , ykn〉 among the m + 1 T1T2 . . . Tn-successors such that 〈π(yj1), . . . , π(yjn)〉 = 〈π(yk1,
. . . , π(ykn〉 (otherwise]T1T2 . . . T T

n (π(x), Pn) > m would hold). This implies 〈yj1, . . . , yjn〉 ˙6=〈yk1

, . . . , ykn〉 cannot hold because of (∗). Hence the 6P -rule can be applied without violating (∗).

• The chooseP -rule: If {6mT1, · · · , Tn.Pn, >mT1, · · · , Tn.Pn} ∩ L(x) 6= ∅, we have {6 mT1, · · · ,
Tn.Pn, >mT1, · · · , Tn.Pn}∩L(π(x)) 6= ∅, and if there are T1T2 . . . Tn-successors 〈y1, . . . , yn〉 of x,
then 〈π(x), π(yi)〉∈ ED, 1 ≤ i ≤ n, due to (∗). Since T is a tableau, (P16) of Definition 3 implies
either DCT (π(x), T1, . . . , Tn, π(y1), . . . , π(yn), Pn) = true, or DCT (π(x), T1, . . . , Tn, π(y1), . . . ,
π(yn),¬Pn) = true. Hence the chooseP -rule can accordingly either set DCF −→ DCF ∪
{x, 〈T1, . . . , Tn〉, 〈y1, . . . , yn〉, Pn} or set DCF −→ DCF ∪ {x, 〈T1, . . . , Tn〉, 〈y1, . . . , yn〉,¬Pn}.

Whenever a rule is applicable to F, it can be applied in a way that maintains (∗), and, from
Lemma 6, we have that any sequence of rule applications must terminate. Since (∗) holds,
any forest generated by these rule-applications must be clash-free. This can be seen from the
condition described in [7] plus the following:

• If F does not satisfy DCF, there must be some concrete nodes from which no values mapping sat-
isfies all the relevant predicates, and therefore there can be no values satisfying all of properties
(P12) to (P16).

• F cannot contain a node x with 6mT1, . . . , Tn.Pn ∈ L(x), and m + 1 T1T2 . . . Tn-successors
〈t11, . . . , t1n〉, . . . , 〈tm+1,1, . . . , tm+1,n〉 of x with Pn(i) ∈ L(tji), 〈tj1, . . . , tjn〉 ˙6= 〈tk1, . . . , tkn〉
and DCF(x, tj1, . . . , tjn, Pn) = true, for all 1 ≤ i ≤ n, 1 ≤ j < k ≤ m+1, and, since 〈tj1, . . . , tjn〉
˙6= 〈tk1, . . . , tkn〉 implies 〈π(tj1), . . . , π(tjn)〉 ˙6= 〈π(tk1), . . . , π(tkn)〉,]T1T2 . . . T T

n (π(x), Pn) > n
would hold which contradicts (P15) of Definition 3.

As an immediate consequence of Lemmas 2,4,5 and 6, the completion algorithm always
terminates, and answers with “D is satisfiable w.r.t. R” iff. D has a tableau T . Next,
subsumption can be reduced to (un)satisfiability. Finally, SHOQ(Dn) can internalise general
concept inclusion axions [5]. However, in the presence of nominals, we must also add ∃O.o1 ∩
· · · ∩ ∃O.ol to the concept internalising the general concept inclusion axioms to make sure
that the universal role O indeed reaches all nominals Oi occuring in the input concept and
terminology. Thus, we can decide these inference problems also w.r.t. terminologies.

Theorem 9 The tableau algorithm presented in Definition 5 is a decision procedure for sat-
isfiability and subsumption of SHOQ(Dn)-concepts w.r.t. terminologies.

5 Discussion

As we have seen, unary datatype predicates are usually not enough, while n-ary datatype
predicates are often necessary in modelling the “concrete properties” of real world entities.
Furthermore, datatype number restrictions are very expressive that e.g., with them, we can
define single/multiple-value datatype attributes. Therefore, we have extended SHOQ(D)
with n-ary datatype predicates and datatype number restrictions to give the SHOQ(Dn) DL.
We have shown that the decision procedure for concept satisfiability and subsumption is still
decidable in SHOQ(Dn). An implementation based on the FaCT system is planned, and will
be used to test empirical performance.

With its support for both nominals and n-ary datatype predicates with datatype number
restrictions, SHOQ(Dn) is well suited to provide reasoning support for ontology languages in
general, and Semantic Web ontology languages in particular. As future work, it would be inter-
esting to study the datatype number restrictions in the Semantic Web applications. It is also
important to extend current optimisation techniques to cope with nominals used in the logic.
The SHOQ(Dn) DL decision procedure is similar to those of the SHIQ DL implemented in
the successful FaCT system, and should be amenable to a similar range of performance en-
hancing optimisations. Thirdly, ABox reasoning and query answering in SHOQ(Dn) are also
very interesting, since these efforts will make more reasoning services available, e.g., querying
services, to the Web ontology languages, such as DAML+OIL.

Acknowledgements

We would like to thank Ulrike Sattler, since the work presented here extends the original work
on SHOQ(D). Thanks are also due to Carsten Lutz and Volker Haarslev for their helpful
discussion on concrete datatypes.

References

[1] F. Baader and Philipp Hanschke. A Scheme for Integrating Concrete Domains into Con-
cept Languages. In IJCAI-91, pages 452–457, 1991.

[2] Tim Berners-lee. Semantic Web Road Map. W3C Design Issues. URLhttp://www.w3.
org/DesignIssues/Semantic.html, Oct. 1998.

[3] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. can Harmelen, and I. Horrocks. Enabling
knowledge representation on the Web by extending RDF Schema, Nov. 2000.

[4] Volker Haarslev, Ralf Mller, and Michael Wessel. The Description Logic ALCNHR+
Extended with Concrete Domains: A Practically Motivated Approach. In Proceedings
of International Joint Conference on Automated Reasoning, IJCAR’2001, R. Gor, A.
Leitsch, T. Nipkow (Eds.),Siena, Italy, Springer-Verlag, Berlin., pages 29–44, Jun. 2001.

[5] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description Log-
ics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the 6th In-
ternational Conference on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-Verlag,
1999.

[6] Ian Horrocks and Peter F. Patel-Schneider. The Generation of DAML+OIL. Aug. 2001.
The 2001 International Workshop on Description Logics.

[7] Ian Horrocks and U. Sattler. Ontology Reasoning for the Semantic Web. In In B. Nebel,
editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI’01), Morgan
Kaufmann, pages 199–204, 2001.

[8] C. Lutz. NExpTime-complete Description Logics with Concrete Domains . LuFG Theo-
retical Computer Science, RWTH Aachen, Germany, 2000.

[9] Jeff Z. Pan. Web Ontology Reasoning in the SHOQ(Dn) Description Logic. In
Proceedings of the Methods for Modalities 2 (M4M-2), Nov 2001. ILLC, Univer-
sity of Amsterdam, URL http://www.cs.man.ac.uk/~panz/Zhilin/download/Paper/

Pan-shoqdn-2001.pdf.

[10] Jeff Z. Pan and Ian Horrocks. Metamodeling Architecture of Web On-
tology Languages. In Proceeding of the Semantic Web Working Symposium
(SWWS), July 2001. URL http://www.cs.man.ac.uk/~panz/Zhilin/download/

Paper/Pan-Horrocks-rdfsfa-2001.pdf.

