
Optimisation of Terminological Reasoning

Ian Horrocks Stephan Tobies

Department of Computer Science LuFG Theoretical Computer Science
University of Manchester, UK RWTH Aachen, Germany
horrocks@cs.man.ac.uk tobies@informatik.rwth-aachen.de

1 Motivation

The problem of computing concept subsumption relationships has been the sub-
ject of much research, and sound and complete algorithms are now known for a
wide range of DLs (for example [9, 2, 7, 11]). However, in spite of the fundamen-
tal importance of terminologies in DLs, most of these algorithms deal only with
the problem of deciding subsumption between two concepts (or, equivalently,
concept satisfiability), without reference to a terminology (but see [4, 5, 8, 11]).
By restricting the kinds of assertion that can appear in a terminology, concepts
can be syntactically expanded so as to explicitly include all relevant terminolog-
ical information. This procedure, called unfolding, has mostly been applied to
less expressive DLs. With more expressive DLs, in particular those supporting
universal roles, it is often possible to encapsulate an arbitrary terminology in
a single concept. This technique can be used with satisfiability testing to en-
sure that the result is valid with respect to the assertions in the terminology, a
procedure called internalisation.

Although the above mentioned techniques suffice to demonstrate the theoret-
ical adequacy of satisfiability decision procedures for terminological reasoning,
experiments with implementations have shown that, for reasons of (lack of)
efficiency, they are highly unsatisfactory as a practical methodology for reason-
ing with DL terminologies. Firstly, experiments with the Kris system have
shown that integrating unfolding with the (tableaux) satisfiability algorithm
(lazy unfolding) leads to a significant improvement in performance [1]. More re-
cently, experiments with the FaCT system have shown that reasoning becomes
hopelessly intractable when internalisation is used to deal with larger terminolo-
gies [10]. However, the FaCT system has also demonstrated that this problem
can be dealt with (at least for realistic terminologies) by using a combination of
lazy unfolding and internalisation, having first manipulated the terminology in
order to minimise the number of assertions that must be dealt with by internal-
isation (a technique called absorption). It should be noted that, although these
techniques were discovered while developing DL systems, they are applicable to



a whole range of reasoning systems, independent of the concrete logic and type
of algorithm.

In this paper we seek to improve our theoretical understanding of these
important techniques which has, until now, been very limited. In particular we
would like to know exactly when and how they can be applied, and be sure
that the answers we get from the algorithm are still correct. This is achieved by
defining a formal framework that allows the techniques to be precisely described,
establishing conditions under which they can be safely applied, and proving
that, provided these conditions are respected, satisfiability algorithms will still
function correctly. Finally, we identify several interesting directions for future
research, in particular the problem of finding the “best” absorption possible.
Due to space limitations, we have omitted most proofs. Please refer to [12] for
full details.

2 Preliminaries

Firstly, we will establish some basic definitions that clarify what we mean by a
DL, a terminology (subsequently called a TBox), and subsumption and satisfi-
ability with respect to a terminology. The results in this paper are uniformly
applicable to a whole range of DLs, as long as some basic criteria are met:

Definition 2.1 (Description Logic) Let L be a DL based on infinite sets of
atomic concepts NC and atomic roles NR. We will identify L with the sets of
its well-formed concepts and require L to be closed under boolean operations and
sub-concepts.

An interpretation I is a pair I = (∆I , ·I), where ∆I is a non-empty set and
·I is a function mapping NC to 2∆I

and NR to 2∆I×∆I

. With each DL L we
associate a set Int(L) of admissible interpretations for L. Int(L) must be closed
under isomorphisms, and, for any two interpretations I and I ′ that agree on
NR, it must satisfy I ∈ Int(L) ⇔ I ′ ∈ Int(L). Additionally, we assume that each
DL L comes with a semantics that allows any interpretation I ∈ Int(L) to be
extended to each concept C ∈ L such that it satisfies the following conditions:

(I1) it maps the boolean combination of concepts to the corresponding boolean
combination of their interpretations, and

(I2) the interpretation CIof a compound concept C ∈ L depends only on the
interpretation of those atomic concepts and roles that appear syntactically
in C.

This definition captures a whole range of DLs, namely, the important DL
ALC [15] and its many extensions. Int(L) hides restrictions on the interpre-
tation of certain roles like transitivity, functionality, or role hierarchies, which
are imposed by more expressive DLs (e.g., [11]), as these are irrelevant for our
purposes. We will use C → D as an abbreviation for ¬C ⊔ D, C ↔ D as an



abbreviation for (C → D) ⊓ (D → C), and ⊤ as a tautological concept, e.g.,
A ⊔ ¬A for an arbitrary A ∈ NC.

A TBox consists of a set of axioms asserting subsumption or equality relations
between (possibly complex) concepts.

Definition 2.2 (TBox, Satisfiability) A TBox T for L is a finite set of ax-
ioms of the form C1 ⊑ C2 or C1

.
= C2, where Ci ∈ L. If, for some A ∈ NC, T

contains an axiom of the form A ⊑ C or A
.
= C, then we say that A is defined

in T .
Let L be a DL and T a TBox. An interpretation I ∈ Int(L) is a model of

T iff, for each C1 ⊑ C2 ∈ T , CI

1 ⊆ CI

2 holds, and, for each C1
.
= C2 ∈ T ,

CI

1 = CI

2 holds. In this case we write I |= T . A concept C ∈ L is satisfiable
with respect to a TBox T iff there is an I ∈ Int(L) with I |= T and CI 6= ∅. A
concept C ∈ L subsumes a concept D ∈ L w.r.t. T iff, for all I ∈ Int(L) with
I |= T , CI ⊇ DI holds. Two TBoxes T , T ′ are called equivalent (T ≡ T ′), iff,
for all I ∈ Int(L), I |= T iff I |= T ′.

We will only deal with concept satisfiability as concept subsumption can be
reduced to it for DLs that are closed under boolean operations: C subsumes D

w.r.t. T iff (D ⊓ ¬C) is not satisfiable w.r.t. T .
For temporal or modal logics, satisfiability with respect to a set of formulae

{C1, . . . , Ck} asserted to be universally true corresponds to satisfiability w.r.t.
the TBox {⊤

.
= C1, . . . ,⊤

.
= Cn}.

Many decision procedures for DLs base their judgement on the existence of
models or pseudo-models for concepts. A central rôle in these algorithms is
played by a structure that we will call a witness. It generalises the notions of
tableaux that appear in DL tableau-algorithms [9, 11].

Definition 2.3 (Witness) Let L be a DL and C ∈ L a concept. A witness
W = (∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that
maps NR to 2∆W×∆W

, and a function LW that maps ∆W to 2L such that:

(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I ∈ Int(L) that stems from W, and

(W3) for each interpretation I ∈ Int(L) that stems from W, it holds that D ∈
LW(x) implies x ∈ DI .

An interpretation I = (∆I , ·I) is said to stem from W if ∆I = ∆W ,·I|NR = ·W,
and for each A ∈ NC, A ∈ LW(x) implies x ∈ AI and ¬A ∈ LW(x) implies x 6∈
AI .

A witness W is called admissible with respect to a TBox T if there is an
interpretation I ∈ Int(L) that stems from W with I |= T .

Please note that, for any witness W, (W2) together with Condition 3 of
“stemming” implies that, there exists no x ∈ ∆W and A ∈ NC, such that



{A,¬A} ⊆ LW(x). Also note that, in general, more than one interpretation
may stem from a witness. This is the case if, for an atomic concept A ∈ NC and
an element x ∈ ∆W , LW(x) ∩ {A,¬A} = ∅ holds. The existence of admissible
witnesses is closely related to the satisfiability of concepts w.r.t. TBoxes:

Lemma 2.4 Let L be a DL. A concept C ∈ L is satisfiable w.r.t. a TBox T iff
it has a witness that is admissible w.r.t. T .

From this it follows that one can test the satisfiability of a concept w.r.t. to a
TBox by checking for the existence of an admissible witness. We call algorithms
that utilise this approach model-building algorithms.

This notion captures tableau-based decision procedures [9, 11] and, due to
their direct correspondence with tableaux algorithms [13, 3], even resolution
based and sequent calculus algorithms. This work develops a technique appli-
cable to all these algorithm types.

Many decision procedures for DLs deal with TBoxes by exploiting the fol-
lowing lemma.

Lemma 2.5 Let L be a DL, C ∈ L a concept, and T a TBox. Let W be a
witness for C. W is admissible w.r.t. T if, for each x ∈ ∆W ,

C1 ⊑ C2 ∈ T implies C1 → C2 ∈ LW(x)
C1

.
= C2 ∈ T implies C1 ↔ C2 ∈ LW(x).

Examples of algorithms that exploit this lemma to deal with axioms can
be found in [8, 6, 11], where, for each axiom C1 ⊑ C2 (C1

.
= C2) the concept

C1 → C2 (C1 ↔ C2) is added to every node of the generated tableau.
Dealing with general axioms in this manner is costly due to the high degree of

nondeterminism introduced. This can best be understood by looking at tableaux
algorithms, which try to build witnesses in an incremental fashion. For a concept
C to be tested for satisfiability, they start with ∆W = {x0}, L

W(x0) = {C} and
·W(R) = ∅ for each R ∈ NR. Subsequently, the concepts in LW are decomposed
and, if necessary, new nodes are added to ∆W , until either W is a witness for
C, or an obvious contradiction of the form {A,¬A} ⊆ LW(x), which violates
(W2), is generated. In the latter case, backtracking search is used to explore
alternative non-deterministic decompositions (e.g., of disjunctions), one of which
could lead to the discovery of a witness.

When applying Lemma 2.5, disjunctions are added to the label of each node
of the tableau for each general axiom in the TBox (one disjunction for axioms
of the form C1 ⊑ C2, two for axioms of the form C1

.
= C2). This leads to an

exponential increase in the search space as the number of nodes and axioms
increases. For example, with 10 nodes and a TBox containing 10 general axioms
(of the form C1 ⊑ C2) there are already 100 disjunctions, and they can be non-
deterministically decomposed in 2100 different ways. For a TBox containing large



numbers of general axioms (there are 1,214 in the Galen medical terminology
KB [14]) this can degrade performance to the extent that subsumption testing
is effectively non-terminating. To reason with this kind of TBox we must find a
more efficient way to deal with axioms.

3 Absorptions

We start our considerations with an analysis of a technique that can be used to
deal more efficiently with so-called primitive or acyclic TBoxes.

Definition 3.1 (Absorption) Let L be a DL and T a TBox. An absorption
of T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu ∪ Tg and Tu contains only
axioms of the form A ⊑ D and ¬A ⊑ D where A ∈ NC.

An absorption (Tu, Tg) of T is called correct if it satisfies the following con-
dition. For each each witness W and x ∈ ∆W , if

A ⊑ D ∈ Tu and A ∈ LW(x) implies D ∈ LW(x)
¬A ⊑ D ∈ Tu and ¬A ∈ LW(x) implies D ∈ LW(x)

C1 ⊑ C2 ∈ Tg implies C1 → C2 ∈ LW(x)
C1

.
= C2 ∈ Tg implies C1 ↔ C2 ∈ LW(x)















(∗)

then W is admissible w.r.t. T . A witness that satisfies (∗) will be called unfolded.

How does a correct absorption enable an algorithm to deal with axioms
more efficiently? This is best described by returning to tableaux algorithms.
Instead of dealing with axioms as previously described, which may lead to an
exponential increase in the search space, axioms in Tu can now be dealt with in
a deterministic manner. Assume, for example, that we have to handle the axiom
A

.
= C. If the label of a node already contains A (resp. ¬A), then C (resp. ¬C) is

added to the label; if the label contains neither A nor ¬A, then nothing has to be
done. Dealing with the axioms in Tu this way avoids the necessity for additional
non-deterministic choices and leads to a gain in efficiency. A witness produced
in this manner will be unfolded and is a certificate for satisfiability w.r.t. T .
This technique is generally known as lazy unfolding of primitive TBoxes [10];
formally, it is justified by the following lemma:

Lemma 3.2 Let (Tu, Tg) be a correct absorption of T . For any C ∈ L, C has a
witness that is admissible w.r.t. T iff C has an unfolded witness.

A family of TBoxes where absorption can successfully be applied are primitive
TBoxes, the most simple form of TBox usually studied in the literature.

Definition 3.3 (Primitive TBox) A TBox T is called primitive iff it consists
entirely of axioms of the form A

.
= D with A ∈ NC, each A ∈ NC appears as at

most one left-hand side of an axiom, and T is acyclic. Acyclicity is defined as



follows: A ∈ NC is said to directly use B ∈ NC if A
.
= D ∈ T and B occurs in

D; uses is the transitive closure of “directly uses”. We say that T is acyclic if
there is no A ∈ NC that uses itself.

For primitive TBoxes a correct absorption can easily be given.

Theorem 3.4 Let T be a primitive TBox, Tg = ∅, and Tu defined by

Tu = {A ⊑ D,¬A ⊑ ¬D | A
.
= D ∈ T }.

Then (Tu, Tg) is a correct absorption of T .

Lazy unfolding is a well-known and widely used technique for optimising
reasoning w.r.t. primitive TBoxes [1]. It is a relatively simple approach, although
one that is independent of a specific DL or reasoning algorithm. With the next
lemma we show how we can extend correct absorptions and hence how lazy
unfolding can be applied to a broader class of TBoxes.

Lemma 3.5 Let (Tu, Tg) be a correct absorption of a TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪ T ′) is a correct absorption of
T ∪ T ′.

2. If T ′ is a TBox that consists entirely of axioms of the form A ⊑ D, where
A ∈ NC and A does not occur on the left-hand side of any axiom in Tu,
then (Tu ∪ T ′, Tg) is a correct absorption of T ∪ T ′.

4 Application to FaCT

In the preceding section we have defined correct absorptions and discussed how
they can be exploited in order to optimise satisfiability procedures. However,
we have said nothing about the problem of how to find an absorption given an
arbitrary terminology. In this section we will describe the absorption algorithm
used by FaCT and prove that it generates correct absorptions.

Given a TBox T containing arbitrary axioms, the absorption algorithm used
by FaCT constructs a triple of TBoxes (Tg, Tprim, Tinc) such that

• T ≡ Tg ∪ Tprim ∪ Tinc,

• Tprim is primitive, and

• Tinc consists only of axioms of the form A ⊑ D where A ∈ NC and A is
not defined in Tprim.

We refer to these properties by (∗). From Theorem 3.4 together with Lemma 3.5
it follows that, for

Tu := {A ⊑ D,¬A ⊑ ¬D | A
.
= D ∈ Tprim} ∪ Tinc

(Tu,Tg) is a correct absorption of T ; hence satisfiability for a concept C w.r.t. T
can be decided by checking for an unfolded witness for C.



In a first step, FaCT distributes axioms from T amongst Tinc, Tprim, and Tg,
trying to minimise the number of axioms in Tg while still maintaining (∗). To
do this, it initialises Tprim, Tinc, and Tg with ∅, and then processes each axiom
X ∈ T as follows.

1. If X is of the form A ⊑ C, then

(a) if A ∈ NC and A is not defined in Tprim then X is added to Tinc,
(b) otherwise X is added to Tg

2. If X is of the form A
.
= C, then

(a) if A ∈ NC, A is not defined in Tprim or Tinc and Tprim∪{X} is primitive,
then X is added to Tprim,

(b) otherwise, the axioms A ⊑ C and C ⊑ A are added to Tg

3. If X is of the form C ⊑ D, then add C ⊑ D to Tg.

4. If X is of the form C
.
= D, then add C ⊑ D and D ⊑ C to Tg.

It is easy to see that the resulting TBoxes Tg, Tprim, Tinc satisfy (∗). In a
second step, FaCT processes the axioms in Tg one at a time, trying to absorb
them into axioms in Tinc. Those axioms that are not absorbed remain in Tg.
To give a simpler formulation of the algorithm, each axiom (C ⊑ D) ∈ Tg is
viewed as a clause G = {D,¬C}, corresponding to the axiom ⊤ ⊑ C → D,
which is equivalent to C ⊑ D. For each such axiom FaCT applies the following
absorption procedure.

1. Try to absorb G. If there is a concept ¬A ∈ G such that A ∈ NC and A

is not defined in Tprim, then add A ⊑ B to Tinc, where B is the disjunction
of all the concepts in G \ {¬A}, remove G from Tg, and exit.

2. Try to simplify G.

(a) If there is some ¬C ∈ G such that C is of the form C1 ⊓ . . . ⊓ Cn,
then substitute ¬C with ¬C1 ⊔ . . .⊔¬Cn, and continue with step 2b.

(b) If there is some C ∈ G such that C is of the form (C1⊔ . . .⊔Cn), then
apply associativity by setting G = G∪{C1, . . . , Cn}\{(C1⊔. . .⊔Cn)},
and return to step 1.

3. Try to unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom
A

.
= C in Tprim, then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C)

and return to step 1.

4. If none of the above were possible, then absorption of G has failed. Leave
G in Tg, and exit.

We have to show that each step maintains (∗). Dealing with clauses instead
of axioms causes no problems. In the first step, axioms are moved from Tg to
Tinc as long as this does not violate (∗). The second and the third step replace a
clause by an equivalent one and hence do not violate (∗). Termination is obvious:
each axiom is considered only once and, for a given axiom, simplification and
unfolding can only be applied finitely often before the procedure is exited, either
by absorbing the axiom into Tinc or leaving it in Tg. For simplification, this is
obvious; for unfolding, this holds because Tprim is acyclic.



10

100

1000

10000

0 200 400 600 800 1000 1200

C
P

U
 ti

m
e 

(s
)

General axioms

without absorption
with absorption

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e 

(s
)

Concept pairs

normal
enhanced

Figure 1: Classification times with(out) absorption (left) and enhanced absorption

Theorem 4.1 For any TBox T , FaCT computes a correct absorption of T .

The absorption algorithm employed by FaCT already leads to a dramatic
improvement in performance. This is illustrated by Figure 1 (left), which shows
the times taken by FaCT to classify versions of the Galen KB with some or all
of the general axioms removed. Without absorption, classification time increased
rapidly with the number of general axioms, and exceeded 10,000s with only 25
general axioms in the KB; with absorption, only 160s was taken to classify the
KB with all 1,214 general axioms.

However, there is still considerable scope for further gains. In particular,
the following definition for a stratified TBox allows lazy unfolding to be more
generally applied, while still allowing for correct absorptions.

Definition 4.2 (Stratified TBox) A TBox T is called stratified iff it consists
entirely of axioms of the form A

.
= D with A ∈ NC, each A ∈ NC appears at most

once on the left-hand side of an axiom, and T can be arranged monotonously,
i.e., there is a disjoint partition T1 ∪̇ T2 ∪̇ . . . ∪̇ Tk of T , such that:

• for all 1 ≤ j < i ≤ k, if A ∈ NC is defined in Ti, then it does not occur in
Tj,

• for all 1 ≤ i ≤ k, all concepts which appear on the right-hand side of
axioms in Ti are monotone in all atomic concepts defined in Ti.

A concept C is monotone in an atomic concept A if, for any interpretation I ∈
Int(L) and any two sets X1, X2 ⊆ ∆I , X1 ⊆ X2 implies CI[A 7→X1] ⊆ CI[A 7→X2],
where, for some interpretation I, I[A 7→ X] denotes the interpretation that
maps A to X and agrees with I on all other atomic concepts and roles.

For many DLs, a sufficient condition for monotonicity is syntactic mono-
tonicity, i.e., a concept C is syntactically monotone in some atomic concept A

if A appears in C only in the scope of an even number of negations. This holds,
e.g., for SHIQ [11], if at-most qualifying number restrictions (≤ n R C) are
counted as one negation.



Theorem 4.3 Let T be a stratified TBox, Tg = ∅ and Tu defined by

Tu = {A ⊑ D,¬A ⊑ ¬D | A
.
= D ∈ T }.

Then (Tu, Tg) is a correct absorption of T .

Please note, that the partition of T into strata is necessary only to guarantee
the correctness of the absorption and does not need to be taken into account
for the lazy unfolding itself. Lazy unfolding is generally applicable to all correct
absorptions without any modifications. Also note that it is possible that a
TBox is stratified with only a single stratum, in which case the first condition
of Definition 4.2 is trivially satisfied.

The effectiveness of this enhanced absorption can be demonstrated by a
simple experiment with the new FaCT system, which implements the SHIQ
logic [11] and is thus able to deal with inverse roles. Figure 1 (right) shows
the classification time in seconds using the normal and enhanced absorption
algorithms for terminologies consisting of between 5 and 50 pairs of cyclical
definitions. With only 10 pairs the gain in performance is already a factor of
30, while for 45 and 50 pairs it has reached several orders of magnitude: with
the enhanced lazy unfolding the terminology is classified in 2–3 seconds whereas
with the original algorithm the time required exceeded the 10,000 second limit
imposed in the experiment.

It is worth pointing out that it is by no means trivially true that cyclical
definitions can be dealt with by lazy unfolding. It is clear that A

.
= ¬A (or more

subtle variants) force the domain to be empty and would lead to an incorrect
absorption if dealt with by lazy unfolding. With converse roles, definitions like
A

.
= ∀R.(∀R−.¬A) force the interpretation of a role R to be empty, again leading

to an incorrect absorption if dealt with by lazy unfolding.

5 Optimal Absorptions

Our results show that absorption is a highly effective and widely applicable
technique, and by formally defining correctness criteria for absorptions we can
prove that the procedure used by FaCT finds correct absorptions. Moreover,
by establishing more precise correctness criteria we have demonstrated how the
effectiveness of this procedure could be further enhanced.

However, the absorption algorithm used by FaCT is clearly sub-optimal, in
the sense that changes could be made that would, in general, allow more axioms
to be absorbed (e.g., by also giving special consideration to axioms of the form
¬A ⊑ C with A ∈ NC). Moreover, the procedure is non-deterministic, and, while
it is guaranteed to produce a correct absorption, its specific result depends on
the order of the axioms in the original TBox T . Since the semantics of a TBox
T does not depend on the order of its axioms, there is no reason to suppose
that they will be arranged in a way that yields a “good” absorption. Given



the effectiveness of absorption, it would be desirable to have an algorithm that
was guaranteed to find the “best” absorption possible for any set of axioms,
irrespective of their ordering in the TBox. Unfortunately, it is not even clear
how to define a sensible optimality criterion for absorptions. It is obvious that
simplistic approaches based on the number or size of axioms remaining in Tg will
not lead to a useful solution for this problem. Consider, for example, the cyclical
TBox experiment from the previous section. Both the original FaCT absorption
algorithm and the enhanced algorithm, which performs the absorption of cyclical
TBoxes, are able to compute a complete absorption of the axioms used in the
experiment (i.e., a correct absorption with Tg = ∅), but the enhanced algorithm
leads to much better performance, as shown in Figure 1 (right). An important
issue for future work is, therefore, the identification of a suitable optimality
criterion for absorptions, and the development of an algorithm that is able to
compute absorptions that are optimal with respect to this criterion.

References
[1] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis

of optimization techniques for terminological representation systems, or: Making KRIS
get a move on. Applied Artificial Intelligence, 4:109–132, 1994.

[2] F. Baader and B. Hollunder. A terminological knowledge representation system with
complete inference algorithms. In Proc. of PDK’91, Springer-Verlag.

[3] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. Ex-
plaining ALC subsumption. In Proc. of DL’99, pages 37–40, 1999.

[4] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological knowl-
edge representation systems. J. of Artificial Intelligence Research, 1:109–138, 1993.

[5] D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms and
complexity. In Wolfgang Wahlster, editor, Proc. of ECAI’96, pages 303–307. John Wiley
& Sons Ltd., 1996.

[6] G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive description
logics. In Proc. of KR-96, pages 316–327. M. Kaufmann, Los Altos, 1996.

[7] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux
and algorithms for converse-PDL. Information and Computation, to appear.

[8] F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for ALC. In Collected

Papers from DL’96.
[9] B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption algorithms for concept

description languages. In Proc. of ECAI-90, Pitman Publishing, London, 1990.
[10] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of KR’98,

pages 636–647. Morgan Kaufmann Publishers, 1998.
[11] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description

logics. In Proc. of LPAR’99, 1999.
[12] I. Horrocks and S. Tobies. Reasoning with Axioms: Theory and Practice. In Proc. of KR

2000. Morgan Kaufman Publishers, 2000.
[13] U. Hustadt and R. A. Schmidt. On the relation of resolution and tableaux proof systems

for description logics. In Proc. of IJCAI-99, pages 110–115, 1999.
[14] A. L. Rector, W A Nowlan, and A Glowinski. Goals for concept representation in the

Galen project. In Proc. of SCAMC’93, pages 414–418, Washington DC, USA, 1993.
[15] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.

Artificial Intelligence, 48(1):1–26, 1991.


