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Abstract

Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised
by constructors to build complex concepts and roles from atomic ones. Expressive role constructors
are important in many applications, but can be computationally problematical.

We present an algorithm that decides satisfiability of the DL ALC extended with transitive and
inverse roles and functional restrictions with respect to general concept inclusion axioms and role
hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Addi-
tionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We
investigate the limits of decidability for this family of DLs, showing that relaxing the constraints
placed on the kinds of roles used in number restrictions leads to the undecidability of all inference
problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining
implementations of the decision procedures, which, despite the hight worst-case complexity of the
problem, exhibit good performance with real-life problems.

1 DMotivation

Description Logics (DLs) are a well-known family of knowledge representation for-
malisms [Donini et al.1996]. They are based on the notion of concepts (unary predi-
cates, classes) and roles (binary relations), and are mainly characterised by construc-
tors that allow complex concepts and roles to be built from atomic ones. Sound and
complete algorithms for the interesting inference problems such as subsumption and
satisfiability of concepts are known for a wide variety of DLs.

Transitive and inverse roles play an important role not only in the adequate repre-
sentation of complex, aggregated objects [Horrocks & Sattler1999], but also for reason-
ing with conceptual data models [Calvanese et al.1994]. Moreover, defining concepts
using general concept inclusion axioms seems natural and is crucial for representing
conceptual data models.

The relevant inference problems for (an extension of) ALC augmented in the de-
scribed manner are known to be decidable [De Giacomo & Lenzerini1996], and worst-
case optimal inference algorithms have been described [De Giacomo & Massaccil999)].
However, to the best of our knowledge, nobody has found efficient means to deal with
their high degree of non-determinism, which so far prohibits their use in realistic ap-
plications. This is mainly due to the fact that these algorithms can handle not only
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transitive roles but also the transitive closure of roles. It has been shown [Sattler
1996] that restricting the DL to transitive roles can lead to a lower complexity, and
that transitive roles, even when combined with role hierarchies, allow for algorithms
that behave quite well in realistic applications [Horrocks1998b]. However, until now
it has been unclear if this is still true when inverse roles are also present.

In this paper we present various aspects of our research in this direction. Firstly,
we motivate our use of logics with transitive roles instead of transitive closure by con-
trasting algorithms for several pairs of logics that differ only in the kind of transitivity
supported.

Secondly, we present an algorithm that decides satisfiability of ALC extended with
transitive and inverse roles, role hierarchies, and functional restrictions. This al-
gorithm can also be used for checking satisfiability and subsumption with respect to
general concept inclusion axioms (and thus cyclic terminologies) because these axioms
can be “internalised”. The fact that our algorithm needs to deal only with transitive
roles, instead of transitive closure, leads to a lower degree of non-determinism, and
experiments indicate that the algorithm is well-suited for implementation.

Thirdly, we show that ALC extended with both transitive and inverse roles is still
in PSPACE. The algorithm used to prove this result introduces an enhanced blocking
technique that should also provide useful efficiency gains in implementations of more
expressive DLs.

Fourthly, we investigate the limits of decidability for this family of DLs, showing
that relaxing the constraints we will impose on the kind of roles allowed in number
restrictions leads to the undecidability of all inference problems.

Finally, we describe a range of optimisation techniques that can be used to produce
implementations of our algorithms that exhibit good typical case performance.

2 Preliminaries

In this section, we present the syntax and semantics of the various DLs that are
investigated in subsequent sections. This includes the definition of inference problems
(concept subsumption and satisfiability, and both of these problems with respect to
terminologies) and how they are interrelated.

The logics we will discuss are all based on an extension of the well known DL
ALC [Schmidt-SchauB & Smolkal991] to include transitively closed primitive roles [Sat-
tler1996]; we will call this logic S due to its relationship with the proposition (multi)
modal logic S4 ) [Schild1991].! This basic DL is then extended in a variety of
ways—see Figure 1 for an overview.

DEFINITION 2.1

Let N¢ be a set of concept names and R a set of role names with transitive role
names Ry C R. The set of SZ-roles is RU{R~ | R € R}. To avoid considering
roles such as R~ we define a function Inv on roles such that Inv(R) = R~ if R is
a role name, and Inv(R) = S if R = S~. In the following, when speaking of roles,
we refer to SZ-roles, as our approach is capable of dealing uniformly with both role
names and inverse roles.

The set of SZ-concepts is the smallest set such that

1 This logic has previously been called ALCR+ , but this becomes too cumbersome when adding letters to represent
additional features.
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1. every concept name is a concept, and,

2.if C and D are concepts and R is an SZ-role, then (CMD), (CUD), (=C), (VR.C),
and (3R.C) are also concepts.

A role inclusion axiom is of the form R C S, where R and S are two roles, each of
which can be inverse. A role hierarchy is a finite set of role inclusion axioms, and SHZ
is obtained from S7Z by allowing, additionally, for a role hierarchy R. The sub-role
relation & is the transitive-reflexive closure of C over R U {Inv(R) C Inv(S) | R C
S eR}.

SHIQ is obtained from SHZ by allowing, additionally, for qualified number re-
strictions [Hollunder & Baader1991], i.e., for concepts of the form <nR.C and >nR.C,
where R is a simple role, C is a concept, and n € N. A role is called simple iff it
is neither transitive nor has transitive sub-roles. SHZN is the restriction of SHZQ
allowing only unqualified number restrictions (i.e., concepts of the form <nR and
>nR), while SHZF represents a further restriction where, instead of arbitrary num-
ber restrictions, only functional restrictions of the form <1R and their negation >2R
may occur.

An interpretation T = (AZ,-T) consists of a set AZ, called the domain of Z, and a
function - which maps every concept to a subset of AZ and every role to a subset of
AT x AT such that, for all concepts C, D, roles R, S, and non-negative integers n,
the properties in Figure 1 are satisfied, where §M denotes the cardinality of a set M.
An interpretation satisfies a role hierarchy R7T iff RT C ST forcach RES € RT: we
denote this fact by 7 = RT and say that 7 is a model of RT.

A concept C is called satisfiable with respect to a role hierarchy RT iff there
is some interpretation Z such that Z = R and CZ # ). Such an interpretation is
called a model of C w.r.t. R*. A concept D subsumes a concept C w.r.t. R* (written
C Cr+ D) iff C? C D7? holds for each model T of RT. For an interpretation Z, an
individual z € A7 is called an instance of a concept C iff z € C7.

All DLs considered here are closed under negation, hence subsumption and (un)satisfi-
ability w.r.t. role hierarchies can be reduced to each other: C Cx+ D iff C' =D is
unsatisfiable w.r.t. R*, and C is unsatisfiable w.r.t. R iff C T+ AN A for some
concept name A.

In order to make the following considerations easier, we introduce the auxiliary
function Trans: obviously, a role R is transitive iff Inv(R) is transitive. We therefore
define Trans to return true iff R is a transitive role. More precisely, Trans(R) = true
iff R e R+ or Inv(R) S RJr.

In [Kozen & Tiuryn1990; Baader1990; Schild1991; Baader et al.1993], the internali-
sation of terminological axioms is introduced, a technique that reduces reasoning with
respect to a (possibly cyclic) terminology to satisfiability of concepts. In [Horrocks
1998b)], we saw how role hierarchies can be used for this reduction. In the presence of
inverse roles, this reduction must be slightly modified.

DEFINITION 2.2

A terminology T is a finite set of general concept inclusion axioms, 7 = {C; C
Dy,...,C, C D,}, where C;, D; are arbitrary SHZF-concepts. An interpretation 7
is said to be a model of T iff CZ-I - DZ-I holds for all C; C D; € 7. C is satisfiable
with respect to 7 iff there is a model Z of 7 with C% # (). Finally, D subsumes C
with respect to 7 iff, for each model Z of T, we have C* C DZ.
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Construct Name| Syntax Semantics

atomic concept A AT C AT

atomic role R RT C AT x AT

transitive role |R € R4 RT = (RH)*

conjunction cnbD ctnD?

disjunction cub ctuD? S
negation -C AT\ C*

exists restriction| IR.C {z| y.(zr,y) € R and y € CT}
value restriction | VR.C' | {z | Vy.(x,y) € RT implies y € C*}

role hierarchy RCS RT C 57 H
inverse role R~ {(z,y) | (y,x) € R} 1
number >2nR {e[#{y.(z,y) € R} > n} N
restrictions <nRiR {z | #{y-(z,y) € R} <n}
gﬁiﬁgﬁ;ﬂg >nR.C |{z | #{y.(z,y) € RT and y € C*} > n} 0
< z 1 L
restrictions <nR.C|{z [#{y.(z,y) € R” and y € C*} < n}

Fi1G. 1. Syntax and semantics of the SZ family of DLs

The following lemma shows how general concept inclusion axioms can be inter-
nalised using a “universal” role U, a transitive super-role of all roles occurring in 7
and their respective inverses.

LEMMA 2.3
Let 7 be a terminology, R a set of role inclusion axioms and C, D SHZF-concepts,
and let

Cr: -C; U D;.

- CiCDieT

Let U be a transitive role that does not occur in 7,C, D, or R. We set
Ry :=RU{RLC U/Inv(R)C U | R occurs in T,C, D, or R}.

Then C is satisfiable w.r.t. 7 and Rt iff C N Cy M YU.Cr is satisfiable w.r.t. ’Rz;
Moreover, D subsumes C w.r.t. 7 and R iff C 1 =D 1 Cy NYU.Cr is unsatisfiable
w.r.t. Rz;

The proof of Lemma 2.3 is similar to the ones that can be found in [Schild1991;
Baader1990]. Most importantly, it must be shown that, (a) if a SHZF-concept C' is
satisfiable with respect to a terminology 7, then C,7 have a connected model, and
(b) if y is reachable from x via a role path (possibly involving inverse roles), then
(w,y) € UL. These are easy consequences of the semantics and the definition of U.

THEOREM 2.4

Satisfiability and subsumption of SHZF-concepts (resp. SHZ-concepts) w.r.t. termi-
nologies and role hierarchies are polynomially reducible to (un)satisfiability of SHZF-
concepts (resp. SHZ-concepts) w.r.t. role hierarchies.
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3 Blocking

The algorithms we are going to present for deciding satisfiability of SZ- and SHZF-
concepts use the tableaux method [Hollunder et al.1990], in which the satisfiability of
a concept D is tested by trying to construct a model of D. The model is represented
by a tree in which nodes correspond to individuals and edges correspond to roles.
Each node z is labelled with a set of concepts L(x) that the individual = must satisfy,
and each edge is labelled with a role name.

An algorithm starts with a single node labelled {D}, and proceeds by repeatedly
applying a set of expansion rules that recursively decompose the concepts in node
labels, new edges and nodes being added as required in order to satisfy 3R.C concepts.
The construction terminates either when none of the rules can be applied in a way
that extends the tree, or when the discovery of obvious contradictions demonstrates
that D has no model.

In order to prove that such an algorithm is a sound and complete decision procedure
for concept satisfiability in a given logic, it is necessary to demonstrate that the
models it constructs are correct with respect to the semantics, that it will always find
a model if one exists, and that it always terminates. The first two points can usually
be dealt with by proving that the expansion rules preserve satisfiability, and that
in the case of non-deterministic expansion (e.g., of disjunctions) all possibilities are
exhaustively searched. For logics such as ALC, termination is mainly due to the fact
that the expansion rules can only add new concepts that are strictly smaller than the
decomposed concept, so the model must stabilise when all concepts have been fully
decomposed. As we will see, this is no longer true in the presence of transitive roles.

3.1 Transitive Roles vs. Transitive Closure

We have argued that reasoning for logics with transitive roles is empirically more
tractable than for logics that allow for transitive closure of roles [Sattler1996; Horrocks
1998b]. In this section we will give some justification for that claim. The starting
point for our investigations are the logics SH and ALC [Sattler1996], which extend
ALC by transitive roles and role hierarchies or transitive closure of roles respectively.
Syntactically, ALC is similar to S, where, in addition to transitive and non-transitive
roles, the transitive closure RT of a role R may appear in existential and universal
restrictions. Formally, RT is interpreted by

, , R? ifi=1
RN = | J(R*)", where (R*)" = ’ .
(B) lLEJN( J's where (R) R o (RT)™=1, otherwise

For both SH and ALC, concept satisfiability is an EXPTIME-complete problem.
This result is easily derived from the EXPTIME-hardness proof for PDL in [Fischer &
Ladner1979] and from the proof that PDL is in EXPTIME in [Pratt1979]. Never-
theless, implementations of algorithms for SH exhibit good performance in realistic
applications [Horrocks & Patel-Schneider1999] whereas, at the moment, this seems to
be more problematical for ALC;. We believe that the main reason for this discrep-
ancy, at least in the case of tableau algorithm implementations, lies in the different
complexity of the blocking conditions that are needed to guarantee the termination of
the respective algorithms. In the following we are going to survey the blocking tech-
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niques needed to deal with SH and its subsequent extensions to SHZ and SHZF.
To underpin our claim that reasoning with transitive roles empirically leads to more
efficient implementations than for transitive closure we will also present the blocking
techniques used to deal with transitive closure. These are more complicated and in-
troduce a larger degree in non-determinism into the tableaux algorithms, leading to
inferior performance of implementations.

3.2 Blocking for S and SH

Termination of the expansion process of a tableaux algorithm is not guaranteed for log-
ics that include transitive roles, as the expansion rules can introduce new concepts that
are the same size as the decomposed concept. In particular, VR.C' concepts, where R
is a transitive role, are dealt with by propagating the whole concept across R-labelled
edges [Sattler1996]. For example, given a node z labelled {C,3R.C,VR.(3R.C)},
where R is a transitive role, the combination of the IR.C' and VR.(3R.C') concepts
would cause a new node y to be added to the tree with a label identical to that of x.
The expansion process could then be repeated indefinitely.

This problem can be dealt with by blocking: halting the expansion process when
a cycle is detected [Baader1990; Buchheit et al.1993]. For logics without inverse
roles, the general procedure is to check the label of each new node y, and if it is a
subset [Baader et al.1996] of the label of an ancestor node z, then no further expansion
of y is performed: x is said to block y. The resulting tree corresponds to a cyclical
model in which y is identified with x.

To deal with the transitive closure of roles, tableaux algorithms proceed by non-
deterministically expanding a concept IR*.C to either AR.C or AR.IRT.C. Since
the size of concepts along a path in the tree may not decrease, blocking techniques
are necessary to guarantee termination. An adequate blocking condition for ALC ;. is
identical as for SH, but one has to distinguish between good an bad cycles. Consider
the following concept:

D=3RT.ANVRT.-AN-A4

While D is obviously not satisfiable, a run of a tableaux algorithm might generate
the following tableau in which node y is blocked by node x without generating any
obvious contradictions.

o, ART.A, VR —A, JRIART.A, A
R
o, IRT.A, VR* ~A, 3R3RT.A, -A

The problem is that IRT.A has always been expanded to IR.IRT.A, postponing the
satisfaction of A a further step. To obtain a correct tableaux algorithm for ALC 1, the
blocking condition must include a check to ensure that each concept IR™.C appearing
in such a cycle is expanded to IR.C' somewhere in the cycle. Such cycles are called
good cycles, whereas cycles in which IR".C has always been expanded to IR.IRT.C
are called bad cycles. A valid model may only contain good cycles.

Summing up, using transitive closure instead of transitive roles has a twofold im-
pact on the empirical tractability: (a) in blocking situations, good cycles have to be
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oy A, IRART.C oy A, IRART.C
R R

o, IRT.C,3R.C o, ART.C,3R.3IRT.C
R R

o. C o. AIRT.C,dR.3IRT.C

FiG. 2. Dynamic blocking fails in the presence of transitive closure.

distinguished from bad ones, and (b) the non-deterministic expansion of concepts of
the form IR™.C increases the size of the search space.

3.8 Adding Inverse Roles

Blocking is more problematical when inverse roles are added to the logic, and a key
feature of the algorithms presented in [Horrocks & Sattler1999] was the introduction
of a dynamic blocking strategy. Besides using label equality instead of subset, this
strategy allowed blocks to be established, broken, and re-established. With inverse
roles the blocking condition has to be considered more carefully because roles are now
bi-directional, and additional concepts in «’s label could invalidate the model with
respect to y’s predecessor. This problem can be overcome by allowing a node x to be
blocked by one of its ancestors y if and only if they were labelled with the same sets
of concepts.

Dealing with inverse roles is even more complicated in the presence of transitive
closure. As an example consider the following concept:

D=-AN3R3RT.C
C =VR™.(VR™.A)

Fig. 2 shows two possible tableau expansions of the concept D. Continuing the
expansion of the left hand tree will necessarily lead to a clash when concept C' € L(z)
is expanded as this will lead to both A and —A appearing in L(x). The right hand
tree is also invalid as it contains a bad cycle: L(y) = L(z) but IRT.D has always
been expanded to IR.IRT.D. Nevertheless, C is satisfiable, as would be shown by
continuing the expansion of the right hand path for one more step.

In [De Giacomo & Massaccil999], a solution to this problem for CPDL, a strict su-
perset of ALCT, (ALC; plus inverse roles) is presented. The solution consists of
an additional expansion rule called the look behind analytical cut. This rule employs
exhaustive non-deterministic guessing to make the past of each node in the tree ex-
plicit in the labelling of that node: if y is an R-successor of a node z, then IR~.C'
or VR™.~C' is added non-deterministically to the label of y for each concept C that
may appear during the expansion process. Obviously, this leads to a further large
increase in the size of the search space, with a correspondingly large adverse impact
on empirical tractability. Experience with this kind of exhaustive guessing leads us to
believe that an implementation of such an algorithm would be disastrously inefficient.
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The non-existence of implementations for ALCZ ;. or CPDL might be taken to support
this view.

3.4 Pair-wise Blocking

Further extending the logic SHZ to SHZF by adding functional restrictions (concepts
of the form (< 1 R), meaning that an individual can be related to at most one other
individual by the role R) introduces new problems associated with the fact that the
logic no longer has the finite model property. This means that there are concepts
that are satisfiable but for which there exists no finite model. An example of such a
concept is

SCNIF . (CN(L1F)NVR™.AF~.(CN(L1F)))

where R is a transitive role and F' © R. Any model of this concept must contain an
infinite sequence of individuals, each related to a single successors by an F~ role, and
each satisfying C M 3F~.C, the 3F~.C term being propagated along the sequence by
the transitive super-role R. Attempting to terminate the sequence in a cycle causes
the whole sequence to collapse into a single node due to the functional restrictions
(< 1 F), and this results in a contradiction as both C' and —=C' will be in that node’s
label.

In order to deal with infinite models—namely to have an algorithm that terminates
correctly even if the input concept has only infinite models—a more sophisticated
pair-wise blocking strategy was introduced introduced in [Horrocks & Sattler1999],
and soundness was proved by demonstrating that a blocked tree always has a corre-
sponding infinite model.?

The only known algorithm that is able to deal with the combination of transi-
tive closure, inverse roles, and functional restrictions on roles relies on an elaborate
polynomial reduction to a CPDL terminology [De Giacomo & Lenzerini1994], and the
capability of CPDL to internalise the resulting general terminological axioms. The
large number and the nature of the axioms generated by this reduction make it very
unlikely that an implementation with tolerable runtime behaviour will ever emerge.

4 Reasoning for S7 Logics

In this section, we present two tableaux algorithms: the first decides satisfiability of
SHIF-concepts, and can be used for all SHZF reasoning problems (see Theorem 2.4);
the second decides satisfiability (and hence subsumption) of SZ-concepts in PSPACE.
In this paper we only sketch most of the proofs. For details on the SHZF-algorithm,
please refer to [Horrocks & Sattler1999], for details on the SZ- and STA -algorithm,
please refer to [Horrocks et al.1998].

The correctness of the algorithms can be proved by showing that they create a
tableau for a concept iff it is satisfiable.

For ease of construction, we assume all concepts to be in negation normal form
(NNF), that is, negation occurs only in front of concept names. Any SHZF-concept
can easily be transformed to an equivalent one in NNF by pushing negations in-
wards [Hollunder et al.1990].

2This is not to say that it may not also have a finite model.
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DEFINITION 4.1

Let D be a SHZF-concept in NNF, RT a role hierarchy, and Rp the set of roles
occurring in D together with their inverses, and sub(D) the subconcepts of D. Then
T = (S,L, &) is a tableau for D w.r.t. Rt iff S is a set of individuals, L : § — 254b(P)
maps each individual to a set of concepts, & : Rp — 25%S maps each role to a
set of pairs of individuals, and there is some individual s € S such that D € L(s).
Furthermore, for all s,t € S, C, E € sub(D), and R, S € Rp, it holds that:

Jif C e L(s), then ~C ¢ L(s),

JAfCTE € L(s), then C € L(s) and E € L(s),

f CUE € L(s), then C € L(s) or E € L(s),

JfVR.C € L(s) and (s,t) € E(R), then C € L(t),

.if 3R.C € L(s), then there is some ¢ € S such that (s,t) € E(R) and C € L(¢),
LifVS.C e L(s) and (s,t) € E(R) for some R E S with Trans(R), then VR.C € L(t),
- (s,t) € E(R) HE (¢, ) € E(Inv(R)).

Jif {x,y) € E(R) and R E S, then (z,y) € &(S),

© 00 N O U = W N~

Jif 1R € L(s), then §{t | (s,t') € E(R)} < 1,
.if 22R € L(s), then #{t | (s,t') € E(R)} > 2,

—_
o

Tableaux for SZ-concepts are defined analogously and must satisfy Properties 1-7,
where, due to the absence of a role hierarchy, E is the identity.

Due to the close relationship between models and tableaux, the following lemma
can be easily proved by induction on the structure of concepts. As a consequence,
an algorithm that constructs (if possible) a tableau for an input concept is a decision
procedure for satisfiability of concepts.

LEMMA 4.2
A SHIF-concept (resp. SZ-concept) D is satisfiable w.r.t. a role hierarchy R* iff D
has a tableau w.r.t. R*.

4.1 Reasoning in SHIF

In the following, we give an algorithm that, given a SHZF-concept D, decides the
existence of a tableaux for D. We implicitly assume an arbitrary but fixed role
hierarchy R™.

DEFINITION 4.3
A completion tree for a SHZF-concept D is a tree where each node x of the tree is
labelled with a set L(z) C sub(D) and each edge (z,y) is labelled with a set L({x,y))
of (possibly inverse) roles occurring in sub(D).

Given a completion tree, a node y is called an R-successor of a node z iff y is
a successor of x and S € L({z,y)) for some S with S ER. A node y is called an
R-neighbour of z iff y is an R-successor of z, or if x is an Inv(R)-successor of y.
Predecessors and ancestors are defined as usual.

A node is blocked iff it is directly or indirectly blocked. A node x is directly blocked
iff none of its ancestors are blocked, and it has ancestors z’, y and 3’ such that

1. x is a successor of ©’ and y is a successor of y' and
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2. L(z) = L(y) and L(2") = L(y') and
3. L((a",x)) = L({¢y,9))-

In this case we will say that y blocks z.

A node y is indirectly blocked iff one of its ancestors is blocked, or—in order to
avoid wasted expansion after an application of the <-rule—it is a successor of a node
x and L({z,y)) = 0.

For a node z, L(z) is said to contain a clash iff {A,—A} C L(z) or {>2R, <15} C
L(z) for roles RES. A completion tree is called clash-free iff none of its nodes
contains a clash; it is called complete iff none of the expansion rules in Figure 3 is
applicable.

For a SHZF-concept D, the algorithm starts with a completion tree consisting of
a single node z with L(x) = {D}. It applies the expansion rules, stopping when a
clash occurs, and answers “D is satisfiable” iff the completion rules can be applied in
such a way that they yield a complete and clash-free completion tree.

The soundness and completeness of the tableaux algorithm is an immediate conse-
quence of Lemmas 4.2 and 4.4.

LEMMA 4.4
Let D be an SHZF-concept.

1. The tableaux algorithm terminates when started with D.

2. If the expansion rules can be applied to D such that they yield a complete and
clash-free completion tree, then D has a tableau.

3. If D has a tableau, then the expansion rules can be applied to D such that they
yield a complete and clash-free completion tree.

Before we sketch the ideas of the proof, we will discuss the different expansion rules
and their correspondence to the language constructors.

The M-, Ll-, 3- and V-rules are the standard ALC tableaux rules [Schmidt-Schauf &
Smolkal991]. The ¥V -rule is used to handle transitive roles, where the E-clause deals
with the role hierarchy. See [Horrocks & Sattler1999] for details.

The functional restriction rules merit closer consideration. In order to guarantee
the satisfaction of a >2R-constraint, the >-rule creates two successors and uses a fresh
atomic concept A to prohibit identification of these successors by the <-rule. If a node
x has two or more R-neighbours and contains a functional restriction <1R, then the
<-rule merges two of the neighbours and the edges connecting them with x. Labelling
edges with sets of roles allows a single node to be both an R and S-successor of z even
if R and S are not comparable by . Finally, contradicting functional restrictions
are taken care of by the definition of a clash.

We now sketch the main ideas behind the proof of Lemma 4.4:

1. Termination: Let m = |sub(D)| and n = |[Rp|. Termination is a consequence
of the following properties of the expansion rules:

(a) The expansion rules never remove nodes from the tree or concepts from node
labels. Edge labels can only be changed by the <-rule which either expands them or
sets them to (J; in the latter case the node below the @-labelled edge is blocked. (b)
Successors are only generated for concepts of the form IR.C and >2R. For a node z,
each of these concepts triggers the generation of at most two successors. If for one of
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M-rule: if 1. C; M Cy € L(x), z is not indirectly blocked, and
2. {Cl, CQ} g L(l‘)
then L(x) — L(z) U{Cq,Ca}
U-rule: if 1. C; U Cs € L(x), x is not indirectly blocked, and
2. {Cl, 02} N L(JC) = @
then, for some C € {C4,Cs}, L(z) — L(z) U{C}
Frule: if 1. 35.C € L(z), = is not blocked, and
2. z has no S-neighbour y with C' € L(y)
then create a new node y with
L((z,y)) = {5} and L(y) = {C}
V-rule: if 1. VS.C € L(z), x is not indirectly blocked, and
2. there is an S-neighbour y of 2 with C' ¢ L(y)
then L(y) — L(y) U{C}
V' -rule: if 1. VS.C' € L(x), x is not indirectly blocked,
2. there is some R with Trans(R) and R E S, and
3. z has an R-neighbour y with VR.C' ¢ L(y)
then L(y) — L(y) U{VR.C}
>-rule: if 1. (=2 R) € L(x), = is not blocked, and
2. there is no R-neighbour y of x with A € L(y)
then create two new nodes y1, y2 with
L(<$,y1>) = L(<l‘,y2>) = {R}7
L(y1) = {A} and L(y2) = {~A}
<-rule: if 1. (<1 R) € L(x), x is not indirectly blocked,
2. x has two R-neighbours y and z
s.t. y is not an ancestor of z,
then 1. L(z) — L(2) UL(y) and
2. if z is an ancestor of y
then L((z,x)) — L({z,z)) Ulnv(L((z,y)))
else L((z,2)) — L({x, 2)) UL({x,y))
3. L({x,y)) — 0

Fia. 3. The complete tableaux expansion rules for SHZF

these successors y the <-rule subsequently causes L((z,y)) to be changed to ), then
x will have some R-neighbour z with £(z) 2O L(y). This, together with the definition
of a clash, implies that the concept that led to the generation of y will not trigger
another rule application. Obviously, the out-degree of the tree is bounded by 2m. (c)
Nodes are labelled with non-empty subsets of sub(D) and edges with subsets of Rp,
so there are at most 22" different possible labellings for a pair of nodes and an edge.
Therefore, on a path of length at least 22" there must be 2 nodes x,y such that
x is directly blocked by y. Since a path on which nodes are blocked cannot become
longer, paths are of length at most 22",

2. Soundness: A complete and clash-free tree T for D induces the existence of a
tableaux T' = (S, L, &) for D as follows. Individuals in S correspond to pathsin T from
the root node to some node that is not blocked. Instead of going to a directly blocked
node, these paths jump back to the blocking node, which yields paths of arbitrary
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length. Thus, if blocking occurs, this construction yields an infinite tableau. This
rather complicated tableau construction is necessary due to the presence of functional
restrictions; its validity is ensured by the blocking condition, which considers both
the blocked node and its predecessor.

3. Completeness: A tableau T = (S,L,&) for D can be used to “steer” the
application of the non-deterministic L- and <-rules in a way that yields a complete
and clash-free tree.

The following theorem is an immediate consequence of Lemma 4.4, Lemma 4.2, and
Lemma 2.3.

THEOREM 4.5
The tableaux algorithm is a decision procedure for the satisfiability and subsumption
of SHIF-concepts with respect to terminologies.

4.2 A PSPACE-algorithm for ST

To obtain a PSpACE-algorithm for SZ, the SHZF algorithm is modified as follows:
(a) As ST does not allow for functional restrictions, the >- and the <-rule can be
omitted; blocking no longer involves two pairs of nodes with identical labels but only
two nodes with “similar” labels. (b) Due to the absence of role hierarchies, edge labels
can be restricted to roles (instead of sets of roles). (c) To obtain a PSPACE algorithm,
we employ a refined blocking strategy which necessitates a second label B for each
node. This blocking technique, while discovered independently, borrows ideas from
the method used in [Spaan1993] to show that satisfiability for K4; can be decided
in PSPACE.? In the following, we will describe and motivate this blocking technique;
detailed proofs as well as a similar result for STZA can be found in [Horrocks et al.
1998].

Please note that naively using a cut rule does not yield a PSpace algorithm: a cut
rule similar to the look behind analytical cut presented in [De Giacomo & Massacci
1999] (non-deterministically) guesses which constraints will be propagated “up” the
completion tree by universal restrictions on inverted roles. For SZ this technique
may lead to paths of exponential length due to equality blocking. A way to avoid
these long paths would be to stop the investigation of a path at some polynomial
bound. However, to prove the correctness of this approach, it would be necessary
to establish a “short-path-model” property similar to Lemma 4.8. Furthermore, we
believe that our algorithm is better suited for an implementation since it makes less
use of “don’t-know” non-determinism. This also distinguishes our approach from
the algorithm presented [Spaan1993], which is not intended to form the basis for an
efficient implementation.

DEFINITION 4.6
A completion tree for a ST concept D is a tree where each node z of the tree is labelled
with two sets B(x) C L(x) C sub(D) and each edge (x,y) is labelled with a (possibly
inverse) role L({x,y)) occurring in sub(D).

R-neighbours, -successors, and -predecessors are defined as in Definition 4.3. Due
to the absence of role hierarchies, E is the identity on R.

3The modal logic K4¢ is a syntactic variant of SZ with only a single role name.
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M-rule: if 1. C; M Cy € L(z) and
2. {Cl,Cg} Z L(l‘)
then L(z) — L(z) U{C4,Cs}
Lrule: if 1. Cp U Cy € L(z) and
2. {01702} n L(SC) = @
then L(z) — L(x) U {C} for some C € {C4,Cs}
V-rule: if 1.VS.C' € L(z) and
2. there is an S-successor y of z with C' ¢ B(y)
then L(y) — L(y) U {C} and
B(y) — B(y) U{C} or
2’. there is an S-predecessor y of x with C' ¢ L(y)
then L(y) — L(y) U {C}.
Vy-rule: if 1.VS.C' € L(x) and Trans(S) and
2. there is an S-succ. y of z with VS.C' ¢ B(y)
then L(y) — L(y) U{VS.C'} and
B(y) — B(y) U{VS.C} or
2’. there is an S-predec. y of z with VS.C ¢ L(y)
then L(y) — L(y) U{VS.C}.
F-rule: if 1.3S5.C € L(z), z is not blocked and no other rule
is applicable to any of its ancestors, and
2. z has no S-neighbour y with C' € L(y)
then create a new node y with

L((z,y)) = S and L(y) = B(y) = {C}

Fia. 4. Tableaux expansion rules for SZ

A node x is blocked iff, for an ancestor y, y is blocked or
B(x) CL(y) and L(x)/Inv(S) = L(y)/ Inv(S),

where 2’ is the predecessor of z, L({(z',z)) = S, and L(z)/ Inv(S) = {VInv(S).C €

For a node x, L(x) is said to contain a clash iff {A,—A} C L(z). A completion tree
to which none of the expansion rules given in Figure 4 is applicable is called complete.

For an SZ-concept D, the algorithm starts with a completion tree consisting of a
single node = with B(z) = L(z) = {D}. It applies the expansion rules in Figure 4,
stopping when a clash occurs, and answers “D is satisfiable” iff the completion rules
can be applied in such a way that they yield a complete and clash-free completion
tree.

As for SHZF, correctness of the algorithm is proved by first showing that a
SZ-concept is satisfiable iff it has a tableau, and next proving the SZ-analogue of
Lemma 4.4.

THEOREM 4.7
The tableaux algorithm is a decision procedure for satisfiability and subsumption of
SZ-concepts.

The dynamic blocking technique for S7 and SHZ described in Section 3, which is
based on label equality, may lead to completion trees with exponentially long paths
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because there are exponentially many possibilities to label sets on such a path. Due
to the non-deterministic Ll-rule, these exponentially many sets may actually occur.

This non-determinism is not problematical for & because disjunctions need not be
completely decomposed to yield a subset-blocking situation. For an optimal SZ al-
gorithm, the additional label B was introduced to enable a sort of subset-blocking
which is independent of the U-non-determinism. Intuitively, B(z) is the restriction of
L(z) to those non-decomposed concepts that z must satisfy, whereas L(x) contains
boolean decompositions of these concepts as well as those that are imposed by value
restrictions in descendants. If x is blocked by y, then all concepts in B(x) are even-
tually decomposed in L(y) (if no clash occurs). However, in order to substitute by
Y, ’s constraints on predecessors must be at least as strong as y’s; this is taken care
of by the second blocking condition.

Let us consider a path z1,...,z, where all edges are labelled R with Trans(R), the
only kind of paths along which the length of the longest concept in the labels might
not decrease. If no rules can be applied, we have L(x;41)/Inv(R) C L(x;)/ Inv(R) and
B(z;) C B(xi+1) U {C;} (where IR.C; triggered the generation of 2;41). This limits
the number of labels and guarantees blocking after a polynomial number of steps.

LEMMA 4.8

The paths of a completion tree for a concept D have a length of at most m? where
m = |sub(D)|.

Finally, a slight modification of the expansion rules given in Figure 4 yields a
PSPACE algorithm. This modification is necessary because the original algorithm
must keep the whole completion tree in its memory—which needs exponential space
even though the length of its paths is polynomially bounded. The original algorithm
may not forget about branches because restrictions which are pushed upwards in the
tree might make it necessary to revisit paths which have been considered before. We
solve this problem as follows:

Whenever the V- or the V,-rule is applied to a node = and its predecessor y (Case
2’ of these rules), we delete all successors of y from the completion tree. While this
makes it necessary to restart the generation of successors for y, it makes it possible to
implement the algorithm in a depth-first manner which facilitates the re-use of space.

This modification does not affect the proof of soundness and completeness for the
algorithm, but of course we have to re-prove termination [Horrocks et al.1998] as it
formerly relied on the fact that we never removed any nodes from the completion tree.
Summing up we get:

THEOREM 4.9

The modified algorithm is a PSPACE decision procedure for satisfiability and sub-
sumption of SZ-concepts.

5 The Undecidability of Unrestricted SHAN

In [Horrocks et al.1999] we describe an algorithm for SHZQ based on the SHZIF-
algorithm already presented. Like earlier DLs that combine a hierarchy of (transitive
and non-transitive) roles with some form of number restrictions [Horrocks & Sattler
1999; Horrocks et al.1998] and SHZF, the DL SHZQ allows only simple roles in num-
ber restrictions. The justification for this limitation has been partly on the grounds
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F1c. 5. Visualisation of the grid and role hierarchy.

of a doubtful semantics (of transitive functional roles) and partly to simplify decision
procedures. In this section we will show that, even for the simpler SHA logic, allow-
ing arbitrary roles in number restrictions leads to undecidability, while decidability
for the corresponding variant of SHZF is still an open problem. For convenience, we
will refer to SHA with arbitrary roles in number restrictions as SHN ™.

The undecidability proof uses a reduction of the domino problem [Berger1966]
adapted from [Baader & Sattler1996]. This problem asks if, for a set of domino types,
there exists a tiling of an N2 grid such that each point of the grid is covered with one
of the domino types, and adjacent dominoes are “compatible” with respect to some
predefined criteria.

DEFINITION 5.1

A domino system D = (D, H,V) consists of a non-empty set of domino types D =
{D1,...,Dy}, and of sets of horizontally and vertically matching pairs H C D x D
and V' C D x D. The problem is to determine if, for a given D, there exists a
tiling of an N x N grid such that each point of the grid is covered with a domino
type in D and all horizontally and vertically adjacent pairs of domino types are in
H and V respectively, i.e., a mapping ¢t : N x N — D such that for all m,n € N,
(t(m,n),t(m+1,n)) € H and (t(m,n),t(m,n+1)) € V.

This problem can be reduced to the satisfiability of SHN *-concepts, and the un-
decidability of the domino problem implies undecidability of satisfiability of SHN -
concepts.

Ensuring that a given point satisfies the compatibility conditions is simple for most
logics (using value restrictions and boolean connectives), and applying such conditions
throughout the grid is also simple in a logic such as SHN* which can deal with arbi-
trary axioms. The crucial difficulty is representing the N x N grid using “horizontal”
and “vertical” roles X and Y, and in particular forcing the coincidence of X oY and
Y o X successors. This can be accomplished in SHAN ' using an alternating pattern
of two horizontal roles X; and X5, and two vertical roles Y7 and Y5, with disjoint
primitive concepts A, B, C, and D being used to identify points in the grid with
different combinations of successors. The coincidence of X oY and Y o X successors
can then be enforced using number restrictions on transitive super-roles of each of
the four possible combinations of X and Y roles. A visualisation of the resulting grid
and a suitable role hierarchy is shown in Figure 5, where Sf;- are transitive roles.

The alternation of X and Y roles in the grid means that one of the transitive super-
roles S?; connects each point (x,y) to the points (z+1,y), (z,y+1) and (z+1,y+1),
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and to no other points. A number restriction of the form <3S§; can thus be used
to enforce the necessary coincidence of X oY and Y o X successors. A complete
specification of the grid is given by the following axioms:

AC-BN-CMN-DN3xX,;.Bn3y;.Cn<35%,
BLC-AN-CMN-DN3X,. AN3Y,.DN<35F,
CC-AN-BN-DN3X;.DN3Y;. AN <355,
DC-AN-BMN-CN3X,.CMn3Y,.BMN<355,.

It only remains to add axioms which encode the local compatibility conditions (as
described in [Baader & Sattler1996]) and to assert that A is subsumed by the disjunc-
tion of all domino types. The SHAN T-concept A is now satisfiable w.r.t. the various
axioms (which can be internalised as described in Lemma 2.3) iff there is a compatible
tiling of the grid.

6 Implementation and Optimisation

The development of the SZ family of DLs has been motivated by the desire to imple-
ment systems with good typical case performance. As discussed in Section 3, this is
achieved in part through the design of the logics and algorithms themselves, in particu-
lar by using transitive roles and by reasoning with number restrictions directly, rather
than via encodings. Another important feature of these algorithms is that their rela-
tive simplicity facilitates the application of a range of optimisation techniques. Several
systems based on S logics have now been implemented (e.g., FaCT [Horrocks1998a),
DLP [Patel-Schneider1998] and RACE [Haarslev & Moller1999]), and have demon-
strated that suitable optimisation techniques can lead to a dramatic improvement in
the performance of the algorithms when used in realistic applications. A system based
on the SHZF logic has also been implemented (iFaCT [Horrocks1999]) and has been
shown to be similarly amenable to optimisation.

DL systems are typically used to classify a KB, and the optimisation techniques
used in such systems can be divided into four categories based on the stage of the
classification process at which they are applied.

1. Preprocessing optimisations that try to modify the KB so that classification and
subsumption testing are easier.

2. Partial ordering optimisations that try to minimise the number of subsumption
tests required in order to classify the KB.

3. Subsumption optimisations that try to avoid performing a potentially expensive
satisfiability test, usually by substituting a cheaper test.

4. Satisfiability optimisations that try to improve the typical case performance of the
underlying satisfiability testing algorithm.

Many optimisations in the first three categories are relatively independent of the
underlying subsumption (satisfiability) testing algorithm and could be applied to any
DL system. As we are mostly concerned with algorithms for the SZ family of DLs
we will concentrate on the fourth kind of optimisation, those that try to improve the
performance of the algorithm itself. Most of these are aimed at reducing the size of
the search space explored by the algorithm as a result of applying non-deterministic
tableaux expansion rules.
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F1G. 6. Syntactic branching search

6.1  Semantic branching search

Implementations of the algorithms described in the previous sections typically use a
search technique called syntactic branching. When expanding the label of a node =z,
syntactic branching works by choosing an unexpanded disjunction (Cy U ... L Cy)
in L(z) and searching the different models obtained by adding each of the disjuncts
C1, ..., Cp to L(x) [Giunchiglia & Sebastianil996]. As the alternative branches of
the search tree are not disjoint, there is nothing to prevent the recurrence of an
unsatisfiable disjunct in different branches. The resulting wasted expansion could
be costly if discovering the unsatisfiability requires the solution of a complex sub-
problem. For example, tableaux expansion of a node z, where {(AU B),(AUC)} C
L(z) and A is an unsatisfiable concept, could lead to the search pattern shown in
Figure 6, in which the unsatisfiability of L(x) U {A} must be demonstrated twice.
This problem can be dealt with by using a semantic branching technique adapted
from the Davis-Putnam-Logemann-Loveland procedure (DPL) commonly used to
solve propositional satisfiability (SAT) problems [Davis et al.1962; Freeman1996). In-
stead of choosing an unexpanded disjunction in L(z), a single disjunct D is chosen
from one of the unexpanded disjunctions in £(x). The two possible sub-trees obtained
by adding either D or =D to L(x) are then searched. Because the two sub-trees are
strictly disjoint, there is no possibility of wasted search as in syntactic branching. Note
that the order in which the two branches are explored is irrelevant from a theoretical
viewpoint, but may offer further optimisation possibilities (see Section 6.4).
Semantic branching search has the additional advantage that a great deal is known
about the implementation and optimisation of the DPL algorithm. In particular, both
local simplification (see Section 6.2) and heuristic guided search (see Section 6.4) can
be used to try to minimise the size of the search tree (although it should be noted that
both these techniques can also be adapted for use with syntactic branching search).
There are also some disadvantages to semantic branching search. Firstly, it is possi-
ble that performance could be degraded by adding the negated disjunct in the second
branch of the search tree, for example if the disjunct is a very large or complex con-
cept. However this does not seem to be a serious problem in practice, with semantic
branching rarely exhibiting significantly worse performance than syntactic branching.
Secondly, its effectiveness is problem dependent. It is most effective with randomly
generated problems, particularly those that are over-constrained (likely to be unsat-
isfiable) [Horrocks & Patel-Schneider1999]. It is also effective with some of the hand
crafted problems from the Tableaux’98 benchmark suite [Heuerding & Schwendimann
1996; Balsiger & Heuerding1998]. However it is of little benefit when classifying real-



18 Practical Reasoning for Very Expressive Description Logics
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Fia. 7. Semantic branching search
istic KBs [Horrocks & Patel-Schneider1998].

6.2  Local simplification

Local simplification is another technique used to reduce the size of the search space
resulting from the application of non-deterministic expansion rules. Before any non-
deterministic expansion of a node label L(z) is performed, disjunctions in L(z) are
examined, and if possible simplified. The simplification most commonly used is to
deterministically expand disjunctions in L(x) that present only one expansion possi-
bility and to detect a clash when a disjunction in £(z) has no expansion possibilities.
This simplification has been called boolean constraint propagation (BCP) [Freeman
1995]. In effect, the inference rule

-Cy,...,C,,CiU...UC,UD
D

is being used to simplify the conjunctive concept represented by L(x).
For example, given a node x such that

{(CI_I (Dl I Dg))7 (ﬁDl =Dy L C), ﬁC} - L(:L‘),

BCP deterministically expands the disjunction (C' U (D4 M D3)), adding (D1 M D2) to
L(z), because =C' € L(z). The deterministic expansion of (D; M D) adds both D
and Dy to L(z), allowing BCP to identify (=D LU =Dz LI C) as a clash (without any
branching having occurred), because {D1, D2, ~C} C L(x).

BCP simplification is usually described as an integral part of SAT based algo-
rithms [Giunchiglia & Sebastianil996], but it can also be used with syntactic branch-
ing. However, it is more effective with semantic branching as the negated concepts in-
troduced by failed branches can result in additional simplifications. Taking the above
example of {(AUB), (AUC)} C L(z), adding —~A to L(z) allows BCP to determinis-
tically expand both of the disjunctions using the simplifications (ALl B) and A — B
and (AU C) and =A — C. The reduced search space resulting from the combination
of semantic branching and BCP is shown in Figure 7.

Local simplification has the advantage that it can never increase the size of the
search space and can thus only degrade performance to the extent of the overhead
required to perform the simplification. Minimising this overhead does, however, re-
quire complex data structures [Freeman1995], particularly in a modal/description
logic setting.

As with semantic branching, effectiveness is problem dependent, the optimisation
being most effective with over-constrained randomly generated problems [Horrocks &
Patel-Schneider1998|.
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F1c. 8. Thrashing in backtracking search

6.3  Dependency directed backtracking

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of un-
productive backtracking search, sometimes called thrashing. For example, expanding
a node z (using semantic branching), where

L(z)={(CyuDy),...,(C,UD,),3R.(AN B),VR.—A},

could lead to the fruitless exploration of 2™ possible R-successors of x before the
inherent unsatisfiability is discovered. The search tree resulting from the tableaux
expansion is illustrated in Figure 8.

This problem can be addressed by adapting a form of dependency directed back-
tracking called backjumping, which has been used in solving constraint satisfiabil-
ity problems [Baker1995] (a similar technique was also used in the HARP theorem
prover [Oppacher & Suen1988]). Backjumping works by labelling each concept in a
node label with a dependency set indicating the branching points on which it de-
pends. A concept C € L(x) depends on a branching point if C' was added to L(z)
at the branching point or if C' € L(z) was generated by an expansion rule (including
simplification) that depends on another concept D € L(y), and D € L(y) depends on
the branching point. A concept C' € L(z) depends on a concept D € L(y) when C
was added to L(x) by a deterministic expansion that used D € L(y). For example, if
A € L(z) was derived from the expansion of (AN B) € L(z), then A € L(z) depends
on (AN B) € L(x).

When a clash is discovered, the dependency sets of the clashing concepts can be used
to identify the most recent branching point where exploring the other branch might
alleviate the cause of the clash. It is then possible to jump back over intervening
branching points without exploring any alternative branches. Let us consider the
earlier example and suppose that 3R.(A M B) has a dependency set D; and VR.—A
has a dependency set D;. The search proceeds until C; ...}, have been added to
L(z), when IR.(AMNB) and YR.—A are deterministically expanded and a clash occurs
in L(y) between the A derived from IR.(A M B) and the —A derived from VR.-A.
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F1c. 9. Pruning the search using backjumping

As these derivations were both deterministic, the dependency sets will be D; and
D; respectively, and so D; UDj is returned. This set cannot include the branching
points where C; ... C, were added to L(z) as D; and D; were defined before these
branching points were reached. The algorithm can therefore backtrack through each
of the preceding n branching points without exploring the second branches, and will
continue to backtrack until it reaches the branching point equal to the maximum value
in D, UD; (if D; = D; = 0, then the algorithm will backtrack through all branching
points and return “unsatisfiable”). Figure 9 illustrates the pruned search tree, with
the number of R-successors explored being reduced by an exponential number.

Backjumping can also be used with syntactic branching, but the procedure is
slightly more complex as there may be more than two possible choices at a given
branching point, and the dependency set of the disjunction being expanded must also
be taken into account.

Like local simplification, backjumping can never increase the size of the search
space. Moreover, it can lead to a dramatic reduction in the size of the search tree
and thus a huge performance improvement. For example, when using either FaCT
or DLP with backjumping disabled in order to classify a large (3,000 concept) KB
derived from the European GALEN project [Rector et al.1993], single satisfiability
tests were encountered that could not be solved even after several weeks of CPU
time. Classifying the same KB with backjumping enabled takes less than 100s of
CPU time for either FaCT or DLP [Horrocks & Patel-Schneider1999].

Backjumping’s only disadvantage is the overhead of propagating and storing the
dependency sets. This can be alleviated to some extent by using a pointer based
implementation so that propagating a dependency set only requires the copying of a
pointer.
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6.4  Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimise
the size of the search tree. A method that is widely used in DPL SAT algorithms
is to branch on the disjunct that has the Mazimum number of Occurrences in dis-
junctions of Minimum Size—the well known MOMS heuristic [Freeman1995]. By
choosing a disjunct that occurs frequently in small disjunctions, the MOMS heuristic
tries to maximise the effect of BCP. For example, if the label of a node x contains
the unexpanded disjunctions C'LI Dy, ... ,CU D,, then branching on C' leads to their
deterministic expansion in a single step: when C is added to L(x), all of the dis-
junctions are fully expanded and when —C' is added to L(z), BCP will expand all of
the disjunctions, causing Dy, ..., D, to be added to L(z). Branching first on any of
Dy, ..., D,, on the other hand, would only cause a single disjunction to be expanded.

The MOMS value for a candidate concept C is computed simply by counting the
number of times C or its negation occur in minimally sized disjunctions. There are
several variants of this heuristic, including the heuristic from Jeroslow and Wang [Jero-
slow & Wang1990]. The Jeroslow and Wang heuristic considers all occurrences of a
disjunct, weighting them according to the size of the disjunction in which they occur.
The heuristic then selects the disjunct with the highest overall weighting, again with
the objective of maximising the effect of BCP and reducing the size of the search tree.

When a disjunct C' has been selected from the disjunctions in L(z), a BCP max-
imising heuristic can also be used to determine the order in which the two possible
branches, L(z) U{C} and L(z) U {—C}, are explored. This is done by separating the
two components of the heuristic weighting contributed by occurrences of C' and —C,
trying L(z) U {C} first if C' made the smallest contribution, and trying L(z) U {—=C}
first otherwise. The intention is to prune the search tree by maximising BCP in the
first branch.

Unfortunately MOMS-style heuristics can interact adversely with the backjumping
optimisation because they do not take dependency information into account. This
was first discovered in the FaCT system, when it was noticed that using MOMS
heuristic often led to much worse performance. The cause of this phenomenon turned
out to be the fact that, without the heuristic, the data structures used in the imple-
mentation naturally led to “older” disjunctions (those dependent on earlier branching
points) being expanded before “newer” ones, and this led to more effective pruning if
a clash was discovered. Using the heuristic disturbed this ordering and reduced the
effectiveness of backjumping [Horrocks1997).

Moreover, MOMS-style heuristics are of little value themselves in description logic
systems because they rely for their effectiveness on finding the same disjuncts recur-
ring in multiple unexpanded disjunctions: this is likely in hard propositional problems,
where the disjuncts are propositional variables, and where the number of different
variables is usually small compared to the number of disjunctive clauses (otherwise
problems would, in general, be trivially satisfiable); it is unlikely in concept satisfiabil-
ity problems, where the disjuncts are (possibly non-atomic) concepts, and where the
number of different concepts is usually large compared to the number of disjunctive
clauses. As a result, these heuristics will often discover that all disjuncts have similar
or equal priorities, and the guidance they provide is not particularly useful.

An alternative strategy is to employ an oldest-first heuristic that tries to max-
imise the effectiveness of backjumping by using dependency sets to guide the expan-
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sion [Horrocks & Patel-Schneider1999]. When choosing a disjunct on which to branch,
the heuristic first selects those disjunctions that depend on the least recent branching
points (i.e., those with minimal maximum values in their dependency sets), and then
selects a disjunct from one of these disjunctions. This can be combined with the use
of a BCP maximising heuristic, such as the Jeroslow and Wang heuristic, to select
the disjunct from amongst the selected disjunctions.

The oldest-first heuristic can also be used to advantage when selecting the order
in which existential role restrictions, and the labels of the R-successors which they
generate, are expanded. One possible technique is to use the heuristic to select an
unexpanded existential role restriction IR.C' from the label of a node x, apply the
J-rule and the V-rule as necessary, and expand the label of the resulting R-successor.
If the expansion results in a clash, then the algorithm will backtrack; if it does not,
then continue selecting and expanding existential role restrictions from L(z) until
it is fully expanded. A better technique is to first apply the F-rule and the V-rule
exhaustively, creating a set of successor nodes. The order in which to expand these
successors can then be based on the minimal maximum values in the dependency
sets of all the concepts in their label, some of which may be due to universal role
restrictions in L(x).

The main advantage of heuristics is that they can be used to complement other
optimisations. The MOMS and Jeroslow and Wang heuristics, for example, are de-
signed to increase the effectiveness of BCP while the oldest-first heuristic is designed
to increase the effectiveness of backjumping. They can also be selected and tuned to
take advantage of the kinds of problem that are to be solved (if this is known). The
BCP maximisation heuristics, for example, are generally quite effective with large
randomly generated and hand crafted problems, whereas the oldest-first heuristic is
more effective when classifying realistic KBs.

Unfortunately heuristics also have several disadvantages. They can add a significant
overhead as the heuristic function may be expensive to evaluate and may need to be
reevaluated at each branching point. Moreover, they may not improve performance,
and may significantly degrade it, for example by interacting adversely with other
optimisations, by increasing the frequency with which pathological worst cases can
be expected to occur in generally easy problem sets.

6.5  Caching satisfiability status

During a satisfiability check there may be many successor nodes created. Some of
these nodes can be very similar, particularly as the labels of the R-successors for a node
x each contain the same concepts derived from the universal role restrictions in L(z).
Systems such as DLP take advantage of this similarity by caching the satisfiability
status of the sets of concepts with which node labels are initialised when they are
created. The tableaux expansion of a node can then be avoided if the satisfiability
status of its initial set of concepts is found in the cache.

However, this technique depends on the logic having the property that the satisfi-
ability of a node is completely determined by its initial label set, and, due to the
possible presence of inverse roles, SZ logics do not have this property. For example,
if the expansion of a node = generates an R-successor node y, with L(y) = {VR~.C'},
then the satisfiability of y clearly also depends on the set of concepts in L(x). Similar
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problems could arise in the case where L(y) contains number restriction concepts.

If it is possible to solve these problems, then caching may be a very effective tech-
nique for 87 logics, as it has been shown to be in the DLP system with a logic that
does not support inverse roles. Caching is particularly useful in KB classification as
cached values can be retained across multiple satisfiability tests. It can also be effec-
tive with both satisfiable and unsatisfiable problems, unlike many other optimisation
techniques that are primarily aimed at speeding up the detection of unsatisfiability.

The main disadvantage with caching is the storage overhead incurred by retaining
node labels (and perhaps additional information in the case of SZ logics) and their
satisfiability status throughout a satisfiability test (or longer, if the results are to be
used in later satisfiability tests). An additional problem is that it interacts adversely
with the backjumping optimisation as the dependency information required for back-
jumping cannot be effectively calculated for nodes that are found to be unsatisfiable
as a result of a cache lookup. Although the set of concepts in the initial label of such
a node is the same as that of the expanded node whose (un)satisfiability status has
been cached, the dependency sets attached to the concepts that made up the two
labels may not be the same. However, a weaker form of backjumping can still be
performed by taking the dependency set of the unsatisfiable node to be the union of
the dependency sets from the concepts in its label.

7 Discussion

A new DL system is being implemented based on the SHZQ algorithm we have
developed from the SHZF-algorithm described in Section 4.1 [Horrocks et al.1999].
Pending the completion of this project, the existing FaCT system [Horrocks1998b]
has been modified to deal with inverse roles using the SHZF blocking strategy, the
resulting system being referred to as iFaCT.

iFaCT has been used to conduct some initial experiments with a terminology rep-
resenting (fragments of) database schemata and inter schema assertions from a data
warehousing application [Calvanese et al.1998a] (a slightly simplified version of the
proposed encoding was used to generate SHZF terminologies). iFaCT is able to clas-
sify this terminology, which contains 19 concepts and 42 axioms, in less than 0.1s of
(266MHz Pentium) CPU time. In contrast, eliminating inverse roles using an em-
bedding technique [Calvanese et al.1998b] gives an equisatisfiable FaCT terminology
with an additional 84 axioms, but one which FaCT is unable to classify in 12 hours
of CPU time.

As discussed in Section 3, an extension of the embedding technique can be used
to eliminate number restrictions [De Giacomo & Lenzerini1l995], but requires a target
logic which supports the transitive closure of roles, i.e., converse-PDL. The even
larger number of axioms which this embedding would introduce makes it unlikely that
tractable reasoning could be performed on the resulting terminology. Moreover, we
are not aware of any algorithm for converse-PDL which does not employ a so-called
look behind analytical cut [De Giacomo & Massaccil999], the application of which
introduces considerable additional non-determinism. It seems inevitable that this
would lead to a further degradation in empirical tractability.

The DL SHZ Q will allow the above mentioned encoding of database schemata to be
fully captured using qualified number restrictions. Future work will include complet-
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ing the implementation of the SHZ Q algorithm, testing its behaviour in this kind of
application and investigating new techniques for improving its empirical tractability.
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