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Abstract

When reasoning in description, modal or
temporal logics it is often useful to consider
axioms representing universal truths in the
domain of discourse. Reasoning with respect
to an arbitrary set of axioms is hard, even for
relatively inexpressive logics, and it is essen-
tial to deal with such axioms in an efficient
manner if implemented systems are to be ef-
fective in real applications. This is partic-
ularly relevant to Description Logics, where
subsumption reasoning with respect to a ter-
minology is a fundamental problem. Two
optimisation techniques that have proved to
be particularly effective in dealing with ter-
minologies are lazy unfolding and absorp-
tion. In this paper we seek to improve our
theoretical understanding of these important
techniques. We define a formal framework
that allows the techniques to be precisely
described, establish conditions under which
they can be safely applied, and prove that,
provided these conditions are respected, sub-
sumption testing algorithms will still func-
tion correctly. These results are used to show
that the procedures used in the FaCT system
are correct and, moreover, to show how ef-
ficiency can be significantly improved, while
still retaining the guarantee of correctness, by
relaxing the safety conditions for absorption.

1 MOTIVATION

Description Logics (DLs) form a family of formalisms
which have grown out of knowledge representation
techniques using frames and semantic networks. DLs
use a class based paradigm, describing the domain of

interest in terms of concepts (classes) and roles (bi-
nary relations) which can be combined using a range
of operators to form more complex structured con-
cepts [BHH+91]. A DL terminology typically consists
of a set of asserted facts, in particular asserted sub-
sumption (is-a-kind-of) relationships between (possi-
bly complex) concepts.1.

One of the distinguishing characteristics of DLs is a
formally defined semantics which allows the structured
objects they describe to be reasoned with. Of partic-
ular interest is the computation of implied subsump-
tion relationships between concepts, based on the as-
sertions in the terminology, and the maintenance of a
concept hierarchy (partial ordering) based on the sub-
sumption relationship [WS92].

The problem of computing concept subsumption rela-
tionships has been the subject of much research, and
sound and complete algorithms are now known for a
wide range of DLs (for example [HN90, BH91, Baa91,
DM98, HST99]). However, in spite of the fundamen-
tal importance of terminologies in DLs, most of these
algorithms deal only with the problem of deciding sub-
sumption between two concepts (or, equivalently, con-
cept satisfiability), without reference to a terminology
(but see [BDS93, Cal96, DDM96, HST99]). By re-
stricting the kinds of assertion that can appear in a ter-
minology, concepts can be syntactically expanded so as
to explicitly include all relevant terminological infor-
mation. This procedure, called unfolding, has mostly
been applied to less expressive DLs. With more ex-
pressive DLs, in particular those supporting universal
roles, it is often possible to encapsulate an arbitrary
terminology in a single concept. This technique can
be used with satisfiability testing to ensure that the
result is valid with respect to the assertions in the ter-

1DLs can also deal with assertions about individuals,
but in this paper we will only be concerned with termino-
logical (concept based) reasoning



minology, a procedure called internalisation.

Although the above mentioned techniques suffice to
demonstrate the theoretical adequacy of satisfiabil-
ity decision procedures for terminological reasoning,
experiments with implementations have shown that,
for reasons of (lack of) efficiency, they are highly un-
satisfactory as a practical methodology for reasoning
with DL terminologies. Firstly, experiments with the
Kris system have shown that integrating unfolding
with the (tableaux) satisfiability algorithm (lazy un-
folding) leads to a significant improvement in perfor-
mance [BFH+94]. More recently, experiments with
the FaCT system have shown that reasoning becomes
hopelessly intractable when internalisation is used to
deal with larger terminologies [Hor98]. However, the
FaCT system has also demonstrated that this problem
can be dealt with (at least for realistic terminologies)
by using a combination of lazy unfolding and internal-
isation, having first manipulated the terminology in
order to minimise the number of assertions that must
be dealt with by internalisation (a technique called ab-
sorption).

It should be noted that, although these techniques
were discovered while developing DL systems, they are
applicable to a whole range of reasoning systems, in-
dependent of the concrete logic and type of algorithm.
As well as tableaux based decision procedures, this
includes resolution based algorithms, where the im-
portance of minimising the number of terminological
sentences has already been noted [HS99], and sequent
calculus algorithms, where there is a direct correspon-
dence with tableaux algorithms [BFH+99].

In this paper we seek to improve our theoretical un-
derstanding of these important techniques which has,
until now, been very limited. In particular we would
like to know exactly when and how they can be ap-
plied, and be sure that the answers we get from the
algorithm are still correct. This is achieved by defin-
ing a formal framework that allows the techniques to
be precisely described, establishing conditions under
which they can be safely applied, and proving that,
provided these conditions are respected, satisfiability
algorithms will still function correctly. These results
are then used to show that the procedures used in the
FaCT system are correct2 and, moreover, to show how
efficiency can be significantly improved, while still re-
taining the guarantee of correctness, by relaxing the
safety conditions for absorption. Finally, we identify
several interesting directions for future research, in

2Previously, the correctness of these procedures had
only been demonstrated by a relatively ad-hoc argu-
ment [Hor97].

particular the problem of finding the “best” absorp-
tion possible.

2 PRELIMINARIES

Firstly, we will establish some basic definitions that
clarify what we mean by a DL, a terminology (subse-
quently called a TBox), and subsumption and satisfi-
ability with respect to a terminology, . The results in
this paper are uniformly applicable to a whole range
of DLs, as long as some basic criteria are met:

Definition 2.1 (Description Logic) Let L be a DL
based on infinite sets of atomic concepts NC and
atomic roles NR. We will identify L with the sets of its
well-formed concepts and require L to be closed under
boolean operations and sub-concepts.

An interpretation is a pair I = (∆I , ·I), where ∆I

is a non-empty set, called the domain of I, and ·I is

a function mapping NC to 2∆I

and NR to 2∆I
×∆I

.
With each DL L we associate a set Int(L) of admissi-
ble interpretations for L. Int(L) must be closed under
isomorphisms, and, for any two interpretations I and
I ′ that agree on NR, it must satisfy I ∈ Int(L) ⇔
I ′ ∈ Int(L). Additionally, we assume that each DL L

comes with a semantics that allows any interpretation
I ∈ Int(L) to be extended to each concept C ∈ L such
that it satisfies the following conditions:

(I1) it maps the boolean combination of concepts to the
corresponding boolean combination of their inter-
pretations, and

(I2) the interpretation CIof a compound concept C ∈
L depends only on the interpretation of those
atomic concepts and roles that appear syntacti-
cally in C.

This definition captures a whole range of DLs, namely,
the important DL ALC [SS91] and its many exten-
sions. Int(L) hides restrictions on the interpretation of
certain roles like transitivity, functionality, or role hi-
erarchies, which are imposed by more expressive DLs
(e.g., [HST99]), as these are irrelevant for our pur-
poses. In these cases, Int(L) will only contain those
interpretations which interpret the roles as required
by the semantics of the logic, e.g., features by partial
functions or transitively closed roles by transitive re-
lations. Please note that various modal logics [Sch91],
propositional dynamic logics [DL94] and temporal log-
ics [EH85] also fit into this framework. We will use
C → D as an abbreviation for ¬C t D, C ↔ D as
an abbreviation for (C → D) u (D → C), and > as



a tautological concept, e.g., A t ¬A for an arbitrary
A ∈ NC.

A TBox consists of a set of axioms asserting subsump-
tion or equality relations between (possibly complex)
concepts.

Definition 2.2 (TBox, Satisfiability) A TBox T
for L is a finite set of axioms of the form C1 v C2

or C1
.
= C2, where Ci ∈ L. If, for some A ∈ NC, T

contains one or more axioms of the form A v C or
A

.
= C, then we say that A is defined in T .

Let L be a DL and T a TBox. An interpretation I ∈
Int(L) is a model of T iff, for each C1 v C2 ∈ T ,
CI

1 ⊆ CI
2 holds, and, for each C1

.
= C2 ∈ T , CI

1 =
CI

2 holds. In this case we write I |= T . A concept
C ∈ L is satisfiable with respect to a TBox T iff there
is an I ∈ Int(L) with I |= T and CI 6= ∅. A concept
C ∈ L subsumes a concept D ∈ L w.r.t. T iff, for all
I ∈ Int(L) with I |= T , CI ⊇ DI holds.

Two TBoxes T , T ′ are called equivalent (T ≡ T ′), iff,
for all I ∈ Int(L), I |= T iff I |= T ′.

We will only deal with concept satisfiability as concept
subsumption can be reduced to it for DLs that are
closed under boolean operations: C subsumes D w.r.t.
T iff (D u ¬C) is not satisfiable w.r.t. T .

For temporal or modal logics, satisfiability with re-
spect to a set of formulae {C1, . . . , Ck} asserted to be
universally true corresponds to satisfiability w.r.t. the
TBox {>

.
= C1, . . . ,>

.
= Cn}.

Many decision procedures for DLs base their judge-
ment on the existence of models or pseudo-models for
concepts. A central rôle in these algorithms is played
by a structure that we will call a witness in this pa-
per. It generalises the notions of tableaux that appear
in DL tableau-algorithms [HNS90, BBH96, HST99] as
well as the Hintikka-structures that are used in tableau
and automata-based decision procedures for temporal
logic [EH85] and propositional dynamic logic [VW86].

Definition 2.3 (Witness) Let L be a DL and C ∈ L

a concept. A witness W = (∆W , ·W ,LW) for C con-
sists of a non-empty set ∆W , a function ·W that maps

NR to 2∆W
×∆W

, and a function LW that maps ∆W to
2L such that the following properties are satisfied:

(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I ∈ Int(L) that stems
from W, and

(W3) for each interpretation I ∈ Int(L) that stems from
W, it holds that D ∈ LW(x) implies x ∈ DI .

An interpretation I = (∆I , ·I) is said to stem from W
if it satisfies:

1. ∆I = ∆W ,

2. ·I |NR = ·W , and

3. for each A ∈ NC, A ∈ LW(x) ⇒ x ∈ AI and
¬A ∈ LW(x) ⇒ x 6∈ AI .

A witness W is called admissible with respect to a
TBox T if there is an interpretation I ∈ Int(L) that
stems from W with I |= T .

Please note that, for any witness W, (W2) together
with Condition 3 of “stemming” implies that, there
exists no x ∈ ∆W and A ∈ NC, such that {A,¬A} ⊆
LW(x). Also note that, in general, more than one
interpretation may stem from a witness. This is the
case if, for an atomic concept A ∈ NC and an element
x ∈ ∆W , LW(x) ∩ {A,¬A} = ∅ holds (because two
interpretations I and I ′, with x ∈ AI and x ∈ ¬AI

′

,
could both stem from W).

Obviously, each interpretation I gives rise to a special
witness, called the canonical witness:

Definition 2.4 (Canonical Witness) Let L be a
DL. For any interpretation I ∈ Int(L) we define the
canonical witness WI = (∆WI , ·WI ,LWI ) as follows:

∆WI = ∆I

·WI = ·I |NR

LWI = λx.{D ∈ L | x ∈ DI}

The following elementary properties of a canonical wit-
ness will be useful in our considerations.

Lemma 2.5 Let L be a DL, C ∈ L, and T a TBox.
For each I ∈ Int(L) with CI 6= ∅,

1. each interpretation I ′ stemming from WI is iso-
morphic to I

2. WI is a witness for C,

3. WI is admissible w.r.t. T iff I |= T

Proof.

1. Let I ′ stem from WI . This implies ∆I
′

= ∆I

and ·I
′

|NR = ·I |NR. For each x ∈ ∆I and A ∈ NC,
{A,¬A}∩LWI (x) 6= ∅, this implies ·I

′

|NC = ·I |NC

and hence I and I ′ are isomorphic.



2. Properties (W1) and (W2) hold by construction.
Obviously, I stems from WI and from (1) it fol-
lows that each interpretation I ′ stemming from
WI is isomorphic to I, hence (W3) holds.

3. Since I stems from WI , I |= T implies that WI is
admissible w.r.t. T . If WI is admissible w.r.t. T ,
then there is an interpretation I ′ stemming from
WI with I ′ |= T . Since I is isomorphic to I ′, this
implies I |= T .

As a corollary we get that the existence of admissi-
ble witnesses is closely related to the satisfiability of
concepts w.r.t. TBoxes:

Lemma 2.6 Let L be a DL. A concept C ∈ L is sat-
isfiable w.r.t. a TBox T iff it has a witness that is
admissible w.r.t. T .

Proof. For the only if -direction let I ∈ Int(L) be
an interpretation with I |= T and CI 6= ∅. From
Lemma 2.5 it follows that the canonical witness WI is
a witness for C that is admissible w.r.t. T .

For the if -direction let W be an witness for C that
is admissible w.r.t. T . This implies that there is an
interpretation I ∈ Int(L) stemming from W with I |=
T . For each interpretation I that stems from W, it
holds that CI 6= ∅ due to (W1) and (W3).

From this it follows that one can test the satisfiabil-
ity of a concept w.r.t. to a TBox by checking for the
existence of an admissible witness. We call algorithms
that utilise this approach model-building algorithms.

This notion captures tableau-based decision pro-
cedures, [HNS90, BBH96, HST99], those using
automata-theoretic approaches [VW86, CDL99] and,
due to their direct correspondence with tableaux al-
gorithms [HS99, BFH+99], even resolution based and
sequent calculus algorithms.

The way many decision procedures for DLs deal with
TBoxes exploits the following simple lemma.

Lemma 2.7 Let L be a DL, C ∈ L a concept, and T
a TBox. Let W be a witness for C. If

C1 v C2 ∈ T ⇒ ∀x ∈ ∆W .(C1 → C2 ∈ LW(x))
C1

.
= C2 ∈ T ⇒ ∀x ∈ ∆W .(C1 ↔ C2 ∈ LW(x))

then W is admissible w.r.t. T .

Proof. W is a witness, hence there is an interpretation
I ∈ Int(L) stemming from W. From (W3) and the fact

that W satisfies the properties stated in 2.7 it follows
that, for each x ∈ ∆I ,

C1 v C2 ∈ T ⇒ C1 → C2 ∈ LW(x)
⇒ x ∈ (C1 → C2)

I

C1
.
= C2 ∈ T ⇒ C1 ↔ C2 ∈ LW(x)

⇒ x ∈ (C1 ↔ C2)
I

Hence, I |= T and W is admissible w.r.t. T .

Examples of algorithms that exploit this lemma to deal
with axioms can be found in [DDM96, DL96, HST99],
where, for each axiom C1 v C2 (C1

.
= C2) the concept

C1 → C2 (C1 ↔ C2) is added to every node of the
generated tableau.

Dealing with general axioms in this manner is costly
due to the high degree of nondeterminism introduced.
This can best be understood by looking at tableaux
algorithms, which try to build witnesses in an incre-
mental fashion. For a concept C to be tested for sat-
isfiability, they start with ∆W = {x0}, L

W(x0) = {C}
and ·W(R) = ∅ for each R ∈ NR. Subsequently,
the concepts in LW are decomposed and, if neces-
sary, new nodes are added to ∆W , until either W is
a witness for C, or an obvious contradiction of the
form {A,¬A} ⊆ LW(x), which violates (W2), is gener-
ated. In the latter case, backtracking search is used to
explore alternative non-deterministic decompositions
(e.g., of disjunctions), one of which could lead to the
discovery of a witness.

When applying Lemma 2.7, disjunctions are added to
the label of each node of the tableau for each gen-
eral axiom in the TBox (one disjunction for axioms
of the form C1 v C2, two for axioms of the form
C1

.
= C2). This leads to an exponential increase in

the search space as the number of nodes and axioms
increases. For example, with 10 nodes and a TBox con-
taining 10 general axioms (of the form C1 v C2) there
are already 100 disjunctions, and they can be non-
deterministically decomposed in 2100 different ways.
For a TBox containing large numbers of general ax-
ioms (there are 1,214 in the Galen medical termi-
nology KB [RNG93]), this can degrade performance
to the extent that subsumption testing is effectively
non-terminating. To reason with this kind of TBox we
must find a more efficient way to deal with axioms.

3 ABSORPTIONS

We start our considerations with an analysis of a tech-
nique that can be used to deal more efficiently with
so-called primitive or acyclic TBoxes.

Definition 3.1 (Absorption) Let L be a DL and T
a TBox. An absorption of T is a pair of TBoxes



(Tu, Tg) such that T ≡ Tu ∪ Tg and Tu contains only
axioms of the form A v D and ¬A v D where A ∈ NC.

An absorption (Tu, Tg) of T is called correct if it sat-
isfies the following condition. For each witness W, if,
for each x ∈ ∆W ,

A v D ∈ Tu ∧ A ∈ LW(x) ⇒ D ∈ LW(x)
¬A v D ∈ Tu ∧ ¬A ∈ LW(x) ⇒ D ∈ LW(x)

C1 v C2 ∈ Tg ⇒ C1 → C2 ∈ LW(x)
C1

.
= C2 ∈ Tg ⇒ C1 ↔ C2 ∈ LW(x)

then W is admissible w.r.t. T . We refer to this prop-
erties by (∗). A witness that satisfies (∗) will be called
unfolded w.r.t. T .

If the reference to a specific TBox is clear from the
context, we will often leave the TBox implicit and say
that a witness is unfolded.

How does a correct absorption enable an algorithm to
deal with axioms more efficiently? This is best de-
scribed by returning to tableaux algorithms. Instead
of dealing with axioms as previously described, which
may lead to an exponential increase in the search
space, axioms in Tu can now be dealt with in a deter-
ministic manner. Assume, for example, that we have
to handle the axiom A

.
= C. If the label of a node

already contains A (resp. ¬A), then C (resp. ¬C) is
added to the label; if the label contains neither A nor
¬A, then nothing has to be done. Dealing with the
axioms in Tu this way avoids the necessity for addi-
tional non-deterministic choices and leads to a gain in
efficiency. A witness produced in this manner will be
unfolded and is a certificate for satisfiability w.r.t. T .
This technique is generally known as lazy unfolding of
primitive TBoxes [Hor98]; formally, it is justified by
the following lemma:

Lemma 3.2 Let (Tu, Tg) be a correct absorption of T .
For any C ∈ L, C has a witness that is admissible
w.r.t. T iff C has an unfolded witness.

Proof. The if -direction follows from the definition of
“correct absorption”. For the only if -direction, let
C ∈ L be a concept and W a witness for C that is
admissible w.r.t. T . This implies the existence of an
interpretation I ∈ Int(L) stemming from W such that
I |= T and CI 6= ∅. Since T ≡ Tu ∪ Tg we have
I |= Tu ∪Tg and hence the canonical witness WI is an
unfolded witness for C.

A family of TBoxes where absorption can successfully
be applied are primitive TBoxes, the most simple form
of TBox usually studied in the literature.

Definition 3.3 (Primitive TBox) A TBox T is
called primitive iff it consists entirely of axioms of the
form A

.
= D with A ∈ NC, each A ∈ NC appears as at

most one left-hand side of an axiom, and T is acyclic.
Acyclicity is defined as follows: A ∈ NC is said to di-
rectly use B ∈ NC if A

.
= D ∈ T and B occurs in D;

uses is the transitive closure of “directly uses”. We
say that T is acyclic if there is no A ∈ NC that uses
itself.

For primitive TBoxes a correct absorption can easily
be given.

Theorem 3.4 Let T be a primitive TBox, Tg = ∅,
and Tu defined by

Tu = {A v D,¬A v ¬D | A
.
= D ∈ T }.

Then (Tu, Tg) is a correct absorption of T .

Proof. Trivially, T ≡ Tu ∪ Tg holds. Given an un-
folded witness W, we have to show that there is an
interpretation I stemming from W with I |= T .

We fix an arbitrary linearisation A1, . . . , Ak of the
“uses” partial order on the atomic concept names ap-
pearing on the left-hand sides of axioms in T such that,
if Ai uses Aj , then j < i and the defining concept for
Ai is Di.

For some interpretation I, atomic concept A, and set
X ⊆ ∆I , we denote the interpretation that maps A

to X and agrees with I on all other atomic concepts
and roles by I[A 7→ X]. For 0 ≤ i ≤ k, we define
Ii in an iterative process starting from an arbitrary
interpretation I0 stemming from W and setting

Ii := Ii−1[Ai 7→ {x ∈ ∆W | x ∈ D
Ii−1

i }]

Since, for each Ai there is exactly one axiom in T ,
each step in this process is well-defined. Also, since
Int(L) may only restrict the interpretation of atomic
roles, Ii ∈ Int(L) for each 0 ≤ i ≤ k. For I = Ik it can
be shown that I is an interpretation stemming from
W with I |= T .

First we prove inductively that, for 0 ≤ i ≤ k, Ii stems
from W. We have already required I0 to stem from
W.

Assume the claim was proved for Ii−1 and Ii does not
stem from W. Then there must be some x ∈ ∆W

such that either (i) Ai ∈ LW(x) but x 6∈ AIi

i or (ii)

¬Ai ∈ LW(x) but x ∈ AIi

i (since we assume Ii−1 to
stem from W and Ai is the only atomic concept whose
interpretation changes from Ii−1 to Ii). The two cases
can be handled dually:



(i) From Ai ∈ LW(x) it follows that Di ∈ LW(x),
because W is unfolded. Since Ii−1 stems from
W and W is a witness, Property (W3) implies

x ∈ D
Ii−1

i . But this implies x ∈ AIi

i , which is a
contradiction.

(ii) From ¬Ai ∈ LW(x) it follows that ¬Di ∈ LW(x)
because W is unfolded. Since Ii−1 stems from
W and W is an witness, Property (W3) implies

x ∈ (¬Di)
Ii−1 . Since (¬Di)

Ii−1 = ∆W \ D
Ii−1

i

this implies x 6∈ AIi

i , which is a contradiction.

Together this implies that Ii also stems from W.

To show that I |= T we show inductively that Ii |=
Aj

.
= Dj for each 1 ≤ j ≤ i. This is obviously true for

i = 0.

The interpretation of Di may not depend on the in-
terpretation of Ai because otherwise (I2) would imply

that Ai uses itself. Hence DIi

i = D
Ii−1

i and, by con-
struction, Ii |= Ai

.
= Di. Assume there is some j < i

such that Ii 6|= Aj
.
= Dj . Since Ii−1 |= Aj

.
= Dj and

only the interpretation of Ai has changed from Ii−1 to

Ii, DIi

j 6= D
Ii−1

j must hold because of (I2). But this
implies that Ai occurs in Dj and hence Aj uses Ai

which contradicts j < i. Thus, we have I |= Aj = Dj

for each 1 ≤ j ≤ k and hence I |= T .

Lazy unfolding is a well-known and widely used
technique for optimising reasoning w.r.t. primitive
TBoxes [BFH+94]. So far, we have only given a cor-
rectness proof for this relatively simple approach, al-
though one that is independent of a specific DL or rea-
soning algorithm. With the next lemma we show how
we can extend correct absorptions and hence how lazy
unfolding can be applied to a broader class of TBoxes.
A further enhancement of the technique is presented
in Section 5.

Lemma 3.5 Let (Tu, Tg) be a correct absorption of a
TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪T ′) is a
correct absorption of T ∪ T ′.

2. If T ′ is a TBox that consists entirely of axioms
of the form A v D, where A ∈ NC and A is
not defined in Tu, then (Tu ∪ T ′, Tg) is a correct
absorption of T ∪ T ′.

Proof. In both cases, Tu ∪ Tg ∪ T ′ ≡ T ∪ T ′ holds
trivially.

1. Let C ∈ L be a concept and W be an unfolded wit-
ness for C w.r.t. the absorption (Tu, Tg∪T

′). This

implies that W is unfolded w.r.t. the (smaller)
absorption (Tu, Tg). Since (Tu, Tg) is a correct
absorption, there is an interpretation I stem-
ming from W with I |= T . Assume I 6|= T ′.
Then, without loss of generality,3 there is an ax-
iom D v E ∈ T ′ such that there exists an
x ∈ DI \ EI . Since W is unfolded, we have
D → E ∈ LW(x) and hence (W3) implies x ∈
(¬D t E)I = ∆I \ (DI \ EI), a contradiction.
Hence I |= T ∪ T ′ and W is admissible w.r.t.
T ∪ T ′.

2. Let C ∈ L be a concept and W be an unfolded
witness for C w.r.t. the absorption (Tu ∪ T ′, Tg).
From W we define a new witness W ′ for C by
setting ∆W

′

:= ∆W , ·W
′

:= ·W , and definig LW
′

to be the function that, for every x ∈ ∆W
′

, maps
x to the set

LW(x) ∪ {¬A | A v D ∈ T ′, A 6∈ LW(x)}

It is easy to see that W ′ is indeed a witness for
C and that W ′ is also unfolded w.r.t. the absorp-
tion (Tu ∪ T ′, Tg). This implies that W ′ is also
unfolded w.r.t. the (smaller) absorption (Tu, Tg).
Since (Tu, Tg) is a correct absorption of T , there
exists an interpretation I stemming from W ′ such
that I |= T . We will show that I |= T ′ also
holds. Assume I 6|= T ′, then there is an axiom
A v D ∈ T ′ and an x ∈ ∆I such that x ∈ AI

but x 6∈ DI . By construction of W ′, x ∈ AI im-
plies A ∈ LW

′

(x) because otherwise ¬A ∈ LW
′

(x)
would hold in contradiction to (W3). Then, since
W ′ is unfolded, D ∈ LW

′

(x), which, again by
(W3), implies x ∈ DI , a contradiction.

Hence, we have shown that there exists an inter-
pretation I stemming from W ′ such that I |=
Tu ∪ T ′ ∪ Tg. By construction of W ′, any inter-
pretation stemming from W ′ also stems from W,
hence W is admissible w.r.t. T ∪ T ′.

4 APPLICATION TO FaCT

In the preceeding section we have defined correct ab-
sorptions and discussed how they can be exploited in
order to optimise satisfiability procedures. However,
we have said nothing about the problem of how to
find an absorption given an arbitrary terminology. In
this section we will describe the absorption algorithm
used by FaCT and prove that it generates correct ab-
sorptions.

3Arbitrary TBoxes can be expressed using only axioms
of the form C v D.



Given a TBox T containing arbitrary axioms, the ab-
sorption algorithm used by FaCT constructs a triple
of TBoxes (Tg, Tprim, Tinc) such that

• T ≡ Tg ∪ Tprim ∪ Tinc,

• Tprim is primitive, and

• Tinc consists only of axioms of the form A v D

where A ∈ NC and A is not defined in Tprim.

We refer to these properties by (∗). From Theorem 3.4
together with Lemma 3.5 it follows that, for

Tu := {A v D,¬A v ¬D | A
.
= D ∈ Tprim} ∪ Tinc

(Tu,Tg) is a correct absorption of T ; hence satisfiability
for a concept C w.r.t. T can be decided by checking
for an unfolded witness for C.

In a first step, FaCT distributes axioms from T
amongst Tinc, Tprim, and Tg, trying to minimise the
number of axioms in Tg while still maintaining (∗). To
do this, it initialises Tprim, Tinc, and Tg with ∅, and
then processes each axiom X ∈ T as follows.

1. If X is of the form A v C, then

(a) if A ∈ NC and A is not defined in Tprim then
X is added to Tinc,

(b) otherwise X is added to Tg

2. If X is of the form A
.
= C, then

(a) if A ∈ NC, A is not defined in Tprim or Tinc

and Tprim∪{X} is primitive, then X is added
to Tprim,

(b) otherwise, the axioms A v C and C v A are
added to Tg

It is easy to see that the resulting TBoxes
Tg, Tprim, Tinc satisfy (∗). In a second step, FaCT pro-
cesses the axioms in Tg one at a time, trying to absorb
them into axioms in Tinc. Those axioms that are not
absorbed remain in Tg. To give a simpler formulation
of the algorithm, each axiom (C v D) ∈ Tg is viewed
as a clause G = {D,¬C}, corresponding to the axiom
> v C → D, which is equivalent to C v D. For each
such axiom FaCT applies the following absorption pro-
cedure.

1. Try to absorb G. If there is a concept ¬A ∈ G
such that A ∈ NC and A is not defined in Tprim,
then add A v B to Tinc, where B is the disjunc-
tion of all the concepts in G \ {¬A}, remove G
from Tg, and exit.

2. Try to simplify G.

(a) If there is some ¬C ∈ G such that C is of the
form C1 u . . . u Cn, then substitute ¬C with
¬C1 t . . . t ¬Cn, and continue with step 2b.

(b) If there is some C ∈ G such that C is of the
form (C1t . . .tCn), then apply associativity
by setting G = G ∪ {C1, . . . , Cn} \ {(C1 t
. . . t Cn)}, and return to step 1.

3. Try to unfold G. If, for some A ∈ G (resp.
¬A ∈ G), there is an axiom A

.
= C in Tprim,

then substitute A ∈ G (resp. ¬A ∈ G) with C

(resp. ¬C) and return to step 1.

4. If none of the above were possible, then absorption
of G has failed. Leave G in Tg, and exit.

For each step, we have to show that (∗) is maintained.
Dealing with clauses instead of axioms causes no prob-
lems. In the first step, axioms are moved from Tg to
Tinc as long as this does not violate (∗). The second
and the third step replace a clause by an equivalent
one and hence do not violate (∗).

Termination of the procedure is obvious. Each axiom
is considered only once and, for a given axiom, simplifi-
cation and unfolding can only be applied finitely often
before the procedure is exited, either by absorbing the
axiom into Tinc or leaving it in Tg. For simplification,
this is obvious; for unfolding, this holds because Tprim

is acyclic. Hence, we get the following:

Theorem 4.1 For any TBox T , FaCT computes a
correct absorption of T .

5 IMPROVING PERFORMANCE

The absorption algorithm employed by FaCT already
leads to a dramatic improvement in performance. This
is illustrated by Figure 1, which shows the times taken
by FaCT to classify versions of the Galen KB with
some or all of the general axioms removed. Without
absorption, classification time increased rapidly with
the number of general axioms, and exceeded 10,000s
with only 25 general axioms in the KB; with absorp-
tion, only 160s was taken to classify the KB with all
1,214 general axioms.

However, there is still considerable scope for further
gains. In particular, the following definition for a strat-
ified TBox allows lazy unfolding to be more generally
applied, while still allowing for correct absorptions.

Definition 5.1 (Stratified TBox) A TBox T is
called stratified iff it consists entirely of axioms of the
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form A
.
= D with A ∈ NC, each A ∈ NC appears at

most once on the left-hand side of an axiom, and T
can be arranged monotonously, i.e., there is a disjoint
partition T1 ∪̇ T2 ∪̇ . . . ∪̇ Tk of T , such that

• for all 1 ≤ j < i ≤ k, if A ∈ NC is defined in Ti,
then it does not occur in Tj, and

• for all 1 ≤ i ≤ k, all concepts which appear on the
right-hand side of axioms in Ti are monotone in
all atomic concepts defined in Ti.

A concept C is monotone in an atomic concept A if,
for any interpretation I ∈ Int(L) and any two sets
X1, X2 ⊆ ∆I ,

X1 ⊆ X2 ⇒ CI[A7→X1] ⊆ CI[A7→X2].

For many DLs, a sufficient condition for monotonicity
is syntactic monotonicity, i.e., a concept C is syntac-
tically monotone in some atomic concept A if A does
no appear in C in the scope of an odd number of nega-
tions.

Obviously, due to its acyclicity, every primitive TBox
is also stratified and hence the following theorem is a
strict generalisation of Theorem 3.4.

Theorem 5.2 Let T be a stratified TBox, Tg = ∅ and
Tu defined by

Tu = {A v D,¬A v ¬D | A
.
= D ∈ T }.

Then (Tu, Tg) is a correct absorption of T .

The proof of this theorem follows the same line as the
proof of Theorem 3.4. Starting from an arbitrary in-
terpretation I0 stemming from the unfolded witness,
we incrementally construct interpretations I1, . . . , Ik,
using a fixed point construction in each step. We show
that each Ii stems from W and that, for 1 ≤ j < i ≤ k,
Ii |= Tj , hence Ik |= T and stems from W.

Before we prove this theorem, we recall some basics
of lattice theory. For any set S, the powerset of S,
denoted by 2S forms a complete lattice, where the or-
dering, join and meet operations are set-inclusion ⊆,
union ∪, and intersection ∩, respectively. For any com-
plete lattice L, its n-fold cartesian product Ln is also a
complete lattice, with ordering, join, and meet defined
in a pointwise manner.

For a lattice L, a function Φ : L → L is called mono-
tone, iff, for x1, x2 ∈ L, x1 v x2 implies Φ(x1) v
Φ(x2).

By Tarski’s fixed point theorem [Tar55], every mono-
tone function Φ on a complete lattice, has uniquely
defined least and greatest fixed points, i.e., there are
elements x, x ∈ L such that

x = Φ(x) and x = Φ(x)



and, for all x ∈ L with x = Φ(x),

x v x and x v x.

Proof of Theorem 5.2. Tu ∪ Tg ≡ T is obvious. Let
W = (∆W , ·W ,LW) be an unfolded witness. We have
to show that there is an interpretation I stemming
from W with I |= T . Let T1, . . . , Tk be the required
partition of T . We will define I inductively, starting
with an arbitrary interpretation I0 stemming from W.

Assume Ii−1 was already defined. We define Ii from
Ii−1 as follows: let {Ai

1
.
= Di

1, . . . , A
i
m

.
= Di

m} be
an enumeration of Ti. First we need some auxiliary
notation: for any concept C ∈ L we define

CW := {x ∈ ∆W | C ∈ LW(x)}.

Using this notation we define the function Φ mapping
subsets X1, . . . , Xm of ∆W to

( ((Ai
1)

W ∪ (Di
1)

Ii−1(X1,...,Xm)) \ (¬Ai
1)

W ,

. . . ,

((Ai
m)W ∪ (Di

m)Ii−1(X1,...,Xm)) \ (¬Ai
m)W )

where

Ii−1(X1, . . . , Xm) := Ii−1[A
i
1 7→ X1, . . . , A

i
m 7→ Xm]

Since all of the Di
j are monotone in all of the Ai

m, Φ
is a monontone function. This implies that Φ has a
least fixed point, which we denote by (X1, . . . , Xm).
We use this fixed point to define Ii by

Ii := Ii−1[A
i
1 7→ X1, . . . , A

i
m 7→ Xm]

Claim 1: For each 0 ≤ i ≤ k, Ii stems from W.

We show this claim by induction on i. We have already
required I0 to stem from W. Assume Ii−1 stems from
W. Since the only thing that changes from Ii−1 to Ii is
the interpretation of the atomic concepts Ai

1, . . . , A
i
m,

we only have to check that Ai
j ∈ LW(x) implies x ∈

(Ai
j)

Ii and ¬Ai
j ∈ LW(x) implies x 6∈ (Ai

j)
Ii .

By definition of Φ, and because {x | Ai
j ∈ LW(x)} ∩

{x | ¬Ai
j ∈ LW(x)} = ∅, Ai

j ∈ LW(x) implies x ∈

(Ai
j)

Ii . Also by the definition of Φ, ¬Ai
j ∈ LW(x)

implies x 6∈ (Ai
j)

Ii . Hence, Ii stems from W.

Claim 2: For each 1 ≤ j ≤ i ≤ k, Ii |= Tj .

We prove this claim by induction over i starting from 0.
For i = 0, there is nothing to prove. Assume the claim
would hold for Ii−1. The only thing that changes from
Ii−1 to Ii is the interpretation of the atomic concepts

Ai
1, . . . A

i
m defined in Ti. Since these concepts may not

occur in Tj for j < i, the interpretation of the concepts
in these TBoxes does not change, and from Ii−1 |= Tj

follows Ii |= Tj for 1 ≤ j ≤ i − 1.

It remains to show that Ii |= Ti. Let Ai
j

.
= Di

j be an
axiom from Ti. From the definition of Ii we have

(Ai
j)

Ii = ((Ai
j)

W ∪ (Di
j)

Ii) \ (¬Ai
j)

W . (1)

W is unfolded, hence Ai
j ∈ LW(x) implies Di

j ∈ LW(x)

and, since Ii stems from W, this implies x ∈ (Di
j)

Ii ,
thus

(Ai
j)

W ∪ (Di
j)

Ii = (Di
j)

Ii (2)

Furthermore, ¬Ai
j ∈ LW(x) implies ¬Di

j ∈ LW(x)

implies x ∈ (¬Di
j)

Ii , thus

(Di
j)

Ii \ (¬Ai
j)

W = (Di
j)

Ii (3)

Taking together (1), (2), and (3) we get

(Ai
j)

Ii = (Di
j)

Ii ,

and hence Ii |= Ai
j

.
= Di

j .

Together, Claim 1 and Claim 2 prove the theorem,
since Ik is an interpretation that stems from W and
satisfies T .

This theorem makes it possible to apply the same
lazy unfolding strategy as before to cyclical definitions.
Such definitions are quite natural in a logic that sup-
ports inverse roles. For example, an orthopaedic pro-
cedure might be defined as a procedure performed by
an orthopaedic surgeon, while an orthopaedic surgeon
might be defined as a surgeon who performs only or-
thopaedic procedures:4

o-procedure
.
= procedure u (∃performs−.o-surgeon)

o-surgeon
.
= surgeon u (∀performs.o-procedure)

The absorption algorithm described in Section 4 would
force the second of these definitions to be added to
Tg as two general axioms and, although both axioms
would subsequently be absorbed into Tu, the proce-
dure would result in a disjunctive term being added to
one of the definitions in Tu. Using Theorem 5.2 to en-
hance the absorption algorithm so that these kinds of
definition are directly added to Tu reduces the number
of disjunctive terms in Tu and can lead to significant
improvements in performance.

This can be demonstrated by a simple experiment with
the new FaCT system, which implements the SHIQ

4This example is only intended for didactic purposes.
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Figure 2: Classification times with and without enhanced absorption

logic [HST99] and is thus able to deal with inverse
roles. Figure 2 shows the classification time in seconds
using the normal and enhanced absorption algorithms
for terminologies consisting of between 5 and 50 pairs
of cyclical definitions like those described above for
o-surgeon and o-procedure. With only 10 pairs the gain
in performance is already a factor of 30, while for 45
and 50 pairs it has reached several orders of magni-
tude: with the enhanced absorption the terminology
is classified in 2–3 seconds whereas with the original al-
gorithm the time required exceeded the 10,000 second
limit imposed in the experiment.

It is worth pointing out that it is by no means triv-
ially true that cyclical definitions can be dealt with by
lazy unfolding. Even without inverse roles it is clear
that definitions such as A

.
= ¬A (or more subtle vari-

ants) force the domain to be empty and would lead to
an incorrect absorption if dealt with by lazy unfolding.
With converse roles it is, for example, possible to force
the interpretation of a role R to be empty with a defi-
nition such as A

.
= ∀R.(∀R−.¬A), again leading to an

incorrect absorption if dealt with by lazy unfolding.

6 OPTIMAL ABSORPTIONS

We have demonstrated that absorption is a highly ef-
fective and widely applicable technique, and by for-
mally defining correctness criteria for absorptions we

have proved that the procedure used by FaCT finds
correct absorptions. Moreover, by establishing more
precise correctness criteria we have demonstrated how
the effectiveness of this procedure could be further en-
hanced.

However, the absorption algorithm used by FaCT is
clearly sub-optimal, in the sense that changes could
be made that would, in general, allow more axioms to
be absorbed (e.g., by also giving special consideration
to axioms of the form ¬A v C with A ∈ NC). More-
over, the procedure is non-deterministic, and, while it
is guaranteed to produce a correct absorption, its spe-
cific result depends on the order of the axioms in the
original TBox T . Since the semantics of a TBox T
does not depend on the order of its axioms, there is
no reason to suppose that they will be arranged in a
way that yields a “good” absorption. Given the effec-
tiveness of absorption, it would be desirable to have
an algorithm that was guaranteed to find the “best”
absorption possible for any set of axioms, irrespective
of their ordering in the TBox.

Unfortunately, it is not even clear how to define a sen-
sible optimality criterion for absorptions. It is obvious
that simplistic approaches based on the number or size
of axioms remaining in Tg will not lead to a useful so-
lution for this problem. Consider, for example, the
cyclical TBox experiment from the previous section.
Both the original FaCT absorption algorithm and the



enhanced algorithm, which exploits Theorem 5.2, are
able to compute a complete absorption of the axioms
( i.e., a correct absorption with Tg = ∅), but the en-
hanced algorithm leads to much better performance,
as shown in Figure 2.

An important issue for future work is, therefore, the
identification of a suitable optimality criterion for ab-
sorptions, and the development of an algorithm that
is able to compute absorptions that are optimal with
respect to this criterion.
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