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1 Introduction

A serious shortcoming of many Description Logic based kmeaolgk representation
systems is the inadequacy of their query languages. In #psipwve present a novel
technique that can be used to provide an expressive quagydge for such systems.
A typical description logic (DL) knowledge base (KB) is made of two parts, a
terminological part (the Tbox) and an assertional partfthex), each part consisting
of a set of axioms. The Thox asserts facts alwmuniceptgsets of objects) anobles
(binary relations), usually in the form of inclusion axionwghile the Abox asserts
facts aboutndividuals(single objects), usually in the form of instantiation axrim

Recent years have seen significant advances in the designmd and complete
reasoning algorithms for DLs with both expressive logiealduages and unrestricted
Tboxes, i.e., those allowing arbitrary concept inclusigioas [1, 11, 7]. Moreover,
systems using highly optimised implementations of (someéhmse algorithms have
also been developed, and have been show to work well in tieadigplications [10,
16]. While most of these have been restricted to terminckdgieasoning (i.e., the
Abox is assumed to be empty), attention is now turning to #netbpment of both
algorithms and (optimised) implementations that also etpfbox reasoning [9, 20].

Although these systems provide sound and complete Aboxonass for very
expressive logics, their utility is limited w.r.t. earliBL systems by their very weak
Abox query languages. Typically, these only support insa#ion (is an individuak
an instance of a concept), realisation (what are the most specific concepssan
instance of) and retrieval (which individuals are instang®&). This is in contrast to
a system such as Loom where a full first order query languagenisded, although
based on incomplete reasoning algorithms [15].

The reason for this weakness is that, in these expressiies|@jl reasoning tasks
are reduced to that of determining KB satisfiability (cotesigy). In particular, in-
stantiation is reduced to KB (un)satisfiability by transhamg the query into a negated



assertion; however, this technique cannot be used (diyéotiqueries involving roles
because these logics do not support role negation.

In this paper we present a technique for answering such egiesing a more
sophisticated reduction to KB satisfiability. We then shawtthis technique can be
extended to determine if an arbitrary tuple of individuals.( not just a singleton or
pair) satisfies a disjunction of conjunctions of conceptahelmembership assertions
that can contain both constants (i.e., individual named)vamiables. This provides
a powerful query language, similar to the conjunctive qgeetypically supported by
relational databasésthat allows complex Abox structures (e.g., cyclical stes)
to be retrieved by using variables to enforce co-refereRoeexample, the query

(x,y) <« (z,Bill):Parent A (z,z):Parent A (z,y):Parent A (x,y):Hates (1)

would retrieve all the pairs of hostile siblingsill’s family.?

In this paper we focus on answering boolean queries, i.eerméing if a query
is true with respect to a KB. Retrieval can be easily (althourgefficiently) turned
into a set of boolean queries for all candidate tuples. Nwdeinh available systems,
the retrieval problem is similarly reduced to instantiatidt is important to stress the
fact that, given the expressivity of DLs, query answeringnzd simply be reduced
to model checking as in the database framework. This is IsecBs may contain
nondeterminism and/or incompleteness, making it inféasibuse an approach based
on minimal models. In fact, query answering in the DL settinquires the same
reasoning machinery as logical derivation.

An important advantage with the technique presented hénatg is quite generic,
and can be used with any DL providing general inclusion asievhere instantiation
can be reduced to KB satisfiability. It could therefore bedusesignificantly increase
the utility of Abox reasoning in a wide range of existing (énture) DL implemen-
tations.

2 Préiminaries

Although the query answering technique is quite generalilitsimplify the presen-

tation if we consider a concrete DL language. We will use dreglageALC [19]

as it is widely known, is sufficiently expressive for our posps (in particular, it is

closed under negation) and is a subset of the logics implexdém most “state of the

art” DL systems, i.e., those based on highly optimised &abtealgorithms [10, 16, 9].
ALC concepts are built using a set of concept nam&g @nd role names\R).

If A € NCis aconcept nam&; € NR is a role name, and’;, C, are concepts then

Lt is inspired by the use of Abox reasoning to decide conjuaauery containment [12, 5].

°Note that a sound and complete KB satisfiability algorithrii giiarantee sound and complete
query answers.

3Apart from not very expressive DL languages (see for exafipTp.



the expressionsl, T, L, —A | C; M Cy, C; U Cy, VR.C,3R.C are concept as well.
The meaning of concepts is given by a Tarski style model #tensemantics using
interpretations An interpretatiort is a pair(AZ, -7), whereA? is the domain aneéf
an interpretation function. The functiehmaps each concept nameNg to a subset
of A% and each role name MR to a binary relation oveA” (a subset ofA? x A7)
such that the following equations are satisfied:

T2 = AT (C1Gy) = CTinCh,
J_I == (Z) (Cl LJ CQ)I = Czl U CIQ
(A = AT\
(VR.CY' = {ie AT|Vj (i,j) € RT = j e C?}
(BRC)" = {ieAT|3j.(i,j) € REAjeCT)

2.1 DL knowledge bases

A DL knowledge base is a pa¥ = (7, .4), where7 is called theTboxand A is
called theAbox

The Tbox, or terminology, is a set of assertions about caisagghe formC C D,
whereC and D are concept$. An interpretationZ satisfiesC' C D (written Z |=
C C D) iff C* C D? and it satisfies a Tho¥ (writtenZ = 7) if it satisfies every
assertion ir/ .

The Abox, or assertional part, is a set of assertions aboet afsindividuals
named\|. These assertions are of the fotnd’ and(a, b): R, wherea, b are names in
NI, C'is a concept and is a role. The semantics of the Abox is given by extending
the interpretation functiorf to map each individual name Mi to a single element of
AZ. Aninterpretatiorf satisfies::C iff a* € CZ, it satisfiea, b): Riff (a,0?) € RT
and it satisfies an Abox (writtenZ = A) if it satisfies every assertion iA.

An interpretation satisfies a knowledge base- (7, A) (writtenZ = ¥) if it
satisfies botly” and.4; a knowledge base is said to be satisfiable iff there exists at
least one non-empty interpretation satisfying it. Using definition of satisfiability,
an assertiorX is said to be dogical consequencef a KB X (written X = X) iff X
is satisfied by every interpretation that satishes

The semantics of DL Aboxes often includes a so caliedjue name assumption
an assumption that the interpretation function maps diffeindividual names to dif-
ferent elements of the domain (i.eZ # v for all a,b € NI such thatz # b). Our
approach does not rely on such an assumption, and can bedppDLs both with
and without the unique name assumption.

4C = D is sometimes used as an abbreviation for the pair of assstflec D andD C C.



2.2 Queries

In this paper we will focus on conjunctive queries, but theeagion to disjunctions
of conjunctive queries is relatively straightforward [13]key feature of conjunctive
queries is that they may contain variables, and we will agstita existence of a set
of variablesV that is disjoint from the set of individual names, i ., NI = (. We
distinguishbooleanconjunctive queries of the formy A ... A g,, Whereq,, ..., q,
are query terms. Each query tegnis of the formz:C or (x,y):R, whereC'is a
concept,R is a role andr, y are either individual names or variables. Given a KB
Y, an interpretatior? of X satisfies a querg iff the interpretation function can be
extended to the variables @ in such a way thaf satisfies every term i@. A query
Qistruew.r.t. X (written® |= Q) iff every interpretation that satisfiesalso satisfies
Q. For example, the query

(Bill, y):Parent A (y, z):Parent A z:Male 2)

is true w.r.t. a KBX iff it can be inferred from> thatBill has a grandson. Note that
query truth value and the idea of logical consequence ailgtrelated. In fact, a
boolean query is true w.r.t. a KB iff it is logical consequerts the KB.

In the following, we will only consider how to answer boolegureries. Retrieving
sets of tuples can be achieved by repeated application dédogueries with differ-
ent tuples of individual names substituted for variablest éxample, the answer to
the retrieval query(z,y, z) «— Q w.r.t. a KB X is the set of tuplesa, b, c), where
a, b, c are individual names occurring M, such that: = Q' for the boolean query
Q' obtained by substituting, b, ¢ for x, y, z in Q. Of course the naive evaluation of
such a retrieval could be prohibitively expensive, but wiociearly be amenable to
optimisation. For example, let us consider the query (1)mamy DLs the expres-
sivity of the Abox for roles is very limited: inALC , for example, a KB implies a
query term like(z, Bill):Parent, where the second argument is an individual name,
only if there is an explicit assertion of this form in the Abokherefore we may use
role assertions in the Abox to reduce the number of candidateong the individual
names.

We will show how to answer boolean queries in two steps. ligirgte will con-
sider conjunctions of terms containing only individual resvappearing in the KB;
secondly, we will show how this basic technique can be exédnd deal with vari-
ables.

3 Querieswith multipleterms

In this section we will consider queries expressed as a oatippn of concept and
role terms built using only names appearing in the KB (i.¢hait variables).

As we have already seen, logical consequence can easilydbeed to a KB
satisfiability problem if the query contains only a singlencept term (this is the



standard instantiation problem). For examplan:Person is a logical consequence
of the KB ({Student C Person} , {Tom:Student}) iff the KB

({Student C Person} , {Tom:Student, Tom:—Person})

is not satisfiable. This can be generalised to queries gontaconjunctions of con-
cept terms simply by transforming the query test into a s€unjsatisfiability prob-
lems: a conjunctiom:C; A ... A a,:C,, is a logical consequence of a KB iff each
a;:C; is a logical consequence of the KB.

However, this simple approach cannot be used in our case aigqaery may also
contain role terms. Instead, we will show how simple transfations can be used to
convert every role term into a concept term. We call this pdocerolling up a query.

The rationale behind rolling up can easily be understoodimggining the avail-
ability of the DL one- of operator, which allows the construction of a concept con-
taining only a single named individual [18]. The standarthtion for such a concept
is {a}, wherea is an individual name, and the semantics is given by the euat

{a}" = {aI}. For example, the expressidBill} represents a concept containing
only the individualBill (i.e., {Bill}* = {Bil}).

Using theone- of operator, the role terdohn, Bill):Brother can be transformed
in the equivalent concept terdohn:(3Brother.{Bill}). Furthermore, other concept

terms asserting additional facts about the individual peatled up @ill in this case)
can be absorbed into the rolled up concept term. For exaitig@eonjunction

(John, Sally):Parent A Sally:Female A Sally:PhD

can be transformed intiwhn:3Parent.({Sally} M Female 1 PhD). The absorption trans-
formation is not strictly necessary for queries withouiahles, but it serves to reduce
the number of satisfiability tests needed to answer the (ibgrseducing the number
of conjuncts), and it will be required with queries contamivariables. By apply-
ing rolling up to each role term, an arbitrary query can baiced to an equivalent
one which contains only concept terms, and which can be aesWwesing a set of
satisfiability tests as described above.

However, the logic we are using does not includedhe- of operator, nor is it
provided by any state of the art DL system (in fact the dedliplof expressive DLs
including this operator is still an open problem). Fort@hgtwe do not need the full
expressivity obne- of , and in our case it can be “simulated”. The technique used is
to substitute each occurrencearfe- of with a new concept name not appearing in
the knowledge base. These new concept names must be diffiereach individual
in the query, and are called tmepresentativeconcepts of the individuals (written
P,, whereq is the individual name). In addition, assertions which eagbat each
individual is an instance of its representative concepttrinesdded to the knowledge
base (e.g.Bill: Pgj). In general, a representative concept cannot be usedade pla
one- of because it can have instances other than the individuahwhrepresents



(e, Pt D {aI }). However, representative concepts can be used insteauesf
of in our reduced setting. In particular, the conjunctianb): R A b:C' is a logical
consequence of a given knowledge base if and onkydfR.(P, M C) is a logical
consequence of the very same knowledge base augmenteddwstréior: P,.

Due to space considerations, we will not reproduce hereradbproof of this
theorem, or of any of the other transformations used in tapep: full details can be
found in [12].

4 Querieswith variables

In this section we show how variables can be introduced mftaimework by using

a more complex rolling up procedure in order to obtain a simieéduction to the

KB (un)satisfiability problem. Variables can be used exead individual names, but
their meaning is as “place-holders” for unknown elementthefdomain. Because
variables may be interpreted as any element of the domagy, dannot simply be

considered as individual names to which the unique namergsgan does not apply;
nor can they be treated as referring only to named indivgjuaving the possibility

of nondeterministically substituting them with names ia KB. In fact the query (2)

is true w.r.t. both the KBs

(Bill, Mary):Parent,
(0,¢ (Mary, Tom):Parent, ») and (0, {Bill:3Parent.(3Parent.Male)}),
Tom:Male

but for the first KB the variables can be substituted by théviddal namesviary and
Tom, while in the second case the variables may need to be ieterpas elements of
the domain that are not the interpretations of any namediuhatls.

Answering queries containing variables involves a morenstigated rolling up
technique. For example, let us consider the tefyms):Parent andz:Male of query (2).

If z were an individual name, then the terms could be rolled upz#arent.( P, M Male),
but this is not an equivalent query whenms a variable name because&an be inter-
preted as any element of the domain, not just an elemeRt’of However, since in
this casez is no longer referred to in any other place in the query, tiere other
constraint on how an interpretation can be extended w,isb the concept (whose
interpretation is always the whole domain) can be usedadsté P,. The resulting
concept term ig:3Parent.(T M Male), which can be simplified tg:3Parent.Male.
The same procedure can now be applieg, tinereby reducing query (2) to the single
concept ternBill:3Parent.(IParent.Male).

In order to show how this procedure can be more generallyiegpit will be
useful to consider the directed graph induced by the querya graph in which there
is a noder for each individual or variable in the query, and an eddge from nodex
to nodey for each role term{x, y): R in the query. It is easy to see that the rolling up



procedure can be used to eliminate variables from any trapesl part of a query by
starting at the leaves and working back towards the rodad (shsimilar to the notion
of descriptive support described in [17]). The fact thatimgl up should start from
leaves is essential for correctness: for example, rollipgyuery (2) in the reverse
order would lead to the non-equivaleésil: 3Parent. T A y:3Parent. T A z:Male.

However, this simple procedure cannot be applied to partiseofuery that con-
tain cycles, or where more than one edge enters a node conisg to a variable
(i.e., with terms like(x, z): R A (y, 2):5).

Let us consider the case where a variable is involved in a&ecyct., the simple
query

(z,y):Path A (y, z):Path A (z, z):Path (3)

which tests the KB for the presence of a loop involving the Ralth. Rolling up one
of the terms does not help, because the resulting query

(z,y):Path A (y, z):Path A z:3Path. P,

still contains another reference to the variabland replacing”, with T would result
in a non-equivalent query that no longer contained a cycleredver, it is obvious
that there is no way to roll up the query in order to obtain g@leiccurrence of any
of the three variables.

This problem can be solved by exploiting the tree model pitypaf the logic.
Given this property, we know that Thox assertions alone eaoonstrain all models
to be cyclical (if there is a model, then there is a tree modelany cycle that might
satisfy a cyclical query must be explicitly asserted in tHsA Moreover, given
the restricted expressivity of role assertions (i.e., thay apply only to atomic role
names), cycles enforced in every interpretation must beposed only of elements
interpreting individual names occurring in the Abox. THere, before applying the
rolling up procedure, a variable occurring in a cycle can twedeterministically sub-
stituted with an individual name occurring in the Abox.

The intuition behind this property can be understood by amsg that, given an
arbitrary interpretation satisfying the cycle only witleglents not corresponding to
individual names, a new interpretation can be build wheeecifctle is split by dupli-
cating one or more of the involved elements. This new intdgtion can be defined in
such a way that it still satisfies the KB, but no longer corgdine required cycle. This
duplication can be performed only if the elements are noetfixindividual names
and assertions in the Abox. A similar argument can be uset variables appearing
as the second argument of more than one role term, e.g., tiabhe: in the query
(xz,z):R N (y,2):S. Such variables can also be dealt with by nondeterminlitica
substituting them with individual names occurring in theokb

We have seen how role terms containing variables can bedroflanto concept
terms, but these may still be of the form(', wherez is a variable. For example, the
query (z, y):Parent, wherex andy are variables, can only be reduced to the single



termz:JParent. T. In this case we need to verify that the interpretation ofcirecept
JParent. T is nonempty in every interpretation that satisfies the KBgémeral, the
interpretation of a concefdt is nonempty in every interpretation that satisfies the KB
(T, A)iff (TU{TC-C},A) is not satisfiablé.

Summarising, the procedure for answering an arbitrarydayotonjunctive query
is divided into two phases. Firstly, the role terms are eleted by repeatedly apply-
ing the following rules: (i) if the graph induced by the quegntains a leaf nodg,
then the role ternfz, y): R is rolled up, and the edde, ) is removed from the graph;
(ii) otherwise, if the graph contains a noglevith multiple incoming edges, then all
role terms(x, y): R are rolled ug, and the corresponding edges are removed from the
graph; (iii) if the graph still contains edges but no leaf e@@nd no confluent nodes,
then it must contain a cycle. In this case a ngde a cycle is chosen (preferably an
individual as this reduces nondeterminism) and rolled um asise (ii) above. Sec-
ondly, the query (which now contains only concept termsjuatas to true iff there
is at least one nondeterministic replacement of variabldsimdividual names such
that every term is a logical consequence of the KB.

5 Discussion

In this paper we have presented a general technique fordingvan expressive query
language for a DL based knowledge representation systenthé&eake of simplicity,
we have only considered conjunctive queries o4€IC KBs. However, the technique
is general enough to be used with other DL languages, and ibe&xtended to deal
with a disjunction of conjunctive queries [13]. Our work iotivated by the fact
that many DL systems (including state of the art systemsyigeono proper query
language, and are only able to perform simple instantiadiweh retrieval reasoning
tasks.

The only other comparable proposals in the literature atbendirection of in-
tegrating a DL system with Datalog [14, 8, 6]. Using Datalegaaquery language
can provide the ability to formulate recursive queries ptlt on the other hand, the
combination with expressive DLs soon leads to undecidgdii4]. In addition, a
special algorithm (dependent on the DL language) must béeimgnted in order to
reason with the resulting hybrid language.

Our approach sacrifices some expressivity in the query kgegbut it works with
very expressive DL languages and it can easily be adaptadgséowith any existing
(and most future) DL system equipped with the KB satisfigpileasoning service.
The limits of the approach lie in the required tree model prgpof the underlying

5Some earlier DL systems cannot reason with Tbox axioms efkimd [2, 3], and this might
restrict the kinds of query that could be answered.

81f y is a variable, then it is first replaced with an individual reechosen nondeterministically from
those occurring in the the KB.



DL and in the availability of general inclusion axioms.

Our plans for future work include an implementation of theht@que on top of the
FaCT system [10], which has recently been extended to irciimbx reasoning [20],
as well as the analysis of suitable optimisations for remyithe nondeterminism due
to variable substitution, both in the rolling up and theisstal procedures.
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