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Abstract.  Support in the exchange of data, information, and
knowledge is becoming a key issue in current computer
technology. Ontologies may play a major role in supporting the
information exchange processes, as they provide a shared and
common understanding of a domain. However, it is still an
important question how ontologies can be applied fruitfully to
online resources. Therefore, we will investigate the relation
between ontology representation languages and document
structure techniques (schemas) on the web. We will do this by
giving a detailed comparison of OIL, a proposal for expressing
ontologies in the Web, with XML Schema, a proposed standard
for describing the structure and semantics of XML based
documents. We will argue that these two refer to different levels
of abstraction, but that, in several cases, it can be advantageous to
base a document schema on an ontology. Lastly, we will show
how this can be done by providing an translation procedure from
an OIL ontology to a specific XML Schema. This will result in a
schema that can be used to capture instances of the ontology.123

1  INTRODUCTION

For the past few years, information on the the World Wide Web
was mainly intended for direct human consumption. However, to
facilitate new intelligent applications such as meaning-based
search and information brokering, the semantics of the data on the
internet should be accessible for machines. Therefore, methods
and tools to create such a “semantic web” have generated wide
interest. An important basis for many developments in this area is
the Resource Description Framework [1], a standard from the
W3C for representing metadata on the web, and its accompanying
schema language RDFS [2]. RDFS provides some modelling
primitives which can be used to define a vocabulary for a specific
domain.

However, although the general aim of this paper is also about
adding semantics to online resources, we will not look at RDF,
but take an orthogonal view and consider the relation between
ontologies and the structure and markup of documents. RDF is
mainly intended for describing explicit metadata about
webresources, but does not give semantics to the actual markup
of a document (i.e. the tags and their stucture). Therefore, RDF
does not answer the question how the structure of documents is
related to conceptual terms. 

The purpose of this paper is to investigate how ontologies are

related to document structure prescriptions, i.e. XML schemas.
We will do this by a close comparison of the ontology
representation language OIL, a recent proposal for expressing
ontologies in the Web, with XML Schema, a proposed standard
for describing the structure and semantics of Web documents. 

We will show that the relationship between ontologies and
schema definitions can be seen as a modern counterpart of the
relationship between (Extended) Entity Relationship Models (cf.
[3]) and relational schemas.4 That is, they refer to different
abstraction levels on how to describe information and therefore
also to different states in the process of developing on-line
information sources. In this view, ontologies can be considered as
a conceptual level on top of XML data.

To illustrate this statement, we will provide a translation
procedure from an ontology to an XML structure prescription. As
a result of this procedure, a document schema is created, which is
founded in a domain ontology. This schema in its turn can be
used to validate document markup, finally providing us with
well-founded semantic annotation of actual data.

This paper is organized as follows. In the next section, we give an
abstract introduction to ontologies, schemas and their
relationship. In Section 3 we provide a short introduction to OIL
and Section 4 does the same for XML Schema. Central to the
paper is Section 5, where we compare both approaches and
provide the translation procedure. Section 6 contains a discussion
and in Section 7 we present our conclusions.

2  ONTOLOGIES AND SCHEMAS

Ontology, which has been a field of philosophy since Aristotle,
has become a buzz-word in information and knowledge-based
systems research [5]. Various publications in knowledge
engineering, natural language processing, cooperative
information systems, intelligent information integration, and
knowledge management report about the application of
ontologies in developing and using systems. In general,
ontologies provide a shared and common understanding of a
domain that can be communicated between people and
heterogeneous and distributed application systems. They have
been developed in Artificial Intelligence to facilitate knowledge
sharing and reuse.

Database schema have been developed in computer science to
describe the structure and semantics of data. A well-known
example is the relational database schema that has become the
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basis for most of the currently used databases [3]. A database
schema defines a set of relations and certain integrity constraints.
A central assumption is the atomicity of the elements that are in
certain relationships (i.e., first normal form). In a nutshell, an
information source (or, more precisely, a data source) is viewed
as a set of tables. However, many new information sources now
exist that do not fit into such rigid schemas. In particular, the
WWW has made predominantly document-centered information
based on natural language text available. Therefore, new schema
languages have arisen that better fit the needs of richer data
models. Basically, they integrate schemas for describing
documents (like HTML or SGML) with schemas designed for
describing data. A prominent approach for a new standard for
defining schema of rich and semistructured data sources is XML
Schema (see [6], [12] and [7]). XML Schema is a means for
defining constraints on well formed XML documents. It provides
basic vocabulary and predefined structuring mechanisms for
providing information in XML. XML seems to be becoming the
pre-dominant standard for exchanging information via the
WWW, which is currently becoming the most important way for
the on-line dissemination of information. In consequence,
comparing ontologies languages and XML schema languages is a
timely issue, as both approaches aim, to an extent, at the same
goal.

And their relationship? Ontologies applied to on-line
information source may be seen as explicit conceptualizations
(i.e., meta information) that describe the semantics of the data.
Fensel [8] points out the following differences between
ontologies and schema definitions:

• A language for defining ontologies is syntactically and
semantically richer than common approaches for databases.

• The information that is described by an ontology consists of
semi-structured natural language texts and not tabular
information.

• An ontology must be a shared and consensual terminology
because it is used for information sharing and exchange.

• An ontology provides a domain theory and not the structure
of a data container.

However, these statements need to be formulated more precisely
when comparing ontology languages with XML schema
languages and the purpose of ontologies with the purpose of
schemas. This will be done in the next sections.

3  OIL

Horrocks et al. [9] defines the Ontology Interface Layer (OIL). In
this section we will only give a brief description of the OIL
language. More detailed descriptions can be found elsewhere: a
comparison of OIL with other ontology languages and a
description of its situation between other web languages can be
found in [9] and [10]. In [11], OIL is compared to RDF Schema
and defined as an extension of it.

A brief example ontology in OIL is provided in Figure 1; the
example is based on the country pages of the CIA World
Factbook1, which we will use as an example throughout this
paper. The OIL language has been designed so that: (1) it

provides most of the modeling primitives commonly used in
frame-based and Description Logic (DL) oriented ontologies; (2)
it has a simple, clean, and well defined semantics; (3) automated
reasoning support, (e.g., class consistency and subsumption
checking) can be provided. It is envisaged that this core language
will be extended in the future by sets of additional primitives,
with the proviso that full reasoning support may not be available
for ontologies using such primitives.

An ontology in OIL is represented by an ontology container and
an ontology definition. We will discuss both elements of an
ontology specification in OIL. We start with the ontology
container and will then discuss the backbone of OIL, the ontology
definition.

For the ontology container part, OIL adopts the components
defined by the Dublin Core Metadata Element Set, Version 1.12.

Apart from the container, an OIL ontology consists of a set of
ontology definitions: 

• import A list of references to other OIL modules that are to
be included in this ontology. Specifications can be included
and the underlying assumptions is that names of different
specifications are different (via different prefixes).

• class and slot definitions Zero or more class definitions
(class-def) and slot definitions (slot-def), the structure of
which will be described below.

A class definition associates a class name with a class description.
A class-def consists of the following components:

• type The type of definition. This can be either primitive or
defined; if omitted, the type defaults to primitive. When a
class is primitive, its definition (i.e., the combination of the
following subclass-of and slot-constraint components) is
taken to be a necessary but not sufficient condition for
membership of the class. When a class is defined, its
definition is taken to be a necessary and sufficient condition
for membership of a class.

• subclass-of A list of one or more class-expressions, the
structure of which will be described below. The class being
defined in this class-def must be a subclass of each of the
class expressions in the list.

• slot-constraints Zero or more slot-constraints, the structure
of which will be described below. The class being defined in
this class-def must be a subclass of each of the slot-
constraints in the list (note that a slot-constraint defines a
class).

A class-expression can be either a class name, a slot-constraint,
or a boolean combination of class expressions using the operators
and, or, or not. Note that class expressions are recursively
defined, so that arbitrarily complex expressions can be formed.

In some situations it is possible to use a concrete-type-expression
instead of a class expression. A concrete-type-expression defines
a range over some data type. Two data types that are currently
supported in OIL are integer and string. Ranges can be defined
using the expressions (min X), (max X), (greater-than X), (less-
than X), (equal X) and (range X Y). For example, (min 21)
defines the data type consisting of all the integers greater than or
equal to 21. As another example, (equal “xyz”) defines the data-
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type consisting of the string ”xyz”.

A slot-constraint is a list of one or more constraints (restrictions)
applied to a slot. A slot is a binary relation (i.e., its instances are
pairs of individuals), but a slot-constraint is actually a class
definition—its instances are those individuals that satisfy the
constraint(s). Typical slot-constraint are: 

• has-value A list of one or more class-expressions. Every
instance of the class defined by the slot constraint must be
related via the slot relation to an instance of each class-
expression in the list. For example, the has-value
constraint:

slot-constraint eats
has-value zebra, wildebeest

defines the class each instance of which eats some instance
of the class zebra and some instance of the class
wildebeest. Note that this does not mean that instances of
the slot-constraint eat only zebra and wildebeest: they may
also be partial to a little gazelle when they can get it.

• value-type A list of one or more class-expressions. If an
instance of the class defined by the slot-constraint is related
via the slot relation to some individual x, then x must be an

instance of each class-expression in the list.

• max-cardinality A non-negative integer n followed by a
class-expression. An instance of the class defined by the
slot-constraint can be related to at most n distinct instances
of the class-expression via the slot relation.

• min-cardinality and, as a shortcut, cardinality.

A slot definition (slot-def) associates a slot name with a slot
description. A slot description specifies global constraints that
apply to the slot relation, for example that it is a transitive
relation. A slot-def consists of the following main components:

• subslot-of A list of one or more slots. The slot being
defined in this slot-def must be a subslot of each of the slots
in the list. For example,

slot-def daughter
subslot-of child

defines a slot daughter that is a subslot of child, i.e., every
pair of individuals that is an instance of daughter must also
be an instance of child.

• domain A list of one or more class-expressions. If the pair
(x; y) is an instance of the slot relation, then x must be an

ontology-container
title CIA World Fact Book ontology
creator Michel Klein
subject country information, CIA, world factbook
description A didactic example ontology describing 

 country information
description.release 1.02

publisher CIA
type ontology
format pseudo-xml
identifier http://www.ontoknowledge.org/oil/wfb.xml
source http://www.odci.gov/cia/publications/factbook/
language OIL
language en-uk

ontology-definitions
slot-def capital

domain Country
range City
inverse capital_of
properties functional

slot-def has_boundary
domain Country
range LandBoundary

slot-def coastline
domain Geographical_Location
range (KilometerLength or MilesLength)

slot-def relative_area
domain Geographical_Location
range AreaComparison

slot-def value
domain (KilometerLength or MilesLength)
range integer
properties functional

Figure 1.  An partial ontology in OIL

class-def Geographical_Location
slot-constraint name

value-type string

class-def City
subclass-of Geographical_Location
slot-constraint located_in

value-type Country

class-def Country
subclass-of Geographical_Location
slot-constraint capital

has-value City

class-def LandBoundary
slot-constraint neighbor_country

cardinality 1 Country
slot-constraint length

value-type 
(KilometerLength or MilesLength)

class-def KilometerLength
slot-constraint value

has-value integer
slot-constraint unit

has-value km

class-def MilesLength
slot-constraint value

has-value integer
slot-constraint unit

has-value mile

class-def AreaComparison
slot-constraint compared_to

value-type Geographical_Location
slot-constraint proportion

value-type string



instance of each class-expression in the list.

• range A list of one or more class-expressions. If the pair (x;
y) is an instance of the slot relation, then y must be an
instance of each class-expression in the list.

• inverse The name of a slot S that is the inverse of the slot
being defined. If the pair (x; y) is an instance of the slot S,
then (y; x) must be an instance of the slot being defined.

• properties A list of one or more properties of the slot. Valid
properties are: transitive, functional and symmetric.

An axiom asserts some additional facts about the classes in the
ontlogy, for example that the classes carnivore and herbivore
are disjoint (that is, have no instances in common). Valid axioms
are:

• disjoint (class-expr)+ All of the class expressions in the list
are pairwise disjoint.

• covered (class-expr) by (class-expr)+ Every instance of
the first class expression is also an instance of at least one of
the class expressions in the list.

• disjoint-covered (class-expr) by (class-expr)+ Every
instance of the first class expression is also an instance of
exactly one of the class expressions in the list.

• equivalent (class-expr)+ All of the class expressions in the
list are equivalent (i.e. they have the same instances).

The syntax of OIL is oriented on XML and RDF. The technical
report on OIL [9] defines a DTD and an XML Schema definition.
A separate paper [11] describes the representation of OIL in
RDFS.

4  XML SCHEMA

XML Schema is a means for defining constraints on the syntax
and structure of valid XML documents (cf. [6], [12], [7]). A more
easily readable explanation of XML Schema can be found in [13].
XML Schemas have the same purpose as DTDs, but provide
several significant improvements:

• XML Schema definitions are themselves XML documents.

• XML Schemas provide a rich set of datatypes that can be
used to define the values of elementary tags.

• XML Schemas provide a much richer means for defining
nested tags (i.e., tags with subtags).

• XML Schemas provide the namespace mechanism to
combine XML documents with heterogeneous vocabulary.

We will discuss these four aspects in more detail. 

4.1  XML schema definitions are themselves XML 
documents. 

Figure 2 shows an XML Schema definition of an address. The
schema definition for the address tag is itself an XML document,
whereas DTDs would provide such a definition in an external
second language. The clear advantage is that all tools developed
for XML (e.g., validation or rendering tools) can be immediately
applied to XML schema definitions, too.

4.2  Datatypes

Datatypes are described in [6]. We already saw the use of a
datatype (i.e., string) in the example. In general, a datatype is
defined as a 3-tuple consisting of a set of distinct values, called its
value space, a set of lexical representations, called its lexical
space, and a set of facets that characterize properties of the value
space, individual values, or lexical items. 

Value space. The value space of a given datatype can be defined
in one of the following ways: enumerated outright (extensional
definition), defined axiomatically from fundamental notions
(intensional definition)1, defined as the subset of values from a
previously defined datatype with a given set of properties, and
defined as a combination of values from some already defined
value space(s) by a specific construction procedure (e.g., a list).

Lexical space. A lexical space is a set of valid literals for a
datatype. Each value in the datatype's value space is denoted by
one or more literals in its lexical space. For example, "100" and
"1.0E2" are two different literals from the lexical space of float
which both denote the same value. 

Facets. A facet is a single defining aspect of a datatype. Facets
are of two types: fundamental facets that define the datatype and
non-fundamental or constraining facets that constrain the
permitted values of a datatype. 

• Fundamental facets: equality, order on values, lower and
upper bounds for values, cardinality (can be categorized as
“finite”, “countably infinite” or “uncountably infinite”),
numeric versus nonnumeric

• Constraining or non-fundamental facets are optional
properties that can be applied to a datatype to constrain its
value space: length constrains minimum and maximum,
pattern can be used to constrain the allowable values using
regular expressions, enumeration constrains the value space
of the datatype to the specified list, lower and upper bounds
for values, precision, encoding, etc. Some of these facets
already constrain the possible lexical space for a datatype.

It is useful to categorize the datatypes defined in this specification
along various dimensions, forming a set of characterization
dichotomies. 

• Atomic vs. list datatypes: Atomic datatypes are those
having values which are intrinsically indivisible. List
datatypes are those having values which consist of a
sequence of values of an atomic datatype. For example, a
single token which matches NMTOKEN from [XML 1.0
Recommendation] could be the value of an atomic datatype
NMTOKEN, whereas a sequence of such tokens could be the
value of a list datatype NMTOKENS. 

• Primitive vs. generated datatypes: Primitive datatypes are
those that are not defined in terms of other datatypes; they
exist ab initio. Generated datatypes are those that are
defined in terms of other datatypes. Every generated
datatype is defined in terms of an existing datatype, referred
to as the basetype. Basetypes may be either primitive or
generated. If type a is the basetype of type b, then b is said

1 However, XML Schema does not provide any formal language for these
intensional definitions. Actually primitive datatypes are defined in prose
or by reference to another standard. Derived datatypes can be constrained
along their facets (such as maxInclusive, maxExclusive etc.).



to be a subtype of a. The value space of a subtype is a subset
of the value space of the basetype. For example, date is
derived from the base type recurringInstant. 

• Built-in vs. user-derived datatypes: Built-in datatypes are
those which are defined in the XML schema specification
and may be either primitive or generated. User-derived
datatypes are those derived datatypes that are defined by
individual schema designers by giving values to
constraining facets. XML Schema provides a large
collection of such built-in datatypes, for example, string,
boolean, flot, decimal, timeInstant, binary, etc. In our
example, zipCode is an user-derived datatype.

4.3  Structures

Structures provide facilities for constraining the contents of
elements and the values of attributes and for augmenting the
information set of instances, e.g. with defaulted values and type
information (see [12]). They make use of the datatypes for this
purpose. An example is the element zip that makes use of the
datatype zipCode. Another example is the definition of the
element type “name”. The value “true” for the “mixed” attribute
of the complexType allows to mix strings with (sub-)tags.

Attributes are defined by their name, a datatype that constraints
their values, default or fixed values, and constraints on their
presence (minOccurs and maxOccurs), see for example:

<attribute name="key" type="integer" minOccurs="1"
maxOccurs="1"/>

Elements can be constrained by reference to a simple datatype.
The datatypes can be unconstrained, can be constrained to be

empty, or can allow elements in its content (called rich content
model). 

• In the former case, element declarations associate an
element name with a type, either by reference (e.g. zip in
Figure 2) or by incorporation (i.e., by defining the datatype
within the element declaration). 

• In the latter case, the content model consists of a simple
grammar governing the allowed types of child elements and
the order in which they must appear. If the mixed qualifier
is present, text or elements may occur. Child elements are
defined via an element reference (e.g. <element ref="zip"/>)
or directly via an element declaration. Elements can be
combined in groups with a specific order (all, sequence or
choice). This combination can be recursive, for example, a
sequence of some elements can be a selection from a
different sequence or a sequence of different elements (i.e.,
the “()”, “,” and “| “of a DTD are present). Elements and
their groups can be accompanied with occurrence
constraints, for example, <element name="street"
minOccurs="1" maxOccurs="2" type="string"/>. 

In the previous subsection we already discussed the differences
between primitive and generated datatypes, where the latter is
defined in terms of other datatypes (see [6]). This is not only
possible for simple datatypes like integer, but also for complex
types. There are two mechanisms for derived type definitions
defined in [12]. Here the following two cases are distinguished:

• Derivation by extension. A new complex type can be
defined by adding additional particles at the end of its
definition and/or by adding attribute declarations. An
example for such an extension is provided in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

<xsd:complexType name="address">
<xsd:sequence>

<xsd:element name="name">
<xsd:complexType mixed="true">

<xsd:simpleContent>
<xsd:extension base="xsd:string"/>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="street" type="xsd:string" maxOccurs="2"/>
<xsd:element ref="zip"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="country" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="zip" type="zipCode"/>

<xsd:simpleType name="zipCode">
<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Figure 2.  An example for a schema definition.



• Derivation by restriction. A new type can be defined by
decreasing the possibilities made available by an existing
type definition: narrowing ranges, removing alternatives,
etc. 

4.4  Namespaces

The facilities in XML Schema to construct schemas from other
ones builds on XML namespaces. An important concept in XML
Schema is the target namespace, which defines the URL that can
be used to uniquely identify the definitions in the schema. XML
Schema provides two mechanism for assembling a complete
component set from separate original schemas (cf. [12]):

• The first is via the include element (<include
schemaLocation="http..."/>). The effect of this include
element is to bring in the definitions and declarations
contained in the refered schema and make them available as
part of the including schema target namespace. The effect is
to compose a final effective schema by merging the
declarations and definitions of the including and the
included schemas. The one important caveat is that the
target namespace of the included components must be the
same as the target namespace of the including schema. 
The redefine mechanism is very much the same as the
include mechanism, but also allows to change the included
types.

• Second, the import element (<import namespace="http..."/>)
can be used to import schemas with a different target
namespace. It should coincide with a standard namespace
declaration. XML Schema in fact permits multiple schema
components to be imported, from multiple namespaces, and
they can be referred to in both definitions and declarations.

In general, only inclusion is provided as means to combine

various schemas and module name prefix is used to realize the
non-equality of name assumptions (i.e., identifiers of two
different schemas are by definition different).

5  THE RELATION BETWEEN OIL AND XML 
SCHEMA

On the one hand, ontologies and XML schemas serve very
different purposes. Ontology languages are a means to specify
domain theories and XML schemas are a means to provide
integrity constraints for information sources (i.e., documents and/
or semistructured data). It is therefore not surprising to encounter
differences when comparing XML schema with ontology
languages like OIL. On the other hand, XML schema and OIL
have one main goal in common: both provide vocabulary and
structure for describing information sources that are aimed at
exchange. It is therefore legitimate to compare both and
investigate their commonalities and differences. In this section,
we provide a twofold way to deal with this situation. First we
analyze commonalities and differences and second we provide a
procedure for translating OIL specifications into an XML Schema
definition. As a guiding metaphor we use the relationship
between the relational model and the Entity Relationship
model (ER model), cf. [3]. We realize that this analogy is only
partially correct, because ER is a model for analysis, whereas OIL
is a language for design. Nevertheless, the metaphor illustrates
the relation nicely.

The relational model provides an implementation oriented
description of databases. The Entity Relationship model provides
a modeling framework for modeling information sources required
for an application. In [3], Elmasri and Navathe also provides a
procedure that translates models formulated in the Entity
Relationship model into the relation model. During system
development you start with a high-level ER model. Then you

<xsd:complexType name="personName">
<xsd:sequence>

<xsd:element name="title" minOccurs="0"/>
<xsd:element name="forename" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="surname"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="extendedName">

<xsd:complexContent>
<xsd:extension base="personName">

<xsd:sequence>
<xsd:element name="generation" minOccurs="0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:element name="name" type="extendedName"/>

A snippet of a valid XML-file according to this schema is:

<name>
<forename>Albert</forename>
<forename>Arnold</forename>
<surname>Gore</surname>
<generation>Jr</generation>

</name>

Figure 3.  An example for a derived type definitions via extension.



transform this model into a more implementation oriented
relational model. As we will see in this section, it is surprising to
see how easily the relationship between OIL and XML schema
can be interpreted with this metaphor in mind. The overall picture
is provided in Figure 4.

5.1  Comparing OIL and XML Schema

Both XML Schema and OIL have a XML syntax. This
improvement of XML Schema compared to DTDs is also present
in OIL. The XML syntax of OIL is useful for supporting the
exchange of ontologies specified in OIL. It is defined in [9]. The
translation approach for OIL which we will present in the
following differs from this syntax because we describe some
preprocessing instead of directly expressing OIL ontologies in
XML Schema. These two XML schema definitions of OIL have
different purposes: In [9], an XML syntax is described for writing
ontologies in OIL. In this paper, we provide a structure and
syntax (= a schema) for writing instances of an OIL ontology in
XML.

XML Schema has rich datatypes and OIL does not. XML
Schema improves DTDs by providing a much richer set of basic
datatypes than just PCDATA. XML Schema provides a large
collection of built-in datatypes as, for example, string, boolean,
float, decimal, timeInstant, binary, etc. OIL only provides string
and integer as built-in datatypes, because of the difficulty of
providing clear semantics and reasoning support for a large
collection of complex datatypes. In XML Schema all inheritance
must be defined explicitly, so reasoning about hierarchical
relationships is not an issue. In XML Schema, a datatype is
defined by a value space, a lexical space, and a set of facets.
Restricting a value space (i.e., the membership of classes) is also
present in OIL, however, OIL does not provide a lexical space
and facets. These aspects are much more related to the

representation of a datatype than to the aspect of modeling a
domain. That is, date may be an important aspect of a domain, but
various different representations of dates are not. This is a rather
important aspect when talking about how to represent the
information. Finally, it should be noted that OIL is extremely
precise and powerful in an aspect that is nearly neglected by
XML Schema. XML Schema mentions the possibility of defining
types intensionally via axioms. However, no language, semantics,
nor any actual reasoning service is provided for this purpose.
Here lies one of the main strengths of OIL. It is a flexible
language for the intensional, i.e. axiomatic, definition of types. In
a nutshell, neither OIL nor XML Schema are more expressive.
Depending on the point of view, one of the two approaches has
richer expressive power: Built-in datatypes, lexical constraints
and facets are not present in OIL. On the other hand, OIL
provides facilities to for the intensional definition of types (via
defined concepts) that is completely lacking in XML Schema.1

XML provides structures: elements. XML Schema’s main
modeling primitives are elements. Elements may be simple,
composed or mixed. Simple elements have as their contents
datatypes, like string or integer. Composed elements have as
contents other (child) elements. Also they define a grammar that
defines how they are composed from their child elements.
Finally, mixed elements can mix strings with child elements. In
addition, elements may have attributes. OIL takes a different
point of view. The basic modeling primitives are concepts and
slots. Concepts can be roughly identified with elements and child
elements are roughly equivalent to slots defined for a concept.
However, slots defined independently from concepts have no
equivalents in XML Schema. This reconsolidates the relation
between the relational model and the Entity Relationship model.

Figure 4.  The relationship between schemas and ontologies in a nutshell.

ER-model

relational model

Ontology
(written in  O IL)

XM L schema

data
base

XM L
documents

OIL modeling primitives:
• class;
• slot;
• complex concepts, etc;

modeling

implementation

prescribes structure

1 A general comparison of type systems and description logics can be
found in [14]



The former only provides relations and the latter provides entities
(with attributes) and relationships. In [3], a translation procedure
is described from the Entity Relationship model, the richer
modeling framework, to the relational model. Concepts and
relationships are both expressed as relations. A similar reduction
step has to be taken when transforming OIL specifications into
XML Schema definitions.

XML provides structures: grammar. OIL does not provide any
grammar for the application of slots to concepts, i.e., an instance
of a concept comprises of a set of slots values. XML Schema
allows the definition of stronger requirements via a grammar:
sequence and choice of attributes applied to an instance can be
defined.

XML provides structures: type-derivation. XML Schema
incorporates the notion of type-derivation. However, this can only
partially be compared with what is provided with inheritance in
ontology languages like OIL. First, in XML Schema all
inheritance has to be modeled explicitly. In OIL inheritance can
be derived from the definitions of the concepts. Second, XML
Schema does not provide a direct way to inherit from multiple
parents. Types can only be derived from one basetype. OIL (like
most ontology languages) provides multiple inheritance. Third,
and very important, the is-a relationship has a twofold role in
conceptual modeling which is not directly covered by XML
Schema:

• Top-down inheritance of attributes from superclasses to
subclasses. Assume employee as a subclass of a class
person. Then employee inherits all attributes that are defined
for person.

• Bottom-up inheritance of instances from subclasses to
superclasses. Assume employee as a subclass of a class
person. Then person inherits all instances (i.e., elements)
that are an element of employee.

In XML Schema, both aspects can only be modeled in an
artificial way. The top-down inheritance of attributes is difficult
to model, because type derivations in XML Schema can either
extend or restrict the base type. A “dummy” intermediate type
has to be used to model full top-down inheritance of attributes
with both extending and restricting derivations. For example, it is
not possible to model a student as a person with a student-number
and age < 28 in only one step. You first have to model a dummy
type “young person”, which restricts the age of persons to less
than 28. After that it is possible to model a student as a “young
person” extended with a student-number.

Also the bottom-up inheritance of instances to superclasses is not

automatically available in XML Schema. However, using an
additional attribute, it is possible to use an instance of a subclass
wherever a superclass of it is expected. For example, to use a
student as a filler of a “driver” element, which requires type
person, we can write:

<driver xsi:type="student">
<name>John</name>

 <studentnumber>0792098</studentnumber>
</driver>

We have to provide the type of the derived element explicitly in
the instance document. This is done with the type attribute, which
is part of the XML Schema instance namespace. However, it is
still not possible to query for all persons and also obtain all
subtypes of person.

XML provides inclusion: namespaces. XML Schema has a
relative simple inclusion mechanism that is based on XML
namespaces. OIL provides the same (limited) means for
composing specifications. Specifications can be included and the
underlying assumptions is that names of different specifications
are different (via different prefixes).

The message of this section in a nutshell is that the relation
between OIL and XML Schema is partly analogous to the relation
between the Extended Entity Relationship model and the
relational model. On the one hand, OIL provides much richer
modeling primitives. It distinguish classes and slots, and class (or
slot) definitions can be used to derive the hierarchy (and its
according inheritance). On the other hand, XML Schema
provides richer modeling primitives concerning the variety of
built-in datatypes and the grammar for structuring the content of
elements. The latter is not of importance when building a domain
model but important when defining the structure of documents.
Models in OIL can be viewed as a high level description that is
further refined when aiming at a document structure model. 

5.2  Translating OIL specifications into an XML 
Schema definition

Like (Extended) ER models have to be translated into database
schemas to use them in an actual DB system, an OIL ontology
can be translated into an XML schema document to use it in an
XML data exchange environment. We will provide a translation
procedure from an ontology to a specific XML schema document
that is very close in spirit to that provided in [3] for ER
models..ER models provide entities, attributes, and relationships

Geographical_Location
Country <= Geographical_Location
City <= Geographical_Location
AreaComparison
KilometerLength-OR-MilesLength
KilometerLength <= KilometerLength-OR-MilesLength
MilesLength <= KilometerLength-OR-MilesLength 
[,,,]
capital 
has_boundary
coastline
neighbor_country
Figure 5.  Step 1: materializing the hierarchy.



as their primary modeling primitives. This closely corresponds to
OIL where we have concepts (i.e., entities), slot definitions for
concepts (i.e., attributes), and global slot definitions (i.e.,
relationships). Extended ER models also incorporate the notion of
inheritance, however, require their explicit definition. On the
other hand, the relation model only provides relations and the
arguments (called attributes) of relations. Therefore, a translation
step is required. A similar procedure that translates a high-level
conceptual description of a domain into a specific document
definition via XML Schema is decribed below.

We assume a definition of an ontology in OIL. An example is
provided in Figure 1. We will now describe its stepwise
translation into an XML schema using the stepwise translation of
this example as illustration.

First, materialize the hierarchy. Give all complex class
expressions that are used in subclass definitions and slot
constraints names. Then, materialize the hierarchy, i.e., make all
class- and slot-subsumptions explicit. This is necessary because
XML Schema lacks any notion of implicit hierarchy and it is
possible because subsumption is decidable in OIL. Actually, the
FaCT system can be used for this purpose (via its CORBA
interface if desired [15])1. In this step, make also explicit which
slots can be applied to a class, exploiting the domain and range
restrictions of the global slots definitions. Figure 5 provides the
materialized hierarchy of our running example. Note that
KilometerLength-OR-MilesLength is a new concept, constructed
from a complex class expression. In our small example, there are
no new class subsumptions derived, because all of them are
already stated explicitly. See [9] or [10] for a more complex
example which illustrates the derivation of implicit
subsumptions.

Second, create a complexType definition for each slot
definition in OIL. Add a reference to the (still to be defined)
element definition for the range component in the OIL slot-
definition. Figure 6 begins with some example slot-definitions. If
a slot has more than one range, an intermediate element must be
used that is the conjunction of all the range components. The
place of this intermediate element in the class hierarchy should be
derived in the first step.

Third, also create a complexType definition for each class
definition in OIL. Add the names of the slots that can be applied
to the classes as elements in the type definition. The facets on the
slot-constraints are translated in the following way: has-value
facets give a minOccurs="1" attribute in the element-element,
value-type facets give minOccurs="0" and min-cardinality,
max-cardinality, and cardinality gives minOccurs="value",
maxOccurs="value" or both as attributes respectively. If a slot has
the property functional it will get the attribute maxOccurs="1".
See for example the attributes of “capital” in “CountryType” in
Figure 6: the value of “minOccurs” is 1 because of the has-value
constraint, and the value of “maxOccurs” is 1 because of the
“functional” property.

For the slots that appear in explict slot-constraints (i.e., those that
are actually described in a class-definition, not those that can be
applied to a class according to their domain), an anonymous type
is defined, which is derived from the appropriate slot-type

defined in step two. The extension of the base type consist of the
reference to the class which must be the filler of the slot.

For slots that can be applied to the classes (according to their
domain) but that are not present in explict slot-constraints, the
type of the element is directly the slot-type from step 2, with the
attributes minOccurs="0" and maxOccurs="unbounded". The
second part of Figure 6 gives an example.

Fourth, create an element definition for each slot and class.
Each slot and each class definition is translated into an element
definition in the XML schema. The type of the elements will
obviously be the complexType definitions which are created in
the second and third step. See also Figure 6.

Fifth, define a grammar for each entity, associate basic
datatypes with built-in datatypes if desired, add lexical
constraints on datatypes if desired. This step adds an additional
level of expressiveness that is not present in OIL. It is purely
concerned with document structure and appearance.

Sixth, replace the module concept of OIL with the namespace
and inclusion concept of XML Schema. This step is
straightforward because the concepts only differ syntactically.

Using the schema for document markup

The resulting schema can be used to create XML instance
documents. The structure of these documents must conform to the
schema. As an example, we show in Figure 8 an XML document
which could constitute a wepage in the World Fact Book.
Together with a appropriate stylesheet, this document can be used
to produce a page as is shown in Figure 9. Note that we now have
a webpage which looks similar to the original HTML version, but
which has a markup that is well-founded on an ontology.

6  DISCUSSION

In the previous section, we compared OIL to XML Schema, as
two specific examples of an ontology language and a XML
document schema. Main results of the comparison are:

• It is correct to say that OIL has more expressive power than
XML Schema but this is also true the other way around in
the sense that XML Schema is much richer in defining
structures and grammars for information elements and in the
large variety of basic data types they provide.

• It is true that ontologies can be used for describing semi-
structured natural language texts, but the same holds for
XML Schema.

• It is true that an ontology must be a shared and consensual
terminology. However, there are serious efforts to achieve
the same for XML. This stems from the fact that XML has,
from its inception, been a language for providing
information via the WWW, not for designing “private”
databases.

• It is true that an ontology provides a domain theory and not
the structure of a data container. This helped us to explain
most of the differences between ontologies (i.e., ontology
languages) and XML schemas (i.e., the XML Schema
definition language).

In the following, we will discuss some of the points that arose1 OilEd is an integrated tool for building OIL ontologies and exploiting
the FaCT reasoner; it can found at: http://img.cs.man.ac.uk/oil/



when investigating the relation between ontologies and XML
schemas.

First, multiple inheritance forms a problem in the translation
procedure. As we already discussed in Section 5.1, in XML
Schema there is no explicit way to define multiple inheritance. It
is not possible to simulate multiple inheritance by inheriting from
different superclasses in several type definitions, because
conform the XML Schema specification it is not allowed to have
more than one definition for a type. Because of this lack of
multiple inheritance, XML Schema is not well suited as an
ontology language. This is not meant as a criticism, because XML

Schema is not designed for ontological modeling, it is designed
for describing valid structures of documents.

Second, the question may arise as to whether the translation
process can be automated and whether it is reversible.
Concerning the first question, we can state that most of the steps
can be completely automatic. The fifth step can be partially
automated, for example by using sequence as standard grammar
for applying slots to classes. Final tuning via human interference
may be necessary. The reverse direction is possible but more
difficult, a high degree of automatization should be achievable,
however.

Part of the result of step 2: type definitions for slots:

<xsd:complexType name="capitalType">
<xsd:sequence>

<xsd:element ref="City"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="coastlineType">

<xsd:sequence>
<xsd:element ref="KilometerLength-OR-MilesLength"/>

</xsd:sequence>
</xsd:complexType>

Part of the result of step 3: type definitions for classes:

<xsd:complexType name="CountryType">
<xsd:complexContent>

<xsd:extension base="GeographicalLocationType">
<xsd:sequence>

<xsd:element name="capital" type="capitalType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="has-boundary" type="has_boundaryType" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="relative_area" type="relative_areaType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AeraComparisonType">

<xsd:sequence>
<xsd:element name="proportion" type="string" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="compared_to" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="compared_toType">
<xsd:sequence>

<xsd:element ref="Country"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

Part of the result of step 4: element definitions for slots and classes:

<xsd:element name="capital" type="capitalType"/>
<xsd:element name="GeographicalLocation" type="GeographicalLocationType"/>
<xsd:element name="Country" type="CountryType"/>
<xsd:element name="City" type="CityType"/>
<xsd:element name="AeraComparison" type="AeraComparisonType"/>

Figure 6.  Examples of the results of step 2 and 3.



The relation that is described in this paper, is in the same strain as
earlier approaches on relating ontology languages and XML (cf.
[18], [19], [20], and [17]). However, these approaches did not
deal with XML Schema but with its predecessor, i.e.with DTDs,
and focussed on proper translation of attribute inheritance in tag
nesting. The approach in [21] is the other way around: it describes
how DTDs can be represented in Description Logics and how to
reason on them.
However, we think that relating ontologies to DTDs is less
interesting, because DTDs provide very limited expressiveness
compared to ontologies and XML Schema. A comparison of

DTDs with ontology modeling languages is therefore almost
impossible. XML Schema, however, has a much higer
expressiveness, and thus comes closer to modeling languages.
The comparison we made in this paper revealed that the XML
Schema type hierarchy can be used to express some conceptual
knowledge. Although there are still some questions about the best
way to create this type hierarchy, with the help of some artifices it
is possible to capture the central is-a relationship of an ontology
in an XML Schema definition. See in this context also [22],
where subsumption is described as a generalized mechanism for
type reusing, including extension and refinement from XML

Part of the result of step 2: type definitions for slots:

<xsd:complexType name="capitalType">
<xsd:sequence>

<xsd:element ref="City"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="coastlineType">

<xsd:sequence>
<xsd:element ref="KilometerLength-OR-MilesLength"/>

</xsd:sequence>
</xsd:complexType>

Part of the result of step 3: type definitions for classes:

<xsd:complexType name="CountryType">
<xsd:complexContent>

<xsd:extension base="GeographicalLocationType">
<xsd:sequence>

<xsd:element name="capital" type="capitalType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="has-boundary" type="has_boundaryType" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="relative_area" type="relative_areaType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AeraComparisonType">

<xsd:sequence>
<xsd:element name="proportion" type="string" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="compared_to" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="compared_toType">
<xsd:sequence>

<xsd:element ref="Country"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

Part of the result of step 4: element definitions for slots and classes:

<xsd:element name="capital" type="capitalType"/>
<xsd:element name="GeographicalLocation" type="GeographicalLocationType"/>
<xsd:element name="Country" type="CountryType"/>
<xsd:element name="City" type="CityType"/>
<xsd:element name="AeraComparison" type="AeraComparisonType"/>

Figure 7.  Examples of the results of step 2 and 3.



Schema.

Further, we want to stress the difference between the XML
Schema definition of OIL that can be found in [9] and the kind of
schema that is presented in this paper. Their purposes are
completely different. In [9], an XML Schema definition is
provided to write down an ontology in a plain XML document. In
this article, we try to generate a schema that captures the
underlying semantics of an ontology, which can be used for

representing instances of an OIL ontology in XML.

Finally, we would like to mention that the procedure described in
this paper is complementary to the use of RDF and RDF Schema
for annotating data with ontological information. In that case,
OIL should be defined as an extension to RDF Schema (as is
already done in [11]) and the ontology should be written in RDF
Schema. The instance documents could then be marked-up with
RDF. This way of annotating documents has the advantage that

<?xml version="1.0" encoding="UTF-8"?>
<Country xmlns="worldfactbook.xsd"

xmlns:xsi=”http://www.w3.org/1999/XMLSchema/instance”>
<name>The Netherlands</name>
<capital><City><name>Amsterdam</name></City></capital>
<relative_area>

<AeraComparison>
<proportion>slightly less than twice the size of</proportion>
<compared_to><Country><name>New Jersey</name></Country></compared_to>

</AeraComparison>
</relative_area>
<has_boundary>

<LandBoundary>
<neighbor_country><Country><name>Belgium</name></Country></neighbor_country>
<length xsi:type="KilometerLength"><value>450</value><unit>km</unit></length>

</LandBoundary>
<LandBoundary>

<neighbor_country><Country><name>Germany</name></Country></neighbor_country>
<length xsi:type="KilometerLength"><value>577</value><unit>km</unit></length>

</LandBoundary>
</has_boundary>
<coastline><KilometerLength><value>451</value><unit>km</unit></KilometerLength></coastline>

Figure 8.  Example of XML document conforming the generated schema.

Figure 9.  An possible view on the data from Figure 8.



the interpretation of the markup is already in RDF: it is clear from
the syntax which constructs are classes, slots, and so on.
However, our approach has the advantage that the instance data is
represented in general XML, and is therefore applicable to
general XML data exchange.

7  CONCLUSION

When comparing ontologies and XML schemas directly we run
the risk of trying to compare two incomparable things. Ontologies
are domain models and XML schemas define document
structures. Still, when applying ontologies to on-line information
sources their relationship becomes closer. Then, ontologies
provide a structure and vocabulary to describe the semantics of
information contained in these documents. The purpose of XML
schemas is prescribing the structure and valid content of
documents, but, as a side effect, they also provide a shared
vocabulary for the users of a specific XML application. 

Therefore, we compared the Ontology Inference Layer OIL with
the proposed XML Schema standard in this paper. We did not
compare OIL to other ontology languages, because the goal of
this paper is to investigate the relation between ontology
languages and document schemas. Comparisons of OIL with
other ontology languages can be found in [9].

Our main conclusion is that ontology languages and XML
Schema refer to different levels of abstraction and therefore also
to two different phases in describing the semantics of on-line
information sources. 

We provided a translation procedure from an OIL ontology to an
XML structure prescription. As a result of this procedure, a
document schema is created, which is founded in a domain
ontology. This schema in its turn can be used to prescribe or
validate document markup. Finally, this gives us a well-founded
semantic annotation of actual data. This has two main
advantages:

• it provides a way to represent instance data of an ontology
in plain XML;

• an ontology can be used as a conceptual layer on top of a set
of structured (XML) documents, because the markup of
actual XML documents is founded in an ontology.

The semantically grounded markup complements the kind of
semantic annotation that is provided by RDF based approaches.
We think that, together with the RDF based approaches, the
foundation of document markup in ontologies is an important
building stone of the semantic web.
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