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Abstract.

We presentan optimisedversionof the tableaualgorithmimple-
mentedn theFaCTknowledgerepresentatiosystemwhich decides
satisfiabilityandsubsumptionn SHZQ, a very expressie descrip-
tion logic providing, e.g.,inverseandtransitive roles,numbemrestric-
tions,andgenerabxioms.We prove thattherevisedalgorithmis still
soundandcompleteanddemonstratéhatit greatlyimprovesFaCT's
performance—irsomecasedy morethantwo ordersof magnitude.

1 Intr oduction

DescriptionLogics (DLs) form a family of knowledgerepresenta-
tion formalismsdesignedfor the representatiorof and reasoning
aboutterminolagyical knowledg. They canbe viewed as offsprings
of semantimetworks andframe-basedystemswhosedevelopment
wasmotivatedby the insightthat suchsystemaeeda well-defined,
implementation-independesémanticsA first attempttowardsthis
goalwasseernin thesuccessfuandhighly influentialknowledgerep-
resentatiorsystemKL-ONE [4].

The two main inferenceproblemsaddressedy KL-ONE were
subsumptiorbetweenpairsof conceptswhich wasusedto arrange
the conceptdefinedin a knowledgebaseinto a taxonomy andsat-
isfiability of single conceptswhich was usedto checkthe consis-
teng of the knowledge base.Unfortunately when the underlying
representationdormalism was studiedin detail, it turnedout that
the abore mentionedinferenceproblemswere undecidablg18]. It
might be aguedthat semi-decidabilityis fine for otherapplications,
andthuscouldbetoleratedput sincesubsumptiortanbereducedo
unsatisfiabilityandsatisfiabilityto nonsubsumptionpneof thetwo
problemswould alwaysbetruly undecidable.

Following thisobsenration,the developersof the CLASSIC system
[3] decidedthat the underlyingDL shouldnot only be decidable,
but be realistically decidable,i.e., they wantedthe corresponding
inferenceproblemsto be decidablein polynomialtime. Thusthey
severely restrictedthe expressve power of their DL, and designed
a (sub-BooleanpL with tractable,sound,and completeinference
algorithms.

In parallel, the computationalcompleity of a variety of DLs
was investigatedand it turned out that the inferenceproblemsof
(almostall) DLs with interestingexpressie pover were at least
PspAacE-complete[7], i.e., of a compleity apparentlyfar too high
to be practicable Despitethis discouragingassessmemith regard
to worst caseperformanceseveral researchersnplementedsatisfi-
ability/subsumptioralgorithmsfor suchDLs [1, 5], anddeveloped
sophisticatedbptimisationtechniquesdesignedto improve typical
case performance.Surprisingly these PsPACE algorithms proved
amenablé¢o optimisationandbehaedwell in practise—itwasfound
thatthe pathologicalcaseghatleadto the high compleity of these
DLs aresoartificial thatthey rarelyoccurin practice[16, 11, 19].

In the late 90’s, motivated by a medical terminology applica-

tion which requiredeven more expressie power, the DL system
FaCT wasimplementedwith an underlyingDL (first SHZF, later
SHZQ) which was of an even higher complity, namely EXp-

TIME-complete[15]. Interestingly after thoughtful optimisations,
this systenshavedthe samebehaviour asits predecessorsg., it be-
havedverywell in practice OthersystemdmplementingEXPTIME-

completeDLs weresubsequentlgleveloped[10, 17], andshaved a
similar behaiour—a phenomenoithatleadpartof the DL commu-
nity to believe that, with knowledge basesstemmingfrom realistic
applications;tractable”’means'in EXPTIME”.

At the sametime, expressve DLs wereshavn to have usefulap-
plicationsin the databaselomain—in particularthey were shavn
to be usefulfor reasoningaboutconceptuamodelsof databaseex-
pressede.q.,in extendecdentity-relationshigliagramsorin UML [6].
Roughlyspeakingsucha conceptuamodelcanbetranslatednto a
DL knowledgebase possiblywith the additionof further (integrity)
constraintsandthe inferenceservicesof a standardDL systemcan
thenbeusedto detectinconsistencieandimplicit is-alinks between
classesentities,or relations This approachs especiallyusefulwhen
integratingdatabasesr building datawarehousesandhasbeenim-
plementedn thelcowm tool for intelligentconceptuamodelling[9].
Interestingly this translationyields knowvledge basesfrom realistic
applicationghatcouldnot be solvedby ary of the availableDL sys-
tems[2], eventhoughthe UML diagramsthatleadto theseknowl-
edgebasesarerelatively smallandseeminglyharmless.

In this paperwe reportonanoptimisationof the FaCT systenthat
wasinspiredby the failure of state-of-the-arDL systemgo handle
theseknaowledge basesRoughly speaking FaCT performsa com-
pletesearchof treeswhosedepthcanbeexponentialin thesizeof the
input. It useshack-trackingsearchanda cycle-detectiormechanism
calledblodking thatlimits the treedepth(which could otherwisebe
infinite) to ensurgerminationwithout compromisingsoundnesand
completeness.

In order to deal with inverseroles and the possibility of con-
ceptswith only infinite models,the SHZQ algorithmimplemented
in FaCTintroduceda new andmoresophisticateddouble-blocking”
technique[14]. The conditionsrequiredto trigger a “block” were
morecomple thanin earliertableauxalgorithmsfor lessexpressie
DLs, but werestill provably correct(i.e., maintainedsoundnessand
completenessandrelatively easyto check.Although thesecondi-
tions were more exactingthanwasstrictly necessaryrelaxingthem
would have significantlyincreasedheir compleity, makingit harder
to prove that they were still correct. Moreover, it seemedhat the
costof checkingmorecomplex conditionswould be prohibitive, and
likely to outweighary benefitthat might derive from establishing
blocksata shallaver depth.

An investigationof FaCT’s behaiour whenfailing to solve UML
derivedknowledgebasesashowever, leadusto reconsidethiscon-
jecture,to formulatea moredetailedandlessstrict blocking condi-



tion and,asamatterof courseto prove thatthemodifiedalgorithmis

still soundandcomplete Theeffect of the optimisedblockingcondi-

tion on FaCT’s behaiour turnedout to be dramatic—insomecases
it improved the systems performanceby morethantwo ordersof

magnitude.Clearly, the value of improved blocking should not be

underestimatedvenif theoverheadseemsonsiderable.

2 Preliminaries

In this section,we define the syntax and semanticsof SHZO-
conceptandroles.We startwith SHZ Q-roles,thenintroducesome
abbreiations,andfinally defineSHZ Q-concepts.

Definition 1 Let R be a setof role nameswith both transitive and
normalrole namesR.+ U Rp = R, whereRp N Ry = (. Theset
of SHZQ-rolesis RU{R™ | R € R}. A roleinclusionaxiomis of
theform R C S, for two SHZQ-rolesR andS. A role hierarchy is
asetof roleinclusionaxioms.

An interpretationZ = (AZ,.7) consistsof a setAZ, calledthe
domainof Z, anda function-Z which mapsevery role to a subsebf
AT x AT suchthat,for P € R andR € Ry,

(z,y) € PLiff (y,z) € P
andif (z,y) € R* and(y, z) € R%, then(x, z) € R™.

An interpretatiori satisfiesarole hierarchy R iff R C S for each
R C S € R; suchaninterpretatioris calleda modelof R.

We introducesomenotationto make thefollowing considerations
easier

1. Theinverserelationonrolesis symmetric,andto avoid consider
ing rolessuchasR™ "~ , we defineafunctionlnv which returnsthe
inverseof arole:

Inv(R) := R~ if Risarolename,
1 S if R = S~ for arolenamesS.

2. Sincesetinclusionis transitve andR* C S impliesinv(R)* C
Inv(S)I, for arolehierarchyR, weintroduce [E asthetransitive-
reflexive closureof ConR U {Inv(R) C Inv(S) | RC S € R}.
WeuseR = S asanabbreiationfor R £S andS E R.

3. Obviously, arole R is transitve if andonly if its inverselnv(R)
is transitive. However, in cyclic casessuchasR = S, S is tran-
sitive if R or Inv(R) is a transitive role name.In orderto avoid
thesecasedistinctions the function Trans returnstrue iff R is a
transitve role—regardlesswhetherit is a role name,the inverse
of arole name,or equialentto a transitve role name(or its in-
verse):Trans(R) := true if, for someS with S = R, S € R4
or Inv(S) € R, andfalse otherwise.

Definition 2 A role R is calledsimplew.r.t. R iff not Trans(S) for
eachS ER.

Let N¢ beasetof concepnamesThe setof SHZQ-conceptds
the smallestsetsuchthat

1. everyconceptnameC € N¢ isaconcept,

2. if C andD areconceptsandR is a SHZQ-role, then(C M D),
(Cu D), (=C), (VR.C),and(3R.C) areconceptsand

3. if C is aconcept,R is asimple SHZQ-role andn € N, then
(£ n RC)and(> n R C) areconcepts.

The interpretationfunction -~ of an interpretationZ = (AZ,.F)
maps additionally every concepto a subsebf AT suchthat

(¢nbp)* =c*nbt,

-CT = AT\ CF,

(3R.C)* = {x € AT | Thereis somey € AT with

(z,y) € RT andy € C7},

(VR.C)* = {z € A* | Forally € AZ,if (z,y) € R%,
theny € C*},

(KnRO)" ={x e AT | {R (z,C) < n},
(>n RO = {o € AT | 4R (2,C) > n},

(cubD)* =c*ubpt,

where,for a set M, we denotethe cardinality of M by M and
R*(z,0) isdefinedas{y | (z,y) € R* andy € C*}.

A conceptC is calledsatisfiablewith respecto a role hierarchy
R iff thereis amodelZ of R with CT # §. Suchaninterpretation
is calledamodelof C w.r.t. R. A conceptD subsumes conceptC
w.r.t. R (written C C D) iff CT C DT holdsfor every modelZ
of R. Two conceptd’, D areequivalentw.r.t. R (writtenC =% D)
iff they aremutually subsuming.

3 An optimised blocking condition for SHZQ

For easeof constructionwe assumeall conceptgo be in negation
normalform (NNF), thatis, negationoccursonly in front of concept
namesAny SHZQ-concepttaneasilybetransformedo anequva-
lent onein NNF by pushingnegationsinwardsusinga combination
of DeMomans laws andthe duality betweenuniversaland existen-
tial andat-most(<) andat-leas{(>) restrictions For aconcepiC we
will denotethe NNF of =C by ~C.

For a SHZQ-conceptD in NNF and a role hierarchy we de-
fine clog D) to be the smallestsetthat containsD, is closedun-
der sub-formulaeand ~, and which contains,for eachsubconcept
VR.C € clogD) androle R' E R, alsothe conceptvR'.C. Note
that#clog(D) is linearin |D| + |R|.

A tableaualgorithmtriesto constructfor aninput conceptD, an
abstraction of amodelof D, i.e., aso-calledtableaufor D. The ad-
vantageof constructing/testinghe existenceof tableauxratherthan
modelsis thatin tableauxall conditionsarelocal, whereaghereare
global conditionsin the definition of models(e.g.,transitwity of r~
for r € Ry). A definitionof aSHZQ tableaucanbefoundin [12].

Lemmal A SHZQ-conceptD is satisfiablewith respecto a role
hierarchy R iff there existsa tableaufor D with respecto R.

From Lemmal, an algorithm which constructsa tableaufor a
SHIQ-conceptD canbe usedasa decisionprocedureor the sat-
isfiability of D with respectto a role hierarchyR. Suchan algo-
rithm will now bedescribedn detail. It usesthe sametechniquesas
the SHZ Q-algorithmin [13] but for themodifiedpairwise-blocking
condition.

The algorithmpresentederetries to constructfor aninput con-
ceptD, atableauvhoserelationalstructureformsatreewherenodes
arelabelledwith conceptsrom clog D) andwith D in the label of
the root node.We musttake specialcareto prevent the algorithm
from generatingatreewith arbitrarilylong pathsj.e., from failing to
terminate In the original algorithm,we introduceda so-calleddou-
ble blocking condition Roughlyspeakingjf we find two nodesona
path,anodez andits successoy, suchthatthey have two ancestor
nodesagain,anodez’ andits successoy’ suchthat(l) z andz’ are



labelledwith the sameconcepts(2) y andy’ arelabelledwith the
sameconceptsand(3) therelationsbetweenr andy arethesameas
thosebetweenz’ andy’, thenthis pathis no longermodifiedbelav
y, i.e., it cannotbecomelonger This three-fold conditionis rather
strict, e.g.,theroot nodecannever block anothemode,andthis can
leadto laterblockingandlongerpathsthanis absolutelynecessary

In the following, we will shaw how we canloosenthis condition
sothatblockingcanoccurearlier Basically in conditions(1) and(2)
we will restricttheconceptdo thereleventones andin condition(3)
we will restricttherelationsto therelevantones.

Definition 3 Let R bearole hierarchyand D a SHZ Q-conceptin

NNF. A completiontreew.r.t. R andD is atreeT whereeachnode
z of thetreeis labelledwith asetL(z) C clos(D) andeachedge
(z,y) is labelledwith asetof role namesL ({z, y)) containing(pos-
sibly inverse)olesoccurringin clog( D). Additionally, we keeptrack
of inequalitiesbhetweemodesof thetreewith asymmetrichinaryre-
lation # betweerthenodesof T.!

Given a completiontree, ancestorssuccessorsetc. are defined
asusual.A nodey is calledan R-successoof a nodez if y is a
successoof z and S € L({z,y)) for someS with SER,; y is
calledan R-neighbourof z if y is an R-successoof z, orif z is an
Inv(R)-successoof y.

Forarole S, aconceptC, andanodez in T, we defineS™ (z, C)
by ST (x,C) := {y | y is S-neighbourof  andC € L(y)}.

A nodeis blocked if it is directly or indirectly blocked. A node
is indirectly blodked if its predecessois blocked, and (in orderto
avoid wastedexpansionafter an applicationof the <-rule, which is
explainedlater)anodey will alsobetakento beindirectly blocked
if it is asuccessoof anodez andL({z,y)) = @. A nodeis directly
blockedif it is c-blodked or a-bloded?

A nodew is a-bloded (seeFigure 3 in AppendixA for anillus-
tration)if noneof its ancestorareblocked, it hasancestors andw’
suchthatw is asuccessoof v, and

Bl L(w) C L(w'),
B2 if wis anlnv(S)-successoof v andVS.C € L(w'), then
(a.)C € L(v), and
(b.) if thereis someR with Trans(R) andR £ S suchthatw is
anlnv(R)-successoof v, thenVR.C € L(v),
B3 if (< n S C) € L(w'), then
(a.)w is notanlnv(S)-successoof v or
(b.) w is anlnv(.S)-successoof v and~C € L(v) or
(c.)w is anlnv(S)-successoof v, C € L(v), andw’ hasat most
n — 1 S-successors with C' € L(z), and
B4 if (>m T E) € L(w') (resp.3T.E € L(w')), then
(a.)w' hasatleastm (resp.atleastl) T-successors with
E e L(z)or
(b.) w is anlnv(T")-successoof v andE € L(v).

A nodew is c-blocked (seeFigure4 in AppendixA for anillus-
tration)if noneof its ancestorareblocked, it hasancestors andw’
suchthatw is asuccessoof v, it satisfiedB1 andB2, and

BS if (K nT E) € L(w'), thenw is notan Inv(T)-successoof v
or~E € L(v),and

B6 if wisanU-successoof v and(> m U F) € L(v), then~F €
L(w).

1 The # relationis usedto prohibit identification of nodesintroducedby
an applicationof the >-rule, which could leadto non-terminatiordue to
infinite sequencesf >- and<-rule applications.

2 A c-block leadsto a cycle in the tableauto be constructedwhereasan
a-blockis unravelledin thestandardvay—‘a” standsfor acyclic.

In this case,we saythat w’ is a c-bloking candidatefor w. We
saythat a c-blocking candidatew; for w c-bloks w if thereis no
c-blocking candidatew?, for w “between”w; andw, i.e., if all c-
blocking candidatesv;, for w differentfrom w} areancestorsf w}.
Thedefinitionof a nodea-bloking anotheroneis analogous.

For anodez, L(x) is saidto containa clashif, for someconcept
nameA € N¢, {A,~A} C L(z), orif, for asomeconcepiC, some
role S, andsomen € N: (< n S C) € L(z) andtherearen + 1
S-neighboursyo, . .., y» of x suchthatC' € L(y;) andy; # y; for
allo <i<j<n.

The algorithminitialisesthe tree T to containa single nodezo,
calledthe root node,with L(zo) = {D}, whereD is the concept
to be testedfor satisfiability Theinequalityrelation# is initialised
with theemptyrelation. T is thenexpandedby repeatedlyapplying
therulesfrom Figure 1. The orderin which the rulesareappliedis
the following: all rulesareappliedfirst to the ancestor®f a nodex
beforethe >- or the3-ruleis appliedto x.

The completiontreeis completeif, for somenodez, L(z) con-
tainsa clashor if noneof the rulesis applicable.If, for aninput
conceptD, the expansionrules canbe appliedin sucha way that
they yield acomplete clash-freecompletiontree,thenthealgorithm
returns‘ D is satisfiabl&, and“ D is unsatisfiabl& otherwise.

Remark: (a) Pleasenote that some of the rules are non-
deterministic—hencéhe somevhat strangereturnbehaiour of the
algorithm. (b) The intuition for the blocking conditionsare asfol-
lows: whenbuilding a tableaufrom a completiontree,an a-blockis
unravelledin thestandardvay (i.e.,acopy of w' andits successoris
madea successoof v), while ac-blockleadsto acylic tableausince
the“original” w’ is madea successoof v. B1 ensureghatw’ satis-
fiesall V restrictionsonv. B2 ensureghatwv satisfiesall “backward”
V restrictionson w’. In the a-blockingcase,B3 andB4 ensurethat
whena copy of w' hasv asa predecessafinsteadof its formerpre-
decessor)this copy still satisfiests at-mostandat-leastrestrictions.
In thec-blockingcase B5 ensureghatat-mostrestrictionsonw’ are
still satisfiedwith the new neighbourv, andB6 ensureghatat-least
restrictionsonv arestill satisfiedevenif severalof its successorare
c-blocked by the samenode.(c) A-blocking alonewould have been
enoughto ensurecorrectnessand termination—hwavever, c-blocks
may occurearlier and may thusleadto a betterperformancelllus-
trationsof thetwo blocking conditionsaregivenin AppendixA.

Lemma?2 LetD bea SHZQ-concepin NNFandR arolehierar-

chy.

1. Theapplicationof thetableaualgorithmto D andR terminates.

2. If the expansionrules canbe appliedto D sud that they yield a

completeand clash-feecompletiontreew.r.t. R, then D hasa tab-

leauw.r.t. R.

3.If D hasatableauw.r.t. R, thenthetableaualgorithmcanbeap-

pliedto D sud thatit yieldsa completeand clash-flee completion
treew.r.t. R.

Sketchof the Proof: (1.) Terminationis dueto thefactthatthetab-
leaualgorithmconstructsjn a monotonicway, a treewith bounded
depthand width. (2.) From a completeand clash-freecompletion
tree,we canconstrucia tableauby almoststandardunravelling. The
only non-standaretlementsare (i) cyclic partsof the tableauin c-
blocking situationsand (ii) a slightly more complex unravelling to
make surethat at-leastrestrictionsare satisfiedin situationswhere
two successorsf the samenodeare a-blocled by the samenode.
(3.) A tableaucan be usedto trigger the applicationof the non-



—n if 1. Ci1MNCs € L(z), zisnotindirectly blocked,and{C1, C2} Z L(z)
then L(z) — L(z)U{Cy,C>}
-y if 1. Cy U Cs € L(z), z is notindirectly blocked,and{C1, C2} N L(z) =
then L(z) — L(z) U {C} for someC € {C1, C-}
—3! if 1. 3S.C € L(z), z is notblockedandz hasno S-neighboury with C € L(y),
then createanew nodey with L((z,y)) = {S} andL(y) = {C}
—v! if 1. VS.C € L(zx), z is notindirectly blocked,andthereis an S-neighboury of z with C' ¢ L(y)
then L(y) — L(y)U{C}
—v,: if 1. VS.C € L(z), z is notindirectly blocked,andthereis someR with Trans(R) andR E S,
2. andan R-neighboury of z with VR.C ¢ L(y)
then L(y) — L(y)U{VR.C}
—pa if 1. (<nSC)e L(x),zisnotindirectly blocked,andthereis an S-neighboury of z with {C, ~C} N L(y) =0
then L(y) — L(y) U {E} forsomeE € {C,~C}
—> if 1. (=nSC)e L(x),zisnotblockedand
2. therearenon nodesys, ...
then createn new nodesy, .. ., y, with L({z, y;}) = {S},
—< if 1. (<nSC)e L(x),zisnotindirectlyblocked, 1S™ (z, C) > n, and

then 1.L(z) — L(z) UL(y) and

2. if z isasuccessoof x then

3.L((z,y)) — 0
4. Setu # z for all u with u # y

,yn SuchthatC € L(y;), y; is anS-neighbourf z, andy; # y; forl1 <i < j < m,

2. therearetwo S-neighbourgy, z of z with C' € L(y), C € L(z), y is asuccessoof z, andnoty # z

_ L((z,2)) — L((z,2)) ULz, 1))
else(z isapredecessavf z) L({z,z)) — L({z,z)) U {Inv(R) | R € L({z,y))}

L(y;)) ={C},andy; £y; for1 <i<j<m.

Figurel. TheExpansiorRulesfor SHZQ

deterministiexpansiorrulesin suchawaythatthetableatalgorithm
yieldsa completeandclash-freecompletiontree.

Sinceterminologies(or generalTBoxes) can be internalisedin
SHZQ, and subsumptiorcan be reducedto satisfiability [14], we
thushave:

Theorem1 Thetableauxalgorithm decidessatisfiability and sub-
sumptionof SHZQ-conceptswith respectto role hierarchies and
terminolaies.

4 Empirical evaluation

The modifiedalgorithmhasbeenimplementedn the FaCT system
andtestedwith knowledgebaseqKBs) derived from realisticappli-

cations:either SHZQ encodingsof UML diagrams[2] or SHZQ

translationsof OIL/DAML+OIL ontologies[8]. In eachcase,we

have measuredhetime takento classifythe KB bothwith andwith-

out the optimisedblocking condition,and also measuredhe maxi-
mumsizeanddepthof treesconstructedy the algorithmduringthe
classificationprocedureThe resultsof thesetestsare shavn in the
following table.

OptimisedBlocking StandardBlocking
KB time(s) depth size | time(s) depth size
hospital 2 16 775 - 45 6874
library 0.25 9 147 1.25 11 153
restaurant 8 26 1280 672 36 5824
soccer 36 27 3840 918 32 7087
geography 9 8 70 4506 18 5983

It canbeseerthatthe optimisedblockingconditionuniformly im-
provesperformancendthat,in somecasestheimprovements quite
dramatic(morethantwo ordersof magnitudein the caseof the ge-

ographyknowledgebase) Thereasorfor thisis thereductionin the
depthandsize of the treeshuilt by the optimisedalgorithm. Apart
from theinherentcostof building largertrees the sizeof the search
spacalueto non-deterministiexpansionrmayincreasexponentially
with the numberof nodesin themodel.

It maybeinterestingto considerthe geographykKB in moredetalil
in orderto seewhy the performancémprovementis so dramatic?
As thenamesuggeststhis KB describeshe geographyof European
countriesE.qg.,it includestheaxioms:

Republic-of-lreland [ Fis-part-of.Ireland
Ireland [ dis-part-of.British-Isles
British-Isles [ Jis-part-of.Western-Europe
C

Western-Europe dis-part-of.Europe

If thesé'part-of” relationshipsvereuni-directionaltheKB would
berelatively trivial to classify However, theKB alsocontainsaxioms
specifyingthe partsthatmake up variouscompositese.g.:

British-Isles C Jis-part-of ~ .Ireland M Jis-part-of ~ .Great-Britain

This kind of cyclical constructionis quite commonin KBs that
describephysicallyconnectedstructuresandcanalsobe seenge.g.,
in the GALEN medicalterminologyKB. The effect of thesecyclical
axiomscanbe seenwhen classifyingthe conceptEurope. Figure 2
illustratespart of the tree built by the algorithmusingthe standard
doubleblocking. It canbe seenthat un-blocled nodeswhoselabel
includesEurope occurseveral timesin a single branchof the tree.

3 Withoutoptimisedblocking, FaCTwasunableto classifythehospitalkB—
systemresourcegmemory)wereexhaustedafter 86sof processing.

4 Pleasenote that the authorsdo not male ary claimsfor the “quality” or
“correctness’df this ontology



Thefourth nodein the branchis not blocked becausehefirst occur

renceof Europe is in thelabel of theroot node,which hasno prede-
cessorandthuscannotbe a blocking node.The seventhnodein the
branchis not blocked becausehe label of its predecessotontains
Southern-Europe, whereaghe label of the predecessaof the fourth

nodecontainswestern-Europe. Notethateachun-blocled nodewith

Europe in its labelwill leadto the generatiorof alarge sub-treedue
to anaxiomthatlists all the countriesthatmake up Europe.In con-
trast, the optimisedblocking condition allows the root nodeto c-

block thefourth node,greatlyreducingthe total sizeof thetree.

{Europe, .. .3

3

Figure2. Treebuilt by unoptimisedalgorithmfor conceptEurope

The hospital,library, restaurantandsoccerKBs wereall derived
from the encodingin SHZQ of UML diagrams.The natureof the
encodingmeansthat the resultingKBs tend to be highly cyclical.
Moreover, if the UML diagramsinclude maximumcardinality con-
straintson relations(e.g.,singlevaluedrelations) thenthe encoded
KB will include qualified at-mostrestrictions,possibly with com-
plex qualifying conceptdi.e., conceptof theform (<nR.C) where
C is non-atomic).The expansionof theseconceptss highly non-
deterministio(dueto the — < - andthe —.4-rule), andit is critical to
minimisethe numberof nodelabelsin which they occur In thecase
of the hospitalKB, for example,the degreeof non-determinismin
thelargertreegeneratedavithout the optimisedblocking conditionis
sogreatthat, in attemptingto searchit, FaCT exhaustghe system$
memory

5 Discussion

In order to deal with inverseroles and numberrestrictionsin a
logic lackingthefinite modelproperty the SHZQ algorithmimple-
mentedn theFaCT systemintroducedanev andmoresophisticated
“double-blocking” technique.The conditionsunderwhich a block
could be establishedvere clearly more exacting than was strictly
necessanybut it wasassumedhat,apartfrom the difficulty of prov-
ing soundnesandcompletenessheincreaseaostof checkingmore
preciselydefinedconditionswould outweighary benefitthat might
bederived.

Thefailure of the FaCT systento solve UML derivedknowledge
basedead us to reconsiderthis conjecture,andwe have presented
anoptimisedalgorithmthatchecksfor two differentkinds of block,
with more preciselydefinedconditionsunderwhich eachcanbe es-
tablishedIn spiteof thisincreasedtompleity, we have beenableto
prove thatthe optimisedalgorithmis still soundandcomplete,and
have shavn thatin somecasest canimprove FaCT's performance
by morethantwo ordersof magnitude.

Clearly, the aderseeffects of the stricterstandardlocking con-
dition shouldnot have beenunderestimatednefficient blockingcan
leadto anincreaseén thesizeof thetreeconstructedby thealgorithm,

andgiven alogic with the complity of SHZQ this canleadto a
catastrophidlow up in the size of the searchspace(the numberof
differenttreesthatmustbe explored).As we have shavn, this effect
canbe obsered in realisticknovledgebasegderived both from the
encodingof UML diagramsandfrom OIL/DAML+OIL ontologies.
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Figure 3. lllustrationof ana-blockingsituation.Thedoublearrav indicatesthata copy of w’ andits successoris madeanew successoof v when
constructinga tableau.
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Figure 4. lllustrationof ac-blockingsituation.Thearrow goingupto w’ indicatesthatw’ is madeanew successoof » whenconstructinga tableau.



