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Abstract
Recent years have seen the emergence of a new generation of heavily-optimised modal decision procedures. Several
systems based on such procedures are now available and have proved to be much more effective than the previous
generation of modal decision procedures. As both computational complexity and algorithm complexity are generally
unchanged, neither is useful in analysing and comparing these new systems and their various optimisations. Instead,
empirical testing has been widely used, both for comparisonand as a tool for tuning systems and identifying their
strengths and weaknesses. However, the very effectivenessof the new systems has revealed serious weaknesses
in existing empirical test suites and methodologies. This paper provides a detailed survey of empirical testing
methodologies, analyses the current state of the art and presents new results obtained with a recently developed test
method.
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1 Motivations for empirical testing

Heavily-optimised systems for determining satisfiabilityof formulae in propositional modal
logics are becoming available. These systems, including DLP [Patel-Schneider1998], FaCT
[Horrocks1998], KSATC [Giunchigliaet al.1998a], *SAT [Tacchella1999], and TA [Hus-
tadt & Schmidt1997], have more optimisations and are much faster than the previous genera-
tion of modal decision procedures, such asleanK [Beckert & Goré1997], Logics Workbench
[Heuerdinget al.1995], and2KE [Pitt & Cunningham1996].

As with most theorem proving problems, neither computational complexity nor algorithm
complexity is useful in determining the effectiveness of optimisations. The worst-case com-
plexity of the problem, of course, remains unchanged. For many propositional modal log-
ics, this complexity ranges from PSPACE-complete to EXPTIME-complete. The worst-case
complexity of the algorithms in the systems also generally remains unchanged under optimi-
sation. The worst-case complexity for most of these systemsis exponential time and either
polynomial or exponential space. Further, determining anyuseful normal-case or special-case
complexity is essentially impossible.

As theoretical studies do not provide any indication of the effectiveness of the new systems
and their optimisations, this has to be determined by empirical testing. In any case, empirical
testing provides a number of benefits over theoretical complexity. It directly gives resource
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2 An Analysis of Empirical Testing for Modal Decision Procedures

consumption, in terms of computation time and memory use. Itfactors in all the pieces of the
system, not just the basic algorithm itself.

Empirical testing can be used not only to compare different systems, but also to tune a
system with parameters that can be used to modify its performance. Moreover, it can be
used to show what sort of inputs the system handles well, and what sort of inputs the system
handles poorly.

In this paper we provide a detailed survey of empirical testing methodologies for modal
decision procedures, including a review of previous work inthe area and an analysis of the
current state of the art.1 We point out desirable and undesirable characteristics of these
methodologies. We also present some new results obtained with a recently developed test
method, and identify some of the remaining weaknesses in both modal decision procedures
and testing methodologies.

Our goal in this paper is not to show the effectiveness of various systems and their optimi-
sations, but is instead to provide a framework for evaluating empirical testing methodologies
for modal decision procedures, to analyse these methodologies, and to give a direction for
better empirical testing methodologies for modal decisionprocedures.

2 Evaluating Empirical Testing

2.1 Kinds of Empirical Test Sets

Several kinds of inputs can be used for empirical testing. Inputs that have been encountered
in the past can be used. Variations on these past inputs, either systematic or random, can
be used. It is also possible to deterministically synthesise inputs. These can be either hand-
generated individual inputs, possibly parameterised, or inputs that systematically cover an
area. Finally, randomly-generated inputs can be used. Eachof these kinds of inputs has
benefits and potential problems.

Actual past inputs provide a good mechanism for comparing the behaviour of different
systems. However, as systems improve, old inputs can becomeso easy that they provide no
guidance. Also, newer inputs will not necessarily be the same as past inputs, so using past
inputs may not provide guidance for future performance. Further, there may not be enough
past inputs to provide sufficient testing.

Variations on past inputs can be used to overcome some of these problems. Variations
provide more inputs. If the past inputs can be modified to be larger or more difficult, then the
problem of past inputs being too easy can be overcome.

Hand-generated inputs can be specifically tailored to provide good tests, at least for partic-
ular systems. In particular, if the inputs are parameterised, then they can often be made large
enough to be difficult, even for newer systems. However, it can be very hard to hand-generate
difficult problems, even if parameterised—a particular optimisation may make a whole pa-
rameterised set of inputs trivial. Further, hand-generation is expensive.

Systematic inputs can be very effective, provided that systematic generation is possible.
However, many kinds of inputs are too large to systematically cover. Random inputs are often
easy to generate, and can provide a mechanism to cover a classof inputs. Both systematic
and random inputs may not be typical inputs, and so testing using these kinds of inputs may
not provide useful data.

In many cases there is a lack of past inputs, not enough resources for hand-generation, and

1Some of the testing in this paper has been reported on in otherpapers[Horrocks & Patel-Schneider1999b; 1999a; Giunchigliaet al.1998a].
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no way of systematically covering the input space, so the major mechanism for generating in-
puts for empirical testing has to be random generation. Thisis the case in propositional modal
logics. The current main empirical testing methodologies involve random generation of for-
mulae. The only other significant test consists of hand generated, parameterised formulae,
but this test has become too easy for state-of-the-art systems.

2.2 Good and Bad Empirical Testing

The benefits of empirical testing depend on the characteristics of the inputs provided for the
testing, as empirical testing only provides data on these particular inputs. If the inputs are not
typical or suitable, then the results of the empirical testing will not be useful. This means that
the inputs for empirical testing must be carefully chosen.

We believe that good test sets should be created according tothe following key criteria.2

Reproducibility. Any test is not very useful if it cannot be reproduced, and varied. The
test formulae or their generation function should thus be made available. Even if the
test formulae are made available, the generation function should also be made available,
so that variants of the test can be developed. If the actual test formulae are not made
available it should be possible toexactlyreproduce the entire test set, so all the inputs to
the generation function should be disclosed, including any“random” or environmental
inputs.

Representativeness.The ideal test set should represent a significant area of the whole input
space, and should span the whole range of sources of difficulty. A good empirical test set
should at least cover a large area of inputs. Empirical test sets that consist of only a few
inputs or that concentrate on only a small area of the input space provide no information
about most inputs. This can be a particular problem if the small area has a different
computational complexity than the input space as a whole.

Valid vs. not-valid balance.In a good test set, valid and not-valid (or, equivalently, satis-
fiable and unsatisfiable) problems should be more or less equal both in number and in
difficulty. In fact, solvable and unsolvable problems may present different sources of
difficulty, so that a system which is good at handling one typemay be not good—or
not capable at all—of handling the other type. Moreover, to prevent the usage of rou-
tines/heuristics which are explicitly aimed at detecting either solvability or unsolvability,
the testbed should provide noa priori information which could help in guessing the re-
sult —that is,maximum uncertaintyregarding the solvability of the problems is desirable.
(Notice that, in the real world, the solvability of a problemis not known a priori.)

Difficulty. A good empirical test set should provide a sufficient level ofdifficulty for the sys-
tem(s) being tested. (Some problems should be too hard even for state-of-the-art systems,
so as to be a good benchmark for forthcoming systems.) If the inputs are too easy, then
the resulting resource consumption may be too small to easily measure, and the resource
consumption may be dominated by start-up costs that do not grow as the difficulty of the
inputs grow. Comparing absolute performances—which may depend on factors like the
platform used, the quality of implementation, etc.—may be less significant than compar-
ing how performances scale up with problems of increasing difficulty.

Termination. To be of practical use, the tests should terminate and provide information
within a reasonable amount of time. If the inputs are too hard, then the system may

2Notice that some of the criteria are identical or similar to those suggested by Heurding and Schwendimann[1996].
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not be able to provide answers within the established time. This inability of the system is
of interest, but can make system comparison impossible or insignificant.

The following criteria derive from or are significant sub-cases of the main criteria above.

Parameterisation.One way of creating test sets with the appropriate features and with a
large number of inputs is to have parameterised inputs with sufficient parameters and
degrees of freedom to allow the inputs to range over a large portion of the input space.
On the other hand, the number of parameters and their degreesof freedom should not be
too large, otherwise the number of tests required to cover a significant subspace might
blow up. (Ideally, the parameter set should work as much as possible as a “base” for the
input space.)

Control. In particular, it is very useful to have parameters that control monotonicallythe key
features of the input test set, like the average difficulty and the solvable vs. unsolvable
rate. Monotonicity is a key point, as it allows for controlling one feature independently
of the values of the other parameters, and for eliminating uninteresting areas of the input
space.

Modal vs. propositional balance.Reasoning in modal logics involves alternating between
two orthogonal search efforts: pure modal reasoning—that is, spanning the potential
Kripke models—and pure propositional reasoning—that is, assigning truth values to sub-
formulae within each Kripke state. A good test set should be challenging from both
viewpoints.

Data organisation.The data should be summarisable—so as to make a comparison possible
with a limited effort—and plottable—so as to enable the qualitative behaviour of the
system(s) to be highlighted. For instance, a list of hundreds of uncorrelated numbers is
not a well-organised data set, since it makes a comparison impractical, and makes it very
hard to produce any qualitative information from it.

Focus on narrow problems.As an alternative to wide-ranging tests, small “ad hoc” testsets
may be used for testing systems on one particular source of difficulty, or for revealing
one particular possible weakness. For instance, formulae which are satisfied only by
exponentially-large Kripke models (see, e.g.,[Halpern & Moses1992]) might cause the
system under test to blow up in space, thus revealing its non-PSPACEness.

Finally, in creating good test sets, particular care must betaken to avoid the following prob-
lems.

Redundancy.Empirical test sets must be carefully chosen so as not to include inadvertent
redundancy. They should also be chosen so as not to include small sub-inputs that dictate
the result of the entire input. Empirical test sets can be made irrelevant by advances in
systems if the advanced systems include optimisations thatidentify some inherent redun-
dancy and cause the test set to be trivially solved. Of course, a system that can detect such
redundancy is better than one that cannot, but the presence of detectable redundancies can
reduce test sets to triviality.

Triviality. A good test set should be flawless, that is, it should not contain significant subsets
of trivial problems. This problem has claimed victims in many other areas of AI, as flaws
have been detected in random test methods for propositionalsatisfiability[Mitchell et al.
1992], for constraint satisfiability problems[Achlioptaset al.1997], and for quantified
boolean formulae[Gent & Walsh1999a].
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Artificiality. A good empirical test set should correspond closely to inputs from applications.
If the test set does not resemble actual inputs, then the results from the empirical testing
will not necessarily correspond with the behaviour of the system in real use.

Over-size.The single problems should not be too big with respect to their difficulty, so that
the resources required for parsing and data managing do not seriously influence total
performance.

In general, these criteria boil down to providing a reproducible sample of an interesting
portion of the input space with appropriate difficulty. Thisis no different from the criteria
in other areas, notably propositional satisfiability testing [Gent & Walsh1993; DIM1993; Sel-
manet al.1996], theorem proving[Suttner & Sutcliffe1995], CSP[DIM1993; Gent & Walsh
1999b]. However, the situation for modal decision procedures is more difficult than for the
fields above, because of the greater variety in modal logics and formulae and the lesser capa-
bilities of current modal decision procedures.

3 Systems

The systems involved in most of this testing have different characteristics, but are all based
around a front-end that takes an input formula, converts it into an internal form, and uses
a search engine to exhaustively search for a model of the formula. The input formula is
satisfiable if such a model is found and unsatisfiable otherwise. All the systems are able to
handle (at least) the propositional modal logicK(m).

Two systems, DLP[Patel-Schneider1998] and FaCT[Horrocks1998], are based on custom-
built search engines that employ tableaux techniques to search for the model. These systems
both translate input formulae into an internal normal form,attempting to exploit redundan-
cies and local analytic truth and falsity. Their search engines employ mechanisms to reduce
overlapping search, cut off search branches that cannot succeed, detect forced branches, and
reuse cached results from previous searching.

Both DLP and FaCT can handle logics that are supersets ofK(m). FaCT allows transitive
modalities, deterministic (functional) modalities and inclusion relationships between modal-
ities. DLP allows full propositional dynamic logic, although it has a compile-time switch to
change from propositional dynamic logic toS4(m). Most of the tests in this paper will use
only DLP as it is based on the ideas developed in the FaCT system, includes most of FaCT’s
optimisations, and has some additional optimisations (in particular caching). If not otherwise
specified, all the examples with DLP were obtained with DLP version 3.1 in itsS4(m) con-
figuration running on a machine roughly comparable to a SPARCUltra 1 with 256MB of
main memory.

Two other systems, KSATC [Giunchiglia et al.1998a] and *SAT [Tacchella1999], are
based on state-of-the-art propositional satisfiability testing procedures. The two systems
make multiple calls to the propositional decision procedure. While KSATC’s optimisations
are largely those of the underlying propositional system, *SAT features many modal search
pruning optimisations like modal backjumping and caching.*SAT also handles many non-
normal modal logics. If not otherwise specified, all the examples with *SAT in this paper
were obtained with *SAT-e -m6, compiled withLinux gcc -O2 and run on a 350MHz
PentiumII with 128MB of main memory.

The TA system[Hustadt & Schmidt1997] translates propositional formulae into a decid-
able fragment of first order logic. It uses an optimised first-order theorem prover to determine
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the satisfiability of the translated formulae. TA thus inherits the optimisations built into this
theorem prover, but it also uses a translation that is designed to produce easier first-order
formulae.

4 The Heuerding and Schwendimann Tests

As discussed in Section 2.1, it is possible to hand-generateformulae for testing modal deci-
sion procedures. In the past such formulae were difficult to analyse, but the optimised de-
cision procedures that are now available make short work of such hand-generated formulae.
For example, Heuerding and Schwendimann[1996] report that their (moderately-optimised)
system, LWB, can rapidly process several previous collections, with the longest test taking
under 1/10th of a second.

Such short times are not satisfactory as differences between systems may be the result of
startup costs and not indicative of their behaviour on more-difficult formulae.

4.1 Rationale

To overcome the above difficulty, and also to provide more test formulae, Heuerding and
Schwendimann[1996] created a suite of formulae for testing modal decision procedures.
They wanted to provide a test suite that would not be quickly rendered obsolete and that
would provide a comprehensive test of a modal decision procedure, so they started with a
number of postulates:3

1. The test suite should include valid as well as invalid formulae.

2. The test suite should provide formulae of various structures.

3. Some of the formulae should be hard for future systems.

4. The validity status of the formulae should be known in advance.

5. The formulae should be resistant to simple tricks.

6. Executing the entire benchmark should not take an excessive amount of time.

7. It should be possible to summarise succinctly the resultsof the benchmark.

4.2 Description

To meet these postulates Heuerding and Schwendimann created classes of formulae. Each
class was generated from a (relatively) simple parameterised logical formula that was either
valid or invalid. Some of these formulae were made harder by hiding their structure or adding
extra pieces. The parameters allow formulae of different size to be created, thus allowing for
formulae of differing difficulty. The idea behind the parameter is that the difficulty of most
of the problems should be exponential in the parameter. Thissupposed exponential increase
in difficulty would make differences in the speed of the machines used to run the benchmarks
relatively insignificant.

For each logic,K, KT, andS4, 9 classes of formula were created, in both valid and
invalid versions. For example, the branching formulae of Halpern and Moses[1992], form a
formula class for all three logics. Other problem classes inthe set are based on the pigeon-
hole principle and a two-colouring problem on polygons.

3These postulates are elaborated in the paper by Heuerding and Schwendimann[1996, pp. 2–3].
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branch d4 dum grz lin path ph poly t4p
K p n p n p n p n p n p n p n p n p n

leanK 2.0 1 0 1 1 0 0 0 > > 4 2 0 3 1 2 0 0 0
2KE 13 3 13 3 4 4 3 1 > 2 17 5 4 3 17 0 0 3
LWB 1.0 6 7 8 6 13 19 7 13 11 8 12 10 4 8 8 11 8 7
TA 9 9 > 18 > > > > > > 20 20 6 9 16 17 > 19
KSAT 8 8 8 5 11 > 17 > > 3 4 8 5 5 13 12 10 18
*SAT 1.2 > 12 > > > > > > > > > > 8 12 > > > >

Crack 1.0 2 1 2 3 3 > 1 > 5 2 2 6 2 3 > > 1 1
Kris 3 3 8 6 15 > 13 > 6 9 3 11 4 5 11 > 7 5
FaCT 1.2 6 4 > 8 > > > > > > 7 6 6 7 > > > >

DLP 3.1 19 13 > > > > > > > > > > 7 9 > > > >

TABLE 1. Results forK

45 branch dum grz md path ph poly t4p
K p n p n p n p n p n p n p n p n p n

leanKT 2.0 3 0 1 0 3 4 0 0 3 2 2 1 2 1 0 0 > 0
2KE 14 2 16 15 1 1 0 > 4 4 16 6 4 3 0 0 7 17
LWB 1.0 5 4 5 6 5 10 6 > 5 5 10 9 4 8 14 2 5 7
TA 17 6 13 9 17 9 > > 16 20 > 16 5 12 > 1 11 0
KSAT 5 5 8 7 7 12 9 > 2 4 2 5 4 5 1 2 1 1
Crack 1.0 0 0 2 2 0 1 0 0 2 4 1 5 2 2 1 1 0 1
Kris 4 3 3 3 3 14 0 5 3 4 1 13 3 3 2 2 1 7
FaCT 1.2 > > 6 4 11 > > > 4 5 5 3 6 7 > 7 4 2
DLP 3.1 > > 19 12 > > > > 3 > 16 14 7 > > 12 > >

TABLE 2. Results forKT

The benchmark methodology was to test formulae from each class, starting with the easiest
instance, until the validity status of a formula could not becorrectly determined within 100
seconds. The result from this class would then be the parameter of the largest formula that
could be solved within the time limit. The parameter ranges only from 1 to 21—if a system
can solve all 21 instances of a class, the result is given as “>”.

This benchmark suite and methodology meets several of the postulates above simply as a
result of its design. The suite contains both valid and invalid formulae of various structures
whose validity status is known in advance. The benchmark canbe executed in a few hours at
most and the results can be given in three tables each with nine rows and two columns.

4.3 Results

The benchmark suite was used in a comparison at Tableaux’98[Balsiger & Heuerding1998].
Six entries were submitted to this comparison, giving results for a total of ten systems. Since
then the benchmark has been run on several other systems, including some more-recent ver-
sions of systems included in the original test. Several results are given in Tables 1, 2, and 3.
Some of these results are from the Tableaux’98 comparison, but some are more recent.

The results show that this benchmark is appropriate, perhaps even too difficult, for some of
the systems. However, the heavily-optimised systems, including *SAT and DLP, are able to
handle all of the instances of many of the problem classes in their areas of coverage. *SAT
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45 branch dum grz md path ph poly t4p
K p n p n p n p n p n p n p n p n p n

KT4 1 6 2 3 0 17 5 8 > 18 1 2 2 2 2 2 0 3
leanS4 2.0 0 0 0 0 0 0 1 1 2 2 1 0 1 0 1 1 0 0
2KE 8 0 > > 0 > 6 4 3 3 9 6 4 3 1 > 3 1
LWB 1.0 3 5 11 7 9 > 8 7 8 6 8 6 4 8 4 9 9 12
TA 9 0 > 4 14 0 6 > 9 10 15 > 5 5 > 1 11 0
FaCT 1.2 > > 4 4 2 > 5 4 8 4 2 1 5 4 > 2 5 3
DLP 3.1 > > 18 12 > > 10 > 3 > 15 15 7 > > > > >

TABLE 3. Results forS4

*SAT 1.2 DLP 3.2 TA 1.4
Test Size Time Size Time Size SPASS FLOTTER

branchp > 0.21 19 46.06 6 51.95 13.81
branchn 12 94.49 13 53.63 6 84.21 12.23

d4 p > 0.06 > 0.05 15 0.64 70.47
d4 n > 2.87 > 1.12 14 1.14 42.92

dump > 0.04 > 0.02 17 3.32 61.67
dumn > 0.12 > 0.02 16 1.75 64.07
grz p > 0.04 > 0.04 > 0.35 0.16
grz n > 0.01 > 0.05 > 0.16 0.17
lin p > 0.01 > 0.03 > 1.03 8.21
lin n > 47.80 > 0.13 > 16.07 63.94

path p > 0.72 > 0.32 5 22.85 2.18
path n > 0.96 > 0.36 4 58.70 2.14

ph p 8 48.54 7 10.23 6 42.19 0.97
ph n 12 0.60 > 2.69 9 45.21 9.92

poly p > 1.73 > 0.11 5 2.48 51.00
poly n > 2.25 > 0.18 4 1.23 7.86
t4p p > 0.29 > 0.06 16 3.91 84.75
t4p n > 1.28 > 0.13 9 3.37 84.35

TABLE 4: Timing Results from[Giunchigliaet al.1999] for *SAT (options-k1 -e -m6),
DLP and TA forK. (Courtesy of E. Giunchiglia, F. Giunchiglia and A. Tacchella.)

is able to completely solve 15 out of 18 of theK tests and DLP is able to completely solve
11 out of 18 of both theKT tests and theS4 tests. This means that the effective number of
tests is reduced considerably.

In fact, the situation is even worse than indicated by the rawresults. The heavily-optimised
systems can solve many of the problem classes with little or no search. This is indicated in
Table 4, which gives the time taken for the most-difficult solved problems inK for *SAT,
DLP and TA.4 The times for TA are subdivided between FLOTTER (a pre-processor) and
SPASS itself.

As the table shows, the hardest instances of many of the completely-solved formula classes

4These results differ slightly from the previous results forDLP and differ considerably for TA because they were performed on a different version of
the systems.
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Test Result Total Search Backtrack Successor
Name Time Time Growth Growth Growth

branchp 19 46.06 45.07 O(2n) 0 O(2n)
branchn 13 53.63 53.50 O(2n) 0 O(2n)
d4 p > 0.05 0.02 O(n) 0 O(n)
d4 n > 1.12 1.08 O(nc) O(n) O(n)
dump > 0.02 0.01 O(n) 1 O(n)
dumn > 0.02 0.01 O(n) 0 O(n)
grz p > 0.04 0.00 O(c) 2 O(c)
grz n > 0.05 0.02 O(n) O(n) O(n)
lin p > 0.03 0.00 0 0 0
lin n > 0.13 0.05 O(n) 0 0
path p > 0.32 0.25 O(n) 0 O(n)
path n > 0.36 0.28 O(nc) 0 O(n)
ph p 7 10.23 10.21 O(cn) O(cn) 1
ph n > 2.69 0.53 O(nc) 0 O(nc)
poly p > 0.11 0.04 O(n) 1 O(n)
poly n > 0.18 0.11 O(n) 0 O(n)
t4p p > 0.06 0.04 O(n) O(n) O(n)
t4p n > 0.13 0.10 O(n) O(n) O(n)

TABLE 5. Growth for DLP forK

can be solved in under one second. Allowing for larger valuesof the parameter would not
make these tests effective. In fact, some of the problems arecompletely or almost-completely
solved in the input normalisation phases of the systems. This is shown in Table 5, which gives
(for DLP) the maximum total time and time for the search component, as well as the growth
with respect to the parameter in search time, backtracks, and number of modal successors
visited.5 As can be seen, most of the tests no longer have exponential growth in the parameter.
In fact, many of them have linear growth or even no growth at all.

The tests forK that remain hard for both *SAT and DLP arebranchn andph p. The
first of these consists of the Halpern and Moses branching formulae[Halpern & Moses1992],
which have an exponentially-large counter-model but no disjunction. The time taken to build
this counter-model is what makes these formulae difficult, and systems that try to store the
entire model at once will find these formulae even more difficult. The second is an instance
of the Pigeon-Hole principle[Pellettier1986], which has hard propositional reasoning but
essentially no modal reasoning.

4.4 Discussion

The Heuerding and Schwendimann benchmarks were designed tomeet many of the criteria
that we deem important. Both the formulae and their generator were published, along with
the rationale behind the formulae, so the tests can be reproduced and extended. The formula
classes have a built-in balance between valid and invalid formulae. The test methodology

5Some of the growth orders are only approximate because of thelimited data.
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is not computationally intensive and does provide data thatcan be easily summarised. The
size parameter was designed to allow for a monotonic, exponential increase in the difficulty
of the formulae. The formula classes attempt to cover a considerable variety of formula
structures, thus providing a measure of significance to the test. The formulae are large, but
not excessively so. The formulae are artificial, in that theydo not correspond to any particular
application, but were supposed to be representative of general formulae.

However, with the advent of heavily-optimised provers, many of the formula classes have
become too easy under the initial parameter cut-off. Most ofthese easy formula classes have
become in some sense trivial, with input normalisation of the formulae doing most or all of the
work. This “triviality” has two effects. First, increasingthe parameter will not significantly
increase the difficulty of a formula, at least until the formulae become gigantic. Second, these
classes no longer test the comparative performance of the search mechanisms, but instead
only show that of a particular normalisation. Thus these formula classes, although historically
interesting, are no longer good tests for state-of-the-artmodal decision procedures, which all
employ sufficient input normalisation to render these formula classes “trivial”.

An augmented set of formula classes could be created to try tosolve the problems detailed
above, but it is difficult to devise by hand formulae that are resistant to the various input nor-
malisations of the heavily-optimised systems, and it may prove impossible to devise formulae
that will resist new and as yet unknown optimisations.

5 The 3CNF2m Random Tests

Random formulae can be generated that do not have the problems of the Heuerding and
Schwendimann formulae. The first random generation technique used in testing modal de-
cision procedures, the random 3CNF2m

test methodology, was proposed by Giunchiglia &
Sebastiani[1996a; 1996c]. It was conceived as a generalisation of the 3SAT test method
which is widely used in propositional satisfiability[Mitchell et al.1992]. The method was
subsequently criticised and improved by Hustadt & Schmidt[1997; 1999], who pointed out
some major weaknesses of the method, and proposed some solutions. Finally Giunchiglia
et al. [1997; 1998a] proposed the current version of the method, which embeds Hustadt &
Schmidt’s suggestions, plus some further improvements. (If not otherwise stated, from now
on by “random 3CNF2m

formulae” we implicitly mean the formulae generated with the final
version of the 3CNF2m

random generator algorithm described in[Giunchigliaet al.1998a].)

5.1 Description

In the 3CNF2m
test methodology, the performance of a system is evaluated on sets of ran-

domly generated 3CNF2m
formulae. A CNF2m

formula is a conjunction of CNF2m
clauses,

where each clause is a disjunction of either propositional or modal literals. A literal is either
an atom or its negation. Modal atoms are formulae of the form2iC, whereC is a CNF2m

clause. For normal modal logics there is no loss in the restriction to CNF2m
formulae, as

there is an equivalence between arbitrary normal modal formulae and CNF2m
formulae.6

A 3CNF2m
formula is a CNF2m

formula where all clauses have exactly 3 literals. The
definition extends trivially to K-CNF2m

formulae, for any positive integerK. Again, there
is no loss in restricting attention to 3CNF2m

formulae, as there is a satisfiability-preserving

6The conversion works recursively on the depth of the formula, from the leaves to the root, each time applying to sub-formulae the propositional CNF
conversion and the transformation2r

V

j

W

i ϕij =⇒
V

j 2r
W

i ϕij .
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way of converting any modal formula into 3CNF2m
.

In the 3CNF2m
test methodology, a 3CNF2m

formula is randomly generated according to
the following parameters:

• the (maximum) modal depthd;

• the number of clausesL;

• the number of propositional variablesN ;

• the number of distinct box symbolsm;

• the probabilityp of an atom occurring in a clause at depth< d being purely propositional.

Notice thatd represents themaximumdepth of a 3CNF2m
formula: e.g., ifp = 1, then the

depth is 0, no matter the value ofd.
The random 3CNF2m

generator works as follows:

• a 3CNF2m
formula of depthd is produced by randomly, and independantly,7 generating

L 3CNF2m
clauses of depthd, and forming their conjunction;

• a 3CNF2m
clause of depthd is produced by randomly generating three distinct, under

commutativity of disjunction, 3CNF2m
atoms of depthd, negating each of them with

probability 0.5, and forming their disjunction;

• a propositional atom is produced by picking randomly an element of{A1, . . . , AN};

• a 3CNF2m
atom of depthd > 0 is produced by generating a random propositional atom

with probabilityp; and with probability1− p, a 3CNF2m
atom2rC, where2r is picked

randomly in{21, . . . ,2m} andC is a randomly generated 3CNF2m
clause of depth

d− 1.

As there are no repetitions inside a clause, the numberD(d,N) of possible distinct, under
commutativity of disjunction,8 3CNF2m

, with m = 1, atoms of depthd is given by the
recursive equation

D(0, N) = N

D(d,N) = 23 ·

(

D(d− 1, N)
3

)

[+D(0, N) if p 6= 0],
(5.1)

That is,D(d,N) grows approximately as(2N)(3
d).

A typical problem set is characterised by a fixedN ,m, d andp: L is varied in such a way
as to empirically cover the “100% satisfiable—100% unsatisfiable” transition. Then, for each
tuple of the five values in a problem set, a certain number (100, 500, 1000, . . . ) of 3CNF2m

formulae are randomly generated, and the resulting formulae are given in input to the pro-
cedure under test, with a maximum time bound of, typically, 1000 seconds. The fraction of
satisfiabile formulae, median/percentile values of CPU times, and median/percentile values
of other parameters, e.g., number of steps, memory, etc., are plotted against the number of
clausesL.

To save testing time, if significantly more than 50% of the samples seen so far exceed
the time bound for a given value ofL—so that the median and the other Qth percentiles for
Q ≥ 50 are very likely to exceed the bound—then the system is not runon the other samples,
and the test goes on with the nextL value.

7This means that clauses may be repeated in a formula.
8We consider two formulae that differ only in the order of disjuncts in embedded disjunctions to be the same formulae, thatis A ∨ B ∨ C is the same

asB ∨ C ∨ A.
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5.2 Parameters and features

In the random 3CNF2m
test method, each of the five parameters plays a specific role.

d represents the maximum depth of the Kripke models for the 3CNF2m
formulae, and thus

increases exponentially the size of the potential Kripke models[Halpern1995]. Thusd
allows for increasing at will the difficulty of the solution,particularly for the the modal
component of reasoning. The size of generated formulae grows on average as(3 − 3p)d.

N defines the number of propositional variables which are to beassigned within each Kripke
state, and thus enlarges exponentially the space of the possible models forϕ. (Typically
N is very small with respect to 3SAT problems, as each propositional atom has an “im-
plicit multiplicity” equal to the number of states of a potential Kripke model.) ThusN
allows for increasing at will the difficulty of the solution,particularly for the propositional
component of reasoning.N has no effect on the size of generated formulae.

L is the number of conjuncts in the formula, and thus it controls theconstrainednessof
the formula (see, e.g.,[Williams & Hogg1994; Gentet al.1996]): the biggerL, the more
likely unsatisfiable the formula. IncreasingL, we pass with continuity from an initial
100% satisfiability fraction to 100% unsatisfiability. TuningL allows for balancing the
satisfiable vs. unsatisfiable ratio. Obviously the size of generated formulae grows as
O(L).

m represents the number of distinct accessibility relationsin the potential models. InK(m)

m partitions each branch in the search tree intom independent sub-branches, each re-
stricted to a single2r. Therefore, for largerm the search space is more partitioned and the
problem should be easier; moreover, as there is no mutual dependency between the modal
satisfiability of the distinct sub-branches, for largerm the formulae are less constrained
and more likely to be satisfiable. Thusm affects both difficulty and constrainedness.m
has no effect on the size of generated formulae.

p represents the “propositional vs. modal” rate for the atoms. p has been introduced to
unbalance the tree-structure of the random 3CNF2m

formulae, and allows for distributing
the propositional atoms at the different depth levels. Increasingp reduces the number of
modal atoms, and thus reduces the difficulty of the solution,particularly for the the modal
component of reasoning. Increasingp causes a reduction in size of the formula, as the
average size of formulae isO((3 − 3p)d).

In a 3CNF2m
test session the values of the parameters should be chosen asfollows. First,

set the values ford, m andp so as to target an area of the input space; then setN to fix the
desired level of difficulty; finally, run tests for increasing values ofL, so as to cover the whole
transition from 100% satisfiability to 0% satisfiability.

Consider the plots in Figure 1, presenting a test for KSATC from[Giunchigliaet al.1998a],
with d=1, N=6, p=0, m=1, and 100 samples/point. Figure 1 (left) represents the fraction of
satisfiabile formulae together with the median number of recursive calls of KSATC, which
measures the size of the space searched. Figure 1 (right) represents the Qth percentile CPU
time. Both plots exhibit the typical easy-hard-easy pattern centred around the 50% cross-
over point—also called “phase transition”—which has been revealed in many NP-complete
problems (see, e.g.,[Mitchell et al.1992; Williams & Hogg1994]). This should not be a sur-
prise, as satisfiability inK(m) and in most modal logics is NP-complete if the modal depth
is bounded[Halpern1995], which is the case of each single plot. Thus, generally speaking,
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FIG. 1: KSATC on a 3CNF2m
test set (d=1, N=6, p=0, m=1, 100 samples/point). (Left):

satisfiability fraction and median # of calls; (Right): Qth percentile CPU time.

by tuningN andL it is possible to generate very hard 3CNF2m
problems with the maximum

uncertainty on the results.
It might sound counter-intuitive that, after the 50% cross-over point, the difficulty of the

problem decreases with the size of the formula. Giunchiglia& Sebastiani[1996b] noticed
that this is due to the capability of a system to backtrack at any constraint violation: the
larger the value ofL, the more constraint violations are detected, and the higher the search
tree is pruned. As a side-effect, if a plot does not decrease after the 50% cross-over point,
then this may reveal a problem of constraint violation detection in the system.

5.3 Problems

As highlighted by Hustadt & Schmidt[1997; 1999], the formulae generated by the first ver-
sion of the method suffered from a couple of major drawbacks:

(Propositional) redundancy: As the intial 3CNF2m
generator did not check for repeated

propositional variables inside the same clause, the randomformulae generated could con-
tain propositional tautologies. When this was the case, thesize of formulae could be
reduced (in some cases dramatically) by a propositional simplification step;

Trivial (un)satisfiability: For certain values of the generator’s parameters, the formulae gen-
erated were “trivially (un)satisfiable”, that is, they could be solved at the top level by
purely propositional inference. (This definition is slightly different from the one in Hus-
tadt and Schmidt, as explained below.)

As a solution, Hustadt & Schmidt[1999] proposed three guidelines for generating more chal-
lenging problems:

(i) Set to their smallest possible value those parameters that do not significantly influence the
difficulty of the 3CNF2m

formulae. They included among them the parametersm andd,
which they suggested setting to 1.

(ii) To avoid trivially (un)satisfiable formulae, setp = 0.
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(iii) Modify the random generator so as to prevent repeated propositional variables inside the
same clause.

They also improved the data analysis considering not just median values as in[Giunchiglia &
Sebastiani1996a], but a range of Qth percentile values.

Redundancy was a problem due to a flaw in the first version of Giunchiglia & Sebastiani’s
generator, and it was easily solved. The solution (iii) completely solved propositional redun-
dancy. Giunchigliaet al. [1998a] later noticed that an extra component of redundancy was
due to the presence inside one clause of repeatedmodalatoms and of permutations of the
same modal atom. Thus, they introduced the following variation of (iii):

(iii’) Modify the random generator so as to create distinct atoms, under commutativity of dis-
junction, both propositional and modal, inside the same clause.

Trivial (un)satisfiability is a much more complex problem, and deserves some more dis-
cussion.9

5.3.1 Trivial satisfiability
A 3CNF2m

formulaϕ is trivially satisfiable iff it has at least one¬2-free satisfying assign-
ment. (Hustadt and Schmidt’s definition is in terms of being satisfiable on a Kripke model
with one world, which works out the same.) The existence of one¬2-only clause is a suf-
ficient condition for avoiding trivial satisfiability, as every assignment then contains at least
one¬2 literal. Each top-level literal is¬2 with probability(1 − p)/2; each top-level clause
is ¬2-only with probability(1 − p)3/8; the probability of having no such clauses is thus
(1− (1−p)3/8)L. As the set of trivially satisfiable formulas is a subset of the set of formulas
having no¬2-only clause, the probability of being trivially satisfiable is bounded above by
a function that converges exponentially to 0 asL goes to infinity. This matches the empiri-
cal behaviour revealed in[Hustadt & Schmidt1999], where the fraction of trivially satisfiable
formulae decays exponentially withL.

Trivial satisfiability is not a big problem for random 3CNF2m
testbeds. First, a trivially

satisfiable formula is not necessarily trivial to solve. In fact, in the general case, a literall
occurring in a modelµ for ϕ, has the same probability of being positive or negative; thusµ
is ¬2-free with probability2−w, w denoting the number of modal literals inµ. On average,
only a very small percentage of satisfying assignments are¬2-free, and unless the procedure
is explicitly biased to detect trivial satisfiability thereis no reason to assume that the first
assignment found by the procedure will be one of them. Biasing the procedure for detecting
trivial satisfiability may not be a good strategy in the general case. (For instance, the sug-
gested default settings of the *SAT system are not the best ones to detect trivial satisfiability.)
In practice, most current state-of-the-art procedures arenot guaranteed to solve trivially satis-
fiable formulae without any modal reasoning. Second, due to the exponential decrease in the
fraction of trivially satisfiable formulae withL, the effects of trivial satisfiability are limited
to the extreme left part of the satisfiability plots—where problems are easy and satisfiable
anyway—and typically are negligible in the satisfiability transition area—which is the really
interesting zone. Moreover, notice that the(1 − (1 − p)3/8)L bound is pessimistic, as typi-
cally the fraction decreases much faster. This is due to the fact that for larger values ofL, it
is harder to get¬2-free assignments, even if no¬2-only clause occurs in the formula; for

9Some discussion about trivial solvability—although to a lower level of detail—can be found in[Giunchigliaet al.1998b].
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FIG. 2: *SAT on a 3CNF2m
test set, (d=2, N=3, p=0.5, m=1, 100 samples/point). (Left):

(un)satisfiability rates; (Right): Qth percentile CPU time(seconds), log scale.

instance, the presence of a clause like(¬2ϕ1 ∨ ¬2ϕ2 ∨ ¬A1) forces all assignments which
includeA1 to include at least one¬2 literal.

Consider for example the plots in Figure 2 (left), which results from running *SAT with its
default settings on a 3CNF2m

testbed with d=2, N=3, p=0.5, m=1, 100 samples/point. In this
test, *SAT found only 3 trivially satisfiable formulae forL = 16, and none elsewhere. Even
rerunning the testbed with the *SAT option-s3 -m6 (“while branching, choose always
positive values first”), which will find more¬2-free assignments, we obtain only25, 2 and1
trivially satisfiable formulae forL = 16, 24, 32 respectively, and none elsewhere.

5.3.2 Trivial unsatisfiability
A random 3CNF2m

formulaϕ contains on averageLp3 clauses that contain three proposi-
tional literals (and thus contain no boxes). The larger the value ofL, the more likely it is that
these clauses will be jointly unsatisfiable—thus makingϕ trivially unsatisfiable. (The def-
inition of trivial unsatisfiability by Hustadt and Schmidt is precisely this, but our definition
also allows unsatisfiability resulting from complementarymodal literals in top-level clauses.)
This explains the large number of trivially unsatisfiable formulae detected empirically by
Hustadt and Schmidt[1999] in the centre and right of their plots. Ifp = 0, thenϕ contains
no such purely propositional clauses so the problem is eliminated, at least so far as Hustadt
and Schmidt’s definition is concerned.

When p > 0, however, trivial unsatisfiability becomes a serious problem in 3CNF2m

testbeds. First, a trivially unsatisfiable formula is typically exceedingly easy to solve for
most state-of-the-art procedures because any reasonable 3CNF2m

test set for these proce-
dures will have only a very small number of propositional variables. In fact most procedures
look for modal successors only after having found a satisfying assignment: if no such assign-
ment exists, the formula is solved without performing any modal reasoning. Second, when
p is significantly greater than zero, trivially unsatisfiableformulae may affect all the values
beyond the 100% satisfiable range, including the satisfiability transition area. For instance,
whenp = 0.5, it is difficult to generate unsatisfiable 3CNF2m

formulae that are not trivially
unsatisfiable. A “signature” of the heavy presence of trivial unsatisfiability is what we call
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a “Half-Dome plot”10 for median CPU times: the median value grows untilL reaches the
50% satisfiability crossover point, then it falls abruptly down to (nearly) zero, and does not
increase significantly thereafter. Analogously, the Qth percentile value grows untilL reaches
the (100-Q)% satisfiability crossover point, and then fallsabruptly.

For example, consider Figure 2. In this figure, together withthe 3CNF2m
plots, we also

present the results of running *SAT on the conjunction of thepurely propositional clauses
of the formulae. We call these propositional conjunctions the embedded 3SAT sub-formulae.
Moreover, as a comparison, we also run *SAT on a pure 3SAT testbed withN = 3, rescaled
horizontally by a1/p3 factor. (E.g.,L = 144 in the plot means that the pure 3SAT formulas
have144 · 0.53 = 18 clauses.) We call these formulas the rescaled pure 3SAT formulas. As
N = 3 means that we have only 8 distinct pure 3SAT clauses, it is possible to evaluate the
SAT probability exactly, which is given by the following equation:

[RESCALED] P3SAT (L) =

8
∑

k=1

(

8

k

)

(−1)8−k(k/8)L·p3

. (5.2)

In Figure 2 (left) we plot the fraction of satisfiable 3CNF2m
formulae, 1 minus the frac-

tion of unsatisfiable 3CNF2m
formulae, and 1 minus the fraction of trivially unsatisfiable

3CNF2m
formulae. For the embedded 3SAT formulae and the rescaled pure 3SAT formulae,

we plot only the fraction of satisfiable formulae, which in both cases is identical to 1 minus the
fraction of unsatisfiable formulae. We also plotted the (rescaled) 3SAT probability of Equa-
tion 5.2. Needless to say, the two latter plots match apart for some noise. Finally, we plotted
the fraction of formulae found to be trivially satisfiable by*SAT and by *SAT-s3 -m6,
as discussed above. (Considering the well-known satisfiability transition results[Mitchell et
al.1992; Crawford & Auton1993], for the rescaled pure 3SAT plot one might expect an av-
erage of50% unsatisfiable formulae forL ≈ 4.28 · N/p3 = 102.72; however,N = 3 is
too small for applying these results, whilst it is possible to provide an exact calculation as in
Equation 5.2.) Figure 2 (right) presents run times for the tests.

Several conclusions are evident from this data. Firstly, the fraction of satisfiable 3CNF2m

formulae nearly coincides with 1 minus the fraction of unsatisfiable 3CNF2m
formulae that

is, very few tests exceeded the bound. Secondly, the fraction of unsatisfiable 3CNF2m
for-

mulae and the fraction of trivially unsatisfiable 3CNF2m
formulae are very near, that is, most

unsatisfiable formulae are also trivially unsatisfiable. (In our testing experience, unsatisfi-
able 3CNF2m

formulae that are not trivially unsatisfiable are rare in testbeds withp = 0.5.)
Thirdly, the fraction of unsatisfiable embedded 3SAT formulae is very close to the fraction
of trivially unsatisfiable 3CNF2m

formulae, that is, most trivially unsatisfiable formulae are
such because the embedded 3SAT component is unsatisfiable. Fourthly, the fraction of unsat-
isfiable embedded 3SAT formulae is very close to the fractionof unsatisfiable rescaled pure
3SAT formulae.

In Figure 2 (right), the plots for the embedded 3SAT and for the rescaled pure 3SAT
testbeds cannot be distinguished from the X axis—that is, CPU times are always smaller
than0.01 seconds. The median CPU time plot for the 3CNF2m

testbed grows untilL reaches
the 50% satisfiability crossover point, where it falls down abruptly; the remainder of the plot
cannot be distinguished from the X axis. The Qth percentile values behave analogously with
respect to the (100-Q)% satisfiability crossover point.

This behaviour can be explained as follows. If we plot the fraction of satisfiable formulae

10The name refers to the shape of a famous mountain in Yosemite,California.
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for the embedded 3SAT formulae, we obtain a satisfiability transition similar to the one of
the rescaled pure 3SAT, with a50%-satisfiable crossover point forL ≈ 150. The slight
differences between the two plots are due to the fact that thelength of the embedded 3SAT
formulae is not fixed withL, asp3 · L is only an average value. AsN is generally rather
small, the embedded 3SAT formula is mostly unsatisfiable with a very low value ofL, making
the entire formula trivially unsatisfiable. Thus the embedded 3SAT transition dominates the
whole satisfiability plot. The first effect is that the transition is expected to nearly coincide
with the embedded 3SAT transition. The second effect is thatnearly all unsatisfiable formulae
are trivially solvable. This means that the CPU times are entirely dominated by the values
required to solve satisfiable formulae, which typically grow with L. Immediately after the
(100-Q)% satisfiability crossover point, the easiest Q% of samples are nearly all trivially
unsatisfiable, so that the Qth percentile value falls down abruptly to a negligible value.

The small difference between the fraction of the embedded 3SAT formulae that are un-
satisfiable and the fraction of the 3CNF2m

formulae that are trivially unsatisfiable can be
explained as follows. When the embedded 3SAT formula is “nearly unsatisfiable”, that is, it
has only one or very few models, some other clauses may contribute to cause trivial unsatis-
fiability. For instance, considerϕ = ϕ1 ∧ (C1 ∨ 2ψ) ∧ (C2 ∨ ¬2ψ), whereC1 andC2 are
propositional sub-clauses, and the embedded 3SAT formula,ϕ∗, is “nearly unsatisfiable”. If
the few models ofϕ∗ each violate bothC1 andC2, then all assignments must propositionally
satisfyϕ∗ ∧ (2ψ)∧ (¬2ψ). If 2ψ is treated as an atom (which is the case in most optimised
systems), thenϕ is trivially unsatisfiable, even thoughϕ∗ is satisfiable. Withp = 0.5, an
average of3/8 clauses have exactly one modal literal. WithN = 3 andd = 2, the proba-
bility that two such clauses have mutually contradictory modal literals2ψ and¬2ψ is not
negligible. As before, withp = 0 no “nearly unsatisfiable” embedded 3SAT formula occurs.

5.3.3 Thep = 0, d = 1, m = 1 solution
Unfortunately the guidelines indicated by Hustadt & Schmidt [1999], and described above,
are not a panacea, as they introduce new problems.

Consider thed = 1 guideline. First, inK(m) the 3CNF2m
class represents only the

class of formulae of depthd, as there is no way to reduce the depth of formulae. Therefore,
if d = 1 the input subspace sampled is not very representative. Moreover, as shown in
[Halpern1995], a formulaϕ which is satisfiable inK(m) (and also inKT(m), K45(m),
KD45(m) andS5(m)) has a tree-like Kripke model whose number of states is smaller than
|ϕ|depth(ϕ), where|ϕ| anddepth(ϕ) are respectively the size and the modal depth ofϕ. As
a consequence, satisfiable 3CNF2m

formulae withd = 1 have very small models, so that
they are not very challenging from the viewpoint of pure modal reasoning, regardless of the
values chosen for the other parameters. More generally, when bounding the modal depth, the
satisfiability problems for the logics above decays from PSPACE-complete to NP-complete
[Halpern1995].

Consider thep = 0 guideline. Ifp = 0, then the random 3CNF2m
formulae are complete

ternary trees where propositional atoms occur only at the maximum depth level. Such formu-
lae can hardly be considered as a representative sample of the modal input space. Moreover,
they are even less representative if used as a testbed for most modal logics different from
K. In fact, in most modal logics, restricting the occurrence of propositional variables to the
maximum depth level hinders a relevant source of reasoning due to the interaction between
variables occurring at different depth levels. For instance, the assignment{A1,21ϕ} is sat-
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(un)satisfiability rates; (Right): median and max CPU times(seconds) for *SAT, log scale.

isfiable inK(m) but may be not inKT(m) if A1 occurs inϕ (e.g., ifϕ = ¬A1).
Finally, consider thed = 1 andp = 0 guidelines together. In[Hustadt & Schmidt1999]

the d = 1 statement derived from the results of an experiment withN = 3, p = 0.5,
m = 1, d = 2, 3, 4, 5 where the complexity did not seem to increase significantly with
d, and the growth was smaller than the increase in size. Unfortunately, this experiment was
strongly influenced by thep = 0.5 choice. Withp = 0, it turns out that the overall difficulty
grows dramatically withd. Consider the plots in Figure 3, which have been obtained by
running *SAT on three test sets, withd = 1, 2 and3, N = 3, p = 0, m =1, and100
samples/point. Figure 3 (left) shows both the fraction of formulae found to be satisfiabile and
1 minus the fraction of formulae found to be unsatisfiable. Figure 3 (right) shows the median
and max CPU times. Ford = 1, all formulae are either found to be satisfiabile or found
to be unsatisfiable—that is, no sample exceeded the timeout—and the satisfiability fraction
decreases very fast, reaching 100% unsatisfiability forL < 100; the median and max CPU
times are so small that cannot be distinguished from theX axis. This should not be a surprise:
with N = 3, p = 0 andd = 1, there are only 8 distinct modal atoms, so that the test bed
is only a little harder than a 3SAT testbed withN = 8 + 3 variables. Ford = 2, 3 things
change dramatically. Both median and maximum CPU times rapidly reach the timeout. As a
consequence, the fraction of formulae found to satisfiable plus the fraction of formulae found
to be unsatisfiable add to much less than 1, as most problems exceed the timeout. The real
satisfiability fraction is somewhere between them. For instance, withL = 80 more than50%
of thed = 3 samples have exceeded the timeout, while forL = 120 more than50% of the
d = 2 samples have exceeded the timeout. Running *SAT ford = 2 andL = 400, no
sample was solved within the timeout. As a consequence, forp = 0 andd > 1, the test sets
are mostly out of the reach of *SAT, and no information about the satisfiability transition can
be provided. The situation is no better with other current decision procedures such as DLP.
To our knowledge, no system so far has been able to fully plot the satisfiability transition for
d = 2, N = 3, p = 0, m = 1, as in the satisfiability transition area most solution times
exceed the timeout.

We believe that such behaviour should be expected. As for satisfiability fraction, the num-
ber of possible distinct atomsN(d,N) in equation (5.1) grows exponentially withd, decreas-
ing the probability of conflicts between modal literals. As aconsequence, withL fixed, the
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fraction of unsatisfiable formulae decreases very rapidly with d, causing a relative increase in
the number of clausesL necessary to reach the50% cross-over point, that is, a relative shift
to the right of the transition area. As for difficulty, the size of the Kripke models forϕ is up
to |ϕ|depth(ϕ) [Halpern1995]. Thus, ifL is fixed andd grows, it is reasonable to expect that
the effort required to search for such exponentially-big models grows at least exponentially
with d. Notice that, ifϕ is a random 3CNF2m

formula withp = 0, then|ϕ| also grows as
O(3d).

This prompts the question as to why the same behaviour is not observed withp = 0.5. As
for satisfiability, the effects of increasingd are counteracted by the embedded 3SAT compo-
nent, which forces trivial unsatisfiability with very low values ofL, preventing the shifting
of the satisfiability transition described above. As for difficulty, first, |ϕ| is much smaller, as
only about a(1 − p)d fraction of the branches of the formula tree ofϕ actually reach depth
d. Moreover, the high percentage of propositional literals reduces dramatically the number of
assignments found, as it gets much harder for most candidateassignments to avoid contain-
ing propositional contradictions likeAj , ¬Aj . Finally, the modal literals are only a subset
of each assignment found, so that the number of states to be explored for every assignment
is reduced. Figure 4 shows both the median CPU times, the median number of assignments
found and the median number of states explored by *SAT ford = 2, N = 3, m = 1, with
bothp = 0.0 and0.5. It can be seen that all three values are drastically reducedby setting
p = 0.5.

5.4 Discussion

Even with the above problems, the random 3CNF2m
test methodology produces a good em-

pirical test for many purposes. The generators are available and their “randomness” can be
controlled by setting the seed of their random number generator to reproduce test sets if the
actual formulae are not available. The rationale behind themethodology has been extensively
discussed. The formulae generated, although large, are nottoo large, and many very difficult
(relative to size) formulae are generated if appropriate parameter values are chosen. The test
methodology produces a balance between satisfiable and unsatisfiable formulae. With the
recent improvements, the problems of redundancy and triviality are much reduced.

The test generator is highly parameterised, perhaps too highly, but by concentrating on a
subsection of the test space interesting tests can be generated. The biggest problem with the
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FIG. 5. Results form = 1, d = 1, andp = 0.0
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FIG. 6. Results form = 1, d = 1, andp = 0.5

test methodology is that the maximum modal depth of formulaeis fixed, thus reducing the
inherent difficulty of the problem from PSPACE-complete to NP-complete. However, even
at modal depths 1 and 2, difficult tests can easily be devised.

One disadvantage with random tests is that they take much longer to perform (for inter-
esting hard problems) because a large number of formulae have to be generated and tested
at each data point for the results to be reliable. However, probably the biggest drawback
with the random 3CNF2m

test methodology is that, because of their low modal depths,the
formulae generated are very artificial. This is not really a problem with the test methodology
per se, but is instead due to the combination of the test methodology and the capabilities of
current decision procedures.

One benefit of the random 3CNF2m
test methodology is that it can show the changing

relative behaviour of several systems as the various parameters change. For example, several
qualitative differences between DLP and KSATC can be discerned from the tests shown in
Figures 5, 6, and 7 which give 90th percentile results for several tests.

These results illustrate a number of differences between the two decision procedures,
which can be traced back to characteristics of the system. For example, KSATC uses an un-
derlying satisfiability engine with very efficient data structures whereas DLP does not have
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FIG. 7. Results form = 1, d = 2 andp = 0.5.

as highly optimised data structures. This difference in data structures shows up in different
run times for larger formulae (larger values ofL/N ) with non-zerop (Figures 6 and 7) where
formulae are mostly trivially unsatisfiable, but where DLP takes some amount of time just to
traverse its data structures.

KSATC uses an aggressive look-ahead technique that investigates modal successors very
early on in the search space. This technique is good when the problems are over-constrained,
resulting in better performance in particular ford = 1 andp = 0 (Figure 5), and also in
narrower peaks ford = 1 andp = 0.5 (Figure 6). However, when there are significant
numbers of modal successors that are satisfiable, this earlyinvestigation, and the necessary
reinvestigation when more information is known, becomes a serious liability, as shown for
d = 2 andp = 0.5 (Figure 7).

It is this sort of comparative analysis that is most useful tothe understanding of how various
algorithms behave and how they can be improved.

6 New Random Empirical Testing

Since 1998 some new forms of random testing—both variants ofthe 3CNF2m
method and

completely new ones—have been investigated and/or proposed. In the following section we
briefly outline and review the most significant of these.

6.1 Using modalised atoms

Recently Massacci[1999] proposed a “K-modalised” variant of the 3CNF2m
method bor-

rowing an idea from[Halpern1995]: within each 3CNF2m
formulaϕ, substitute each occur-

rence of each propositional variableAi with the corresponding modal expression¬2(A0 ∨
2

i¬A0). (A similar encoding was proposed forS4.) The encoding preserves satisfiability in
K, and the resulting formulaϕ′ has only one propositional variableA0 and depthd+N + 1.
Moreover,ϕ′ is relatively bigger thanϕ, as the global number of propositional literals is
doubled and, for each propositional atom, one “∨” and an average ofN/2 + 1 “2”s are
added. Thus, we would expectK-modalised 3CNF2m

formulae to be much harder than their
corresponding 3CNF2m

ones, especially for lowd’s and highN ’s.
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FIG. 8: *SAT on 3CNF2m
andK-modalised 3CNF2m

test sets, (N=4,5 and 6, d=1, p=0,
m=1, 100 samples/point). (Top): median and 90% percentile CPU time (seconds). (Bottom):
median and 90% size of the space searched.

Figure 8 shows the results of running *SAT on the testbeds in[Hustadt & Schmidt1999;
Giunchigliaet al.1998a]—i.e., with d=1, p=0, m=1, N=4,5,6 and 100 samples/point—using
both 3CNF2m

formulae and theirK-modalised counterparts.The top row represents median
and 90% percentile CPU time; the bottom row represents median and 90% percentile size
of the space searched, that is, the number of single truth-value assignments performed by
*SAT. All curves present the usual easy-hard-easy pattern.From the first row, we notice
that theK-modalised samples in general require a longer CPU time to solve. Nevertheless,
the gap never exceeds a 2-3 factor, which is well justified by the increase in size of the
input formulae. (Similarly, the CPU time gap between theK-modalised and non-modalised
3CNF2m

tests presented in[Massacci1999] never exceeds a 2-3 factor.) Moreover, from the
second row, we notice that there is no significant differencein the size of the space effectively
explored.

These results may be explained as follows. As far as basic propositional reasoning is
concerned, modalisation introduces no difference, as *SATconsiders boxed formulae as
propositional atoms. In the simple 3CNF2m

case, *SAT takes one shot to determine the
satisfiability of a purely propositional assignment like

{Ai1 , ..., Ain
,¬Aj1 , ...,¬Ajm

}. (6.1)

In theK-modalised case, the assignment corresponding to (6.1) is

{¬2(A0∨2
i1¬A0), ...,¬2(A0∨2

in¬A0),2(A0∨2
j1¬A0), ...,2(A0∨2

jm¬A0)}. (6.2)

Although (6.2) is satisfiable inK [Halpern1995], checking its satisfiability requires deter-
mining the satisfiability of the sub-formulae

¬A0 ∧ ¬2
i¬A0 ∧ (A0 ∨ 2

j1¬A0) ∧ ... ∧ (A0 ∨ 2
jm¬A0), (6.3)
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for every negated boxed atom¬2(A0 ∨2
i¬A0) in (6.2). However, this step is deterministic.

First, all theA0 disjuncts are wiped off by unit-propagating the first¬A0:

¬2
i¬A0 ∧ 2

j1¬A0 ∧ ... ∧ 2
jm¬A0. (6.4)

As (6.4) and all its modal successors contain only one negated box, *SAT solves (6.4) deter-
ministically by generating a linear concatenation ofi states, without performing any search
within each of them. An analogous behaviour is to be expected, e.g., from DLP and FaCT.

As far as we can see from the experiments, despite the relative increase in depth and size
of the formulae,K-modalisation does not seem to produce testbeds which are significantly
more challenging than standard 3CNF2m

ones. For instance, in the tests in Figure 8, modal-
isation simply introduces an overhead due to an extra amountof deterministic steps, without
increasing significantly the size of the search space.

6.2 Re-interpreting p: the New3CNF2m test method

To overcome the problems of the 3CNF2m
generator due to the embedded SAT component

ϕ∗, we propose a new variant of the random generator of[Giunchigliaet al.1998a], called
New 3CNF2m

. The difference relies on a different interpretation of thep parameter. In the
3CNF2m

generator,p is interpreted as ”the probability of an atom being propositional”. In
the New3CNF2m

generator,p is interpreted as “the proportion of propositional atoms in a
clause”, in the sense that

• if p = k/3, k ∈ {0, 1, 2, 3}, then the proportion is interpreted in the obvious way, thatis,
“exactlyk propositional literals and3 − k modal literals”.

• otherwise, the residual part is interpreted as a probability, that is, “exactly⌊3p⌋ proposi-
tional literals,3−⌈3p⌉ modal literals, and the last literal is propositional with probability
3p− ⌊3p⌋”, where⌊x⌋ =def max{n ∈ N|n ≤ x} and⌈x⌉ =def min{n ∈ N|n ≥ x}.

The first case is a sub-case of the second: ifp = k/3, then⌊3p⌋ = ⌈3p⌉ = 3p = k.
The definition trivially extends to K-CNF2m

formulae by substituting 3 withK. A random
New 3CNF2m

clause is thus generated in the following way (and then sorted):

1. generate randomly⌊3p⌋ distinct propositional literals;

2. generate randomly3 − ⌈3p⌉ distinct New3CNF2m
literals;

3. flip a coin: with probability3p − ⌊3p⌋, generate randomly a fresh propositional literal;
otherwise, generate randomly a fresh New3CNF2m

literal (“fresh” here means “not al-
ready present in the clause”).

For instance, ifp = 1/3, then the clause contains 1 propositional and 2 modal literals; if
p = 0.5, then it contains 1 propositional and 1 modal literal, and the other is propositional
with probability0.5; if p = 0.6, then it contains 1 propositional and 1 modal literals, and the
other is propositional with probability 0.8, as3 · 0.6 − ⌊3 · 0.6⌋ = 1.8 − 1 = 0.8.

As with the 3CNF2m
case, a New3CNF2m

clause contains an average of3p propositional
literals. However, ifp < 2/3, then no purely propositional clause can be generated. Thispre-
vents a random New3CNF2m

formulaϕ from containing any embedded 3SAT sub-formulae
ϕ∗, and thus eliminates the main source of trivial unsatisfiability while preserving the benefits
of settingp > 0.
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FIG. 9: *SAT on a New3CNF2m
test set, (d=2, N=3, p=0.5, m=1, 100 samples/point).

(Left): (un)satisfiability fractions; (Right): Qth percentile CPU time (seconds), log scale.

Figure 9 shows plotted the results of running *SAT on a randomNew 3CNF2m
test set,

with d = 2, N = 3, p = 0.5, m = 1 and100 samples/point. Figure 9 (left) shows the
fraction of formulae found to be satisfiable, 1 minus the fraction of formulae found to be
unsatisfiable, 1 minus the fraction of formulae found to be trivially unsatisfiable, the fraction
of formulae found to be trivially satisfiable by *SAT and by *SAT -s3 -m6. First, the
satisfiable and unsatisfiable fractions add to close to 1 but not exactly to 1, that is, a few tests
exceeded the bound. Secondly, there are very few trivially unsatisfiable formulae, but there
are some. The trivial unsatisfiability in these formulae is caused by complementary modal
atoms in top-level clauses. Thirdly, the fraction of unsatisfiable formulae is much greater
than the fraction of trivially unsatisfiable formulae, thatis, very few unsatisfiable formulae
are also trivially unsatisfiable, and nearly all of these arelocated in the 100% unsatisfiable
zone. With its default settings, *SAT found only 1 triviallysatisfiable formula forL = 16,
and none elsewhere. As before, rerunning the testbed with the *SAT option-s3 -m6 we
obtained22 and2 trivially satisfiable formulae forL = 16 and24 respectively, and none
elsewhere. In Figure 9 (right), the median CPU time and the other Qth percentile plots reveal
a typical easy-hard-easy pattern centred in the satisfiability transition area, growing up to the
50% cross-over point, and then decreasing gently.

Now compare the plots with those of the analogous 3CNF2m
test set in Figure 2 (the pa-

rameters’ values and the system tested are the same). Firstly, the satisfiability transition here
is relatively shifted to the right. The New3CNF2m

satisfiability plot is no longer domi-
nated by the embedded 3SAT component, and thus it is free to follow its “natural” course.
Secondly, the New3CNF2m

CPU time plots are slightly harder than the 3CNF2m
plots in

the satisfiable area, becoming dramatically harder as the fraction of trivially unsatisfiable
3CNF2m

formulae increases. In fact, the effect is due to the Qth percentile values for the
3CNF2m

test set becoming dramatically lowered by the increasing percentage of trivially un-
satisfiable formulae, the solution times for which are negligible. This does not happen with
the New3CNF2m

test set, where the percentage of trivially unsatisfiable formulae is negli-
gible and hard unsatisfiable formulae are generated. Finally, the New3CNF2m

CPU time
plots describe easy-hard-easy patterns which decrease gently with L, instead of falling down
abruptly. The New3CNF2m

plots are no longer dominated by the trivially unsatisfiablefor-
mulae, and thus they are free to follow their “natural” easy-hard-easy pattern induced by the
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increase in the constrainedness.
On the whole, the New3CNF2m

test method withp ≤ 2/3 solves the problems related to
trivial unsatisfiability in the 3CNF2m

method. This is done without imposing thep = 0 and
d = 1 restrictions, which introduce a new problems of their own. Work is still ongoing to
plot full diagrams ford > 2. Generating full New3CNF2m

plots for bigger values ofd and
N may be a challenge for both state-of-the art and future systems.

6.3 Random QBF tests

A common criticism of 3CNF2m
testbeds comes from the consideration that for many modal

logics the class of formulae with bounded depth is in NP[Halpern1995], so that 3CNF2m

testbeds with boundedd have only NP complexity[Massacci1999]. To overcome this prob-
lem, Massacci proposes a completely new kind of random empirical benchmark, which was
used in the TANCS’99 system performance comparison. In thisbenchmark, random QBF
formulae are generated according to the method described byCadoliet al. [1998], and then
converted into modal logic by using a variant of the conversion by Halpern & Moses[1992].
The converted modal formulae are satisfiable iff the QBF formulae are true.

Random QBF formulae are generated with alternation depthD and at mostV variables
at each alternation. The matrix is a random propositional CNF formula withC clauses of
lengthK, with some constraints on the number of universally and existentially quantified
variables within each clause. (This avoids the problem of trivial unsolvability for random
QBF formulae highlighted by Gent & Walsh[1999a].) For instance, a random QBF formula
with D = 3, V = 2 looks like:

∀v32v31.∃v22v21.∀v12v11.∃v02v01.ψ[v32, ..., v01]. (6.5)

In this section,ψ is a random QBF formula with parametersC, V andD, while U and
E denote the total number of universally and existentially quantified variables respectively.
Clearly, bothU andE areO(D · V ). Moreover,ϕ is the modal formula resulting from
Halpern & Moses’K conversion, so both the depth and the the number of propositional vari-
ables ofϕ are alsoO(D · V ).

A from-scratch empirical evaluation of the random QBF test method would require an
effort exceeding the proposed scope (and length) of this paper. Thus we will restrict our
analysis to some basic considerations.

As with 3CNF2m
, the results of each QBF-based testbed are easy to reproduceas the

generator’s code and all the parameters’ values are publicly available. By increasingV and
D the difficulty of the generated problems scales up, whileC allows for tuning the sat-
versus-unsat rate of the formula. Random QBF plots, with fixed D andV , also present
easy-hard-easy patterns centred in the solvability transition areas[Cadoliet al.1998; Gent &
Walsh1999a]. Moreover, with respect to 3CNF2m

formulae, random QBF formulae allow
for generating 50%-solvable formulae with higher modal depth that are still within the reach
of current state-of-the-art deciders.

From a purely theoretical viewpoint, it is claimed that, unlike CNF2m
formulas, modal-

encoded QBF formulas can capture the problems inΣP
D, as QBF formulas with bounded

D and unboundedV are inΣP
D, while CNF2m

formulas with boundedd and unbounded
N are “stuck at NP”[Massacci1999]. We notice that this statement is rather misleading.
Massacci treats the alternation depthD and the number of variables within each alternation
V as the “QBF-equivalent” of the modal depthd and the number of propositional variables
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N respectively – they are the same parameters in the random generator. We remark that the
“QBF-analogous” role of modal depth is played instead by thetotal number of universally
quantified variablesU ≈ V · D/2. In fact, similarly to modalK(m) with bounded depth,
the class of random QBF formulae with boundedU is in NP, as it is possible to “guess” a
tree-like witness withO(U · 2U ) nodes.11 Moreover, as in the case of 3CNF2m

formulae
with boundedd andN , if D andV are bounded—which is the case of every finite-size test
set—then the random QBF problems are not only in NP, but even in P.

Another problem with modal-encoded QBF formulae is that they are rather artificial, as
their potential Kripke structures are restricted to those having the very regular structure im-
posed by the QBF and/or binary search trees. As far as representativity is concerned, modal-
encoded QBF formulae have a very peculiar modal structure, so that they can hardly be
considered as a representative sample of the input space.

Finally, a serious problem with random modal-encoded QBF formulas is size. Initial ver-
sions of the translation method produced test sets in the 1GBrange. The problem with such
very large formulae is that they may be only stressing the data-storage and retrieval portion
of the provers; e.g., running DLP on these formulae resultedin a 1000s timeout without any
significant search. Even the current versions produce very large modal formulae, mostly to
constrain the Kripke structures.

7 Discussion

The current situation in empirical testing of modal decision procedures is not completely
satisfactory. There are a number of available test sets and methodologies that can be used to
examine modal decision procedures, each of which has certain benefits and certain flaws.

The Heuerding and Schwendimann test suite provides a numberof interesting inputs. The
input formula classes are different from each other, but there is only a small number of classes
and they do not cover all kinds of input formula. The input formulae are parameterised,
potentially providing a good range of difficulty. However, current systems incorporate pre-
processing steps that reduce many of the test formula classes to trivial formulae even before
search starts, dramatically reducing the difficulty of the class.

The standard 3CNF2m
random test methodology provides a means for easily generating

very hard problems. It has some problems with trivial (un)satisfiability, but these problems
are not severe. Disguising the 3CNF2m

formulae by modalising the propositional atoms does
not make the tests appreciably better. Our new random test methodology may help alleviate
these problems, but more testing is required.

The new QBF random testing, when compared with New3CNF2m
formulae, allows for

generating 50%-solvable formulae with higher modal depth which are still within the reach of
current state-of-the-art deciders. On the other hand, modal-encoded QBF formulae are rather
artificial, as their potential models are restricted to those having a very regular structure.

Unfortunately, current systems can only handle very small values for some of the param-
eters at interesting points in the parameter space of the 3CNF2m

random test methodology.
This makes it very hard to investigate the behaviour of systems over an interesting range of
the parameter. Further, there are four active parameters, which makes it hard to cover large
sections of the input space.

However, even with the above-mentioned flaws, current empirical test methodologies pro-
vide evidence of great strides forward in the performance ofmodal decision procedures. The

11More preciselyO(E · 2U ) nodes, butE is O(U) in the class of formulae considered.
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current fastest systems, including DLP and *SAT, can quickly solve problems that were im-
possible to solve just a couple of years ago. The Heuerding and Schwendimann test suite
shows the importance of pre-processing to remove as many redundancies as possible. The
standard 3CNF2m

test suites show the effect, both positive and negative, of certain strategies
built into these systems.

It is interesting to compare the situation in empirical testing of modal decision procedures
with that for propositional satisfiability[Gent & Walsh1993; Crawford & Auton1996; Selman
et al.1996], where a random-3CNF methodology is also used. With propositional formulae,
the methodology can be tuned to provide problems of appropriate difficulty, and captures the
hardest formulae of a particular size. There are only two parameters, which allows for easy
coverage of large sections of the input space. Current systems can process reasonably large
inputs, but it is easy to generate formulae that are hard or even impossible to solve. Achieving
a similarly satisfactory situation in the empirical testing of modal decision procedures will
require advances in both the decision procedures and the testing methodology.
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and P. Patel-Schneider, editors,Proceedings of the 1999 International Workshop on Description Logics
(DL’99), pages 142–144, 1999. Available as CEUR-WS/Vol-22 fromhttp://SunSITE.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS.

[Williams & Hogg 1994] C. P. Williams and T. Hogg. Exploiting the deep structure of constraint problems.Artificial
Intelligence, 70:73–117, 1994.

Received February 15, 2000


