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Abstract

Recent years have seen the emergence of a new generaticavity+toptimised modal decision procedures. Several
systems based on such procedures are now available androaee po be much more effective than the previous
generation of modal decision procedures. As both computaiticomplexity and algorithm complexity are generally
unchanged, neither is useful in analysing and comparirgethew systems and their various optimisations. Instead,
empirical testing has been widely used, both for compar@whas a tool for tuning systems and identifying their
strengths and weaknesses. However, the very effectivesfetbe new systems has revealed serious weaknesses
in existing empirical test suites and methodologies. Thipap provides a detailed survey of empirical testing
methodologies, analyses the current state of the art aseémienew results obtained with a recently developed test
method.

Keywords empirical testing, modal decision procedures

1 Motivations for empirical testing

Heavily-optimised systems for determining satisfiabibfyformulae in propositional modal
logics are becoming available. These systems, including [Flatel-Schneider1998aCT
[Horrocks1998 KSATC [Giunchigliaet al1998d, *SAT [Tacchella199h and TA [Hus-
tadt & Schmidt199¥, have more optimisations and are much faster than the pregenera-
tion of modal decision procedures, sucHeenK [Beckert & Goré199J Logics Workbench
[Heuerdinget al.1999, andOKE [Pitt & Cunningham1996

As with most theorem proving problems, neither computaticomplexity nor algorithm
complexity is useful in determining the effectiveness dfimjsations. The worst-case com-
plexity of the problem, of course, remains unchanged. Famynpaopositional modal log-
ics, this complexity ranges from PSPACE-complete to EXPEIbbmplete. The worst-case
complexity of the algorithms in the systems also generaligains unchanged under optimi-
sation. The worst-case complexity for most of these sysisragponential time and either
polynomial or exponential space. Further, determininguasful normal-case or special-case
complexity is essentially impossible.

As theoretical studies do not provide any indication of tfieativeness of the new systems
and their optimisations, this has to be determined by eeglitésting. In any case, empirical
testing provides a number of benefits over theoretical cerifyl It directly gives resource

L. J. of the IGPL.Vol. 0 No. 0, pp. 1-29 0000 1 (© Oxford University Press



2 An Analysis of Empirical Testing for Modal Decision Procees

consumption, in terms of computation time and memory udactors in all the pieces of the
system, not just the basic algorithm itself.

Empirical testing can be used not only to compare differgatesns, but also to tune a
system with parameters that can be used to modify its peebcen Moreover, it can be
used to show what sort of inputs the system handles well, dvad sort of inputs the system
handles poorly.

In this paper we provide a detailed survey of empirical testhethodologies for modal
decision procedures, including a review of previous workhie area and an analysis of the
current state of the att. We point out desirable and undesirable characteristicheget
methodologies. We also present some new results obtairtadawiecently developed test
method, and identify some of the remaining weaknesses iminodal decision procedures
and testing methodologies.

Our goal in this paper is not to show the effectiveness obuersystems and their optimi-
sations, but is instead to provide a framework for evalgagimpirical testing methodologies
for modal decision procedures, to analyse these methoigslognd to give a direction for
better empirical testing methodologies for modal decigimtedures.

2 Evaluating Empirical Testing
2.1 Kinds of Empirical Test Sets

Several kinds of inputs can be used for empirical testinguis that have been encountered
in the past can be used. Variations on these past inputgr eigistematic or random, can
be used. It is also possible to deterministically synttesiputs. These can be either hand-
generated individual inputs, possibly parameterisednputis that systematically cover an
area. Finally, randomly-generated inputs can be used. Bhathese kinds of inputs has
benefits and potential problems.

Actual past inputs provide a good mechanism for compariegbishaviour of different
systems. However, as systems improve, old inputs can besoreasy that they provide no
guidance. Also, newer inputs will not necessarily be theesasipast inputs, so using past
inputs may not provide guidance for future performance tHarr there may not be enough
past inputs to provide sufficient testing.

Variations on past inputs can be used to overcome some o fireblems. Variations
provide more inputs. If the past inputs can be modified to lgeleor more difficult, then the
problem of past inputs being too easy can be overcome.

Hand-generated inputs can be specifically tailored to pegbod tests, at least for partic-
ular systems. In particular, if the inputs are parametdrigen they can often be made large
enough to be difficult, even for newer systems. However ritmavery hard to hand-generate
difficult problems, even if parameterised—a particularimfgation may make a whole pa-
rameterised set of inputs trivial. Further, hand-generds expensive.

Systematic inputs can be very effective, provided thatesyatic generation is possible.
However, many kinds of inputs are too large to systemayicaiVer. Random inputs are often
easy to generate, and can provide a mechanism to cover aoflagsits. Both systematic
and random inputs may not be typical inputs, and so testimgyubkese kinds of inputs may
not provide useful data.

In many cases there is a lack of past inputs, not enough resetor hand-generation, and

1Some of the testing in this paper has been reported on in ptipard Horrocks & Patel-Schneider1999b; 1999a; Giunchigtial 19984.
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no way of systematically covering the input space, so th@nmgchanism for generating in-
puts for empirical testing has to be random generation. iShige case in propositional modal
logics. The current main empirical testing methodologie®live random generation of for-

mulae. The only other significant test consists of hand gaedr parameterised formulae,
but this test has become too easy for state-of-the-artragste

2.2 Good and Bad Empirical Testing

The benefits of empirical testing depend on the charadteyist the inputs provided for the
testing, as empirical testing only provides data on thes@cpdar inputs. If the inputs are not
typical or suitable, then the results of the empirical tegtvill not be useful. This means that
the inputs for empirical testing must be carefully chosen.

We believe that good test sets should be created accordthg following key criteria

Reproducibility. Any test is not very useful if it cannot be reproduced, andedar The
test formulae or their generation function should thus beleravailable. Even if the
test formulae are made available, the generation functionld also be made available,
so that variants of the test can be developed. If the actsafdemulae are not made
available it should be possible éxactlyreproduce the entire test set, so all the inputs to
the generation function should be disclosed, including ‘@aagdom” or environmental
inputs.

RepresentativenessThe ideal test set should represent a significant area of tioéevinput
space, and should span the whole range of sources of diffidujood empirical test set
should at least cover a large area of inputs. Empirical &tstthat consist of only a few
inputs or that concentrate on only a small area of the inpateprovide no information
about most inputs. This can be a particular problem if thellsaraa has a different
computational complexity than the input space as a whole.

Valid vs. not-valid balance.In a good test set, valid and not-valid (or, equivalentlyissa
fiable and unsatisfiable) problems should be more or lessl égtiain number and in
difficulty. In fact, solvable and unsolvable problems maggant different sources of
difficulty, so that a system which is good at handling one tymsey be not good—or
not capable at all—of handling the other type. Moreover,revent the usage of rou-
tines/heuristics which are explicitly aimed at detectiither solvability or unsolvability,
the testbed should provide ropriori information which could help in guessing the re-
sult —that ismaximum uncertaintsegarding the solvability of the problems is desirable.
(Notice that, in the real world, the solvability of a problésmot known a priori.)

Difficulty. A good empirical test set should provide a sufficient levaiéffculty for the sys-
tem(s) being tested. (Some problems should be too hard evetate-of-the-art systems,
so as to be a good benchmark for forthcoming systems.) Ifripets are too easy, then
the resulting resource consumption may be too small toyeashsure, and the resource
consumption may be dominated by start-up costs that do et gs the difficulty of the
inputs grow. Comparing absolute performances—which magde on factors like the
platform used, the quality of implementation, etc.—maydsslisignificant than compar-
ing how performances scale up with problems of increasiffigdity.

Termination. To be of practical use, the tests should terminate and peowitbrmation
within a reasonable amount of time. If the inputs are too h#rdn the system may

2Notice that some of the criteria are identical or similaritoge suggested by Heurding and Schwendirf891.
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not be able to provide answers within the established tinhés ifability of the system is
of interest, but can make system comparison impossiblesggnificant.

The following criteria derive from or are significant subsea of the main criteria above.

Parameterisation.One way of creating test sets with the appropriate featundswath a
large number of inputs is to have parameterised inputs wifficeent parameters and
degrees of freedom to allow the inputs to range over a largeomoof the input space.
On the other hand, the number of parameters and their degiréregdom should not be
too large, otherwise the number of tests required to covégrafieant subspace might
blow up. (Ideally, the parameter set should work as much asiple as a “base” for the
input space.)

Control. In particular, it is very useful to have parameters that mdmhonotonicallythe key
features of the input test set, like the average difficultgt e solvable vs. unsolvable
rate. Monotonicity is a key point, as it allows for controlli one feature independently
of the values of the other parameters, and for eliminatirigtaresting areas of the input
space.

Modal vs. propositional balance.Reasoning in modal logics involves alternating between
two orthogonal search efforts: pure modal reasoning—thaspanning the potential
Kripke models—and pure propositional reasoning—thatssigming truth values to sub-
formulae within each Kripke state. A good test set should l&lenging from both
viewpoints.

Data organisation. The data should be summarisable—so as to make a comparissiblgo
with a limited effort—and plottable—so as to enable the gate behaviour of the
system(s) to be highlighted. For instance, a list of hunsligfduncorrelated numbers is
not a well-organised data set, since it makes a comparisprattical, and makes it very
hard to produce any qualitative information from it.

Focus on narrow problems.As an alternative to wide-ranging tests, small “ad hoc” set$
may be used for testing systems on one particular sourceffafudty, or for revealing
one particular possible weakness. For instance, formuldiehware satisfied only by
exponentially-large Kripke models (see, elgdalpern & Moses1992 might cause the
system under test to blow up in space, thus revealing itsR®RACENess.

Finally, in creating good test sets, particular care mustken to avoid the following prob-
lems.

Redundancy.Empirical test sets must be carefully chosen so as not tadecinadvertent
redundancy. They should also be chosen so as not to inclualesm-inputs that dictate
the result of the entire input. Empirical test sets can beemaedlevant by advances in
systems if the advanced systems include optimisationsdeatify some inherent redun-
dancy and cause the test set to be trivially solved. Of coarsgstem that can detect such
redundancy is better than one that cannot, but the presédegaztable redundancies can
reduce test sets to triviality.

Triviality. A good test set should be flawless, that is, it should not dostgnificant subsets
of trivial problems. This problem has claimed victims in manther areas of Al, as flaws
have been detected in random test methods for propositatiafiability[Mitchell et al.
1997, for constraint satisfiability problen{#\chlioptaset al.1997, and for quantified
boolean formula¢Gent & Walsh199%ha
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Artificiality. A good empirical test set should correspond closely to imfreim applications.
If the test set does not resemble actual inputs, then thétsdsam the empirical testing
will not necessarily correspond with the behaviour of thetes in real use.

Over-size.The single problems should not be too big with respect ta thifficulty, so that
the resources required for parsing and data managing doeniously influence total
performance.

In general, these criteria boil down to providing a reprdbigcsample of an interesting
portion of the input space with appropriate difficulty. Thgsno different from the criteria
in other areas, notably propositional satisfiability tegfiGent & Walsh1993; DIM1993; Sel-
manet al. 1994, theorem provingSuttner & Sutcliffe1995 CSP[DIM1993; Gent & Walsh
19994. However, the situation for modal decision procedures isenttifficult than for the
fields above, because of the greater variety in modal logid§@mulae and the lesser capa-
bilities of current modal decision procedures.

3 Systems

The systems involved in most of this testing have differdvaracteristics, but are all based
around a front-end that takes an input formula, convertstd an internal form, and uses
a search engine to exhaustively search for a model of theularmThe input formula is
satisfiable if such a model is found and unsatisfiable otlssrwhll the systems are able to
handle (at least) the propositional modal lo¥i¢y,) .

Two systems, DLPPatel-Schneider199and FaCTHorrocks199§ are based on custom-
built search engines that employ tableaux techniques tolséar the model. These systems
both translate input formulae into an internal normal foattempting to exploit redundan-
cies and local analytic truth and falsity. Their search ragiemploy mechanisms to reduce
overlapping search, cut off search branches that cannotedg¢detect forced branches, and
reuse cached results from previous searching.

Both DLP and FaCT can handle logics that are supersdi§ gf). FaCT allows transitive
modalities, deterministic (functional) modalities andlirsion relationships between modal-
ities. DLP allows full propositional dynamic logic, althgli it has a compile-time switch to
change from propositional dynamic logic $at,,,). Most of the tests in this paper will use
only DLP as it is based on the ideas developed in the FaCTrays#teludes most of FaCT'’s
optimisations, and has some additional optimisationsditigular caching). If not otherwise
specified, all the examples with DLP were obtained with DLPsie 3.1 in itsS4 ) con-
figuration running on a machine roughly comparable to a SPARE 1 with 256MB of
main memory.

Two other systems, K& C [Giunchigliaet al19983 and *SAT [Tacchellal99p are
based on state-of-the-art propositional satisfiabilistitgy procedures. The two systems
make multiple calls to the propositional decision procediWhile KSaTC'’s optimisations
are largely those of the underlying propositional syste®AT features many modal search
pruning optimisations like modal backjumping and cachifg§AT also handles many non-
normal modal logics. If not otherwise specified, all the epéaa with *SAT in this paper
were obtained with *SAT e - nB, compiled withLi nux gcc - Q2 and run on a 350MHz
Pentiumll with 128MB of main memory.

The TA system{Hustadt & Schmidt1997translates propositional formulae into a decid-
able fragment of first order logic. It uses an optimised finster theorem prover to determine
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the satisfiability of the translated formulae. TA thus intsethe optimisations built into this
theorem prover, but it also uses a translation that is desigo produce easier first-order
formulae.

4 The Heuerding and Schwendimann Tests

As discussed in Section 2.1, it is possible to hand-genévataulae for testing modal deci-
sion procedures. In the past such formulae were difficulintlyse, but the optimised de-
cision procedures that are now available make short workidi $iand-generated formulae.
For example, Heuerding and Schwendim&h®94 report that their (moderately-optimised)
system, LWB, can rapidly process several previous cotlasti with the longest test taking
under 1/10th of a second.

Such short times are not satisfactory as differences betsygstems may be the result of
startup costs and not indicative of their behaviour on nificult formulae.

4.1 Rationale

To overcome the above difficulty, and also to provide more fimsnulae, Heuerding and
Schwendimann1994 created a suite of formulae for testing modal decision pfoces.
They wanted to provide a test suite that would not be quicklydered obsolete and that
would provide a comprehensive test of a modal decision phaeg so they started with a
number of postulate’:

1. The test suite should include valid as well as invalid folae.

. The test suite should provide formulae of various stmastu

. Some of the formulae should be hard for future systems.

. The validity status of the formulae should be known in axbea

. The formulae should be resistant to simple tricks.

. Executing the entire benchmark should not take an exaeasiount of time.
. It should be possible to summarise succinctly the restilise benchmark.

N o 0o WD

4.2 Description

To meet these postulates Heuerding and Schwendimann @r@astses of formulae. Each
class was generated from a (relatively) simple parametticgical formula that was either
valid or invalid. Some of these formulae were made hardeiiding their structure or adding
extra pieces. The parameters allow formulae of differea® 0 be created, thus allowing for
formulae of differing difficulty. The idea behind the paramres that the difficulty of most
of the problems should be exponential in the parameter. Juipposed exponential increase
in difficulty would make differences in the speed of the maekiused to run the benchmarks
relatively insignificant.

For each logicK, KT, andS4, 9 classes of formula were created, in both valid and
invalid versions. For example, the branching formulae ofpldan and Mose§1994, form a
formula class for all three logics. Other problem classethénset are based on the pigeon-
hole principle and a two-colouring problem on polygons.

3These postulates are elaborated in the paper by Heuerdin§awendimanfil996, pp. 2-R
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branch d4 dum grz lin path ph poly t4p

K pln pinijp|n|ip|in|p|n]|p|n|p|lnfp|n]|p|n
leanK 2.0 1 0 1 1 0| 0 0| > >| 4 2 0 3 1 2 0 0| 0
OKE 13| 3 || 13| 3 4| 4 31 > 2 || 17| 5 4/ 3 || 17| O ol 3
LWB 1.0 6| 7 8| 6 13|19 7113 11| 8 12|10 4] 8 8|11 8| 7
TA 9] 9 >|18 >| > >| > >| > 20(20 6 9 16|17 >(19
KSAT 8| 8 8| 5 11 > 17| > > 3 4| 8 5 5 13|12 1018
*SAT 1.2 >| 12 >| > >| > >| > > > >| > 8|12 >| > > >
Crack 1.0 2| 1 2| 3 3| > 1| > 5| 2 2| 6 2| 3 > > 1} 1
Kris 3] 3 8| 6 || 15 > 13| > 6| 9 3|11 4/ 5 || 11| > 71 5
FaCT 1.2 6| 4 >| 8 >| > >| > >| > 7] 6 6| 7 > > > >
DLP 3.1 19| 13 >| > >| > >| > >| > >| > 70 9 >| > >| >

TABLE 1. Results folK
45 branch dum grz md path ph poly t4p

K plnipln plnijplnfp|n|p|n]|p|nfip|nip|n
leanKT 2.0 3 0 1 0 3| 4 ol O 3| 2 2| 1 21 0| 0 >l 0
OKE 14| 2 || 16/ 15 || 1| 1| o| > 4 4 || 16| 6 || 4/ 3| ol o 717
LWB 1.0 5 4 5 6 510 6| > 5 5 10| 9 4| 8 14| 2 5/ 7
TA 17| 6 13| 9 171 9 > > 16|20 >|16 5[12 > 1 11/ O
KSAT 5 5 8| 7 7112 9| > 2| 4 2| 5 4| 5 1| 2 1 1
Crack 1.0 (0] 0] 2| 2 0] 1 (0] 0] 2| 4 1| 5 2| 2 1 1 ol 1
Kris 4| 3 3 3 314 0| 5 3 4 1{13 3| 3 2| 2 1 7
FaCT 1.2 > > 6| 4 11| > > > 4| 5 5/ 3 6| 7 > 7 4| 2
DLP 3.1 > > 19| 12 > > > > 3| > 16|14 7| > >|(12 > >

TABLE 2. Results foKT

The benchmark methodology was to test formulae from eads ci#arting with the easiest
instance, until the validity status of a formula could notdeerectly determined within 100
seconds. The result from this class would then be the paesrakthe largest formula that
could be solved within the time limit. The parameter rangay rom 1 to 21—if a system
can solve all 21 instances of a class, the result is givenas “

This benchmark suite and methodology meets several of thieiljates above simply as a
result of its design. The suite contains both valid and idvidrmulae of various structures
whose validity status is known in advance. The benchmarlbeagxecuted in a few hours at
most and the results can be given in three tables each wighraims and two columns.

4.3 Results

The benchmark suite was used in a comparison at Tablea{R#I8iger & Heuerding1998
Six entries were submitted to this comparison, giving ttsdok a total of ten systems. Since
then the benchmark has been run on several other systerusliimcsome more-recent ver-
sions of systems included in the original test. Severalli®awe given in Tables 1, 2, and 3.
Some of these results are from the Tableaux’98 comparisdrsdme are more recent.

The results show that this benchmark is appropriate, peréagn too difficult, for some of
the systems. However, the heavily-optimised systemsydtey *SAT and DLP, are able to
handle all of the instances of many of the problem classdsein areas of coverage. *SAT
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45 branch dum grz md path ph poly t4p
K plnipl|n pinfp|ln|ilp|nip|lnfp|n]p|{nifp]|n
KT4 1| 6 2| 3 0[17 5| 8 || >[|18 1| 2 2| 2 2| 2 ol 3
leanS4 2.0|| 0| O ol o ol o 1| 1 2| 2 1 0 1 0 1| 1 ol o
OKE 8lo|l >| > ol > 6| 4 3| 3 9| 6 4| 3 1 > 3l 1
LWB 1.0 3| 5| 11| 7 9 > 8| 7 8| 6 8| 6 4| 8 41 9 9(12
TA 9l o || >| 41| 14/ 0 6| > 9|10 || 15 > 55| >| 11 11/ 0
FaCT 1.2 >| > 4| 4 2| > 5 4 8| 4 2| 1 5/ 4| >| 2 5 3
DLP 3.1 >| > 18| 12 > > 10| > 3| > 15|15 7 > >| > > >
TABLE 3. Results foiS4
*SAT 1.2 DLP 3.2 TA 1.4

Test| Size Time| Size Time| Size SPASS FLOTTER

branchp > 0.21| 19 46.06 6 51.95 13.81

branchn 12 94.49| 13 53.63 6 84.21 12.23

d4.p > 0.06 > 0.05 15 0.64 70.47

d4.n > 2.87 > 1.12 14 1.14 42.92

dump > 0.04 > 0.02 17 3.32 61.67

dumn > 0.12 > 0.02 16 1.75 64.07

grzp > 0.04 > 0.04 > 0.35 0.16

grzn > 0.01 > 0.05 > 0.16 0.17

lin_p > 0.01 > 0.03 > 1.03 8.21

lin_n > 47.80 > 0.13 > 16.07 63.94

pathp > 0.72 > 0.32 5 22.85 2.18

path.n > 0.96 > 0.36 4 58.70 2.14

php 8 48.54 7 10.23 6 42.19 0.97

ph.n 12 0.60 > 2.69 9 45.21 9.92

poly_p > 1.73 > 0.11 5 2.48 51.00

poly_n > 2.25 > 0.18 4 1.23 7.86

t4p_p > 0.29 > 0.06 16 3.91 84.75

t4p.n > 1.28 > 0.13 9 3.37 84.35

TABLE 4: Timing Results fromiGiunchigliaet al.1999 for *SAT (options- k1 -e - nb),
DLP and TA forK. (Courtesy of E. Giunchiglia, F. Giunchiglia and A. Tacdagl

is able to completely solve 15 out of 18 of thetests and DLP is able to completely solve
11 out of 18 of both th&T tests and th&4 tests. This means that the effective number of
tests is reduced considerably.

In fact, the situation is even worse than indicated by theresmults. The heavily-optimised
systems can solve many of the problem classes with littleoasaarch. This is indicated in
Table 4, which gives the time taken for the most-difficultveal problems iriK for *SAT,
DLP and TA? The times for TA are subdivided between FLOTTER (a pre-psscg and
SPASS itself.

As the table shows, the hardest instances of many of the edetpisolved formula classes

4These results differ slightly from the previous resultsBrP and differ considerably for TA because they were permiran a different version of
the systems.
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Test Result| Total Search Backtrack| Successor
Name Time | Time Growth| Growth Growth

branchp 19 | 46.06| 45.07 O(2") 0 o(2m)
branchn 13 | 53.63| 53.50 O(2") 0 o(2m)
d4p > 0.05| 0.02 O(n) 0 O(n)
d4n > 1.12| 1.08 O(n°) O(n) O(n)
dump > 0.02| 0.01 O(n) 1 O(n)
dumn > 0.02| 0.01 O(n) 0 O(n)
grzp > 0.04| 0.00 Of(c) 2 O(c)
grzn > 0.05| 0.02 O(n) O(n) O(n)
lin_p > 0.03| 0.00 0 0 0

lin_n > 0.13| 0.05 O(n) 0 0

pathp > 0.32| 0.25 O(n) 0 O(n)
path.n > 0.36| 0.28 O(n°) 0 O(n)
php 7 10.23| 10.21 O(c") O(c") 1

phn > 2.69| 0.53 O(n° 0 O(n®)
poly_p > 0.11| 0.04 O(n) 1 O(n)
poly_n > 0.18| 0.11 O(n) 0 O(n)
t4p_p > 0.06| 0.04 O(n) O(n) O(n)
t4p.n > 0.13| 0.10 O(n) O(n) O(n)

TABLE 5. Growth for DLP forK

can be solved in under one second. Allowing for larger vabfabe parameter would not
make these tests effective. In fact, some of the problemssmgletely or almost-completely
solved in the input normalisation phases of the systems iglshown in Table 5, which gives
(for DLP) the maximum total time and time for the search conmg, as well as the growth
with respect to the parameter in search time, backtracldpamber of modal successors
visited® As can be seen, most of the tests no longer have exponermtvetigin the parameter.
In fact, many of them have linear growth or even no growthlat al

The tests foK that remain hard for both *SAT and DLP abganchn andph.p. The
first of these consists of the Halpern and Moses branchimyftare] Halpern & Moses1992
which have an exponentially-large counter-model but njudigion. The time taken to build
this counter-model is what makes these formulae difficult] systems that try to store the
entire model at once will find these formulae even more diltfiche second is an instance
of the Pigeon-Hole principléPellettier198% which has hard propositional reasoning but
essentially no modal reasoning.

4.4 Discussion

The Heuerding and Schwendimann benchmarks were desigmeeegbmany of the criteria
that we deem important. Both the formulae and their geneve¢oe published, along with
the rationale behind the formulae, so the tests can be rapeddand extended. The formula
classes have a built-in balance between valid and invatishditae. The test methodology

5Some of the growth orders are only approximate because tiftited data.
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is not computationally intensive and does provide datac¢hatbe easily summarised. The
size parameter was designed to allow for a monotonic, exg@iéncrease in the difficulty
of the formulae. The formula classes attempt to cover a derable variety of formula
structures, thus providing a measure of significance todbke The formulae are large, but
not excessively so. The formulae are artificial, in that they ot correspond to any particular
application, but were supposed to be representative ofrgefoemulae.

However, with the advent of heavily-optimised provers, snafithe formula classes have
become too easy under the initial parameter cut-off. Mothede easy formula classes have
become in some sense trivial, with input normalisation efftrmulae doing most or all of the
work. This “triviality” has two effects. First, increasirtge parameter will not significantly
increase the difficulty of a formula, at least until the folamibecome gigantic. Second, these
classes no longer test the comparative performance of #iretsenechanisms, but instead
only show that of a particular normalisation. Thus thesenida classes, although historically
interesting, are no longer good tests for state-of-theradal decision procedures, which all
employ sufficient input normalisation to render these fdaenulasses “trivial”.

An augmented set of formula classes could be created to sgive the problems detailed
above, but it is difficult to devise by hand formulae that &sistant to the various input nor-
malisations of the heavily-optimised systems, and it may@impossible to devise formulae
that will resist new and as yet unknown optimisations.

5 The 3CNFR;,, Random Tests

Random formulae can be generated that do not have the preldéthe Heuerding and
Schwendimann formulae. The first random generation tecieniged in testing modal de-
cision procedures, the random 3CNFtest methodology, was proposed by Giunchiglia &
Sebastian[1996a; 1996k It was conceived as a generalisation of the 3SAT test method
which is widely used in propositional satisfiabilifiitchell et al1994. The method was
subsequently criticised and improved by Hustadt & Schifi@97; 1999, who pointed out
some major weaknesses of the method, and proposed somierseluEinally Giunchiglia
et al.[1997; 1998hproposed the current version of the method, which embedsadiug
Schmidt’s suggestions, plus some further improvementsiofl otherwise stated, from now
on by “random 3CNF,, formulae” we implicitly mean the formulae generated with fmal
version of the 3CNF,, random generator algorithm described@iunchigliaet al.19984.)

5.1 Description

In the 3CNFky,, test methodology, the performance of a system is evaluatestts of ran-
domly generated 3CNFE, formulae. A CNF , formulais a conjunction of CNE, clauses,
where each clause is a disjunction of either propositionedadal literals. A literal is either
an atom or its negation. Modal atoms are formulae of the fard@, whereC' is a CNF
clause. For normal modal logics there is no loss in the w&iri to CNFy, formulae, as
there is an equivalence between arbitrary normal modaldtaenand CNF_ formulae.®

A 3CNFg,, formulais a CNI,, formula where all clauses have exactly 3 literals. The
definition extends trivially to K-CNF, formulae, for any positive integét. Again, there
is no loss in restricting attention to 3CNF formulae, as there is a satisfiability-preserving

6The conversion works recursively on the depth of the formfatan the leaves to the root, each time applying to sub-foamthe propositional CNF
conversion and the transformation- A\ ; \V; ¢i; = A; Or V; ©ij-
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way of converting any modal formula into 3CNF.
In the 3CNFy,, test methodology, a 3CNFE, formula is randomly generated according to
the following parameters:

e the (maximum) modal deptify

e the number of clauses;

e the number of propositional variabl@g

e the number of distinct box symbois;

e the probabilityp of an atom occurring in a clause at depthi being purely propositional.

Notice thatd represents themaximumdepth of a 3CNE,, formula: e.g., ifp = 1, then the
depth is 0, no matter the value &f
The random 3CNfE,, generator works as follows:

e a 3CNF;,, formula of depthd is produced by randomly, and independartienerating
L 3CNRy,, clauses of depthi, and forming their conjunction;

e a 3CNRy,, clause of depthi is produced by randomly generating three distinct, under
commutativity of disjunction, 3CNF,, atoms of depthi, negating each of them with
probability 0.5, and forming their disjunction;

e a propositional atom is produced by picking randomly an eletof{A;,..., Ax};

e a 3CNFRy , atom of depthi > 0 is produced by generating a random propositional atom
with probabilityp; and with probabilityl — p, a 3CNF; , atomO,.C, whered,. is picked
randomly in{d,,...,0,,} andC is a randomly generated 3CNF clause of depth
d—1.

As there are no repetitions inside a clause, the nurilidr V) of possible distinct, under
commutativity of disjunctiorf, 3CNF;,_, with m = 1, atoms of depthi is given by the
recursive equation

m?

D(O,N) = N

D(d,N) = 23. ( D(d_gl’N) > [+D(0, N) if p # 0], (5-1)

Thatis,D(d, N) grows approximately a@N )3,

A typical problem set is characterised by a fix¥dm, d andp: L is varied in such a way
as to empirically cover the “100% satisfiable—100% unsati$é” transition. Then, for each
tuple of the five values in a problem set, a certain number,(300, 1000, ...) of 3CNF
formulae are randomly generated, and the resulting forenaita given in input to the pro-
cedure under test, with a maximum time bound of, typical3)d seconds. The fraction of
satisfiabile formulae, median/percentile values of CPLeipand median/percentile values
of other parameters, e.g., number of steps, memory, etcplatted against the number of
claused..

To save testing time, if significantly more than 50% of the gla® seen so far exceed
the time bound for a given value éf—so that the median and the other Qth percentiles for
Q@ > 50 are very likely to exceed the bound—then the system is nobnuthe other samples,
and the test goes on with the ndxwalue.

"This means that clauses may be repeated in a formula.

8we consider two formulae that differ only in the order of disjts in embedded disjunctions to be the same formulaeistat/ B v C is the same
asBVv CV A.
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5.2 Parameters and features

In the random 3CNF,, test method, each of the five parameters plays a specific role.

d represents the maximum depth of the Kripke models for theBCNormulae, and thus
increases exponentially the size of the potential Kripkelet®[Halpern199% Thusd
allows for increasing at will the difficulty of the solutioparticularly for the the modal
component of reasoning. The size of generated formulaegyoovaverage a$ — 3p)<.

N defines the number of propositional variables which are &ds@gned within each Kripke
state, and thus enlarges exponentially the space of théjpwesodels forp. (Typically
N is very small with respect to 3SAT problems, as each projposit atom has an “im-
plicit multiplicity” equal to the number of states of a potiah Kripke model.) ThusV
allows for increasing at will the difficulty of the solutioparticularly for the propositional
component of reasoningV has no effect on the size of generated formulae.

L is the number of conjuncts in the formula, and thus it costtbe constrainednessf
the formula (see, e.gWilliams & Hogg1994; Genet al.1996): the biggerL, the more
likely unsatisfiable the formula. Increasidg we pass with continuity from an initial
100% satisfiability fraction to 100% unsatisfiability. TagiZ allows for balancing the
satisfiable vs. unsatisfiable ratio. Obviously the size afegated formulae grows as
O(L).

m represents the number of distinct accessibility relatiartee potential models. 1K )
m partitions each branch in the search tree imtandependent sub-branches, each re-
stricted to a singléel,.. Therefore, for larget the search space is more partitioned and the
problem should be easier; moreover, as there is no mutuahdiemcy between the modal
satisfiability of the distinct sub-branches, for largerthe formulae are less constrained
and more likely to be satisfiable. Thusaffects both difficulty and constrainedness.
has no effect on the size of generated formulae.

p represents the “propositional vs. modal” rate for the atom$ias been introduced to
unbalance the tree-structure of the random 3GNFormulae, and allows for distributing
the propositional atoms at the different depth levels. dasingp reduces the number of
modal atoms, and thus reduces the difficulty of the solupanticularly for the the modal
component of reasoning. Increasipgauses a reduction in size of the formula, as the
average size of formulae 8((3 — 3p)).

In a 3CNR;,, test session the values of the parameters should be chogdloas. First,
set the values fodl, m andp so as to target an area of the input space; theivset fix the
desired level of difficulty; finally, run tests for increagiwalues of’, so as to cover the whole
transition from 100% satisfiability to 0% satisfiability.

Consider the plots in Figure 1, presenting a test fsaKC from[Giunchigliaet al 19983,
with d=1, N=6, p=0, m=1, and 100 samples/point. Figure It)lefpresents the fraction of
satisfiabile formulae together with the median number ofirgige calls of KSATC, which
measures the size of the space searched. Figure 1 (rightseayis the Qth percentile CPU
time. Both plots exhibit the typical easy-hard-easy pattantred around the 50% cross-
over point—also called “phase transition"—which has bemrealed in many NP-complete
problems (see, e.dMitchell et al.1992; Williams & Hogg199}). This should not be a sur-
prise, as satisfiability il ,,,) and in most modal logics is NP-complete if the modal depth
is boundedHalpern199% which is the case of each single plot. Thus, generally spgak
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FIG. 1: KSATC on a 3CNE,, test set (d=1, N=6, p=0, m=1, 100 samples/point). (Left):
satisfiability fraction and median # of calls; (Right): Qtlarpentile CPU time.

by tuning NV andL it is possible to generate very hard 3GNFproblems with the maximum
uncertainty on the results.

It might sound counter-intuitive that, after the 50% crossr point, the difficulty of the
problem decreases with the size of the formula. Giunch&ibastiani19964 noticed
that this is due to the capability of a system to backtrackngt @nstraint violation: the
larger the value of., the more constraint violations are detected, and the hitdjieesearch
tree is pruned. As a side-effect, if a plot does not decretisethe 50% cross-over point,
then this may reveal a problem of constraint violation débdadn the system.

5.3 Problems

As highlighted by Hustadt & Schmid1997; 1999, the formulae generated by the first ver-
sion of the method suffered from a couple of major drawbacks:

(Propositional) redundancy: As the intial 3CNk,, generator did not check for repeated
propositional variables inside the same clause, the rarfidonulae generated could con-
tain propositional tautologies. When this was the case stbe of formulae could be
reduced (in some cases dramatically) by a propositiongiigfination step;

Trivial (un)satisfiability: For certain values of the generator’'s parameters, the flaiergen-
erated were “trivially (un)satisfiable”, that is, they cdlle solved at the top level by
purely propositional inference. (This definition is sliydifferent from the one in Hus-
tadt and Schmidt, as explained below.)

As a solution, Hustadt & Schmifit 999 proposed three guidelines for generating more chal-
lenging problems:

(i) Setto their smallest possible value those parametatsithnot significantly influence the
difficulty of the 3CNF;, formulae. They included among them the parameieendd,
which they suggested setting to 1.

(i) To avoid trivially (un)satisfiable formulae, spt= 0.
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(iii) Modify the random generator so as to prevent repeateggsitional variables inside the
same clause.

They also improved the data analysis considering not jusiane/alues as ibGiunchiglia &
Sebastiani199§abut a range of Qth percentile values.

Redundancy was a problem due to a flaw in the first version ofi@iiglia & Sebastiani’'s
generator, and it was easily solved. The solution (iii) ctatgly solved propositional redun-
dancy. Giunchiglizet al.[19983 later noticed that an extra component of redundancy was
due to the presence inside one clause of repeatsdhlatoms and of permutations of the
same modal atom. Thus, they introduced the following vianedf (iii):

(iii") Modify the random generator so as to create distirtcinas, under commutativity of dis-
junction, both propositional and modal, inside the samesga

Trivial (un)satisfiability is a much more complex problemdadeserves some more dis-
cussion?

5.3.1 Trivial satisfiability

A 3CNFg,, formulay is trivially satisfiable iff it has at least oned-free satisfying assign-
ment. (Hustadt and Schmidt's definition is in terms of beiatiséiable on a Kripke model
with one world, which works out the same.) The existence &-em-only clause is a suf-
ficient condition for avoiding trivial satisfiability, as ery assignment then contains at least
one—0O literal. Each top-level literal iss0 with probability (1 — p)/2; each top-level clause
is —O-only with probability (1 — p)3/8; the probability of having no such clauses is thus
(1—(1—p)3/8)E. As the set of trivially satisfiable formulas is a subset @fsit of formulas
having no—-O-only clause, the probability of being trivially satisfiahis bounded above by
a function that converges exponentially to O/agoes to infinity. This matches the empiri-
cal behaviour revealed iHustadt & Schmidt1999where the fraction of trivially satisfiable
formulae decays exponentially wifh

Trivial satisfiability is not a big problem for random 3CNF testbeds. First, a trivially
satisfiable formula is not necessarily trivial to solve. &ctf in the general case, a literal
occurring in a model: for ¢, has the same probability of being positive or negatives fhu
is —-O-free with probability2—", w denoting the number of modal literals in On average,
only a very small percentage of satisfying assignments.-ardree, and unless the procedure
is explicitly biased to detect trivial satisfiability thei® no reason to assume that the first
assignment found by the procedure will be one of them. Bip#lie procedure for detecting
trivial satisfiability may not be a good strategy in the gahease. (For instance, the sug-
gested default settings of the *SAT system are not the best ndetect trivial satisfiability.)
In practice, most current state-of-the-art proceduresarguaranteed to solve trivially satis-
fiable formulae without any modal reasoning. Second, dukg@xkponential decrease in the
fraction of trivially satisfiable formulae witl,, the effects of trivial satisfiability are limited
to the extreme left part of the satisfiability plots—wherelgems are easy and satisfiable
anyway—and typically are negligible in the satisfiabilitgrisition area—uwhich is the really
interesting zone. Moreover, notice that tle— (1 — p)3/8)~ bound is pessimistic, as typi-
cally the fraction decreases much faster. This is due toabetliat for larger values df, it
is harder to get-O-free assignments, even if rad-only clause occurs in the formula; for

9S0me discussion about trivial solvability—although to wédo level of detail—can be found iiGiunchigliaet al19984.
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FiG. 2: *SAT on a 3CNIy,, test set, (d=2, N=3, p=0.5, m=1, 100 samples/point). (Left)
(un)satisfiability rates; (Right): Qth percentile CPU tiseconds), log scale.

instance, the presence of a clause (k& V -0y, V = A;) forces all assignments which
includeA; to include at least oneO literal.

Consider for example the plots in Figure 2 (left), which tesfrom running *SAT with its
default settings on a 3CNF;, testbed with d=2, N=3, p=0.5, m=1, 100 samples/point. I thi
test, *SAT found only 3 trivially satisfiable formulae fér = 16, and none elsewhere. Even
rerunning the testbed with the *SAT optiers3 - n6 (“while branching, choose always
positive values first”), which will find more:O-free assignments, we obtain ordly, 2 and1
trivially satisfiable formulae fol. = 16, 24, 32 respectively, and none elsewhere.

5.3.2 Trivial unsatisfiability

A random 3CNFE,, formulay contains on averagep?® clauses that contain three proposi-
tional literals (and thus contain no boxes). The larger tilaevof L, the more likely it is that
these clauses will be jointly unsatisfiable—thus makintyivially unsatisfiable. (The def-
inition of trivial unsatisfiability by Hustadt and Schmidt precisely this, but our definition
also allows unsatisfiability resulting from complementargdal literals in top-level clauses.)
This explains the large number of trivially unsatisfiableniolae detected empirically by
Hustadt and Schmidf1999 in the centre and right of their plots. #f = 0, theny contains
no such purely propositional clauses so the problem is eéted, at least so far as Hustadt
and Schmidt’s definition is concerned.

Whenp > 0, however, trivial unsatisfiability becomes a serious peablin 3CNk,
testbeds. First, a trivially unsatisfiable formula is tyglig exceedingly easy to solve for
most state-of-the-art procedures because any reason@hle-3 test set for these proce-
dures will have only a very small number of propositionaiables. In fact most procedures
look for modal successors only after having found a satigfgssignment: if no such assign-
ment exists, the formula is solved without performing anydadlaeasoning. Second, when
p is significantly greater than zero, trivially unsatisfiabdemulae may affect all the values
beyond the 100% satisfiable range, including the satisifaldibnsition area. For instance,
whenp = 0.5, it is difficult to generate unsatisfiable 3CNF formulae that are not trivially
unsatisfiable. A “signature” of the heavy presence of thiuiasatisfiability is what we call
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a “Half-Dome plot? for median CPU times: the median value grows uftiteaches the
50% satisfiability crossover point, then it falls abruptiywh to (nearly) zero, and does not
increase significantly thereafter. Analogously, the Qtitertile value grows until reaches
the (100-Q)% satisfiability crossover point, and then fabisuptly.

For example, consider Figure 2. In this figure, together with3CNF  plots, we also
present the results of running *SAT on the conjunction of plaeely propositional clauses
of the formulae. We call these propositional conjunctidresémbedded 3SAT sub-formulae.
Moreover, as a comparison, we also run *SAT on a pure 3SAbaesiith N = 3, rescaled
horizontally by al /p? factor. (E.g.,L = 144 in the plot means that the pure 3SAT formulas
havel44 - 0.5% = 18 clauses.) We call these formulas the rescaled pure 3SATulasnAs
N = 3 means that we have only 8 distinct pure 3SAT clauses, it isiplesto evaluate the
SAT probability exactly, which is given by the following eafion:

8
[RESCALED) Pygar(L) = (i) (—1)8F(k/8)L ", (5.2)

k=1

In Figure 2 (left) we plot the fraction of satisfiable 3CNF formulae, 1 minus the frac-
tion of unsatisfiable 3CNFE, formulae, and 1 minus the fraction of trivially unsatisfiabl
3CNFRg,, formulae. For the embedded 3SAT formulae and the rescaled38AT formulae,
we plot only the fraction of satisfiable formulae, which irtlboases is identical to 1 minus the
fraction of unsatisfiable formulae. We also plotted thedaéesd) 3SAT probability of Equa-
tion 5.2. Needless to say, the two latter plots match apagdme noise. Finally, we plotted
the fraction of formulae found to be trivially satisfiable B$AT and by *SAT - s3 - n®b,
as discussed above. (Considering the well-known satifiatsansition resultdMitchell et
al.1992; Crawford & Auton1998B for the rescaled pure 3SAT plot one might expect an av-
erage of50% unsatisfiable formulae fof ~ 4.28 - N/p® = 102.72; however,N = 3 is
too small for applying these results, whilst it is possiluigtovide an exact calculation as in
Equation 5.2.) Figure 2 (right) presents run times for tis¢ste

Several conclusions are evident from this data. Firsthyftaction of satisfiable 3CNF,
formulae nearly coincides with 1 minus the fraction of uissitble 3CNIg,, formulae that
is, very few tests exceeded the bound. Secondly, the fraofiensatisfiable 3CNf;, for-
mulae and the fraction of trivially unsatisfiable 3CNFformulae are very near, that is, most
unsatisfiable formulae are also trivially unsatisfiablen @ur testing experience, unsatisfi-
able 3CNIg,, formulae that are not trivially unsatisfiable are rare inlieds withp = 0.5.)
Thirdly, the fraction of unsatisfiable embedded 3SAT forasuis very close to the fraction
of trivially unsatisfiable 3CNFE,, formulae, that is, most trivially unsatisfiable formulae ar
such because the embedded 3SAT component is unsatisfiabighlly, the fraction of unsat-
isfiable embedded 3SAT formulae is very close to the fraaifounsatisfiable rescaled pure
3SAT formulae.

In Figure 2 (right), the plots for the embedded 3SAT and fa thscaled pure 3SAT
testbeds cannot be distinguished from the X axis—that id) @@es are always smaller
than0.01 seconds. The median CPU time plot for the 3GNRestbed grows until reaches
the 50% satisfiability crossover point, where it falls dovanugptly; the remainder of the plot
cannot be distinguished from the X axis. The Qth percentilaas behave analogously with
respect to the (100-Q)% satisfiability crossover point.

This behaviour can be explained as follows. If we plot thetfom of satisfiable formulae

10The name refers to the shape of a famous mountain in Yose@ati#ornia.
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for the embedded 3SAT formulae, we obtain a satisfiabiliysition similar to the one of
the rescaled pure 3SAT, with #%-satisfiable crossover point fdr ~ 150. The slight
differences between the two plots are due to the fact thaetigth of the embedded 3SAT
formulae is not fixed withL, asp® - L is only an average value. A¥ is generally rather
small, the embedded 3SAT formula is mostly unsatisfiablba witery low value of., making
the entire formula trivially unsatisfiable. Thus the embedi@SAT transition dominates the
whole satisfiability plot. The first effect is that the trai is expected to nearly coincide
with the embedded 3SAT transition. The second effect istbatly all unsatisfiable formulae
are trivially solvable. This means that the CPU times ar@agtdominated by the values
required to solve satisfiable formulae, which typicallywgreith L. Immediately after the
(100-Q)% satisfiability crossover point, the easiest Q%arhgles are nearly all trivially
unsatisfiable, so that the Qth percentile value falls downgtly to a negligible value.

The small difference between the fraction of the embeddedl I8rmulae that are un-
satisfiable and the fraction of the 3CNF formulae that are trivially unsatisfiable can be
explained as follows. When the embedded 3SAT formula isrlgemsatisfiable”, that is, it
has only one or very few models, some other clauses may batdrio cause trivial unsatis-
fiability. For instance, consider = o1 A (C1 V O¢) A (C2 V —~0¢), whereCy andCs are
propositional sub-clauses, and the embedded 3SAT formatilas “nearly unsatisfiable”. If
the few models ofp* each violate botl®’; andCx, then all assignments must propositionally
satisfyp™ A (Oy) A (-O¢). If Oy is treated as an atom (which is the case in most optimised
systems), thewp is trivially unsatisfiable, even though* is satisfiable. Witlp = 0.5, an
average of3/8 clauses have exactly one modal literal. With= 3 andd = 2, the proba-
bility that two such clauses have mutually contradictorydiaiditeralsdy> and -0 is not
negligible. As before, witlp = 0 no “nearly unsatisfiable” embedded 3SAT formula occurs.

5.3.3 Thep =0, d =1, m = 1 solution
Unfortunately the guidelines indicated by Hustadt & Schnii®99, and described above,
are not a panacea, as they introduce new problems.

Consider thed = 1 guideline. First, inK,,,) the 3CNF,,, class represents only the
class of formulae of deptti, as there is no way to reduce the depth of formulae. Thergfore
if d = 1 the input subspace sampled is not very representative. ddergas shown in
[Halpern199% a formulay which is satisfiable ifK (,,,) (and also iNK'T (), K45y,
KD45,) andS5,y,)) has a tree-like Kripke model whose number of states is smtian
|p|dePth(#) where|p| anddepth(yp) are respectively the size and the modal deptt».oRs
a consequence, satisfiable 3GNFformulae withd = 1 have very small models, so that
they are not very challenging from the viewpoint of pure madasoning, regardless of the
values chosen for the other parameters. More generallyy Wwhending the modal depth, the
satisfiability problems for the logics above decays from A&P-complete to NP-complete
[Halpern199h

Consider thes = 0 guideline. Ifp = 0, then the random 3CNFE, formulae are complete
ternary trees where propositional atoms occur only at thamam depth level. Such formu-
lae can hardly be considered as a representative sample wfdtal input space. Moreover,
they are even less representative if used as a testbed farmoakal logics different from
K. In fact, in most modal logics, restricting the occurrentpropositional variables to the
maximum depth level hinders a relevant source of reasoniegal the interaction between
variables occurring at different depth levels. For instarihe assignmedtd;, O, ¢} is sat-
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FiG. 3: A 3CNRy,, random test set (d=1,2,3, N=3, p=0, m=1, 100 samples/pofh#ft):
(un)satisfiability rates; (Right): median and max CPU tirfgeconds) for *SAT, log scale.

isfiable inK ,,) but may be not ifKT ) if A; occursing (e.g., ifp = —A;).

Finally, consider thel = 1 andp = 0 guidelines together. lfHustadt& Schmidt19909
thed = 1 statement derived from the results of an experiment Wth= 3, p = 0.5,
m = 1,d = 2, 3, 4, 5 where the complexity did not seem to increase significaniti w
d, and the growth was smaller than the increase in size. Unfately, this experiment was
strongly influenced by thg = 0.5 choice. Withp = 0, it turns out that the overall difficulty
grows dramatically withd. Consider the plots in Figure 3, which have been obtained by
running *SAT on three test sets, with= 1, 2 and3, N = 3, p = 0, m =1, and100
samples/point. Figure 3 (left) shows both the fraction ofrfolae found to be satisfiabile and
1 minus the fraction of formulae found to be unsatisfiablgufé 3 (right) shows the median
and max CPU times. Fat = 1, all formulae are either found to be satisfiabile or found
to be unsatisfiable—that is, no sample exceeded the timeand-the satisfiability fraction
decreases very fast, reaching 100% unsatisfiability fat 100; the median and max CPU
times are so small that cannot be distinguished fromXitaxis. This should not be a surprise:
with N = 3, p = 0 andd = 1, there are only 8 distinct modal atoms, so that the test bed
is only a little harder than a 3SAT testbed with = 8 + 3 variables. Foil = 2,3 things
change dramatically. Both median and maximum CPU timeslhapéach the timeout. As a
consequence, the fraction of formulae found to satisfiakie fhe fraction of formulae found
to be unsatisfiable add to much less than 1, as most probleree@the timeout. The real
satisfiability fraction is somewhere between them. Forinsé, withL. = 80 more tharb0%
of thed = 3 samples have exceeded the timeout, whilelfor 120 more tharb0% of the
d = 2 samples have exceeded the timeout. Running *SATdfes 2 and L = 400, no
sample was solved within the timeout. As a consequence, foi0 andd > 1, the test sets
are mostly out of the reach of *SAT, and no information abbetdatisfiability transition can
be provided. The situation is no better with other curremisien procedures such as DLP.
To our knowledge, no system so far has been able to fully peosatisfiability transition for
d=2,N=3,p=0,m = 1, as in the satisfiability transition area most solution sme
exceed the timeout.

We believe that such behaviour should be expected. As fsfigdility fraction, the num-
ber of possible distinct atoni$(d, N) in equation (5.1) grows exponentially with decreas-
ing the probability of conflicts between modal literals. Asansequence, with fixed, the
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FiG. 4: Two 3CNRy,, randomtest sety = 2, N = 3, p = 0.0 and0.5, m = 1, 100
samples/point. (Left): median CPU time; (Centre): mediaf &ssignments found; (Right):
median # of states explored.

fraction of unsatisfiable formulae decreases very rapidtly ¥ causing a relative increase in
the number of clausek necessary to reach t56% cross-over point, that is, a relative shift
to the right of the transition area. As for difficulty, the siaf the Kripke models fop is up

to |p|4Pt"(#) [Halpern199% Thus, if L is fixed andd grows, it is reasonable to expect that
the effort required to search for such exponentially-biglels grows at least exponentially
with d. Notice that, ife is a random 3CNF,, formula withp = 0, then|p| also grows as
0(3%).

This prompts the question as to why the same behaviour ishssreed withp = 0.5. As
for satisfiability, the effects of increasinbare counteracted by the embedded 3SAT compo-
nent, which forces trivial unsatisfiability with very low ks of L, preventing the shifting
of the satisfiability transition described above. As fofidiflty, first, || is much smaller, as
only about &1 — p)? fraction of the branches of the formula treegfictually reach depth
d. Moreover, the high percentage of propositional literafuces dramatically the number of
assignments found, as it gets much harder for most candidatgnments to avoid contain-
ing propositional contradictions likd;, -A;. Finally, the modal literals are only a subset
of each assignment found, so that the number of states tofdered for every assignment
is reduced. Figure 4 shows both the median CPU times, theam@dimber of assignments
found and the median number of states explored by *SATdfer 2, N = 3, m = 1, with
bothp = 0.0 and0.5. It can be seen that all three values are drastically redbgesitting
p=0.5.

5.4 Discussion

Even with the above problems, the random 3GNFRest methodology produces a good em-
pirical test for many purposes. The generators are availahd their “randomness” can be
controlled by setting the seed of their random number geémeta reproduce test sets if the
actual formulae are not available. The rationale behindrteéhodology has been extensively
discussed. The formulae generated, although large, atemtirge, and many very difficult
(relative to size) formulae are generated if appropriatampater values are chosen. The test
methodology produces a balance between satisfiable antigfiadde formulae. With the
recent improvements, the problems of redundancy andlitywaare much reduced.

The test generator is highly parameterised, perhaps tdoyhigut by concentrating on a
subsection of the test space interesting tests can be gedefde biggest problem with the
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FIG. 5. Results forn = 1,d = 1, andp = 0.0
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FIG. 6. Results forn = 1,d =1, andp = 0.5

test methodology is that the maximum modal depth of formigdexed, thus reducing the
inherent difficulty of the problem from PSPACE-complete tB-lomplete. However, even
at modal depths 1 and 2, difficult tests can easily be devised.

One disadvantage with random tests is that they take muafetan perform (for inter-
esting hard problems) because a large number of formulae thave generated and tested
at each data point for the results to be reliable. Howeveabaly the biggest drawback
with the random 3CNf,, test methodology is that, because of their low modal delies,
formulae generated are very artificial. This is not really@tem with the test methodology
per se but is instead due to the combination of the test methogodogl the capabilities of
current decision procedures.

One benefit of the random 3CNFE test methodology is that it can show the changing
relative behaviour of several systems as the various paeasnehange. For example, several
qualitative differences between DLP and K€ can be discerned from the tests shown in
Figures 5, 6, and 7 which give 90th percentile results foesatests.

These results illustrate a number of differences betweentwlo decision procedures,
which can be traced back to characteristics of the systemeXxample, K3T1C uses an un-
derlying satisfiability engine with very efficient data sttures whereas DLP does not have
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FIG. 7. Results forn = 1,d = 2 andp = 0.5.

as highly optimised data structures. This difference iraddtuctures shows up in different
run times for larger formulae (larger valuesiofN) with non-zerg (Figures 6 and 7) where
formulae are mostly trivially unsatisfiable, but where DlaRés some amount of time just to
traverse its data structures.

KSATC uses an aggressive look-ahead technique that investigendal successors very
early on in the search space. This technique is good wherrtdeons are over-constrained,
resulting in better performance in particular #r= 1 andp = 0 (Figure 5), and also in
narrower peaks fod = 1 andp = 0.5 (Figure 6). However, when there are significant
numbers of modal successors that are satisfiable, this ieadgtigation, and the necessary
reinvestigation when more information is known, becomesr#as liability, as shown for
d =2 andp = 0.5 (Figure 7).

Itis this sort of comparative analysis that is most usefttheounderstanding of how various
algorithms behave and how they can be improved.

6 New Random Empirical Testing

Since 1998 some new forms of random testing—both variantseoBCNF;,, method and
completely new ones—have been investigated and/or prdpdse¢he following section we
briefly outline and review the most significant of these.

6.1 Using modalised atoms

Recently Massacdil999 proposed a K-modalised” variant of the 3CNF, method bor-
rowing an idea fronjHalpern199% within each 3CNE,, formulay, substitute each occur-
rence of each propositional variablg with the corresponding modal expressioni(Ag V
0O'=Ap). (A similar encoding was proposed f8#.) The encoding preserves satisfiability in
K, and the resulting formula’ has only one propositional variablgy and depthl + N + 1.
Moreover,¢' is relatively bigger thanp, as the global number of propositional literals is
doubled and, for each propositional atom, on€ and an average oN/2 4+ 1 “0O"s are
added. Thus, we would expdst-modalised 3CNF,, formulae to be much harder than their
corresponding 3CNF;, ones, especially for low's and highN'’s.
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FiG. 8: *SAT on 3CNF;,, andK-modalised 3CNFE, test sets, (N=4,5 and 6, d=1, p=0,
m=1, 100 samples/point). (Top): median and 90% percenild €me (seconds). (Bottom):
median and 90% size of the space searched.

Figure 8 shows the results of running *SAT on the testbedslimstadt & Schmidt1999;
Giunchigliaet al.1998d—i.e., with d=1, p=0, m=1, N=4,5,6 and 100 samples/pointirgis
both 3CNFy,, formulae and theilK-modalised counterparts. The top row represents median
and 90% percentile CPU time; the bottom row represents meahiad 90% percentile size
of the space searched, that is, the number of single trdtle\assignments performed by
*SAT. All curves present the usual easy-hard-easy patténom the first row, we notice
that theK-modalised samples in general require a longer CPU timelt@ sdlevertheless,
the gap never exceeds a 2-3 factor, which is well justifiedHsyibcrease in size of the
input formulae. (Similarly, the CPU time gap between Kienodalised and non-modalised
3CNR;,, tests presented iMassaccil99Bnever exceeds a 2-3 factor.) Moreover, from the
second row, we notice that there is no significant differéntle size of the space effectively
explored.

These results may be explained as follows. As far as basjgogitional reasoning is
concerned, modalisation introduces no difference, as *$#éiisiders boxed formulae as
propositional atoms. In the simple 3CNF case, *SAT takes one shot to determine the
satisfiability of a purely propositional assignment like

{4, .. A, A 0A LT (6.1)
In the K-modalised case, the assignment corresponding to (6.1) is
{=0(AgvO"=Ayp), ..., ~O(Ag VO =Ag), O(Ag VD1 = Ay), ..., O(Ag VO™ =A4)}. (6.2)

Although (6.2) is satisfiable il [Halpern199% checking its satisfiability requires deter-
mining the satisfiability of the sub-formulae

_‘AO A _'Di_‘AO A (A() Vv o/ _|A0) A A (AO vV Djm_‘Ao), (63)
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for every negated boxed atortl(Ag VV O'=A4p) in (6.2). However, this step is deterministic.
First, all theA, disjuncts are wiped off by unit-propagating the firsd,:

ﬁDiﬁAo A O —Ag A ... A DjmﬁAo. (6.4)

As (6.4) and all its modal successors contain only one nddsie, *SAT solves (6.4) deter-
ministically by generating a linear concatenation atates, without performing any search
within each of them. An analogous behaviour is to be expeeted, from DLP and FaCT.

As far as we can see from the experiments, despite the elativease in depth and size
of the formulae K-modalisation does not seem to produce testbeds which gm#icantly
more challenging than standard 3Gi\Fones. For instance, in the tests in Figure 8, modal-
isation simply introduces an overhead due to an extra anafuddterministic steps, without
increasing significantly the size of the search space.

6.2 Re-interpreting p: the Ne®CNFR- , test method

To overcome the problems of the 3CNF generator due to the embedded SAT component
©*, we propose a new variant of the random generatdGafinchigliaet al.19984, called
New_3CNF5, . The difference relies on a different interpretation of thgarameter. In the
3CNR;,, generatorp is interpreted asthe probability of an atom being propositiofialn

the New3CNFR,, generatorp is interpreted asthe proportion of propositional atoms in a
clausé, in the sense that

oif p=1£k/3, k € {0,1,2,3}, then the proportion is interpreted in the obvious way, ihat
“exactlyk propositional literals and® — k£ modal literals.

¢ otherwise, the residual part is interpreted as a probghiat is, ‘exactly|3p| proposi-
tional literals, 3 — [3p] modal literals, and the last literal is propositional withgbability
3p — [3p]", where|z| =g4er maz{n € Nn <z} and[z] =4ef min{n € N|n > z}.

The first case is a sub-case of the secondp i k/3, then |3p| = [3p] = 3p = k.
The definition trivially extends to K-CNE,, formulae by substituting 3 witlk{. A random
New_3CNF,, clause is thus generated in the following way (and then dirte

1. generate randomly3p| distinct propositional literals;
2. generate randomBy— [3p] distinct New3CNFR-_, literals;

3. flip a coin: with probability3dp — |3p], generate randomly a fresh propositional literal;
otherwise, generate randomly a fresh N8@NF;, literal (“fresh” here means “not al-
ready present in the clause”).

For instance, ifp = 1/3, then the clause contains 1 propositional and 2 modal lieif
p = 0.5, then it contains 1 propositional and 1 modal literal, arel akther is propositional
with probability0.5; if p = 0.6, then it contains 1 propositional and 1 modal literals, dred t
other is propositional with probability 0.8, 8s 0.6 — |3-0.6] = 1.8 — 1 =0.8.

As with the 3CNIg,, case, a NewBCNF5, clause contains an averagelpfpropositional
literals. However, ifp < 2/3, then no purely propositional clause can be generated.preis
vents a random Ne@CNF | formulag from containing any embedded 3SAT sub-formulae
©*, and thus eliminates the main source of trivial unsatiditghihile preserving the benefits
of settingp > 0.
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FIG. 9: *SAT on a New3CNFR;, test set, (d=2, N=3, p=0.5, m=1, 100 samples/point).
(Left): (un)satisfiability fractions; (Right): Qth percilie CPU time (seconds), log scale.

Figure 9 shows plotted the results of running *SAT on a randew_3CNF;, test set,
withd = 2, N = 3,p = 0.5, m = 1 and100 samples/point. Figure 9 (left) shows the
fraction of formulae found to be satisfiable, 1 minus the ticac of formulae found to be
unsatisfiable, 1 minus the fraction of formulae found to beaily unsatisfiable, the fraction
of formulae found to be trivially satisfiable by *SAT and by A% - s3 - n6. First, the
satisfiable and unsatisfiable fractions add to close to 1dtgxactly to 1, that is, a few tests
exceeded the bound. Secondly, there are very few trivialgatisfiable formulae, but there
are some. The trivial unsatisfiability in these formulaeasiged by complementary modal
atoms in top-level clauses. Thirdly, the fraction of ursfsble formulae is much greater
than the fraction of trivially unsatisfiable formulae, thst very few unsatisfiable formulae
are also trivially unsatisfiable, and nearly all of theselaoated in the 100% unsatisfiable
zone. With its default settings, *SAT found only 1 triviakbatisfiable formula fol, = 16,
and none elsewhere. As before, rerunning the testbed wath AT option- s3 - nb we
obtained22 and?2 trivially satisfiable formulae fol. = 16 and24 respectively, and none
elsewhere. In Figure 9 (right), the median CPU time and therdth percentile plots reveal
a typical easy-hard-easy pattern centred in the satisfiatséinsition area, growing up to the
50% cross-over point, and then decreasing gently.

Now compare the plots with those of the analogous 3€NEest set in Figure 2 (the pa-
rameters’ values and the system tested are the same)yRinstsatisfiability transition here
is relatively shifted to the right. The NeBCNF;,, satisfiability plot is no longer domi-
nated by the embedded 3SAT component, and thus it is fredlewfds “natural” course.
Secondly, the NevBCNF5,, CPU time plots are slightly harder than the 3GNFplots in
the satisfiable area, becoming dramatically harder as #widn of trivially unsatisfiable
3CNFR,, formulae increases. In fact, the effect is due to the Qtheqreile values for the
3CNR;,, test set becoming dramatically lowered by the increasimggmgage of trivially un-
satisfiable formulae, the solution times for which are rggble. This does not happen with
the New3CNFR , test set, where the percentage of trivially unsatisfiabtentdae is negli-
gible and hard unsatisfiable formulae are generated. Firtalk New3CNFR;,, CPU time
plots describe easy-hard-easy patterns which decreatlg gith L, instead of falling down
abruptly. The NewBCNF;, plots are no longer dominated by the trivially unsatisfidble
mulae, and thus they are free to follow their “natural” easyd-easy pattern induced by the
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increase in the constrainedness.

On the whole, the Nev8CNF5,, test method withp < 2/3 solves the problems related to
trivial unsatisfiability in the 3CNF,, method. This is done without imposing the= 0 and
d = 1 restrictions, which introduce a new problems of their ownorkMs still ongoing to
plot full diagrams ford > 2. Generating full NewBCNF,, plots for bigger values aof and
N may be a challenge for both state-of-the art and future syste

6.3 Random QBF tests

A common criticism of 3CNE, , testbeds comes from the consideration that for many modal
logics the class of formulae with bounded depth is in [fRIpern199% so that 3CNE,,
testbeds with boundeéihave only NP complexityMassacci199P To overcome this prob-
lem, Massacci proposes a completely new kind of random eéeaplsienchmark, which was
used in the TANCS’99 system performance comparison. Inkdbiechmark, random QBF
formulae are generated according to the method describ&hbyliet al.[199d, and then
converted into modal logic by using a variant of the conversiy Halpern & Mose§1994.
The converted modal formulae are satisfiable iff the QBF fdem are true.

Random QBF formulae are generated with alternation déptind at most” variables
at each alternation. The matrix is a random propositionalF @mula with C' clauses of
length K, with some constraints on the number of universally andtextglly quantified
variables within each clause. (This avoids the problem igfalrunsolvability for random
QBF formulae highlighted by Gent & Wal§i9994.) For instance, a random QBF formula
with D = 3, V' = 2 looks like:

VU32’U31 .31122’[)21 .V’U12U11 .3’[}021101 .1/1[1}32, ceey 'UOI]- (65)

In this section,y is a random QBF formula with parametets V' and D, while U and
FE denote the total number of universally and existentiallarified variables respectively.
Clearly, bothU and E are O(D - V). Moreover,y is the modal formula resulting from
Halpern & MosesK conversion, so both the depth and the the number of propoaltiari-
ables ofp are alsaO(D - V).

A from-scratch empirical evaluation of the random QBF testthmd would require an
effort exceeding the proposed scope (and length) of thiempaphus we will restrict our
analysis to some basic considerations.

As with 3CNFRg, , the results of each QBF-based testbed are easy to repraguite
generator’s code and all the parameters’ values are pylalieilable. By increasingy and
D the difficulty of the generated problems scales up, whilallows for tuning the sat-
versus-unsat rate of the formula. Random QBF plots, withdfikeand V', also present
easy-hard-easy patterns centred in the solvability tiansareagCadoliet al1998; Gent &
Walsh1999h Moreover, with respect to 3CNE, formulae, random QBF formulae allow
for generating 50%-solvable formulae with higher modaltdepat are still within the reach
of current state-of-the-art deciders.

From a purely theoretical viewpoint, it is claimed that,ikealCNF;,  formulas, modal-
encoded QBF formulas can capture the problems4n as QBF formulas with bounded
D and unbounded are in%%, while CNF;,, formulas with bounded and unbounded
N are “stuck at NP’[Massacci1l990 We notice that this statement is rather misleading.
Massacci treats the alternation def?rand the number of variables within each alternation
V' as the “QBF-equivalent” of the modal depftand the number of propositional variables
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N respectively — they are the same parameters in the randoenagen We remark that the
“QBF-analogous” role of modal depth is played instead bytttal number of universally
quantified variable¢/ ~ V' - D/2. In fact, similarly to modakK ) with bounded depth,
the class of random QBF formulae with boundéds in NP, as it is possible to “guess” a
tree-like witness withO(U - 2Y) nodest' Moreover, as in the case of 3CNF formulae
with boundedi and NV, if D andV are bounded—which is the case of every finite-size test
set—then the random QBF problems are not only in NP, but evén i

Another problem with modal-encoded QBF formulae is thay thee rather artificial, as
their potential Kripke structures are restricted to thoaeig the very regular structure im-
posed by the QBF and/or binary search trees. As far as rapiadiséty is concerned, modal-
encoded QBF formulae have a very peculiar modal structurehat they can hardly be
considered as a representative sample of the input space.

Finally, a serious problem with random modal-encoded QBmidas is size. Initial ver-
sions of the translation method produced test sets in therb@&e. The problem with such
very large formulae is that they may be only stressing tha-dedrage and retrieval portion
of the provers; e.g., running DLP on these formulae resutted1000s timeout without any
significant search. Even the current versions produce eegelmodal formulae, mostly to
constrain the Kripke structures.

7 Discussion

The current situation in empirical testing of modal dedisfrocedures is not completely
satisfactory. There are a number of available test sets atlaniologies that can be used to
examine modal decision procedures, each of which has eédrtamiefits and certain flaws.

The Heuerding and Schwendimann test suite provides a nunfib@eresting inputs. The
input formula classes are different from each other, buttisonly a small number of classes
and they do not cover all kinds of input formula. The inputnioilae are parameterised,
potentially providing a good range of difficulty. Howeveuroent systems incorporate pre-
processing steps that reduce many of the test formula slasgavial formulae even before
search starts, dramatically reducing the difficulty of tfess.

The standard 3CNFE, random test methodology provides a means for easily geéngrat
very hard problems. It has some problems with trivial (utid§iability, but these problems
are not severe. Disguising the 3CN\Fformulae by modalising the propositional atoms does
not make the tests appreciably better. Our new random testoa@ogy may help alleviate
these problems, but more testing is required.

The new QBF random testing, when compared with NEONF; = formulae, allows for
generating 50%-solvable formulae with higher modal degifctvare still within the reach of
current state-of-the-art deciders. On the other hand, irentaoded QBF formulae are rather
artificial, as their potential models are restricted to ¢hbaving a very regular structure.

Unfortunately, current systems can only handle very snalias for some of the param-
eters at interesting points in the parameter space of theF3CNandom test methodology.
This makes it very hard to investigate the behaviour of sgstever an interesting range of
the parameter. Further, there are four active parametéishwnakes it hard to cover large
sections of the input space.

However, even with the above-mentioned flaws, current engbitest methodologies pro-
vide evidence of great strides forward in the performanceadal decision procedures. The

More preciselyO (E - 2Y') nodes, butE is O (U7) in the class of formulae considered.
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current fastest systems, including DLP and *SAT, can qyisklive problems that were im-
possible to solve just a couple of years ago. The HeuerdidgSahwendimann test suite
shows the importance of pre-processing to remove as mamydaticies as possible. The
standard 3CNf,, test suites show the effect, both positive and negativesitdin strategies
built into these systems.

It is interesting to compare the situation in empiricalitegof modal decision procedures
with that for propositional satisfiabilitiGent & Walsh1993; Crawford & Auton1996; Selman
et al1994, where a random-3CNF methodology is also used. With praipasil formulae,
the methodology can be tuned to provide problems of appatepdifficulty, and captures the
hardest formulae of a particular size. There are only twaipaters, which allows for easy
coverage of large sections of the input space. Currentrsgstan process reasonably large
inputs, but it is easy to generate formulae that are hardar empossible to solve. Achieving
a similarly satisfactory situation in the empirical tegtiof modal decision procedures will
require advances in both the decision procedures and ttiegt@sethodology.
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