
OilEd: a Reason-able Ontology Editor for the

Semantic Web

Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens

Information Management Group, Department of Computer Science,

University of Manchester,

Oxford Road, Manchester M13 9PL, UK

{seanb,horrocks,carole,stevensr}@cs.man.ac.uk,

http://img.cs.man.ac.uk

Abstract. Ontologies will play a pivotal rôle in the \Semantic Web",

where they will provide a source of precisely de�ned terms that can

be communicated across people and applications. OilEd, is an ontology

editor that has an easy to use frame interface, yet at the same time allows

users to exploit the full power of an expressive web ontology language

(OIL). OilEd uses reasoning to support ontology design, facilitating the

development of ontologies that are both more detailed and more accurate.

1 Introduction

Ontologies have become an increasingly important research topic. This is a result
both of their usefulness in a range of application domains [1{3], and of the pivotal
rôle that they are set to play in the development of the Semantic Web

The Semantic Web vision, as articulated by Tim Berners-Lee [4], is of a Web
in which resources are accessible not only to humans, but also to automated
processes, e.g., automated \agents" roaming the web performing useful tasks
such as improved search (in terms of precision) and resource discovery, informa-
tion brokering and information �ltering. The automation of tasks depends on
elevating the status of the web from machine-readable to something we might
call machine-understandable. The key idea is to have data on the web de�ned
and linked in such a way that its meaning is explicitly interpretable by software
processes rather than just being implicitly interpretable by humans.

To realise this vision, it will be necessary to annotate web resources with
metadata (i.e., data describing their content/functionality). Standardisation pro-
posals for annotation languages have already been submitted to the World Wide
Web Consortium (W3C), in particular RDF (Resource Description Framework)
and RDF Schema (see [5] for a discussion of the rôles of these languages and of
XML/XML Schema). However, such annotations will be of limited value to auto-
mated processes unless they share a common understanding as to their meaning.
Ontologies, can help to meet this requirement by providing a \representation of
a shared conceptualisation of a particular domain" that can be communicated
across people and applications [6].



RDF Schema (RDFS) itself is already recognisable as an ontology/knowledge
representation language: it talks about classes and properties (binary relations),
range and domain constraints (on properties), and subclass and subproperty
(subsumption) relations. However, RDFS is a relatively primitive language (the
above is an almost complete description of its functionality), and more expressive
power would clearly be necessary/desirable in order to describe resources in
suÆcient detail. Moreover, such descriptions should be amenable to automated

reasoning if they are to be used e�ectively by automated processes.

These considerations have led to the development of OIL [7], an ontology
language that extends RDFS with a much richer set of modelling primitives. A
similar RDFS based web ontology language called DAML was been developed
as part of the DARPA DAML project [8] and the two languages have now been
merged under the name DAML+OIL1. OIL has a frame-like syntax, which fa-
cilitates tool building, yet can be mapped onto an expressive description logic
(DL), which facilitates the provision of reasoning services. OilEd is an ontology
editing tool for OIL (and DAML+OIL) that exploits both these features in order
to provide a familiar and intuitive style of user interface with the added bene�t

of reasoning support. Its main novelty lies in the extension of the frame editor
paradigm to deal with a very expressive language, and the use of a highly opti-
mised DL reasoning engine to provide sound and complete yet still empirically
tractable reasoning services.

Reasoning with terms from deployed ontologies will be important for the
Semantic Web, but reasoning support is also extremely valuable at the ontol-
ogy design phase, where it can be used to detect logically inconsistent classes
and to discover implicit subclass relations. This encourages a more descriptive
approach to ontology design, with the reasoner being used to infer part of the
subsumption lattice (see the case study presented in Section 4); the resulting
ontologies contain fewer errors, yet provide more detailed descriptions that can
be exploited by automated processes in the Semantic Web. Finally, reasoning is
of particular bene�t when ontologies are large and/or multiply authored, and
also facilitates ontology sharing, merging and integration [9]; considerations that
will be particularly important in the distributed web environment.

2 Oil and DAML+OIL

The development of OIL resulted from e�orts to combine the best features of
frame and DL based knowledge representation systems, while at the same time
maximising compatibility with emerging web standards. The intention was to
design a language that was intuitive to human users, and yet provided adequate
expressive power for realistic applications (many early DLs failed on this second
count|see [10]).

The resulting language combines a familiar frame like syntax (derived in
part from the OKBC-lite knowledge model [11]), with the power and 
exibility

1 see http://www.daml.org



of a DL (i.e., boolean connectives, unlimited nesting of class elements, transitive
and inverse slots, general axioms, etc.). The language is de�ned as an extension
of RDFS, thereby making OIL ontologies (partially) accessible to any \RDFS-
aware" application.

The frame syntax is less daunting to ontologists/domain experts than a DL
style syntax, and it facilitates a modelling style in which ontologies start out sim-
ple (in terms of their descriptive content) and are gradually extended, both as
the design itself is re�ned and as users become more familiar with the language's
advanced features (see Section 4). The frame paradigm also facilitates the con-
struction and adaption of tools, e.g., the OntoEdit and Prot�eg�e editors and the
Chimaera integration tool are all being adapted to use OIL/DAML+OIL [12,
13, 9].

On the other hand, basing the language on an underlying mapping to a very
expressive DL (SHQ) provides a well de�ned semantics and a clear understand-
ing of its formal properties, in particular that the class subsumption/satis�ability
problem is decidable and has worst case ExpTime complexity [14]. The mapping
also provides a mechanism for the provision of practical reasoning services by
exploiting implemented DL systems, e.g., the FaCT system [15].

OIL extends standard frame languages in a number of directions. One of the
key ideas is that an anonymous class description, or even boolean combinations
of class descriptions, can occur anywhere that a class name would ordinarily
be used, e.g., in slot constraints and in the list of superclasses. For example, in
Figure 1 (which uses OIL's \human readable" presentation syntax rather than
the more verbose RDFS serialisation), a herbivore is described as an animal that
eats only plants or part-of plants. Points to note are that universally quanti�ed
(value-type) and existentially quanti�ed (has-value) slot constraints are clearly
di�erentiated, and that the constraint on the eats slot is a disjunction, one of
whose components is an anonymous class description (in this case, just a single
slot constraint). In addition, it is asserted that the part-of slot is transitive, and
that its inverse is the slot has-part. Further details of the language will be given
in Section 3, and a complete speci�cation can be found in [7].

slot-def part-of

subslot-of structural-relation

inverse has-part

properties transitive

class-def de�ned herbivore

subclass-of animal

slot-constraint eats

value-type plant OR

slot-constraint part-of has-value plant

Fig. 1. OIL language example



3 OilEd

OilEd is a simple ontology editor that supports the construction of OIL-based
ontologies. The basic design has been heavily in
uenced by similar tools such
as Prot�eg�e [13] and OntoEdit [12], but OilEd extends these approaches in a
number of ways, notably through an extension of expressive power and the use

of a reasoner.
However, OilEd is not intended as a replacement for such tools|the cur-

rent implementation of OilEd is intended primarily as a prototype to test and
demonstrate novel ideas, and compromises have been made in the design and
implementation. For example, the tool does not provide key functionality for
collaborative ontology development such as versioning, integration and merging
of ontologies. Similarly, the powerful tailorability and knowledge acquisition as-
pects of tools such as Prot�eg�e have been ignored completely. Rather, the design
has concentrated on demonstrating how the frame paradigm can be extended to
deal with a more expressive modelling language, and how reasoning can be used
to support the design and maintenance of ontologies.

3.1 OilEd Functionality

Basic functionality allows the de�nition and description of classes, slots, individ-
uals and axioms within an ontology. In general, editing functions are provided
through graphical means|mouse driven drop down menus, toolbars and but-
tons. We will not provide a detailed description of the graphical user interface
here, as it is relatively standard (see Figure 2, which provides a screen shot of
the editors class de�nition panel). Instead, we will discuss the novel functionality
o�ered by the tool.

Frame Descriptions The central component used throughout OilEd is the
notion of a frame description. This consists of a collection of superclasses along
with a list of slot constraints. This is similar to other frame systems. Where
OilEd di�ers, however, is that wherever a class name can appear, a recursively
de�ned, anonymous frame description can be used. In addition, arbitrary boolean
combinations of frames or classes (using and, or and not) can also appear. This
is in contrast to conventional frame systems, where in general, slot constraints
and superclasses must be class names.

As well as being able to assert individuals as slot �llers, several types of
constraints on slot �llers can be asserted (these kinds of constraint are some-

times called facets). These include value-type restrictions (all �llers must be of
a particular class), has-value restrictions (there must be at least one �ller of a
particular class), and explicit cardinality restrictions (e.g., at most three �llers of
a given class). Each constraint has a clearly de�ned meaning, removing the con-
fusion present in some frame systems, where, for example, it is not always clear
whether the semantics of a slot-constraint should be interpreted as a universal
or existential quanti�cation.

Class De�nitions A class de�nition speci�es the class name, along with an
optional frame description (see above) and a speci�cation of whether the class



Fig. 2. OilEd Class Panel

is de�ned or primitive. If de�ned, the class is taken to be equivalent to the given
description (necessary and suÆcient conditions). If primitive, the class is taken
to be an explicit subclass of the given description (necessary conditions). In the
speci�cation of the OIL language, classes can have multiple de�nitions. In OilEd,
this is disallowed for implementation reasons. Instead classes must have a single
de�nition, but the same e�ect can be achieved through the use of equivalence
axioms as discussed below. Ontologies using multiple de�nitions can be read by
the tool. The �rst de�nition encountered will be used as the class de�nition,
with any subsequent de�nitions being translated to the appropriate axioms.

Slot De�nitions A slot de�nition gives the name of the slot and allows addi-

tional properties of the slot to be asserted, e.g., the names of any superslots or
inverses. If r is a superslot of s, then any two objects related via s must also be
related via r (i.e., s(a; b)! r(a; b)); if r is an inverse of s, then a is related to b via
s i� b is related to a via r (i.e., s(a; b)$ r(b; a)). Domain and range restrictions
on a slot can also be speci�ed. For example, we can constrain the relationship
parent to have both domain and range person, asserting that only persons can
have, and be, parents. As with class descriptions, the domain and range restric-
tions can be arbitrary class expressions such as anonymous frames or boolean
combinations of classes or frames, again extending the expressivity of traditional



frame editors. Note that in this context, the domain and range restrictions are
global, and apply to every occurrence of the slot, whether explicit or implicit.

A slot r can also be asserted to be transitive (i.e., r(a; b) and r(b; c)! r(a; c)),
functional (i.e., r(a; b) and r(a; c)! b = c) or symmetric (i.e., r(a; b)! r(b; a)).

All assertions made about slots are used by the reasoner, and may induce
hierarchical relationships between classes, e.g., as a result of domain and range
restrictions.

Axioms Another area where the expressive power of OIL/OilEd exceeds that
of traditional frame languages/editors is in the kinds of axiom that can be used
to assert facts about classes and their relationships. As well as standard class
de�nitions (which are really a restricted form of subsumption/equivalence ax-
iom), OilEd axioms can also be used to assert the disjointness or equivalence of
classes (with the expected semantics) along with coverings. A covering asserts
that every instance of the covered class must also be an instance of at least one
of the covering classes. In addition, coverings can be said to be disjoint, in which
case every instance of the covered class must be an instance of exactly one of
the covering classes.

Again, these axioms are not restricted to class names, but can involve arbi-
trary class expressions (anonymous frames or boolean combinations). This is a
very powerful feature, and is one of the main reasons for the high complexity of
the underlying decision problem.

Individuals Limited functionality is provided to support the introduction and
description of individuals|the intention within OilEd is that such individuals
are for use within class descriptions, rather than supporting the production of
large existential knowledge bases (it is supposed that RDF/RDFS will be used
directly for this purpose). As an example, we may wish to de�ne the class of
Italians as being all those Persons who were born in Italy, where Italy is not a
class but an individual.

As the FaCT system does not support reasoning with individuals, they are
treated (for reasoning purposes) as disjoint primitive classes. This is not an ideal
solution as it does lead to some inferences being lost, in particular those resulting
from the interaction between individuals and maximum cardinality constraints.
E.g., it would not be possible to infer that Persons who are citizens of Italy,
and of no other Country, are citizens of at most one Country. Work is currently

underway to extend the FaCT reasoner to deal explicitly with such individuals,
so that complete inference can be provided.

Concrete Datatypes Concrete datatypes (string and integers), along with ex-
pressions concerning concrete datatypes (such as min, max or ranges) can also
be used within class descriptions. However, the FaCT reasoner does not support
reasoning over concrete datatypes, and at present OilEd simply ignores concrete
datatype restrictions when reasoning about ontologies. The theory underyling
concrete datatypes is, however, well understood [16], and work is also in progress
to extend the FaCT reasoner with support for concrete datatypes.



The latest DAML+OIL language release uses the XML Schema type system
for the de�nition of data types. These are not fully supported in our current
version of OilEd.

3.2 Reasoning

In addition to the extended expressivity discussed above, OilEd's principal nov-
elty is in its use of reasoning to check class consistency and infer subsumption
relationships. Reasoning services are currently provided by the FaCT system,
but in principal any reasoner with the appropriate functionality/connectivity
could be used.

FaCT is a DL classi�er that o�ers sound and complete reasoning (satis�abil-
ity, subsumption and classi�cation) for two DLs: SHF and SHQ. FaCT's most
interesting features are its expressive logic (in particular the SHQ reasoner), its
optimised tableaux implementation (which has now become the standard for DL
systems), and its CORBA based client-server architecture [15].

The SHQ language can completely capture OIL ontologies, with the excep-
tion of two recently added features: concrete datatypes (strings, numbers, etc.)
and named individuals in class descriptions. As mentioned above, individuals
can be dealt with by treating them as pairwise disjoint atomic classes (although
with some loss of inferential power), while extending FaCT to deal with OIL's
concrete datatypes should be relatively straightforward.

FaCT's optimisations are speci�cally aimed at improving the system's per-
formance when classifying realistic ontologies. These optimisations lead to per-
formance improvements of several orders of magnitude when compared with
older DL and modal logic reasoners, and make the use of reasoning support
feasable in spite of the discouraging worst case complexity of the underlying de-
cision problem (ExpTime). The performance improvement is often so great that
it is impossible to measure precisely as unoptimised systems are virtually non-
terminating with ontologies that FaCT is easily able to deal with [15]. Taking
a large medical terminology ontology as an example [17], FaCT is able to check
the consistency of all 2,740 classes and determine the complete class hierarchy
in about 45 seconds of (700MHz Pentium III) CPU time; unoptimised systems
have been run for several weeks without their completing even a single class
consistency test.

In the current version of OilEd, reasoning is performed on a \single-shot"
basis, i.e., at some suitable point the user connects to the reasoner and requests
veri�cation of the ontology. Connection is via FaCT's CORBA based client-server
interface, which has the advantage that FaCT servers(s) can be running either
locally or remotely, and can provide a service to many OilEd users. Moreover,
the FaCT system has reasoning engines for both SHQ and SHF knowledge
bases, and if both services are available the user can choose to connect to the
faster SHF reasoner to verify an ontology that does not include either inverse
slots or cardinality constraints. The current implementation simply informs the
user if this is appropriate; future enhancements will include automatic selection
of an appropriate reasoning service.



Fig. 3. Hierarchy pre-classi�cation

When veri�cation is requested, the ontology is translated into an equivalent
SHQ (or SHF) knowledge base and sent to the reasoner for classi�cation [18].
OilEd then queries the classi�ed knowledge base, checking for inconsistent classes
and implicit subsumption relationships. The results are reported to the user by
highlighting inconsistent classes and rearranging the class hierarchy display to
re
ect any changes discovered. FaCT/OilEd does not provide any explanation
of its inferences, although this would clearly be useful in ontology design [19].

Figures 3 and 4 show the e�ects of classi�cation on (part of) the hierarchy
derived from the TAMBIS ontology (see Section 4). When verifying the on-
tology, a number of new subsumption relationships are discovered (due to the
class de�nitions in the model). In particular we can see that, after veri�cation,
holoenzyme is not only an enzyme, but also a holoprotein, and that metal-ion and
small-molecule are both subclasses of cofactor.

During subsequent editing, changes to the ontology are not communicated
to the reasoner instantaneously, but only when explicitly requested by the user.
Future versions of OilEd may incorporate \real-time" reasoning support, but



Fig. 4. Hierarchy post-classi�cation

the simple interaction model described here was considered appropriate for the
initial prototype.

3.3 Export

Although OilEd is primarily intended as an editor for OIL ontologies, the tool
will export to a number of formats. These include OIL Standard (the \human-
readable" presentation format for OIL that was used in Figure 1), OIL-RDFS
(OIL's standard RDFS serialisation) and DAML+OIL (also RDFS). In addition,

ontologies can be exported as HTML, facilitating viewing of the ontology without
the tool and class hierarchies generated by the classi�er can be exported as

graphs for viewing with AT&T's Dotty 2 application.
By exporting ontologies as RDFS, it is envisaged that \RDFS-aware" appli-

cations will be able to read and interpret OIL ontologies even if they are not
fully \OIL-aware". Of course, such applications would be unable to make use of
all of the information in the model, but may be able to use, for example, the sub-
class hierarchies within the ontology. In order to facilitate this, OilEd allows the

2 See http://www.research.att.com/sw/tools/graphviz/



possibility of explicitly adding all implicit subsumption relationships to the on-
tology before export, thus making this information available to non-OIL RDFS
applications, or even OIL-aware applications that do not employ reasoning.

4 Case Study: the TAMBIS Ontology

The rôle of ontologies in bioinformatics (the discipline of applying computing
to molecular biology) has become prominent in the last few years. Ontologies
are used as a mechanism for expressing and sharing community knowledge, to
de�ne common vocabularies (e.g., for database annotations), and to support
intelligent querying over multiple databases [20]. TAMBIS (Transparent Access
to Multiple Bioinformatic Information Sources) is a mediation system that uses
an ontology to enable biologists to ask questions over multiple external databases
using a common query interface. The ontology is central to the TAMBIS system:
it provides a model that queries can be formed against, it drives the query
formulation interface, it indexes the middleware wrappers of the component
sources, and it supports the query rewriting process [21]. The TAMBIS ontology
(TaO) covers the principal concepts of molecular biology and bioinformatics:
macromolecules; their motifs, their structure, function, cellular location and the
processes in which they act. It is an ontology intended for retrieval purposes
rather than hypothesis generation, so it is broad and shallow rather than deep
and narrow [20].

The TaO was originally modelled in the DL Grail [17]. It was subsequently
migrated to OIL in order to (a) exploit OIL's high expressivity so as to maintain
a better �delity with biological knowledge as it is currently perceived; (b) use
reasoning support when building and evolving complex ontologies where the
knowledge is dynamic and shifting; and (c) be able to deliver the TaO as a
conventional frame ontology (with all subsumptions made explicit), thus making
it accessible to a wider range of (legacy) applications and collaborators.

The approach to developing the ontology was directly in
uenced by the range
of expressivity that OIL a�ords, and the capabilities of OilEd itself, particularly
its reasoning facilities. The modelling philosophy was to be descriptive, i.e., to
model properties and allow as much as possible of the subsumption lattice to be

inferred by the reasoner. The design methodology was to �rst construct a basic
framework of primitive foundation classes and slots, working both top down
and bottom up, mainly using explicitly stated superclasses. The ontology was
then incrementally extended and re�ned by adding new classes, elaborating slot
�llers and constraints, and \upgrading" to de�ned classes wherever possible, so
that class speci�cations became steadily more detailed and more accurate. This
process was guided by subsumption reasoning|when elaborating or changing
classes, the reasoner could be used to check consistency and to show the impact
on the class hierarchy.



Figure 5 shows a (greatly simpli�ed) fragment of the TaO (using OIL's pre-
sentation syntax) that we will use to illustrate this methodology.3 Originally,
holoprotein, enzyme and holoenzyme were all primitive classes, with no slot con-
straints, and an explicitly asserted class hierarchy: holoprotein and enzyme were
subclasses of protein, and holoenzyme was a subclass of enzyme. During the ex-
tension and re�nement phase, the properties of the various classes were described
in more detail: it was asserted that a holoprotein binds a prosthetic-group, that
an enzyme catalyses a reaction, and that a holoenzyme binds a prosthetic-group.
Several of the classes were also upgraded to being de�ned when their description
constituted both necessary and suÆcient conditions for class membership, e.g.,
a protein is a holoprotein if and only if it binds a prosthetic-group. This allows
the reasoner to infer additional subclass relationships w.r.t. holoprotein, and in
particular that holoenzyme is a subclass of holoprotein. This latter relationship
probably would have been missed if the ontology had been hand crafted.

class-def protein

class-def de�ned holoprotein

subclass-of protein

slot-constraint binds has-value prosthetic-group

class-def de�ned enzyme

subclass-of protein

slot-constraint catalyses has-value reaction

class-def de�ned holoenzyme

subclass-of enzyme

slot-constraint binds has-value prosthetic-group

class-def de�ned cofactor

subclass-of (metal-ion or small-molecule)

disjoint metal-ion small-molecule

Fig. 5. Simpli�ed fragment of TAMBIS ontology

The extension and re�nement phase also included the addition of axioms
asserting disjointness, equality and covering, further enhancing the accuracy
of the model. Referring again to Figure 5, our biologist initially asserted that
cofactor was a subclass of both metal-ion and small-molecule (a common confu-
sion over the semantics of 'and' and 'or') rather than being either a metal-ion or a
small-molecule. Subsequently, when it was asserted thatmetal-ion and small-molecule

are disjoint, the reasoner inferred that cofactor was logically inconsistent, and
the mistake was recti�ed. Modelling mistakes such as these litter bioontologies
crafted by hand.

Other advantages derived from the use of OilEd included:

3 The complete ontology can be found at http://img.cs.man.ac.uk/stevens/

tambis-oil.html



{ The frame-like look and feel of OilEd, and the frame approach of the OIL
language, made ontology development much less daunting to our biologist
than writing SHQ logic expressions would have been.

{ Clipboard facilities provided by OilEd allowed (parts of) frames to be copied
and pasted, making it easy to experiment with new de�nitions and to main-
tain a consistent modelling style. E.g., coenzymeA-requiring-oxidoreductase

was built by copying nad-requiring-oxidoreductase and changing the constraint
on the binds slot from nad to coenzymeA. The reasoner then automatically
migrated the class from being a subclass of holoenzyme to being a subclass
of coenzyme-requiring-enzyme.

{ Class de�nitions can be as simple as possible yet as complex as necessary.
Parts of the TaO are simply primitive frames and slots; other parts are very
elaborate and exploit the full expressive power of the OIL language.

{ In TAMBIS, the ontology is managed by an ontology server that makes
full use of the class de�nitions, e.g., to classify user generated query classes.
However, being able to deliver a static \snapshot" of the ontology in the form
of an RDFS taxonomy has proved extremely convenient when working with
collaborators who are building ontologies that are in fact simple taxonomies,
such as the Gene Ontology [22].

5 Conclusion

Ontologies are useful in a range of applications, and will play a pivotal rôle in the
Semantic Web, where they will provide a source of precisely de�ned terms that
can be communicated across people and applications. Reasoning with respect to
such terms will be important for both the design and deployment of ontologies.

We have presented OilEd, an ontology editor that has an easy to use frame
interface, yet at the same time allows users to exploit the full power of an expres-
sive web ontology language (OIL/DAML+OIL). We have also shown how OilEd
uses reasoning to support ontology design and maintenance, and presented a
case study illustrating how this facility can be used to develop ontologies that
describe their domains in more detail and with greater accuracy.

OilEd is a prototype, designed to test and demonstrate novel ideas, and it
still lacks many features that would be required of a fully-
edged ontology devel-
opment environment, e.g., it provides no support for versioning, or for working
with multiple ontologies. Moreover, the reasoning support provided by the FaCT
system is incomplete for OIL extended with concrete datatypes and individuals,
and does not include additional services such as explanation. However, in spite
of these shortcomings, OilEd is already suÆciently well developed to be a very
useful tool, and to demonstrate the utility of OIL's integration of features from
frame, DL and web languages.

References

1. G. van Heijst, A. Schreiber, and B. Wielinga. Using explicit ontologies in KBS

development. Int. J. of Human-Computer Studies, 46(2/3):183{292, 1997.



2. D. L. McGuinness. Ontological issues for knowledge-enhanced search. In Proc. of

FOIS-98, 1998.

3. M. Uschold and M. Gr�uninger. Ontologies: Principles, methods and applications.

K. Eng. Review, 11(2):93{136, 1996.

4. T. Berners-Lee. Weaving the Web. Orion Business Books, 1999.

5. S. Decker et al. The semantic web | on the respective roles of XML and RDF.

IEEE Internet Computing, 2000.

6. T. R. Gruber. Towards principles for the design of ontologies used for knowledge

sharing. In Proc. of Int. Workshop on Formal Ontology, 1993.

7. D. Fensel et al. OIL in a nutshell. In Proc. of EKAW-2000, LNAI, 2000.

8. J. Hendler and D. L. McGuinness. The DARPA agent markup language. IEEE

Intelligent Systems, jan 2001.

9. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging

and testing large ontologies. In Proc. of KR-00, 2000.

10. J. Doyle and R. Patil. Two theses of knowledge representation. Arti�cial Intelli-

gence, 48:261{297, 1991.

11. V. K. Chaudhri et al. OKBC: A programmatic foundation for knowledge base

interoperability. In Proc. of AAAI-98, 1998.

12. S. Staab and A. Maedche. Ontology engineering beyond the modeling of concepts

and relations. In Proc. of the ECAI'2000 Workshop on Application of Ontologies

and Problem-Solving Methods, 2000.

13. W. E. Grosso et al. Knowledge modeling at the millennium (the design and evo-

lution of prot�eg�e-2000). In Proc. of KAW99, 1999.

14. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description

logics. In Proc. of LPAR'99, pages 161{180, 1999.

15. I. Horrocks. Benchmark analysis with fact. In Proc. TABLEAUX 2000, pages

62{66, 2000.

16. F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept

languages. In Proc. of IJCAI-91, pages 452{457, 1991.

17. A. Rector et al. The Grail concept modelling language for medical terminology.

Arti�cial Intelligence in Medicine, 9:139{171, 1997.

18. S. Decker et al. Knowledge representation on the web. In Proc. of DL 2000, pages

89{98, 2000.

19. D. McGuinness and A. Borgida. Explaining subsumption in description logics. In

Proc. of IJCAI-95, pages 816{821, 1995.

20. P.G Baker, C.A Goble, S. Bechhofer, N.W Paton, R. Stevens, and A. Brass. An

Ontology for Bioinformatics Applications. Bioinformatics, 15(6):510{520, 1999.

21. C. Goble, R. Stevens, G. Ng, S. Bechhofer, N.W. Paton, P.G. Baker, M. Peim, and

A. Brass. Transparent Access to Multiple Bioinformatics Information Sources.

IBM Systems Journal, 40(2), 2001.

22. M. Ashburner et al. Gene ontology: Tool for the uni�cation of biology. Nature

Genetics, 25:25{29, 2000.


