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Abstract

Currently computers are changing from single
isolated devices into entry points into a worldwide
network of information exchange and business
transactions. Support in data, information, and
knowledge exchange is becoming the key issue in
current computer technology. Ontologies will play a
major role in supporting information exchange
processes in various areas. A prerequisite for such a
role is the development of a joint standard for
specifying and exchanging ontologies. The purpose
of the paper is precisely concerned with this
necessity. We will present OIL, which is a proposal
for such a standard. It is based on existing proposals
such as OKBC, XOL and RDF, enriching them with
necessary features for expressing ontologies. The
paper sketches the main ideas of OIL. 

1. Introduction

Currently, we are on the brink of the second Web generation.
The Web started with mainly handwritten HTML pages;
then the step was made to machine generated and often
active HTML pages. This first generation of the Web was
designed for direct human processing (reading, browsing,
form-filling, etc.). The second generation Web, that we
could call the “Knowledgeable Web”, aims at the machine
processable interpretation of information. This coincides
with the vision that Tim Berners-Lee calls the Semantic Web
in his recent book “Weaving the Web”, and for which he
uses the slogan “Bringing the Web to its full potential”. The
Knowledgeable Web will enable intelligent services such as
information brokers, search agents, information filters etc.
Ontologies will play a crucial role in enabling the processing
and sharing of knowledge between programs on the Web. 

Ontologies are a popular research topic in various
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communities, such as knowledge engineering, natural
language processing, cooperative information systems,
intelligent information integration, and knowledge
management. They provide a shared and common
understanding of a domain that can be communicated
between people and application systems. They have been
developed in Artificial Intelligence to facilitate knowledge
sharing and reuse. Ontologies are generally defined as a
“representation of a shared conceptualisation of a particular
domain”. Recent articles covering various aspects of
ontologies can be found in [Uschold & Grüninger, 1996],
[van Heijst et al., 1997], [Gomez Perez & Benjamins, 1999],
[Fensel, to appear]. 

The IST Key Action On-To-Knowledge1 will develop
methods and tools to employ the full power of the
ontological approach to facilitate Web-based knowledge use,
knowledge access and knowledge management. The On-To-
Knowledge tools will help knowledge workers who are not
IT specialists to access company-wide information
repositories in an efficient, natural and intuitive way. The
technical backbone of On-To-Knowledge is the use of
ontologies for the various tasks of information integration
and mediation. The first major spin-off from the On-To-
Knowledge project is OIL (the Ontology Inference Layer)2.
OIL is a Web-based representation and inference layer for
ontologies, which combines the widely used modeling
primitives from frame-based languages with the formal
semantics and reasoning services provided by description
logics. Furthermore, OIL is the first ontology representation
language that is properly grounded in W3C standards such as
RDF/RDF-schema and XML/XML-schema.

It is envisaged that this core language will be extended in the
future with sets of additional primitives. A more detailed
discussion of OIL, including formal semantics and syntax
definitions in RDF and XML, is provided in [Horrocks et al.,
to appear].

The content of this paper is organized as follows. Section 2
provides the underlying rationales of OIL. Section 3
provides the language primitives of OIL and discusses tool
support. We also sketch possible directions in extending
OIL. Section 4 compares OIL with other ontology languages
and web standards. Finally, a short summary is provided in
Section 5.

1. www.ontoknowledge.org
2. www.ontoknowledge.org/oil



2. OIL = Our Ideas of a Language

In this Section, we will first explain the three roots upon
which OIL was based. Then we will show why the existing
proposal for an ontology exchange language (Ontolingua,
[Gruber, 1993], [Farquhar et al., 1997]) is not very well-
defined. Then the relationships of OIL with OKBC and
RDF are sketched out. These are discussed further in
Section 4.

2.1 The three roots of OIL

OIL unifies three important aspects provided by different
communities (see Figure 1): Formal semantics and efficient
reasoning support as provided by Description Logics,
epistemological rich modeling primitives as provided by
the Frame community, and a standard proposal for
syntactical exchange notations as provided by the Web
community.

Description Logics (DL). DLs describe knowledge in
terms of concepts and role restrictions that are used to
automatically derive classification taxonomies. The main
effort of research in knowledge representation is in
providing theories and systems for expressing structured
knowledge, for accessing it and reasoning with it in a
principled way. DLs (cf. [Brachman & Schmolze, 1985],
[Baader et al., 1991]), also known as terminological logics,
form an important and powerful class of logic-based
knowledge representation languages.3 They result from
early work on semantic networks and define a formal and
operational semantics for them. DLs try to find a fragment
of first-order logic with high expressive power which still
has a decidable and efficient inference procedure (cf.
[Nebel, 1996]). Implemented systems include BACK,
CLASSIC, CRACK, FLEX, K-REP, KL-ONE, KRIS,
LOOM, and YAK.4 A distinguishing feature of DLs is that
classes (usually called concepts) can be defined
intensionally in terms of descriptions that specify the

3. http://dl.kr.org/. Here links to most papers, project, and research
events in this area can be found.
4. http://www.research.att.com/sw/tools/classic/imp-systems.html

Fig 1.  The three roots of OIL.
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properties that objects must satisfy in order to belong to the
concept. These descriptions are expressed using a language
that allows the construction of composite descriptions,
including restrictions on the binary relationships (usually
called roles) connecting objects. Various studies examine
extensions of the expressive power for such languages and
the trade-off in computational complexity for deriving is-a
relationships between concepts in such a logic (and also,
although less commonly, the complexity of deriving
instance-of relationships between individuals and
concepts). In spite of discouraging theoretical complexity
results, there are now efficient implementations for DL
languages (cf. [Borgida & Patel-Schneider, 1994],
[MacGregor, 1994], [Horrocks & Patel-Schneider, 1999]),
see for example DLP5 and the FaCT system.6 OIL inherits
from Description Logic its formal semantics and the
efficient reasoning support developed for these languages.
In OIL, subsumption is decidable and with FaCT we can
provide an efficient reasoner for this. In general,
subsumption is only one of several reasoning tasks for
working with an ontology. Others are: instance
classification, query subsumption and query answering
over classes and instances, navigation through ontologies,
etc. However, many of them can be reformulated in terms
of subsumption checking. Others may lead to different
super- and subsets of the current OIL language version. The
current version of OIL can be seen as a starting point for
exploring the space of possible choices in designing
Ontology exchange languages and characterizing them in
terms of their pros and cons.

Frame-based systems. The central modeling primitive of
predicate logic are predicates. Frame-based and object-
oriented approaches take a different approach. Their central
modeling primitive are classes (i.e., frames) with certain
properties called attributes. These attributes do not have a
global scope but are only applicable to the classes they are
defined for (they are typed) and the “same” attribute (i.e.,
the same attribute name) may be associated with different
range and value restrictions when defined for different
classes. A frame provides a certain context for modeling
one aspect of a domain. Many other additional refinements
of these modeling constructs have been developed, and this
has contributed to the incredible success of this modeling
paradigm. Many frame-based systems and languages have
been developed, and under the name object-orientation it
has conquered the software engineering community.
Therefore, OIL incorporates the essential modeling
primitives of frame-based systems into its language. OIL is

5. http://www.bell-labs.com/user/pfps/
6. http://www.cs.man.ac.uk/˜horrocks/software.html We will
discuss later in the paper the use of FaCT as an inference engine
for OIL.
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based on the notion of a class and the definition of its
superclasses and attributes. Relations can also be defined
not as attributes of a class but as an independent entities
having a certain domain and range. Like classes, relations
can be arranged in a hierarchy. We will explain the
difference between OIL and pure Description Logics using
their different treatment of attributes. In DLs, roles are not
defined for concepts. Actually, concepts are defined as
subclasses of role restriction. One could rephrase this in a
frame context as follows: a class is a subclass of its attribute
definitions (i.e., all instances of the class must fulfil the
restrictions defined for the attributes). However, asking
which roles could be applied to a class does not make much
sense for a DL as nearly all slots can be applied to a class.
With frame-based modeling one makes the implicit
assumption that only those attributes can be applied to a
class that are defined for this class.

Web standards: XML and RDF. Modeling primitives and
their semantics are one aspect of an Ontology Exchange
Language. In addition, you have to decide about its syntax.
Given the current dominance and importance of the WWW,
a syntax of an ontology exchange language must be
formulated using existing web standards for information
representation. As already proven with XOL7 (cf. [Karp et
al., 1999], [McEntire et al., 1999]), XML can be used as a
serial syntax definition language for an ontology exchange
language. The BioOntology Core Group8 recommends the
use of a frame-based language with an XML syntax for the
exchange of ontologies for molecular biology. The
proposed language is called XOL. The ontology definitions
that XOL is designed to encode include both schema
information (meta-data), such as class definitions from
object databases, as well as non-schema information
(ground facts), such as object definitions from object
databases. The syntax of XOL is based on XML, and the
modeling primitives and semantics of XOL are based on
OKBC-Lite. OIL is closely related to XOL and can be seen
as an extension of XOL. For example, XOL allows only
necessary but not sufficient class definitions (i.e., a new
class is always a sub-class of and not equal to its
specification) and only class names, but not class
expressions (except for the limited form of expression
provided by slots and their facets) can be used in defining
classes. The XML syntax of OIL was mainly defined as an
extension of XOL, although, as we said above for OKBC,
we omit some of the original language primitives. More
details on the XML syntax of OIL (defined as a DTD and in
XML schema) can be found in[Horrocks et al., to appear]
and [Klein et al., 2000].

Other candidates for a web-based syntax for OIL are RDF

7. http://www.ai.sri.com/pkarp/xol/.
8. http://smi-web.stanford.edu/projects/bio-ontology/
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and RDFS. The Resource Description Framework (RDF)9

(cf. [Miller, 1998], [Lassila & Swick,1999]) provides a
means for adding semantics to a document without making
any assumptions about the structure of the document. RDF
is an infrastructure that enables the encoding, exchange and
reuse of structured metadata. RDF schemes (RDFS)
[Brickley & Guha, 2000] provide a basic type schema for
RDF. Objects, Classes, and Properties can be described.
Predefined properties can be used to model instance of and
subclass of relationships as well as domain restrictions and
range restrictions of attributes. A speciality of RDFS is that
properties are defined globally and are not encapsulated as
attributes in class definitions. Therefore, a frame or object-
oriented ontology can only be expressed in RDFS by
reifying the property names with class name suffixes. In
regard to ontologies, RDF provides two important
contributions: a standardized syntax for writing ontologies
and a standard set of modeling primitives, like instance of
and subclass of relationships.

2.2 Why not Ontolingua?

Ontolingua10 (cf. [Gruber, 1993], [Farquhar et al., 1997])
is an existing proposal for a ontology exchange language. It
was designed to support the design and specification of
ontologies with a clear logical semantics based on KIF11.
Ontolingua extends KIF with additional syntax to capture
intuitive bundling of axioms into definitional forms with
ontological significance; and a Frame Ontology to define
object-oriented and frame-language terms.12 The set of KIF
expressions that Ontolingua allows is defined in an
ontology, called the Frame Ontology. The Frame Ontology
specifies in a declarative form the representation primitives
that are often supported with special-purpose syntax and
code in object-centered representation systems (e.g.,
classes, instances, slot constraints, etc.). Ontolingua
definitions are Lisp-style forms that associate a symbol
with an argument list, a documentation string, and a set of
KIF sentences labeled by keywords. An Ontolingua
ontology is made up of definitions of classes, relations,
functions, objects distinguished, and axioms that relate
these terms.

The problem with Ontolingua is its high expressive power

9. http://www.w3c.org/Metadata/
10. http://ontolingua.stanford.edu/
11. The Knowledge Interchange Format KIF ([Genesereth,
1991], [Genesereth & Fikes, 1992]) is a language designed for use
in the interchange of knowledge among disparate computer
systems. KIF is based on predicate logic but provides a Lisp-
oriented syntax for it.
12. The Ontolingua Server as described in [Farquhar et al., 1997]
has extended the original language by providing explicit support
for building ontological modules that can be assembled, extended,
and refined in a new ontology.
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that is provided without any means to control it. Not
surprisingly, no reasoning support has ever been provided
for Ontolingua. OIL takes the opposite approach. We start
with a very simple and limited core language. The web has
proven that restriction of initial complexity and controlled
extension when required is a very successful strategy. OIL
takes this lesson to heart. We already mentioned that the
focus on different reasoning tasks may lead to different
extensions. We also showed in [Fensel et al., 2000] serious
shortcomings in the expressiveness of OIL. This process
may finally lead to one version of OIL with similar
expressiveness as Ontolingua. Still we would have had a
process of rational reconstruction that makes certain
choices with their pros and cons explicitly. Second, we
would still have versions with smaller expressive power for
cases they can be applied to.

In general there are two strategies to achieve a standard:
Defining a “small” set of modeling primitives that are
consensus in the community and define a proper semantics
for them; or defining a “large” set of modeling primitives
that are present in some of the approaches in a community
and glue them together. Both may lead to success. The first
approach can be illustrated with HTML. Its first version
was very simple and limited but therefore allowed the Web
to catch on and become a world wide standard. Meanwhile
we have HTML version 5, XHTML, and XML. So
beginning with a core set and successively refining and
extending them has proven to be successful strategy. The
second approach has been taken by the UML community by
designing a model that is broad enough to cover all
modeling concepts of a community. This leads to ambiguity
and redundancy in modeling primitives and sometimes a
precise semantic definition is lacking. However, UML has
been adopted by Software industry as one of the major
approaches, and is therefore a success too. Obviously these
two opposed approaches to standardization may both work
successfully. We have chosen the first approach in
developing OIL. This stems from the purpose OIL is
designed for. It should provide machine understandable
semantics of domain theories. This will be used in the Web
context to provide machine processable semantics of
information sources helping the make true Tim Berners-
Lee’s vision of a semantic web. Therefore clear definitions
of semantics and reasoning support is essential.

2.3 OIL and OKBC

A simple and well-defined semantics is of great importance
for an ontology exchange language because it is used to
transfer knowledge from one context to another. There
already exists an ontology exchange standard for frame-
based systems, the Open Knowledge Base Connectivity
(OKBC)13 ([Chaudhri et al., 1997], [Chaudhri et al., 1998]).
OKBC is an API (application program interface) for
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accessing frame-based knowledge representation systems.
Its knowledge model supports features most commonly
found in frame-based knowledge representation systems,
object databases, and relational databases. OKBC-Lite
extracts most of the essential features of OKBC, while not
including some of its more complex aspects. OKBC has
also been chosen by FIPA14 as an exchange standard for
ontologies (cf. FIPA 98 Specification, Part 12: Ontology
Service [FIPA, 1998]). OIL shares many features with
OKBC and defines a clear semantics and XML-oriented
syntax for them. A detailed comparison is made later in this
document.

2.4 OIL and RDF

In the same way that OIL provides an extension to OKBC
(and is therefore downward compatible with OKBC) it also
provides an extension to RDF and RDFS. Based on its RDF
syntax, ontologies written in OIL are valid RDF
documents. OIL extends the schema definition of RDFS by
adding additional language primitives not yet present in
RDFS. Based on these extensions an ontology in OIL can
be expressed in RDFS.

3. The OIL Language

This section provide an informal description of the
modeling primitives, an example in OIL, its tool
environment, and a discussion of future extensions of OIL.
The semantics of OIL is described in [Horrocks et al., to
appear].

3.1 An informal description of OIL

In this section we will give an informal description of the
OIL language; an example is provided in Section 3.2.

An OIL ontology is a structure made up of several
components, some of which may themselves be structures,
some of which are optional, and some of which may be
repeated. We will write component? to indicate an
optional component, component+ to indicate a component
that may be repeated one or more times (i.e., that must
occur at least once) and component* to indicate a
component that may be repeated zero or more times (i.e.,
that may be completely omitted). 

When describing ontologies in OIL we have to distinguish
three different layers:

• The object level where concrete instances of an
ontology are described. We do not deal with this level
in this paper. The exchange of application-specific
information on instances is currently beyond the
scope of OIL.

13. http://www.ai.sri.com/˜okbc/
14. http://www.fipa.org
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• The first metalevel, where the actual ontological
definitions are provided. Here we define the
terminology that may be populated at the object level.
OIL is mainly concerned with this level. It is a means
for describing a structured vocabulary with well-
defined semantics. The main contribution of OIL is in
regard to this level.

• The second metalevel (i.e., the meta-metalevel) is
concerned with describing features of such an
ontology like author, name, subject, etc. For
representing metadata of ontologies we make use of
the DublinCore Meta data Element Set (Version 1.1)
[Dublin Core] standard. The Dublin Core is a meta-
data element set intended to facilitate the discovery of
electronic resources. Originally conceived for author-
generated descriptions of web resources, it is now
widely used and has attracted the attention of
resource description communities such as museums,
libraries, government agencies, and commercial
organizations.

OIL is concerned with the first and second metalevels. The
former is called ontology definition and the latter is called
ontology container. We will discuss both elements of an
ontology specification in OIL. We start with the ontology
container and will then discuss the backbone of OIL, the
ontology definition.

Ontology Container: We adopt the components as defined
by Dublin Core Meta data Element Set, Version 1.1 for the
ontology container part of OIL. Although every element is
optional and repeatable in the Dublin Core set, in OIL some
elements are required or have a predefined value. Required
elements are written as element+. Some of the elements can
be specialized with a qualifier, which refines the meaning
of that element. In our shorthand notation we will write
element.qualifier. The precise syntax based on RDF is
given in [Miller et al., 1999].

Apart from various header fields encapsulated in its
container, an OIL ontology consists of a set of definitions: 

• import? A list of references to other OIL modules
that are to be included in this ontology. XML
schemas and OIL provide the same (limited) means
for composing specifications. You can include
specifications and the underlying assumption is that
names of different specifications are different (via
different prefixes).

• rule-base? A list of rules (sometimes called axioms
or global constraints) that apply to the ontology. At
present, the structure of these rules is not defined
(they could be horn clauses, DL style axioms
etcetera), and they have no semantic significance.
The rule base consists simply of a type (a string)
followed by the unstructured rules (a string).
OIL in a Nutshell 4.
• class and slot definitions Zero or more class
definitions (class-def) and slot definitions (slot-def),
the structure of which will be described below.

A class definition (class-def) associates a class name with a
class description. A class-def consists of the following
components:

• type? The type of definition. This can be either
primitive or defined; if omitted, the type defaults to
primitive. When a class is primitive, its definition
(i.e., the combination of the following subclass-of
and slot-constraint components) is taken to be a
necessary but not sufficient condition for
membership of the class.

• name The name of the class (a string).

• documentation Some documentation describing the
class (a string).

• subclass-of? A list of one or more class-expressions,
the structure of which will be described below. The
class being defined in this class-def must be a sub-
class of each of the class-expressions in the list.

• slot-constraints Zero or more slot-constraints, the
structure of which will be described below. The class
being defined in this class-def must be a sub-class of
each of the slot-constraints in the list.

A class-expression can be either a class name, a slot-
constraint, or a boolean combination of class expressions
using the operators AND, OR or NOT. Note that class
expressions are recursively defined, so that arbitrarily
complex expressions can be formed.

A slot-constraint (a slot may also be called a role or an
attribute) is a list of one or more constraints (restrictions)
applied to a slot. A slot is a binary relation (i.e., its
instances are pairs of individuals), but a slot-constraint is
actually a class definition—its instances are those
individuals that satisfy the constraint(s). A slot-constraint
consists of the following components:

• name A slot name (a string). The slot is a binary
relation that may or may not be defined in the
ontology. If it is not defined it is assumed to be a
binary relation with no globally applicable
constraints, i.e., any pair of individuals could be an
instance of the slot.

• has-value? A list of one or more class-expressions.
Every instance of the class defined by the slot-
constraint must be related via the slot relation to an
instance of each class-expression in the list. For
example, the value constraint:

slot-constraint eats
has-value zebra, wildebeest

defines the class each instance of which eats some
instance of the class zebra and some instance of the
class wildebeest. Note that this does not mean that
5 D. Fensel et al.



instances of the slot-constraint eat only zebra and
wildebeest: they may also be partial to a little
gazelle when they can get it. Has-value expresses
the existential quantifier of Predicate logic and a
necessary condition. An instance of a class must have
at most one value for this slot that fulfils its range
restriction.

• value-type? A list of one or more class-expressions.
If an instance of the class defined by the slot-
constraint is related via the slot relation to some
individual x, then x must be an instance of each class-
expression in the list. For example, the value-type
constraint:

slot-constraint eats
value-type meat

defines the class each instance of which eats nothing
that is not meat. Note that this does not mean that
instances of the slot-constraint eat anything at all.
value-type expresses the all quantifier of Predicate
logic and a sufficient condition. If an instance of a
class has a value for this slot, then it must fulfil its
range restriction.

• max-cardinality? A non-negative integer n followed
by a class-expression. An instance of the class
defined by the slot-constraint can be related to at
most n distinct instances of the class-expression via
the slot relation. 

• min-cardinality? A non-negative integer n followed
by a class-expression. An instance of the class
defined by the slot-constraint must be related to at
least n distinct instances of the class-expression via
the slot relation. 

A slot definition (slot-def) associates a slot name with a slot
description. A slot description specifies global constraints
that apply to the slot relation, for example that it is a
transitive relation. A slot-def consists of the following
components:

• name The name of the slot (a string).

• documentation? Some documentation describing the
slot (a string).

• subslot-of? A list of one or more slots. The slot being
defined in this slot-def must be a sub-slot of each of
the slots in the list. For example,

slot-def daughter
subslot-of child

defines a slot daughter that is a subslot of child, i.e.,
every pair of individuals that is an instance of
daughter must also be an instance of child.

• domain? A list of one or more class-expressions. If
the pair (x,y) is an instance of the slot relation, then x
must be an instance of each class-expression in the
list.
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• range? A list of one or more class-expressions. If
the pair (x,y) is an instance of the slot relation, then y
must be an instance of each class-expression in the
list.

• inverse? The name of a slot S that is the inverse of
the slot being defined. If the pair (x,y) is an instance
of the slot S, then (y,x) must be an instance of the slot
being defined. For example,

slot-def eats
inverse eaten-by

defines the inverse of the slot eats to be the slot
eaten-by, i.e., if x eats y then y is eaten-by x.

• properties? A list of one or more properties of the
slot. Valid properties are: transitive and symmetric.

3.2. An example OIL ontology

The following example of an OIL ontology illustrates some
of the key features of the language.15

ontology-container
title “African animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology describing 
African animals”
description.release “1.01”
publisher “I. Horrocks”
type “ontology”
format “pseudo-xml”
format “pdf”
identifier “http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf”
source “http://www.africa.com/nature/animals.html”
language “OIL”
language “en-uk”
relation.hasPart “http://www.ontosRus.com/animals
/jungle.onto”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

class-def animal
class-def plant

subclass-of NOT animal
class-def tree

subclass-of plant
class-def branch

slot-constraint is-part-of
has-value tree

15.For reasons of space limitations only parts of the lan-
guage are illustrated.
6 D. Fensel et al.



class-def leaf
slot-constraint is-part-of

has-value branch
class-def defined carnivore

subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal
slot-constraint eats

value-type 
plant OR 
(slot-constraint is-part-of has-value plant)

class-def giraffe
subclass-of animal
slot-constraint eats

value-type leaf
class-def lion

subclass-of animal
slot-constraint eats

value-type herbivore
class-def tasty-plant

subclass-of plant
slot-constraint eaten-by

has-value herbivore, carnivore

Some points to note in the above ontology are:

• The classes plant and animal are made disjoint by
defining plant to be a subclass of NOT animal.

• The class carnivore is a defined class, and lion can
be recognized as a sub-class of carnivore because of
its definition.

• The class herbivore is a defined class, and giraffe
can be recognized as a sub-class of herbivore
because of its definition. However, in this case the
inference is a little more complex and is only valid
because has-part is transitive and is-part-of is the
inverse of has-part.

• The class tasty-plant is inconsistent. This is because
tasty-plant is a kind of plant that is eaten by both
herbivores and carnivores, but we have already
stated that carnivore eat only animals, and that
animal and plant are disjoint.

3.3. Current Limitations of OIL

Our starting point has been to define a decidable core
language, with the intention that additional (and possibly
important) features be defined as a set of extensions (still
with clearly defined semantics). Modelers will be free to
use these language extensions, but it will be clear that this
may compromise decidability and reasoning support. This
seems to us a cleaner solution than trying to define a single
“all things to all men” language.
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In this section we briefly discuss a number of features
which are available in other ontology modeling languages
and which are not or not yet included in OIL. For each of
these features, we briefly motivate our choice, and mention
future prospects where relevant.

Default reasoning: Although OIL does provide a
mechanism for inheriting values from super-classes, such
values cannot be overwritten. As a result, such values
cannot be used for the purpose of modeling default values.
Combining defaults with a well defined semantics and
reasoning support is known to be problematical.

Rules/Axioms: As discussed above, only a fixed number of
algebraic properties of slots can be expressed in OIL. There
is no facility for describing arbitrary axioms that must hold
for all items in the ontology. Such a powerful feature is
undoubtedly useful and may be added to the core language.

Modules: We  presented a very simple construction to
modularize ontologies in OIL. In fact, this mechanism is
identical to the namespace mechanism in XML. It amounts
to a textual inclusion of the imported module, where name-
clashes are avoided by prefixing every imported symbol
with a unique prefix indicating its original location. Future
extensions would concern parameterized modules,
signature mappings between modules, and restricted export
interfaces for modules.

Using instances in class definitions: Results from research
in description and modal logics show that the
computational complexity of such logics changes
dramatically for the worse when reasoning with domain-
instances is allowed (cf. [Areces et al., 1999]). For this
reason OIL does not currently allow the use of instances in
slot-values, or extensional definitions of classes (i.e., class
definitions by enumerating the class instances).

Concrete domains: OIL currently does not support
concrete domains (e.g., integers, strings, etc.). This would
seem to be a serious limitation for a realistic ontology
exchange language, and extensions of OIL in this direction
are probably necessary. The theory of concrete domains is
well understood [Baader & Hanschke, 1991], and it should
be possible to add some restricted form of concrete
domains without sacrificing reasoning support.

Limited Second-order expressivity: Many existing
languages for ontologies (KIF, CycL, Ontolingua) include
some form of reification mechanism in the language, which
allows us to treat statements of the language as objects in
their own right, thereby making it possible to express
statements about these statements. A full second order
extension would be clearly undesirable (even unification is
7 D. Fensel et al.



undecidable in full 2nd order logic). However, much
weaker second order constructions already provide much if
not all of the required expressivity without causing any
computational problem (in effect, they are simply 2nd order
syntactic sugar for what are essentially first order
constructions).

3.4 Tools

OIL makes use of the FaCT (Fast Classification of
Terminologies) system in order to provide reasoning
support for ontology design, integration and verification.
FaCT is a Description Logic classifier that can also be used
for consistency checking in modal and other similar logics.
FaCT’s most interesting features are its expressive logic (in
particular the SHIQ reasoner), its optimized tableaux
implementation (which has now become the standard for
DL systems), and its CORBA based client-server
architecture. FaCT’s optimizations are specifically aimed at
improving the system’s performance when classifying
realistic ontologies, and this results in performance
improvements of several orders of magnitude when
compared with older DL systems. This performance
improvement is often so great that it is impossible to
measure precisely as unoptimised systems are virtually
non-terminating with ontologies that FaCT is easily able to
deal with [Horrocks & Patel-Schneider, 1999]. Taking a
large medical terminology ontology developed in the
GALEN project [Rector et al., 1993] as an example, FaCT
is able to check the consistency of all 2,740 classes and
determine the complete class hierarchy in about 60 seconds
of (450MHz Pentium III) CPU time.16 In contrast, the
KRIS system [Baader & Hollunder, 1991] had been unable
to complete the same task after several weeks of CPU time.

4. Comparing OIL with other approaches

This section compares OIL with other frame-based
approaches and with the arising web standards RDF and
RDFS.

4.1 OIL and other frame-oriented approaches

The modeling primitives of OIL are based on those of XOL
(cf. [Karp et al., 1999]). OIL extends XOL so as to make it
more suitable for capturing ontologies defined using a
logic-based approach (such as used in DLs) in addition to
the frame-based ontologies for which XOL (and OKBC
[Chaudhri et al., 1998]) were designed. The extensions are
designed so that most valid XOL ontologies should also be
valid OIL ontologies. The exceptions are due to the
omission of constructs for which reasoning support (e.g.,
for class consistency and subsumption checking) could not

16. Adding single classes and checking both their consistency and
their position in the class hierarchy is virtually instantaneous.
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be provided from OIL, either because their semantics are
unclear or because their inclusion would lead to the
language being undecidable.

How OIL extends XOL

It is the frame structure itself that restricts the way language
primitives can be combined to define a class. In XOL, class
definitions consist of the specification of zero or more
parent classes (from which characteristics are inherited)
and zero or more slots—binary relations whose
characteristics can be additionally restricted using slot
facets (e.g., the range of the relation can be restricted using
the value-type facet). Viewed from a logical perspective,
each slot (with its associated facets) defines a class (e.g., a
slot eats with the value-type junk-food defines the class
of individuals who eat nothing but junk food), and the
frame is implicitly17 the class formed from the conjunction
of all the slots and all the parent classes. Consequently,
every class must be defined by a conjunction of slots
(which themselves have a very restricted form) and other
named classes. In contrast, DLs usually allow language
primitives to be combined in arbitrary boolean expressions
(i.e., using conjunction, disjunction and negation) and
allow class definitions to be used recursively wherever a
class name might appear. Moreover, XOL only provides
one form of class definition statement. It is not clear
whether the resulting class is meant to be primitive or non-
primitive: we will assume that it is primitive.18

In our view, this very restricted form of class definition
makes XOL (and indeed OKBC) unsuitable as an ontology
exchange language: it makes it impossible to capture even
quite basic DL ontologies and precludes some very simple
and intuitive kinds of class definition. For example, it is
impossible to define the class of vegetarian as the subclass
of person such that everything they eat is neither meat nor
fish. On the one hand, the value of the value-type facet of
the slot eats cannot be an expression such as “not (meat
or fish)”. On the other hand, because vegetarian must be
primitive, there could be individuals of type person who
eat neither meat nor fish but who are not classified as
vegetarians.19 Another serious weakness of XOL class
definitions (and those of OKBC) is that there is no
mechanism for specifying disjointness of classes, a basic
modeling primitive that can be captured even by many
conceptual modeling formalisms used for database schema
design.20 This makes it impossible to capture the fact that

17. The OKBC semantics (on which XOL relies) are less than clear
on this and on several other important points.
18. In contrast, OKBC supports the definition of both primitive and
non-primitive classes.
19. This aspect of the definition can be captured in OKBC as non-
primitive classes are supported.
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the class male is disjoint from the class female. This is
easy for a DL, where the class female can simply be made
a subclass of “not male”.

Another weakness of XOL (and OKBC) is that slots
(relations) are very much second class citizens when
compared to classes. In particular, there is no support for a
slot hierarchy and only restricted kinds of properties that
can be specified for relations. For example, it is not possible
to define the slot has-parent as a subslot of the has-
ancestor, nor is it possible to specify that has-ancestor is
a transitive relation. The specification of this kind of slot
hierarchy including transitive and non-transitive relations is
essential in ontologies dealing with complex physically
composed domains such as human anatomy [Rector et al.,
1997] and engineering [Sattler, 1995].

How OIL restricts XOL

As mentioned above, OIL also restricts XOL in some
respects.

• Initially, only conceptual modeling will be supported,
i.e., individuals are not supported. This does not seem
too onerous a restriction for an ontology specification
language given that an ontology can be viewed as a
kind of schema. Moreover, allowing individuals to
occur in class definitions is equivalent to having
extensionally defined classes, and this soon leads to
very hard reasoning problems and even
undecidability (cf. [Areces et al., 1999]). This means
that slot values in OIL can only be classes. Future
extensions of OIL may support the specification of
individuals as instances of one or more classes.

• The slot constraints numeric-minimum and
numeric-maximum are not supported. Again, future
extensions of OIL may support concrete data types
(including numbers and numeric ranges).

• Collection types other than set are not supported.

• Slot inverse can only be specified in global slot
definitions: naming the inverse of a relation only
seems to make sense when applied globally.

4.2 OIL and RDF

The Resource Description Framework (RDF) [Lassila &
Swick,1999] is a recommendation of the World Wide Web
Consortium (W3C) for representing meta-data in the Web.
RDF data represents resources and attached attribute/value
pairs. A resource represent anything representable through
a URI. Attributes are named properties of the resources, and
their values are either atomic entities (text strings, numbers,
etc.) or other resources represented by a URI. The
resources, properties, and values build up the RDF data
model, that can be seen as a labeled directed graphs.

20. For example extended entity relationship (EER) modeling.
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Besides defining the data model, RDF needs a serialization
syntax to make actual data available in the Web. For this
purpose XML was chosen. RDF and XML are
complementary in so far as RDF represents the abstract
model and XML provides the concrete textual
representation of the model. There are several ways to
represent the same RDF data model in XML. 

A third component in the RDF-context has to be
introduced: since RDF does not define any particular
vocabularies for authoring of data, a schema language with
appropriate primitives is needed. For this purpose the RDF-
Schema specification was created. RDF-schema is a simple
ontology language able to define basic vocabularies which
covers the simplest parts a of a knowledge model like
OKBC (classes, properties, domain and range restrictions,
instance-of, subclass-of and subproperty-of relationships).
RDF-Schema is itself defined in RDF and an RDF Schema
defining the RDF-Schema language itself is also available
[Brickley & Guha, 2000].

The relationship between OIL and RDF/RDFS is very close
because RDF/RDFS was meant to capture meaning in the
manner of semantic nets. In the same way, as RDF-Schema
is used to define itself it can be used to define other
ontology languages. We define a syntax for OIL by giving
an RDF-Schema for the core of OIL and proposing related
RDF-Schemas that could complement this core to cover
further aspects. To ensure maximal compatibility with
existing RDF/RDFS-applications and vocabularies the
integration of OIL with the resources defined in RDF-
Schema has been a main focus in designing the RDF-model
for OIL (see for a survey).

• The major integration point of RDF/RDFS and OIL
is defined by the class oil:ClassExpression, which is
a subclass of rdfs:Resource (the most general class in
RDFS). In OIL, rdfs:Class is also made a subclass of
oil:ClassExpression. Doing this, existing classes
from RDFS-vocabularies can be accessed and refined
in OIL descriptions. Other subclasses of
oil:ClassExpression are the boolean operators
oil:AND, oil:OR and oil:NOT and oil:SlotConstraint
(which is also a subclass of rdfs:ConstraintResource)
with its derivatives. The class oil:ClassExpression
thus embraces all ways to define class descriptions in
OIL. 

• Furthermore, OIL-slots are realized as instances of
rdf:Property or of subproperties of the original
rdf:Property. The subslot relationship is also
expressed by original RDF-means, namely the
rdfs:subPropertyOf relationship. rdf:Property is
enriched by a qualifier oil:inverseRelationOf, that
specifies the inverse role. Properties can also be
realized as instances of oil:TransitiveRelation and
oil:SymmetricRelation to express this qualities of
9 D. Fensel et al.



properties, which are not available in RDF/RDFS.

• To distinguish between primitive and defined class
definitions, two new class are introduced:
oil:PrimitiveClass and oil:DefinedClass. Every class
definition can be realized as an instance of one of
these classes, and thus specified as a primitive or
defined class.

• To express constraints on the way properties may be
applied to classes, we introduced oil:SlotConstraint,
which encapsulates the constraints on the slots of a
class. This goes beyond the possibilities in the
original RDFS-specification to define classes.

In a nutshell, RDFS relies on RDF and defines a new name
space called RDFS. Some of the OIL primitives can
directly be expressed in this name space. Others require a
refinement of the RDFS primitives in an additional OIL
name space.

5. Summary

In this paper, we sketched out both the syntax and
semantics of an ontology exchange language called OIL.
One of our main motivations while defining this language
has been to ensure that it has a clear and well defined
semantics—an agreed common syntax is useless without an
agreement as to what it all means. 

The core we have currently defined can be justified from a
pragmatic and a theoretical point of view. From a pragmatic
point of view, OIL covers consensual modeling primitives
of Frame systems and Description Logics. From a
theoretical point of view it seems quite natural to us to limit
the expressiveness of this version so that subsumption is
decidable. This defines a well-understood subfragment of
first-order logic. However, it is important to note that we
are open to further discussions that may influence the final
design of an ontology exchange language.

We are currently evaluating the use of OIL in the two
running IST projects: On-to-knowledge21 and Ibrow22. In
On-to-knowledge, OIL will be extended to become a full-
fledged environment for knowledge management in large
intranets. Unstructured and semi-structured data will be
annotated automatically and agent-based user interface
techniques and visualization tools will help users to
navigate and query the information space. Here On-to-
knowledge continues a line of research that was set up with

21. On-To-Knowledge: Content-driven Knowledge-Management
Tools through Evolving Ontologies. 
http://www.ontoknowledge.com
22. IBROW started with a preliminary phase under the 4th
European Framework and has been a full-fledged Information
Society Technologies (IST) project under the 5th European
Framework Program since February 2000. 
http://www.swi.psy.uva.nl/projects/ibrow/home.html
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SHOE (cf. [Luke et al., 1996], [Heflin et al., 1999]) and
Ontobroker (cf. [Fensel et al., 1998a], [Fensel et al., 1999]):
using ontologies to model and annotate the semantics of
information in a machine processable manner. In Ibrow, we
are currently investigating the usefulness of OIL for
software component description, based on its integration
with UPML (cf. [Fensel et al., 2000]).
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