
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44

OIL & UPML: A Unifying Framework for the Knowledge Web

D. Fensel1, M. Crubezy2, F. van Harmelen1, and M. I. Horrocks3,

1 Department of Computer Science, Vrije Universiteit Amsterdam, {dieter,frankh}@cs.vu.nl
2 Knowledge Modeling Group at Stanford Medical Informatics, Stanford University USA, crubezy@SMI.Stanford.Edu

3 Department of Computer Science, University of Manchester, UK, horrocks@cs.man.ac.uk

Abstract. Currently computers are changing from single isolated devices to entry points in
a world wide network of information exchange and business transactions called the World
Wide Web (WWW). A prerequisite for successfully integrating various information
sources are standardized and machine-processable descriptions of their semantics. In this
paper, we will briefly describe two proposals and will discuss how both can be combined.
First, we discuss OIL that is proposed as description language for ontology interchange.
That is, it is designed for specifying static information. Second, we sketch UPML, which is
developed for describing reasoning components. UPML helps to automatically configure
distributed reasoning components that can be used as inference service via networks.
Integrating both description types is a necessary step in the direction of a knowledge web
where the distinction between static and dynamic information sources will become
transparent for the user. The main contribution of the paper is the comparison of both
approaches. We achieve this comparison by discussing severals ways of combining OIL
and UPML. We analyze the meaning of each perspective and stress what enhancements
would be necessary to improve their usefulness.

1 Introduction

Support in data, information, and knowledge exchange is becoming a key issue in current computer
technology. Given the exponential growth of on-line available information, automatic processing of
this information becomes necessary for keeping it maintainable and accessible. Providing shared and
common domain structures becomes essential. Being used to describe the structure and semantics of
information exchange, ontologies will become a key asset in information exchange. Such technologies
will play a key role in areas such as knowledge management and electronic commerce, which are
market places which incredible growth rates in the near future. Information sources may not only be
passive entities. Instead, active software components will be used as services via networks. These
components do not only provide support in information retrieval and extraction but also provide direct
support in task achievement. Again, machine-understandable representation of their semantics is
required for the automated selection and combination of these reasoning services. Therefore, it is
natural that a number of proposals and projects deal with these concerns. In the US, research fundings
agencies have already encountered the importance of such an issues by setting up the DAML
program1 that aims for machine processable semantics of information sources accessible for agents.
1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44

Already the Worldwide Web (WWW) has drastically changed the availability of electronically
available information. This first generation of the World Wide Web has already changed our daily
practice and these changes will become even more significant in the near future. However, the web
itself will have to change when it should reach the next level of service. Currently, the Web is an
incredible large mainly static information source. The main burden in information access, extraction
and interpretation, however, is left to the human user. Tim Berners-Lee coined the vision of a
Semantic Web that provides much more automated services based on machine-processable semantics
of data and heuristics that make use of these meta data. The explicit representation of the semantics of
data accompanied with domain theories (i.e., Ontologies) will enable a Knowledge Web that provides
a qualitatively new level of service. It weaves together a net linking incredible large parts of the
human knowledge and complements it with machine processability. Various automated services will
support the human user in achieving goals via accessing and providing information present in a
machine-understandable form. This process will ultimately lead to an extremely knowledgeable
system with various specialized reasoning services that may support us in nearly all aspects of our
daily life becoming as central as access to electric power. For this knowledge web it is important to
link together semantic descriptions of information sources with semantic descriptions of
heuristic reasoners using these information sources. Especially because we expect that the
difference between both will become transparent for the human user, i.e., it does not make any
difference to him whether a browser renders a static information source or a virtual page that is
generated on the fly.

In this paper we will compare two proposals developed in relation to two European IST projects.

• The On-To-Knowledge project2 applies ontologies to electronically available information to
improve the quality of knowledge management in large and distributed organizations. Ontologies
are used to explicitly represent semantics of semi-structured information. This enables
sophisticated automatic support for acquiring, maintaining, and accessing information. In
cooperation with other external partners OIL has been developed (cf. [Fensel et al., to appear (b)],
[Horrocks et al., to appear]) that will be used to define and exchange ontologies between
heterogeneous and distributed information sources.

• The objective of the Ibrow project3 ([Benjamins et al., 1999], [Fensel & Benjamins, 1998]) is to
develop intelligent brokers that are able to distributively configure reusable components into
knowledge-based systems through the World-Wide Web. The WWW is changing the nature of
software development to a distributive plug & play process, which requires a new kind of
managing software: intelligent software brokers. Ibrow will integrate research on heterogeneous
databases, interoperability and Web technology with knowledge-system technology and
ontologies. A result of Ibrow has been the development of a specification language for reasoning
components called UPML (cf. [Fensel et al., 1999]).

It is quite natural to compare the languages OIL and UPML developed in the two projects. One should
expect many similarities because reasoning components could be viewed as active information
sources, i.e., as components providing some information as a result of some input. Taking a more

1. http://www.darpa.mil/iso/ABC/BAA0007PIP.htm.
2. On-To-Knowledge: Content-driven Knowledge-Management Tools through Evolving Ontologies. Project partner are the Vreije
Universiteit Amsterdam (VU); the Institute AIFB, University of Karlsruhe, Germany; AIdministrator, the Netherlands; British Telecom
Laboratories, UK; Swiss Life, Switzerland; CognIT, Norway; and Enersearch, Sweden. http://www.ontoknowledge.com/
3. IBROW: An Intelligent Brokering Service for Knowledge-Component Reuse on the World-Wide Web. Project partners are the
University of Amsterdam; the Open University, Milton Keynes, England; the Spanish Council of Scientific Research (IIIA) in
Barcelona, Spain; the Institute AIFB, University of Karlsruhe, Germany: Stanford University, US: Intelligent Software Components S.
A., Spain; and the Vrije Universiteit Amsterdam. http://www.swi.psy.uva.nl/projects/ibrow/home.html
2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44

detailed look on their relationships it turns out that there are at least six possible ways on how to try to
combine both languages: We can ask what OIL can be providing for UPML, and we can ask what
UPML can be providing for OIL. Each of these two cases comes along with three subpossibilities.

• First, OIL can be used as a meta-language to define UPML. A language like UPML could be
viewed as a specific ontology where the language primitives are concepts to talk about a certain
domain. In this case this domain is the description of reasoning components. OIL should be
capable for such a purpose because it must be possible to express an ontology in it. Here we will
examine, how the language primitives of UPML can be expressed in OIL. We use OIL in a similar
way like the meta-meta model of MOF4 is used to express the meta model of other modeling
frameworks. A meta ontology of UPML has already been described in [Fensel et al., 1999] and we
will examine how it can be expressed in OIL.

• Second, OIL can be used as a language for writing down UPML specifications. Here a
component specification in UPML should correspond to an ontology in OIL. Therefore, several
components should be represented via several ontologies, each for one component. Viewing the
specifications of reasoning components as ontologies has been proposed in [Mizoguchi et al.,
1995] and we will examine how OIL fits for this purpose.

• Third, OIL can be used as an object language for UPML. Mainly, UPML defines an
architecture for the description of reasoning components but has not yet provided a defined
language for defining the elementary units of a component. Currently, it provides three different
styles: natural language definitions (like CML, [Schreiber et al., 1994]), order-sorted logic (like
(ML)2 [van Harmelen & Balder, 1992]), and frame logic (like KARL, [Fensel et al., 1998]). In this
paper, we will examine how OIL could fill in the gap as a defined standard language for the
logical specification of the elementary elements of a UPML specification.

• Fourth, can UPML be used as a meta-language to define OIL? A language like OIL could be
viewed as a specific ontology where the language primitives are concepts to talk about a certain
domain. In this case this domain would be the specification of ontologies. In principle, UPML
would be applicable for such a purpose because one out of its six components are ontologies. We
could define an ontology in UPML defining the language primitives of OIL. However it is not
clear what we would gain from such an exercise. Therefore, we will not examine this possibility
further on.

• Fifth, UPML can be used as a language for writing down ontologies in OIL. Here an ontology
in OIL corresponds to an ontology in UPML. This looks interesting because it would provide the
structuring mechanisms of UPML for OIL ontologies. Currently, OIL does only provide an import
mechanism to combine ontologies. UPML provides bridges and refiners to combine and adapt
ontologies. Following this combination strategy delivers an architectural structure on top of OIL.

• Sixth, can UPML be used as an object language for OIL? No, this does not make any sense.
OIL is already a language and has no undefined elementary slots that require further logical
refinement. Therefore, we will not examine this possibility further on.

The contents of the paper are organizes as follows. In Section 2, we provide a brief introduction to
OIL and in Section 3 we provide a brief introduction into UPML. Both sections are necessary to keep
the paper self-contained. Section 4 provides the actual contribution of the paper. We will investigate
four different strategies to relate OIL and UPML. We provide conclusions in Section 5.

4. The Meta Object Facility (MOF) standard is a proposal of the OMG’s group for expressing various modeling frameworks in a joined
representation (cf. [OMG, 1997]).
3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

2 OIL

Ontologies are a popular research topic in various communities such as knowledge engineering,
natural language processing, cooperative information systems, intelligent information integration,
knowledge management. They provide a shared and common understanding of a domain that can be
communicated across people and application systems. They have been developed in Artificial
Intelligence to facilitate knowledge sharing and reuse. Recent articles covering various aspects of
ontologies can be found in [Uschold & Grüninger, 1996], [van Heijst et al., 1997], [Gomez Perez &
Benjamins, 1999], [Fensel, to appear (b)]. Ontologies are a good candidate for providing the shared
and common domain structures which are required for truly semantic integration of information
sources. The question then becomes: how to describe and exchange such ontologies? A prerequisite
for such a widespread use of ontologies for information integration and exchange is the achievement
of a joint standard for describing ontologies. Take the area of databases as an example. The huge
success of the relational model would have never been possible without the SQL standard that
provided an implementation independent way for storing and accessing data. Any approach that tries
to achieve such a standard for the areas of ontologies has to answer the questions on what are the
appropriate modeling primitives for representing ontologies and how to define their semantics, as well
as, what is the appropriate syntax for representing ontologies.

[Horrocks et al., to appear] defines the Ontology Interchange Language (OIL) as a standard proposal.
In this section we will give a brief description of the OIL language; more details can be found in
[Horrocks et al., to appear] and [Fensel et al., to appear (b)]. A small example ontology in OIL is
provided in Figure 1. This language has been designed so that: (1) It provides most of the modeling
primitives commonly used in frame-based and Description Logic (DL) oriented Ontologies. (2) It has
a simple, clean and well defined semantics. (3) Automated reasoning support, (e.g., class consistency
and subsumption checking) can be provided. It is envisaged that this core language will be extended in
the future with sets of additional primitives, with the proviso that full reasoning support may not be
available for ontologies using such primitives.

An ontology in OIL is represented via an ontology container and an ontology definition part. We will
discuss both elements of an ontology specification in OIL. We start with the ontology container and
will then discuss the backbone of OIL, the ontology definition.

Ontology Container: We adopt the components as defined by Dublin Core Metadata Element Set,
Version 1.15 for the ontology container part of OIL.

Apart from the container, an OIL ontology consists of a set of definitions:

• import A list of references to other OIL modules that are to be included in this ontology. XML
schemas and OIL provide the same (limited) means for composing specifications. One can include
specifications and the underlying assumptions is that names of different specifications are
different (via different prefixes).

• rule-base A list of rules (sometimes called axioms or global constraints) that apply to the
ontology. At present, the structure of these rules is not defined (they could be horn clauses, DL
style axioms etcetera), and they have no semantic significance. The rule base consists simply of a
type (a string) followed by the unstructured rules (a string).

• class and slot definitions A list of zero or more class definitions (class-def) and slot definitions

5. http://purl.oclc.org/dc/
4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44

(slot-def), the structure of which will be described below.

A class definition (class-def) associates a class name with a class description. A class-def consists of
the following components:

• type The type of definition. This can be either primitive or defined; if omitted, the type defaults
to primitive. When a class is primitive, its definition (i.e., the combination of the following
subclass-of and slot-constraint components) is taken to be a necessary but not sufficient
condition for membership of the class.

• subclass-of A list of one or more class-expressions, the structure of which will be described
below. The class being defined in this class-def must be a sub-class of each of the class
expressions in the list.

• slot-constraint A list of zero or more slot-constraints, the structure of which will be described
below. The class being defined in this class-def must be a sub-class of each of the slot-constraints
in the list (note that a slot-constraint defines a class).

A class-expression can be either a class name, a slot-constraint, or a boolean combination of class
expressions using the operators AND, OR or NOT. Note that class expressions are recursively
defined, so that arbitrarily complex expressions can be formed.

ontology-container
title “African animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description "A didactic example ontology describing
African animals"
description.release "1.01"
publisher "I. Horrocks"
type “ontology”
format "pseudo-xml"
format "pdf"
identifier

“http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf”
source "http://www.africa.com/nature/animals.html”
language “OIL”
language "en-uk"
relation.hasPart

“http://www.ontosRus.com/animals/jungle.onto”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

class-def animal
class-def plant

subclass-of NOT animal
class-def tree

subclass-of plant

Fig. 1 An example ontology in OIL

class-def branch
slot-constraint is-part-of

has-value tree
class-def leaf

slot-constraint is-part-of
has-value branch

class-def defined carnivore
subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal, NOT carnivore
slot-constraint eats

value-type
plant OR
slot-constraint is-part-of plant

class-def giraffe
subclass-of animal
slot-constraint eats

value-type leaf
class-def lion
subclass-of animal
slot-constraint eats

value-type herbivore
class-def tasty-plant

subclass-of plant
slot-constraint eaten-by

has-value herbivore OR carnivore
5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

A slot-constraint is a list of one or more constraints (restrictions) applied to a slot. A slot is a binary
relation (i.e., its instances are pairs of individuals), but a slot-constraint is actually a class definition—
its instances are those individuals that satisfy the constraint(s). For example, if the pair (Leo; Willie) is
an instance of the slot eats, Leo is an instance of the class lion and Willie is an instance of the class
wildebeest, then Leo is also an instance of the has-value constraint wildebeest applied to the slot
eats. A slot-constraint consists of the following main components:

• name A slot name (a string). The slot is a binary relation that may or may not be defined in the
ontology. If it is not defined it is assumed to be a binary relation with no globally applicable
constraints, i.e., any pair of individuals could be an instance of the slot.

• has-value A list of one or more class-expressions. Every instance of the class defined by the slot
constraint must be related via the slot relation to an instance of each class-expression in the list.
For example, the has-value constraint:

slot-constraint eats
has-value zebra, wildebeest

defines the class each instance of which eats some instance of the class zebra and some instance
of the class wildebeest. Note that this does not mean that instances of the slot-constraint eat only
zebra and wildebeest: they may also be partial to a little gazelle when they can get it.

• value-type A list of one or more class-expressions. If an instance of the class defined by the slot-
constraint is related via the slot relation to some individual x, then x must be an instance of each
class-expression in the list.

• max-cardinality A non-negative integer n followed by a class-expression. An instance of the
class defined by the slot-constraint can be related to at most n distinct instances of the class-
expression via the slot relation.

• min-cardinality and, as a shortcut, cardinality.

A slot definition (slot-def) associates a slot name with a slot description. A slot description specifies
global constraints that apply to the slot relation, for example that it is a transitive relation. A slot-def
consists of the following main components:

• subslot-of A list of one or more slots. The slot being defined in this slot-def must be a sub-slot of
each of the slots in the list. For example,

slot-def daughter
subslot-of child

defines a slot daughter that is a subslot of child, i.e., every pair of individuals that is an instance
of daughter must also be an instance of child.

• domain A list of one or more class-expressions. If the pair (x; y) is an instance of the slot
relation, then x must be an instance of each class-expression in the list.

• range A list of one or more class-expressions. If the pair (x; y) is an instance of the slot relation,
then y must be an instance of each class-expression in the list.

• inverse The name of a slot S that is the inverse of the slot being defined. If the pair (x; y) is an
instance of the slot S, then (y; x) must be an instance of the slot being defined.

• properties A list of one or more properties of the slot. Valid properties are: transitive,
symmetric, and reflexive.

The syntax of OIL is oriented towards XML and RDF. [Horrocks et al., to appear] defines a DTD, a
6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44

XML schema definition, and a definition of OIL in RDF.

3 UPML

Knowledge-based systems are computer systems that deal with complex problems by making use of
knowledge. Making knowledge on how to solve problems efficiently explicit is the rationale that
underlies problem-solving methods (PSMs) (cf. [Stefik, 1995], [Benjamins & Fensel, 1998],
[Benjamins & Shadbolt, 1998], [Fensel, to appear (a)]). Problem-solving methods refine generic
inference engines to allow a more direct control of the reasoning process. Problem-solving methods
describe this control knowledge independent from the application domain thus enabling reuse of this
strategical knowledge for different domains and applications. Finally, problem-solving methods
abstract from a specific representation formalism in contrast to the general inference engines that rely
on a specific representation of the knowledge. PSMs decompose the reasoning task of a knowledge-
based system in a number of subtasks and inference actions that are connected by knowledge roles.
Therefore PSMs are a special type of software architectures ([Shaw & Garlan, 1996]): software
architectures for describing the reasoning part of knowledge-based systems.

The IBROW project [Benjamins et al., 1999], [Fensel & Benjamins, 1998] has been set up with the
aim of enabling semi-automatic reuse of PSMs. This reuse is provided by integrating libraries in an
internet-based environment. A broker is provided that selects and combines PSMs of different
libraries. A software engineer interacts with a broker that supports him in this configuration process.
As a consequence, a description language for these reasoning components (i.e., PSMs) must provide
human-understandable high-level descriptions with underpinned formal means to allow automated
support by the broker. Therefore, we developed the Unified Problem-Solving Method description
Language UPML (cf. [Fensel et al., 1999], [Fensel et al., to appear (a)]). UPML is an architectural
description language specialized for a specific type of systems providing components, adapters and a
configuration of how the components should be connected using the adapters (called architectural
constraints).

The UPML architecture for describing a knowledge-based system consists of six different elements: a
task that defines the problem that should be solved by the knowledge-based system, a problem-
solving method that defines the reasoning process of a knowledge-based system, and a domain
model that describes the domain knowledge of the knowledge-based system. Each of these elements
is described independently to enable the reuse of task descriptions in different domains, the reuse of
problem-solving methods for different tasks and domains, and the reuse of domain knowledge for
different tasks and problem-solving methods. Ontologies provide the terminology used in tasks,
problem-solving methods and domain definitions. Again this separation enables knowledge sharing
and reuse. For example, different tasks or problem-solving methods can share parts of the same
vocabulary and definitions. A fifth element of a specification of a knowledge-based system are
adapters which are necessary to adjust the other (reusable) parts to each other and to the specific
application problem. UPML provides two types of adapters: bridges and refiners. Bridges explicitly
model the relationships between two distinguished parts of an architecture, e.g. between domain and
task or task and problem-solving method. Refiners can be used to express the stepwise adaptation of
other elements of a specification, e.g. a task is refined or a problem-solving method is refined ([Fensel,
7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44

1997], [Fensel & Motta, to appear]). Generic problem-solving methods and tasks can be refined to
more specific ones by applying a sequence of refiners to them. Again, separating generic and specific
parts of a reasoning process enhances reusability. The main distinction between bridges and refiners is
that bridges change the input and output of components making them fit together whereas refiners
may change internal details like subtasks of a problem solving methods.

In the following we provide a short example providing a task definition together with its ontology. A
task ontology specifies a theory, i.e. a signature and a logical characterization of the signature
elements, that is used to define tasks (i.e., a problem type). An example of a task ontology is illustrated
in Figure 2 which is used to provide the elements for defining a diagnostic problem. The ontology
introduces two elementary sorts Finding and Hypothesis that later will be grounded in a domain
model. The former describes phenomenon and the latter describe possible explanations. The two
constructed sorts Findings and Hypotheses are sets of elements of these elementary sorts. The function
explain connects findings with hypotheses. Domain knowledge must further characterize this
function. Three predicates are provided. An order < used to define optimality (i.e., parsimonity) of
hypotheses and finally completeness, which ensures that a hypothesis explains a set of findings.

The description of a task specifies goals that should be achieved in order to solve a given problem. A
second part of a task specification is the definition of assumptions about domain knowledge and
preconditions on the input. These parts establish the definition of a problem that should be solved by
the knowledge-based system. In distinction with most approaches in software engineering this

Fig. 2 A task ontology for diagnostic problems.

ontology diagnoses
pragmatics

The task ontology defines diagnoses for a set of observations;
Dieter Fensel;
May 2, 1998;
D. Fensel: Understanding, Developing and Reusing Problem-Solving Methods.
Habilitation, Faculty of Economic Science, University of Karlsruhe, 1998;

signature
elementary sorts

Finding; Hypothesis
constructed sorts

Findings : set of Finding; Hypotheses : set of Hypothesis
constants

observations : Findings; diagnosis : Hypotheses
functions

explain: Hypotheses → Findings
predicates

< : Hypotheses x Hypotheses;
complete: Hypotheses x Findings;
parsimonious: Hypotheses

axioms
A hypothesis is complete for some findings iff it explains all of them.

complete(H,F) ↔ explain(H) = F;
A hypothesis is parsimonious iff there is no smaller hypothesis with larger or equal
explanatory power.

parsimonious(H) ↔ ¬∃H’ (H’ < H ∧ explain(H) ⊆ explain(H’))
8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44

problem definition is kept domain independent, which enables the reuse of generic problem
definitions for different applications. A second particular feature is the distinction between
preconditions on input and assumptions about knowledge. In an abstract sense, both can be viewed as
input. However, distinguishing case data, that are processed (i.e., input), from knowledge, that is used
to define the goal, reflect a particular feature of knowledge-based systems. Preconditions are
conditions on dynamic inputs. Assumptions are conditions on knowledge consulted by the reasoner
but not transformed. Often, assumptions can be checked in advance during the system building
process, preconditions cannot. They rather restrict the valid inputs. Input and output role definitions
provide the terms that refer to the input and the output of the task. These names must be defined in the
signature definition of the task (i.e., either in the imported ontology or in the auxiliary terminology).
The assumptions ensure (together with the axioms of the ontology) that the task can always be solved
for legal input (input for which the preconditions hold). For example, when the goal is to find a global
optimum, then the assumptions have to ensure that such a global optimum exists (i.e., that the
preference relation is non-cyclic). A task definition may import ontologies and other tasks. The latter
enable hierarchical structuring of task specifications. For example, parametric design can be defined
as a refinement of design (cf. [Fensel & Motta, to appear]).

An example of a task specification is given in Fig. 3. The goal specifies a complete and parsimonious
(i.e., minimal) diagnosis. It is guaranteed that such a diagnosis exists if the domain knowledge can
provide a complete diagnosis for each input (which is non-empty). We are able to guarantee the
existence of a complete and parsimonious explanation if we can guarantee that < is non-reflexive and

Fig. 3 The task specification of a diagnostic task.

task complete and parsimonious diagnoses
pragmatics

The task asks for a complete and minimal diagnoses;
Dieter Fensel;
May 2, 1998;
D. Fensel: Understanding, Developing and Reusing Problem-Solving Methods.
Habilitation, Fakulty of Economic Science, University of Karlsruhe, 1998;

ontology
diagnoses

specification
roles

input observations; output diagnosis
goal

task(input observations; output diagnosis) ↔
complete(diagnosis, observations) ∧ parsimonious(diagnosis)

preconditions
observations ≠ ∅

assumptions
If we receive input there must be a complete hypothesis.

observations ≠ ∅ → ∃H complete(H, observations);
Nonreflexivity of <.

¬ (H < H);
Transitivity of <.

(H < H´)∧ (H´< H´´)→ (H < H´´);
Finiteness of H.

Finite(H)
9

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44

transitive and we assume the finiteness of the set of hypotheses.

Another important aspect of UPML are architectural constraints that ensure well-defined components
and composed systems in UPML. The conceptual model of UPML decomposes the overall
specification and verification tasks into subtasks of smaller grainsize and clearer focus. The
architectural constraints of UPML consists of requirements that are imposed on the intra- and
interrelationships of the different parts of the architecture. They either ensure a valid part (for
example, a task or a problem-solving method) by restricting possible relationships between its
subspecifications or they ensure a valid composition of different elements of the architecture (for
example, they are constraints on connecting a problem-solving method with a task). The constraints
on well-defined components apply for tasks, domain models, and PSMs. The constraints for
composition are introduced by constraints that apply to bridges. As an example, we provide the
constraints for well-defined task definitions. For a task specification we require consistency of a task
specification, i.e:

T1 ontology axioms ∪ preconditions ∪ assumptions must have a model.

Otherwise we would define an inconsistent task specification which would be unsolvable. In addition,
it must hold:

T2 Each model of ontology axioms ∪ preconditions ∪ assumptions
must be an elementary substructure of at least one model of goal6

That is, if the ontology axioms, preconditions, and assumptions are fulfilled by a domain for a given
case then the goal of a task must be achievable. This constraint ensures that the task model makes the
underlying assumptions of a task explicit. For example, when defining a global optimum as a goal of a
task it must be ensured that a preference relation exists and that this relation has certain properties. It
must be ensured that x < y and y < x (i.e., symmetry) is prohibited because otherwise the existence of a
global optimum cannot be guaranteed.

These are the two architectural constraints UPML imposes to guarantee well-defined task
specifications. A third optional constraint ensures minimality of assumptions and preconditions and
therefore maximizes the reusability of the task specification. It prevents overspecifity of assumptions
and preconditions. Otherwise they would disallow to apply a task to a domain even in cases where it
would be possible to define the problem in the domain.

T3 Each model of goal must be an elementary extension of a model of
ontology axioms ∪ preconditions ∪ assumptions

How minimality of assumptions can be proven and how such assumptions can be found is described in
[Fensel & Schönegge, 1998]). A large number of further constraints are described in [Fensel et al., to
appear (a)].

6. A structure R is an elementary substructure of a structure S iff the universe of R is a subset of the universe of S, and the
interpretation of each relation, function and constant symbol in R is the restriction of the corresponding interpretation in S
(see e.g. [Keisler, 1977]). In other words: S can be constructed by “extending” R.
10

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43
11.44

4 The relations between OIL and UPML

OIL is designed for defining ontologies, i.e., static information sources. UPML is designed for
describing dynamic information sources. The Web blows the differences between these two types of
information sources. Originally, web pages were static objects. Pages may be active and created as a
result of a user query. Many software agent communicate with human users during their web
browsing. Therefore it is quite natural to compare languages developed for static and dynamic
information sources. In the introduction we identified four meaningful ways of relating OIL and
UPML.

• OIL can be used as a meta-language to define UPML.

• OIL can be used as a language for writing down UPML specifications.

• OIL can be used as an object language for UPML.

• UPML be used as a language for writing down ontologies in OIL.

4.1 OIL as a meta-language for UPML

The Meta Object Facility (MOF) standard is a proposal of the OMG's group for expressing various
modeling frameworks in a joined representation. Expressing the various modeling frameworks in a
joined language (where the various modeling primitives are concepts and relations of the same
“meta”-language) facilitates information exchange and reuse of software specifications expressed
within different modeling frameworks. Therefore, in this section we will examine how useful OIL is
for such a purpose taking UPML as an example. That is, we take OIL as the “meta” language and
examine how well a modeling framework like UPML can be expressed in it.

[Fensel et al., to appear (a)] developed a meta ontology of UPML used to define its modeling
constructs. This ontology starts with concepts, binary relationships, and restricted binary relationships.
All three entities may have attributes (Figure 4 shows some of its parts). The main concept of UPML
that are defined with this basic ontology are Library, Ontology, Domain Model, PSM, and Task.
Besides uses, all attributes model part-of relationship. Sub concepts (subclass-of relationship) of PSM
are Complex PSM and Primitive PSM. Binary relations connect two different component types. The
root binary relation of UPML is Bridge. Restricted Binary Relations connect two components of the
same types. The root restricted binary relation of UPML is Refiner.

Concept and Binary Relation have not to be modeled explicitly in OIL because they correspond to
the two main language primitives in OIL: classes and slots. OIL does not provide a generic element
entity that would reify both. Also OIL fails to express Restricted Binary Relation because of its
lacking meta-language features. We can model a specific slot in OIL that has the same specific
concept as domain and range restriction. But we cannot express in a generic way a slot that must have
the same concept as domain and range restriction without specifying an actual class (i.e., we cannot
parameterize this definition because we do not have variables for class names).

Most of the components of UPML can be straight-forwardly modeled in OIL. Some examples are
11

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24
12.25
12.26
12.27
12.28
12.29
12.30
12.31
12.32
12.33
12.34
12.35
12.36
12.37
12.38
12.39
12.40
12.41
12.42
12.43
12.44 Fig. 4 Part of the Meta-ontology of UPML.

Entity
attribute → type

Concept < Entity
Binary Relation < Entity

argument1 → Concept1
argument2 → Concept2

Restricted Binary Relation < Binary Relation
in = argument1 → Concept1
out = argument2 → Concept2
with Concept1 = Concept2

Library < Concept
pragmatics → Pragmatics
ontology → Ontology
domain model → Domain Model
complex PSM → Complex PSM
primitive PSM → Primitive PSM
task → Task
ontology refiner → Ontology Refiner
cpsm refiner → CPSM Refiner Refiner
ppsm refiner → PPSM Refiner Refiner
task refiner → Task Refiner
domain refiner → Domain Refiner
psm-domain bridge → PSM-Domain Bridge
psm-task bridge → PSM-Task Bridge
task-domain bridge → Task-Domain Bridge

Ontology < Concept
uses → Ontology
pragmatics → Pragmatics
signature → Signature
theorems → Formula
axioms → Formula

Domain Model < Concept
uses → Domain Model
pragmatics → Pragmatics
ontologies → Ontology
theorems → Formula
assumptions → Formula
knowledge → Formula

PSM < Concept
pragmatics → Pragmatics
ontologies → Ontology
cost → Cost
communication → Communication
precondition → Formula
postcondition → Formula
input roles → Role
output roles → Role

Task < Concept
uses → Task
pragmatics → Pragmatics
ontologies → Ontology
goal → Formula
input roles → Role
output roles → Role
precondition → Formula
assumptions → Formula

Primitive PSM < PSM
knowledge roles→ Role
assumptions → Formula

Complex PSM < PSM
subtasks → Task
operational description → Operational

Description

Bridge < Binary Relation
argument1 → Concept1
argument2 → Concept2
pragmatics → Pragmatics
ontologies → Ontology
renaming → STRING
mapping axioms → Formula
assumptions → Formula

PSM-Domain Bridge < Bridge
argument1 → Domain
argument2 → PSM
uses → PSM-Domain Bridge,

Task-Domain Bridge,
PSM-Task Bridge

PSM-Task Bridge < Bridge
argument1 → PSM
argument2 → Task
uses → PSM-Task Bridge

Task-Domain Bridge < Bridge
argument1 → Task
argument2 → Domain
uses → Task-Domain Bridge

Refiner < Restricted Binary Relation
pragmatics → Pragmatics
ontologies → Ontology
in → Concept
out → Concept

Domain Refiner < Refiner
...
Ontology Refiner < Refiner

in → Ontology
out → Ontology
signature → Signature
theorems → Formula
axioms → Formula
renaming → Renaming

Task Refiner[< Refiner
in → Task
out → Task
goal → Formula
input roles → Role
output roles → Role
precondition → Formula
assumptions → Formula
axioms → Formula
renaming → Renaming

PSM Refiner < Refiner
...

CPSM Refiner < PSM Refiner
...

PPSM Refiner < PSM Refiner
...
Pragmatics < Concept

explanation → STRING
author→ STRING
last date of modification → STRING
reference → STRING
URL → STRING
where & when be used → STRING
evaluation → STRING
12

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27
13.28
13.29
13.30
13.31
13.32
13.33
13.34
13.35
13.36
13.37
13.38
13.39
13.40
13.41
13.42
13.43
13.44

provided in Figure 5. However, it also makes an additional shortcoming of OIL obvious. The classes
Pragmatics and Ontology refer to classes like Formula and String. OIL does not provide any
axiomatic language and even in the case it will provide such a language it will not be accessible via a
class definition. That is, the definition of formulas is provided in the definition of the language and
cannot be accessed explicitly as a class. The class String points to another shortcoming of OIL. At the
moment, OIL does not support concrete domains (e.g., integers, strings, etc.). However, this may
change in the near future (cf. [Horrocks et al., to appear]) using the Datatype definitions of the XML
schema language (cf. [Biron & Malhotra, 1999]) as a pattern for extending OIL accordingly.

The situation gets even worse when trying to model bridges and refiners with OIL. Binary relations
(i.e., slots) do not have attributes in OIL. Therefore, OIL fails completely for modeling the adapter
components of UPML.

Finally, an important aspect of the meta model of UPML are the constraints that ensure well-defined
components and well-defined combination of components. However, none of these constraints can be
expressed in OIL.

In consequence one has to encounter that OIL provides very restricted modeling primitives that fail in
many aspects as a meta language for expressing the modeling primitives of UPML. That is, OIL
cannot be used to express the ontology that describe the specification elements of reasoning
components. If OIL should be of any use for ontology interchange it must provide powerful language
elements for expressing these ontologies. Spoken in a nutshell, OIL must be at least as expressive
enough to express OIL, an ontology for ontology specification.

Fig. 5 Parts of the meta-ontology of UPML in OIL.

class-def Library
slot-constraint pragmatics

value-type Pragmatics
slot-constraint ontology

value-type Ontology
slot-constraint domain model

value-type Domain Model
slot-constraint complex PSM

value-type Complex PSM
slot-constraint primitive PSM

value-type Primitive PSM
slot-constraint task

value-type Task
slot-constraint ontology refiner

value-type Ontology Refiner
slot-constraint cpsm refiner

value-type CPSM Refiner
slot-constraint ppsm refiner

value-type PPSM Refiner
slot-constraint task refiner

value-type Task Refiner Refiner
slot-constraint psm-domain bridge

value-type PSM-Domain Bridge
slot-constraint psm-task bridge

value-type PSM-Task Bridge
slot-constraint task-domain bridge

value-type Task-Domain Bridge

class-def Ontology
slot-constraint uses

value-type Ontology
slot-constraint pragmatics

value-type Pragmatics
slot-constraint signature

value-type Signature
slot-constraint theorems

value-type Formula
slot-constraint axioms

value-type Formula

class-def Pragmatics
slot-constraint explanation

value-type STRING
slot-constraint author→

value-type STRING
slot-constraint last date of modification

value-type STRING
slot-constraint reference

value-type STRING
slot-constraint URL

value-type STRING
slot-constraint where & when be used

value-type STRING
slot-constraint evaluation

value-type STRING
13

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23
14.24
14.25
14.26
14.27
14.28
14.29
14.30
14.31
14.32
14.33
14.34
14.35
14.36
14.37
14.38
14.39
14.40
14.41
14.42
14.43
14.44

4.2 OIL as a language for UPML

In many respects, OIL fails as a meta language for UPML. Lets see whether it provides more usability
for directly expressing UPML specifications with it. At this level, a component specification of an
ontology or a task (see Figure 2 and Figure 3) corresponds to an ontology in OIL. We tried to model a
task ontology and a task specification in OIL. The OIL model of the task ontology is provided in
Figure 6. The following observations have been made:

• The ontology container of OIL provides an excellent and standardized way to provide meta data
of an ontology. The pragmatics slot of UPML looks rather ad hoc and one should expect that
UPML will incorporate DublinCore Meta data in its next version, too.

• OIL can only express the first but not the second axiom of the ontology. The first axiom is
expressed via subclass relationships and the second axiom is written down in the rule base that has
currently no semantics.

• OIL does not provide the means to specify functional slots. We did this by defining a cardinality
constraint but this is not yet part of the language definition for slots.

• Finally and most serious, the ontology speaks about sets of sets. An instance of findings is a set of
instances of the class finding (and an instance of hypotheses is a set of instances of hypothesis).
Therefore, we included a powerset operator in our specification but it is not part of the language
definition and it may cause serious problems for its semantic. However, without this operator we

Fig. 6 A task ontology specified with OIL.

ontology-container
title diagnoses
creator Dieter Fensel
subject

The task ontology defines diagnoses for a
set of observations.

description.release 1.01.
publisher

D. Fensel: Understanding, Developing and
Reusing Problem-Solving Methods.
Habilitation, Faculty of Economic Science,
University of Karlsruhe, 1998

date May 2, 1998.
type ontology
format text/pdf.
language OIL
language UPML

ontology-definitions
rule-base

A hypothesis is parsimonious iff there is no
smaller hypothesis with larger or equal
explanatory power.
parsimonious(H) ↔
¬∃H’ (H’ < H ∧ explain(H) ⊆ explain(H’))

slot-def <
domain Hypotheses
range Hypotheses

slot-def complete
subslot-of explain
domain Hypotheses
range Findings

slot-def explain
subslot-of complete
domain Hypotheses
range Findings
cardinality 1

class-def Finding
class-def Hypothesis

subclass-of NOT Finding
class-def Hypotheses

subclass-of POWERSET Hypothesis
class-def Findings

subclass-of POWERSET Finding
class-def parsimonious

subclass-of Hypotheses
class-def observations

subclass-of Findings
class-def diagnosis

subclass-of Hypotheses
14

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23
15.24
15.25
15.26
15.27
15.28
15.29
15.30
15.31
15.32
15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40
15.41
15.42
15.43
15.44

fail to capture the essence of this small and simple ontology.

Besides applying OIL directly to the ontology component of OIL we also tried to use it to model a task
specification (still one of the most simplest components of UPML). The result is provided in Figure 7.
We encounter similar problems as already reported:

• An important axiom cannot directly be expressed.

• We extend OIL with a property non-reflexive and cardinality constraints for classes.

A problem when using OIL at this level is that the structure of the specification units of UPML gets
lost. We keep things like what is an input role or an output role only as natural language comment in
the documentation slot. We will discuss the mismatch of architectural structures of OIL and UPML
in the following subsections.

4.3 OIL is an object language for UPML

Using OIL as a logical language to define semantics for the elementary slots of UPML was the first
way we thought to combine OIL and UPML. However, there are two problems with this approach.
First, OIL is already more than just a logical language. It already comes along with an architecture
comparable to a refined version of the ontology component in UPML (see Figure 8). Therefore, it does
not make much sense to provide an architectural specification of each elementary slot of UPML.
Second, OIL does not provide adequate expressive power for many of the axiomatic parts of UPML
specifications. The first problem indicates that OIL is more appropriate at the level discussed in
Section 4.2. It will require some work to synchronize the slightly different component models of OIL
and UPML but then it should be possible to express a component of UPML as an ontology in OIL.
The second problem is more principal. OIL fails at any level (i.e., as a meta-language, language, and
object-language) to express important aspects of UPML. Extending the expressive power of OIL
seems absolutely necessary for making it usable in this context.

Fig. 7 A task specified with OIL.

ontology-container
title complete and parsimonious diagnoses
creator Dieter Fensel
subject

The task asks for a complete and minimal
diagnoses

description.release 1.01.
publisher

D. Fensel: Understanding, Developing and
Reusing Problem-Solving Methods.
Habilitation, Faculty of Economic Science,
University of Karlsruhe, 1998

date May 2, 1998.
type task
format text/pdf.
language OIL
language UPML
relation

hasPart It uses the ontology diagnosis

ontology-definitions
import Ontology diagnosis
rule-base

If we receive input there must be a
complete and finite hypothesis.
observations ≠ ∅ →

∃H complete(H, observations) ∧ Finite(H)
slot-def <

properties non-reflexive, transitive
slot-def task

subslot-of complete
domain observations
range parsimonious

class-def observations
documentation input role
cardinality >0

class-def diagnosis
documentation output role
15

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27
16.28
16.29
16.30
16.31
16.32
16.33
16.34
16.35
16.36
16.37
16.38
16.39
16.40
16.41
16.42
16.43
16.44

4.4 UPML as a language (i.e., architecture) for OIL

Up to now we have asked what OIL can do for UPML. Now we will deal with the reverse question:
Can UPML provide any help to OIL? Yes it can! OIL provides a very simple construction to
modularize ontologies. In fact, this mechanism is identical to the namespace mechanism in XML. It
amounts to a textual include of the imported module, where name-clashes are avoided by prefixing
every imported symbol with a unique prefix indicating its original location. However, much more
elaborated mechanism are required for a structured representation of large ontologies. Renaming,
restructuring, and redefinition means must be applicable to imported ontologies. Here, we can make
use of the adapter concept of UPML. UPML provides refiners and bridges to modify components.
These adapter components of UPML can be used to integrate the need of ontology structuring in an
existing architecture. When combining UPML and OIL in this way we are also able to specialize the
generic adapter concept of UPML for the fixed set of language primitives of OIL like [Gennari et al.,
1994], [Park et al., 1997] did for the fixed set of language primitives of Protégé [Grosso et al., 1999]
(i.e., OKBC [Chaudhri et al., 1998]).

5 Conclusions

In this paper we try to relate two standardization efforts:

• OIL provides a standard language for expressing and interchanging ontologies, i.e., static
information sources.

• UPML provides a standard language for specifying and reusing problem-solving methods, i.e.,
dynamic information sources.

Currently, the web blows the distinction between static and dynamic information sources. There is a
continuum of static pages, dynamic generated pages, query-answering services and complex software
services on it. Therefore it looks quite reasonable to try to bring these languages together forming a
coherent framework for describing services on the WWW. In principle this can also be done in a
fruitful way for both approaches because they focus currently at different levels. On the one side, OIL
provides a specification language with well defined semantics and efficient reasoning support. The
overall architecture of OIL specifications is rather simple–not going beyond an import statement. On
the other side, UPML provides a full-fledged architecture for describing various aspects of a reasoning

Fig. 8 The architecture of OIL.

Ontology

Container Definition

Import Rule Class-definitions Slot-definitions
16

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22
17.23
17.24
17.25
17.26
17.27
17.28
17.29
17.30
17.31
17.32
17.33
17.34
17.35
17.36
17.37
17.38
17.39
17.40
17.41
17.42
17.43
17.44

service. However, no formal language has yet been defined for it. Therefore OIL and UPML fit nicely
together compensating the weaknesses of each other. However, in order to make this really true, the
language OIL needs to provide more expressive power. Currently we fail for any example of a UPML
specification to express its main aspects in OIL. In a nutshell, Description Logics seems too restricted
for the purpose of functional specification of software components.

The message of the paper in a nutshell is: Synchronizing the architectures of OIL and UPML and
extending the expressive power of OIL are two urgent things to do quickly. Providing a unified
language for content and reasoning description is an essential step in the direction of a
knowledeable web where the difference between both aspects should be transparent for the user.

References

[Benjamins et al., 1999] V. R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel : Brokering Problem-
Solving Knowledge at the Internet. In Knowledge Acquisition, Modeling, and Management, Proceedings
of the European Knowledge Acquisition Workshop (EKAW-99), D. Fensel et al. (eds.), Lecture Notes in
Artificial Intelligence, LNAI 1621, Springer-Verlag, May 1999.

[Benjamins & Fensel, 1998] V. R. Benjamins and D. Fensel: Special issue on problem-solving methods of the
International Journal of Human-Computer Studies (IJHCS), 49(4):305-313,1998.

[Benjamins & Shadbolt, 1998] V. R. Benjamins and Nigel Shadbolt: Special Issue on Knowledge Acquisition
and Planning, International Journal of Human-Computer Studies (IJHCS), 48(4), 1998.

[Biron & Malhotra, 1999] P. V. Biron and A. Malhotra: XML schema part 2: Datatypes. http://www.w3.org/TR/
1999/WD-xmlschema-2-19991217/, 1999. W3C Working draft.

[Chaudhri et al., 1998] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P. Rice: OKBC: A
programmatic foundation for knowledge base interoperability. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative Applications of
Artificial Intelligence (IAAI-98), pages 600–607. AAAI Press, 1998.

[Fensel, 1997] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-Solving
Methods. In E. Plaza et al. (eds.), Knowledge Acquisition, Modeling and Management, Lecture Notes in
Artificial Intelligence (LNAI) 1319, Springer-Verlag, 1997.

[Fensel, to appear (a)] D. Fensel: Understanding, Development, Description, and Reuse of Problem-Solving
Methods, Lecture Notes in Artificial Intelligence (LNAI), Springer-Verlag, to appear.

[Fensel, to appear (b)] D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, to appear. http://www.cs.vu.nl/~dieter/ftp/spool/silverbullet.pdf.

[Fensel & Benjamins, 1998] D. Fensel and V. R. Benjamins: Key Issues for Problem-Solving Methods Reuse.
In Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), Brighton, UK,
August 1998.

[Fensel & Schönegge, 1998] D. Fensel and A. Schönegge: Inverse Verification of Problem-Solving Methods,
International Journal of Human-Computer Studies (IJHCS), 49(4):339-362,1998.

[Fensel et al., 1998] D. Fensel, J. Angele, and R. Studer, The Knowledge Acquisition and Representation
Language KARL, IEEE Transactions on Knowledge and Data Engineering, 10(4):527-550, 1998.

[Fensel et al., 1999] D. Fensel, V. R. Benjamins, E. Motta, and B. Wielinga: UPML: A Framework for
knowledge system reuse. In Proceedings of the International Joint Conference on AI (IJCAI-99),
Stockholm, Sweden, July 31 - August 5, 1999.

[Fensel et al., to appear (a)] D. Fensel, E. Motta, V. R. Benjamins, M. Crubezy, S. Decker, M. Gaspari, R.
Groenboom, W. Grosso, F. van Harmelen, M. Musen, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga,
The Unified Problem-solving Method Development Language UPML, to appear. http://www.cs.vu.nl/
~dieter/ftp/spool/upml.journal.pdf.

[Fensel et al., to appear (b)] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein:
17

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19
18.20
18.21
18.22
18.23
18.24
18.25
18.26
18.27
18.28
18.29
18.30
18.31
18.32
18.33
18.34
18.35
18.36
18.37
18.38
18.39
18.40
18.41
18.42
18.43
18.44

OILin a nutshell, to appear. http://www.ontoknowledge.com/oil.
[Fensel & Motta, to appear] D. Fensel and E. Motta: Structured Development of Problem Solving Methods, to

appear in IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE). http://www.cs.vu.nl/
~dieter/ftp/spool/enrico.pdf.

[Gennari et al., 1994] J. H. Gennari, S. W. Tu, T. E. Rothenfluh, and M. A. Musen: Mapping Domains to
Methods in Support of Reuse, International Journal of Human-Computer Studies (IJHCS), 41:399–424,
1994.

[Gomez Perez & Benjamins, 1999] A. Gomez Perez and V. R. Benjamins: Applications of ontologies and
problem-solving methods. AI-Magazine, 20(1):119–122, 1999.

[Grosso et al., 1999] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A. Musen:
Knowledge Modeling at the Millennium (The Design and Evolution of Protégé-2000). In Proceedings of
the Twelfth Workshop on Knowledge Acquisition, Modeling and Management (KAW99), Banff, Alberta,
Canada, October 16-21, 1999.

[van Harmelen & Balder, 1992] F. van Harmelen and J. Balder: (ML)2, A Formal Language for KADS
Conceptual Models, Knowledge Acquisition 4, 1, 1992.

[van Heijst et al., 1997] G. van Heijst, A. Th. Schreiber, and B. J. Wielinga: Using explicit ontologies in KBS
development. International Journal of Human-Computer Studies, 46(2/3):183–292, 1997.

[Horrocks et al., to appear] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. Van
Harmelen, M. Klein, S. Staab, and R. Studer: OIL: The Ontology Inference Layer, to appear. http://
www.ontoknowledge.com/oil.

[Keisler, 1977] H. J. Keisler: Fundamentals of Model Theory. In John Barwise (ed.), Handbook of
Mathematical Logic, North Holland 1977.

[Mizoguchi et al., 1995] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda: Task Ontologies for reuse of
Problem Solving Knowledge. In N. J. I. Mars (ed.), Towards Very Large Knowledge Bases, IOS Press,
1995.

[OMG, 1997] Object Management Group (OMG): Meta Object Facility (MOF) Specification, 1997.
[Park et al., 1997] J. Y. Park, J. H. Gennari, and M. A. Musen: Mappings for Reuse in Knowledge-based

Systems. SMI Technical Report 97-0697, 1997.
[Shaw & Garlan, 1996] M. Shaw and D. Garlan: Software Architectures. Perspectives on an Emerging

Discipline, Prentice-Hall, 1996.
[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and R. de Hoog:

CommonKADS. A Comprehensive Methodology for KBS Development, IEEE Expert, 9(6):28—37,
1994.

[Stefik, 1995] M. Stefik: Introduction to Knowledge Systems, Morgan Kaufman Publ., San Francisco, 1995.
[Uschold & Grüninger, 1996] M. Uschold and M. Grüninger: Ontologies: Principles, methods and applications.

Knowledge Engineering Review, 11(2), 1996.
18

	OIL & UPML: A Unifying Framework for the Knowledge Web
	D. Fensel1, M. Crubezy2, F. van Harmelen1, and M. I. Horrocks3, 1 Department of Computer Science,...
	1 Introduction
	2 OIL
	Fig. 1 An example ontology in OIL

	3 UPML
	Fig. 2 A task ontology for diagnostic problems.
	Fig. 3 The task specification of a diagnostic task.

	4 The relations between OIL and UPML
	4.1 OIL as a meta-language for UPML
	Fig. 4 Part of the Meta-ontology of UPML.
	Fig. 5 Parts of the meta-ontology of UPML in OIL.

	4.2 OIL as a language for UPML
	Fig. 6 A task ontology specified with OIL.
	Fig. 7 A task specified with OIL.

	4.3 OIL is an object language for UPML
	Fig. 8 The architecture of OIL.

	4.4 UPML as a language (i.e., architecture) for OIL

	5 Conclusions
	References

